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A B S T R A C T

Horned Lizard Optimization Algorithm (HLOA) is a newly developed swarm-based metaheuristic technique that
emulates the defensive behaviors of the horned lizard in nature. Like other algorithms, HLOA has certain lim-
itations, including the tendency to become trapped in local optima due to a rapid loss of population diversity
during the optimization process. This often results in premature convergence, particularly in complex optimi-
zation problems. To address these issues, this paper introduces an improved version of HLOA, named iHLOA,
which incorporates two distinct strategies. First, the strengthened convergence strategy is utilized to improve the
quality of individuals and accelerate the algorithmʼs convergence. Second, the mutation strategy is integrated to
significantly boost population diversity, enhancing HLOAʼs ability to escape local minima. Various validation
tests conducted on the CEC-2022 benchmark test demonstrate the effectiveness of the iHLOA algorithm in
tackling global optimization challenges. Additionally, iHLOA was applied to determine the optimal gains for
adaptive Fuzzy Logic Control (FLC) based MPPT to maximize energy harvested from the Proton Exchange
Membrane Fuel Cell (PEMFC). The results demonstrate iHLOAʼs superiority over other algorithms, including the
Seagull Optimization Algorithm (SOA), Black Widow Optimization Algorithm (BWOA), Sinh Cosh Optimizer
(SCHO), Osprey Optimization Algorithm (OOA), Whale Optimization Algorithm (WOA), Greylag Goose Opti-
mization (GGO), and the standard HLOA. iHLOA achieved the best performance with a value of 1.7755, followed
by SCHO with 1.7806, while GGO recorded the worst performance at 1.8494. Additionally, iHLOA demonstrated
superior stability with the lowest standard deviation (STD) of 0.0122, followed by SOA with 0.0193, while GGO
had the highest STD of 0.1101. Furthermore, compared with the classical FLC-MPPT, the proposed FLC-MPPT
based on iHLOA achieves faster tracking speeds and reduces oscillations around the MPP in a steady state.

1. Introduction

The core of optimization problems lies in identifying the optimal set
of variables (parameters) that generate the best possible outcome (either
minimum or maximum value) for a given design while complying with
specific constraints (Rajwar, Deep, & Das, 2023). These problems are
typically formulated as mathematical programming models. The need
for practical solutions to optimization problems is widespread across
nearly all scientific and engineering disciplines (Fatehi, Toloei, Niaki, &
Zio, 2023). As the complexity of challenges in these fields grows, the

demand for flexible optimization methods capable of handling their
intricate nature becomes increasingly critical (Fathy, Bouaouda, &
Hashim, 2024).

Metaheuristic algorithms have emerged as powerful tools for
addressing complex optimization problems (Umbarkar, Sheth, Hong, &
Jagdeo, 2024). Traditional methods often struggle with escaping sub-
optimal solutions (local optima) and can become trapped in these areas.
In contrast, metaheuristics employ a variety of simulated behaviors to
effectively explore the search space, thereby improving the likelihood of
identifying the true optimal solution (global optimum) (Velasco,
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Guerrero, & Hospitaler, 2024, Bouaouda & Sayouti, 2022). Moreover,
metaheuristics are notably user-friendly, contributing to their wide-
spread adoption in optimization tasks since their introduction.

Optimization algorithms have recently seen a surge in research ac-
tivity, leading to the development of numerous innovative metaheuristic
methodologies (Sharma & Raju, 2024). Notable examples include the
Elk Herd Optimizer (EHO) (Al-Betar et al., 2024), Walrus optimizer
(WO) (Han et al., 2024), Topology Aggregation Optimizer (TTAO)
(Zhao, Zhang, Cai,& Yang, 2024), Growth Optimizer (GO) (Zhang et al.,
2023), Arctic Puffin Optimization (APO) (Wang, Tian, Xu, & Zang,
2024), Puma optimizer (PO) (Abdollahzadeh et al., 2024), Pied King-
fisher Optimizer (PKO) (Bouaouda, Hashim, Sayouti, & Hussien, 2024),
and Horned Lizard Optimization Algorithm (HLOA) (Peraza-Vázquez
et al., 2024). These algorithms have demonstrated superior performance
compared to established techniques in initial studies and are continually
being refined, highlighting their significant potential (Yacoubi, Manita,
Chhabra,& Korbaa, 2024). This expanding landscape of optimization
algorithms highlights the ongoing pursuit of improved problem-solving
capabilities. According to the “No Free Lunch” theorem (Wolpert &
Macready, 1997), no single algorithm can be universally optimal for all
problems. Consequently, current research focuses on developing algo-
rithms with broader applicability and significantly improved optimiza-
tion abilities across various problem domains.

The Proton Exchange Membrane Fuel Cell (PEMFC) is considered
one of the most promising types of FCs thanks to its low operating
temperature and extended lifespan (Ali, Al-Dhaifallah, Al-Gahtani, &
Muranaka, 2023). The output power of a PEM fuel cell is regularly
reliant on the cell temperature and membrane water content (Hai,
Alazzawi, Zhou, & Farajian, 2023). Therefore, maximum power point
tracking systems are highly integrated with the PEMFC to ensure
maximum power harvesting. A new MPPT approach for tracking the
MPP of PEM fuel cells using ANFIS with a modified manta ray foraging
algorithm is proposed by Ali et al. (Ali, Al-Dhaifallah, Al-Gahtani, &
Muranaka, 2023). The drawback of this method is that it is required to
measure the membrane water content (MWC) and the temperature in
addition to the voltage and current. A new method using an improved
Fluid Search Optimization Algorithm and FLC to extract the MPP of
PEMFC is suggested by Hai, Alazzawi, Zhou, & Farajian (2023).
Different values of cell temperature and membrane water content are
considered. A non-iterative method for MPPT of PEMFC using resistance
estimation is presented by Bankupalli et al. (2019). The findings were
compared with the incremental resistance technique. The drawback of
the suggested method is that extra sensors are required, including two
voltage sensors and two current sensors. Fathy, Abdelkareem, Olabi, &
Rezk (2021) examined a new strategy using the Salp Swarm Algorithm
(SSA) to track the MPP of PEMFC. A mathematical relation is presented
to calculate the PEMFC voltage value matching the MPP. The error be-
tween the computed voltage at MPP and the actual PEMFC voltage is fed
to a PID to tune the converter duty cycle to boost the PEMFC power. The
ideal gains values of PID are determined using SSA, and the findings
were compared with INC, FLC, GWO, ALO, and MPA (Fathy, Abdel-
kareem, Olabi, & Rezk, 2021). The drawback of the proposed system is
that it needs three sensors to measure the temperature, MWC, and cell
voltage.

According to the literature, several challenges remain in improving
the MPPT performance of PEMFC systems, including enhancing tracking
speeds, optimizing design parameters, reducing steady-state oscilla-
tions, lowering sensor costs, and simplifying implementation. Addi-
tionally, the stochastic nature of optimization techniques in single-run
designs necessitates statistical analysis for meaningful comparisons. The
choice of control method, particularly FLC, plays a critical role in MPPT
performance, as it offers design flexibility for performance optimization.
In addressing these challenges, this study proposes an enhanced MPPT
controller design for PEMFCs, incorporating FLC systems to improve
overall efficiency.

However, while FLCs offer significant benefits, their design remains

complex due to the lack of standardized methods for defining fuzzy
control rules and fine-tuning membership function (MF) parameters.
The design process is often formulated as an optimization problem to
address these challenges, typically solved using metaheuristic algo-
rithms (Hai, Alazzawi, Zhou, & Farajian, 2023). These algorithms
automatically adjust both input and output MFs, leading to more
effective tuning. They also optimize the scaling factors (SFs) of MFs and
FLC parameters, thus reducing the number of variables that need to be
optimized. Focusing on SF adjustments instead of directly modifying the
fuzzy set ranges minimizes computational demands while improving
tracking speed. A key advantage of these algorithms is their ability to
automatically regulate the shape and range of triangular MFs, enhancing
the adaptability and performance of FLCs.

The Horned Lizard Optimization Algorithm (HLOA) is a recently
introduced method by Peraza-Vázquez et al. (2024)., inspired by the
defensive behaviors of horned lizards in nature to seek optimal solu-
tions. Since its introduction, HLOA has attracted considerable attention
due to its minimal parameters and straightforward design. However, its
application to complex, real-world scenarios has revealed limitations,
particularly its tendency to become trapped in local optima. To address
this, an improved version called iHLOA has been developed, incorpo-
rating strengthened convergence and mutation strategies. These im-
provements are intended to help HLOA effectively escape local optima,
enhance its exploration capabilities, and more reliably guide the algo-
rithm toward the global optimal solution.

The main contributions of the paper are as follows.

(a) An improved version of the HLOA algorithm, referred to as
iHLOA, is proposed.

(b) The improved iHLOA incorporates two distinct strategies. First,
the strengthened convergence strategy is used to improve the
quality of individuals and accelerate the algorithm’s conver-
gence. Second, the mutation strategy is integrated to boost
population diversity significantly, enhancing the ability of HLOA
to escape local minima

(c) The proposed approach was evaluated using the CEC-2022
benchmark suite and compared against other widely and popu-
lar techniques.

(d) The iHLOAwas applied for the first time to determine the optimal
gains of adaptive fuzzy logic control-based maximum power
point tracking.

(e) The suggested FLC-MPPT-based iHLOA presented fast tracking
speed and overcame the oscillations around MPP in a steady
state.

The structure of the paper is as follows: Section 2 reviews related
works. Section 3 overviews the horned lizard optimization algorithm.
Section 4 introduces the proposed improvements to HLOA. Section 5
presents the experimental results and analysis of the proposed approach
across various benchmark functions. Section 6 examines the use of the
improved HLOA (iHLOA) in optimizing FLC-based MPPT. Section 7
discusses the merits and demerits of the proposed method. Lastly, Sec-
tion 8 summarizes the conclusions and key findings of the paper.

2. Related works

Numerous MPPT techniques have been developed to control the
output of PEMFCs, with the primary goal of maintaining continuous
operation at the MPP. Traditional approaches, including Incremental
Conductance (INC) (Harrag & Messalti, 2017), Perturb and observe
(P&O) (Benyahia et al., 2014), Incremental resistance (INR) (Rezk &
Fathy, 2020), and Sliding Mode Control (SMS) (Derbeli, Barambones,
Ramos-Hernanz, & Sbita, 2019), are commonly employed. These
methods focus on control variables. Although these techniques are
relatively straightforward to implement, they often experience power
oscillations around the MPP. Decreasing the step size can alleviate these
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oscillations and reduce tracking speed, limiting adaptability to rapidly
changing conditions. The main challenge remains to find the right bal-
ance between reducing power fluctuations and ensuring rapid, precise
tracking.

To overcome the shortcomings of traditional MPPT methods in
PEMFC systems, intelligent control algorithms are increasingly utilized.
Fuzzy Logic Control (FLC)-based MPPT strategies, as discussed in
Ref. (Derbeli, Sbita, Farhat, & Barambones, 2017), leverage the adapt-
ability and flexibility of FLC systems to enhance MPPT effectiveness for
PEMFCs. FLC offers advantages such as fast response, operational flex-
ibility, and independence from precise mathematical models. However,
it depends on specialized knowledge to establish fuzzy inference rules,
which means its effectiveness depends on the user’s expertise. Addi-
tionally, FLC may require significant memory resources, leading to
higher overall expenses for the control system.

Ref. Reddy and Sudhakar (2018) presents MPPT controllers based on
Artificial Neural Networks (ANN) for PEMFC systems. ANN controllers
can effectively approximate the voltage and current at the MPP across
varying cell temperatures. However, they require extensive training
datasets, which can increase computational demands. Insufficient
training data can significantly reduce the accuracy of MPP tracking. In
Ref. Reddy and Sudhakar (2019), an Adaptive Neuro-Fuzzy Inference
System (ANFIS)-based MPPT controller was developed for
PEMFC-powered electric vehicles. By combining the strengths of FLC
and ANN, ANFIS controllers were tested across a range of cell temper-
atures. Despite their advantages, ANFIS controllers rely on substantial
training data, impacting system efficiency.

Beyond the controllers mentioned earlier, metaheuristic algorithms
have been used to optimize the output of PEMFC systems. These algo-
rithms, recognized for their ability to quickly and accurately identify the

MPP, have garnered significant interest in optimizing MPPT for various
renewable energy systems. Notable examples include Ref. Ahmadi,
Abdi, and Kakavand (2017), which introduced an enhanced PID control
approach utilizing Particle Swarm Optimization (PSO) to improve the
stability and accuracy of the system. Compared to the P&O method and
sliding mode algorithm, PSO achieves high precision and reduces power
fluctuations under varying temperature and membrane water content
conditions. However, PSO is prone to premature convergence, param-
eter sensitivity, and can be computationally intensive. On the other
hand, the Genetic Algorithm (GA) has been proposed to optimize MPPT
via ANFIS for fuel cell systems (Savrun and İnci, 2021). This method
reduces computational load, making it suitable for real-time applica-
tions. A performance comparison with ANFIS and PI controllers
demonstrated its effectiveness in terms of power extraction and effi-
ciency. However, GA-based optimization faces convergence issues in
complex environments.

In Ref. Nasiri Avanaki and Sarvi (2016), an MPPT method for
PEMFCs based on the Water Cycle Algorithm (WCA)-PID combination
was proposed, where WCA identified the voltage at maximum power,
and the PID controller adjusted the duty cycle. While WCA out-
performed P&O and voltage/current-based methods, it faces challenges
during the exploitation phase. Ref. Rana, Kumar, Sehgal, and George
(2019) introduced a feedback-based control system integrating the
GWO-tuned PID controller for efficient MPPT. Despite improved
tracking efficiency, it remains prone to local optima challenges, partic-
ularly in fluctuating conditions. Ref. Percin and Caliskan (2023) pro-
posed an MPPT strategy for PEMFCs using the Whale Optimization
Algorithm (WOA). Although the method is noted for its straightforward
structure and ease of implementation, it tends to converge more slowly
in complex environments and is highly sensitive to parameter tuning.

Table 1
Summary of various MPPT controllers for PEMFC systems.

Ref. Method Abbrev. Control
variable

Type of
Converter

Strengths Weaknesses

(Benyahia et al., 2014) Perturb and
observe

P&O Duty cycle Boost
converter

It is easy to implement and requires
minimal computational resources.

It may struggle with fast-changing conditions
and can cause oscillations around the MPP.

(Harrag & Messalti, 2017) Incremental
Conductance

INC Duty cycle Boost
converter

It is more accurate than P&O under
rapidly changing conditions and
less oscillatory.

Computationally more complex than P&O
and requires derivative calculations

(Rezk & Fathy, 2020) Incremental
Resistance

INR Duty cycle Boost
converter

Accurate for MPPT in specific
conditions, capable of steady-state
operation.

Limited tracking during rapid variations in
operating conditions.

(Derbeli, Barambones,
Ramos-Hernanz, &
Sbita, 2019)

Sliding Mode
Control

SMC Duty cycle Boost
converter

Robust to parameter variations and
disturbances, making it suitable for
fuel cells.

It may suffer from chattering and requires
careful design.

(Derbeli, Sbita, Farhat, &
Barambones, 2017)

Fuzzy Logic
Control

FLC Duty cycle Boost
converter

Effective in handling the non-
linearity of FCs and can adapt to
changes in operating conditions.

Designing the rule base and membership
functions can be complex and requires expert
knowledge.

(Reddy& Sudhakar, 2018) Artificial Neural
Network

ANN Duty cycle High gain
boost

High accuracy and adaptability to
complex, non-linear relationships
in PEMFC.

It requires a large amount of data for training
and can be computationally demanding.

(Reddy& Sudhakar, 2019) Neuro-Fuzzy
Inference System

ANFIS Duty cycle High gain
boost

Adaptable with high convergence
and accuracy without requiring
expert knowledge.

It requires extensive data and is
computationally expensive.

(Ahmadi, Abdi, &
Kakavand, 2017)

Particle Swarm
Optimization

PSO Duty cycle Boost
converter

High tracking accuracy and
efficient performance.

Has a poor rate of convergence in some cases.

(Savrun & İnci, 2021) Genetic
Algorithm

GA Duty cycle Boost
converter

Effective in handling complex
optimization tasks without
requiring derivative information

Optimizing it is computationally complex
and time-intensive.

(Nasiri Avanaki & Sarvi,
2016)

Water Cycle
Algorithm

WCA Duty cycle Boost
converter

Offers high convergence speed and
robust performance under certain
conditions.

Parameter sensitivity can result in inaccurate
MPPT tracking, as improperly tuned
parameters may adversely affect
performance.

(Fathy, Abdelkareem,
Olabi, & Rezk, 2021)

Salp Swarm
Algorithm

SSA Duty cycle Boost
converter

Suitable for various environmental
conditions.

Slow convergence in some scenarios may lead
to local minima under complex conditions.

(Rana, Kumar, Sehgal, &
George, 2019)

Grey Wolf
Optimizer

GWO Duty cycle Boost
converter

Effective in handling complex
search spaces.

Can experience premature convergence to
suboptimal solutions.

(Percin & Caliskan, 2023) Whale
Optimization
Algorithm

WOA Duty cycle Boost
converter

It has a simple structure and is easy
to implement.

It converges slower in complex environments
and is sensitive to parameter adjustments.
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While these algorithms are effective in MPP tracking, they face
limitations in real-time applications. Metaheuristic algorithms typically
require precise parameter tuning and may suffer from premature
convergence, leading to suboptimal solutions. Moreover, their perfor-
mance can degrade under rapidly changing environmental conditions,
compromising consistent tracking accuracy. Table 1 summarizes
different MPPT control strategies for PEMFC systems, highlighting their
drawbacks.

3. Overview of the horned lizard optimization algorithm

The Phrynosoma, commonly known as the horned lizard, is a reptile
found in northeastern Mexico and the south-central US’s dry (arid and
semi-arid) environments (Cooper & Sherbrooke, 2010). These lizards
are adapted to their challenging habitat (see Fig. 1). They are primarily
myrmecophagous, meaning they predominantly feed on ants, employing
a sit-and-wait predatory strategy that relies on camouflage (cryptic
coloration) to ambush their prey. Their distinctive morphology, which
includes cranial horns, further supports their predatory lifestyle
(Middendorf & Sherbrooke, 1992). A unique antipredator adaptation of
the horned lizard is the ability to squirt blood from its eyes. These ad-
aptations, along with their documented low annual survival rates
(ranging from 8.9 % to 54 %), underscore the intense predation pres-
sures these lizards face from a range of vertebrate predators, such as
snakes, other predatory lizards, felids, canids, rodents, and birds
(Sherbrooke, Aguilar-Morales, & Van Devender, 2022).

Peraza-Vázquez et al. introduced the Horned Lizard Optimization
Algorithm (HLOA), drawing inspiration from the defensive behaviors of
the horned lizard (Peraza-Vázquez et al., 2024). This algorithm converts
these behaviors into mathematical models to guide the optimization
process. One key behavior integrated into HLOA is crypsis, where the
lizard adjusts its coloration to become translucent, aiding in evading
predators. HLOA incorporates the concept of α-Melanophore Hormone
Stimulation (α-MHS) to simulate adaptive skin lightening or darkening
based on thermal regulation needs. Moreover, the algorithm mathe-
matically represents the lizard’s evasive movement strategy when
encountering threats. Finally, HLOA models the horned lizard’s unique
defense mechanism of blood squirting, treating it as a projectile motion
problem within its optimization framework (Peraza-Vázquez et al.,
2024).

The HLOA was devised into six stages, which are described as
follows.

3.1. Initialization

HLOA begins the optimization process by using a random initiali-
zation technique to create a population of candidate solutions within the
problemʼs search space using the equation below.

X = LB+ rand(UB − LB) (1)

where UB and LB represent the upper and lower boundaries of the
problem variables, and rand is a uniform random vector ranging from
0 to 1.

3.2. Crypsis behavior strategy

Many organisms in the animal kingdom have evolved a remarkable
ability known as crypsis, which involves camouflaging themselves by

mimicking elements of their surroundings, such as color and texture.
Some species even take it a step further by becoming translucent, further
obscuring their presence. This adaptive behavior provides a significant
advantage: it allows organisms to evade detection by predators and
prey, ultimately enhancing their chances of survival. Inspired by this
fascinating phenomenon, the following equation utilizes the principles
of color theory to mathematically model the crypsis technique employed
by the horned lizard (Peraza-Vázquez et al., 2024).

where X→i(t+1) denotes the new position of the search agent within the
solution search space for the generation t+ 1, X→best(t) represents the
position of the best search agent identified so far in the current iteration,
r1, r2, r3, and r4 represent integer values chosen randomly between 1 and
the total number of search agents (denoted by N), which are distinct
from each other (r1 ∕= r2 ∕= r3 ∕= r4), T represents the maximum number
of iterations, t is the current iteration number, and ∂ is a constant value
equal to 2. Additionally, c1 and c2 are random numbers selected from a
list of the normalized color palettes in which c1 ∕= c2. Finally, σ is
assigned a binary value based on a random number generation process.
If the randomly generated value, denoted by rand, is less or equal to 0.5,
σ is set to 0. Conversely, if rand is greater than 0.5, σ takes on a value of
1.

3.3. Skin darkening or lightening strategy

The horned lizard exhibits an impressive thermoregulatory adapta-
tion by dynamically adjusting its skin coloration. It can darken or lighten
its skin to control solar thermal energy absorption. This strategy is based
on the fundamental concept of energy conservation, which applies to
thermal and light energy. This principle highlights the crucial relation-
ship between an organism’s coloration and thermal state. Lighter colors
reflect more solar radiation, reducing heat gain, while darker colors
increase heat absorption by capturing more light energy. The mathe-
matical representation of this skin-lightening strategy can be expressed
as follows (Peraza-Vázquez et al., 2024):

X→worst(t) = X
→
best(t) +

1
2
Light1sin

(

X→r1 (t) − X
→
r2 (t)

)

− ( − 1)σ1
2
Light2sin

(

X→r3 (t) − X
→
r4 (t)

)

(3)

where X→best(t) and X
→
worst(t) denote the best and worst performing search

agents identified so far, respectively. Light1 and Light2 are random
numbers generated within the range defined by Lighthening1 (value 0)
and Lighthening2 (value 0.4046661). On the other hand, the mathemat-
ical representation of this skin-darkening strategy can be formulated as
below (Peraza-Vázquez et al., 2024):

X→worst(t) = X
→
best(t) +

1
2
Dark1sin

(

X→r1 (t) − X
→
r2 (t)

)

− ( − 1)σ1
2
Dark2sin

(

X→r3 (t) − X
→
r4 (t)

)

(4)

where X→best(t) and X
→
worst(t) denote the best and worst performing search

agents identified so far, respectively. Dark1 and Dark2 are random
numbers generated within the range defined by Darkening1 (0.5440510
value) and Darkening2 (1 value). Furthermore, within both equations, r1,
r2, r3, and r4 represent integer values chosen randomly between 1 and

X→i(t+1) = X→best(t) +
(

∂ − ∂⋅t
T

)

×

[

c1
(

sin
(

X→r1 (t)
)

− cos
(

X→r2 (t)
))

− (− 1)σc2
(

cos
(
Xr3 (t)
̅̅̅→)

− sin
(

X→r4 (t)
))]

(2)
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the total number of search agents (denoted by N), which are distinct
from each other (r1 ∕= r2 ∕= r3 ∕= r4).

Note that the worst search agent in iteration t is replaced by a new
one generated through the skin-lightening or skin-darkening strategy.

3.4. Blood squirting strategy

The horned lizard exhibits a unique antipredator adaptation by
expelling blood from its eyes. This hemoptysis defense mechanism can
be mathematically modeled as projectile motion. To formulate the
equations of motion, we decompose the blood trajectory into its hori-
zontal (X-axis) and vertical (Y-axis) components.

In the horizontal direction, the blood shot follows a uniform linear
movement, described by the following equation of motion
(Peraza-Vázquez et al., 2024):

υ→= υ→0 +

∫t

0

g→dt = υ→0 + g→t (5)

In the vertical direction, the blood shot follows a uniformly accel-
erated rectilinear motion, described as follows (Peraza-Vázquez et al.,
2024):

r→ = r0→+

∫t

0

(υo→+ g→ t)dt = r0→+ υo→ t +
1
2
g→ t2 (6)

In which,

r→0 = 0→ (7)

The equations below formally express the vector equations, position,
and velocity (Peraza-Vázquez et al., 2024).

υ→0 = υ0cos (α)t j
→

+

(

υ0sin (α)t − 1
2
gt2

)

k
→

(8)

υ→ = r→= (υ0cos (α)) j
→

+ (υ0sin (α) − gt) k
→ (9)

Lastly, the trajectory can be formulated as follows (Peraza-Vázquez
et al., 2024):

X→i(t + 1) =
[
vocos

(
α t
T

)
+ ε

]
X→best(t) +

[
vosin

(
α −

αt
T

)
− g + ε

]
X→i(t)

(10)

where g denotes the Earth’s gravity (0.009807 km/s2), ε is set to 1E-6, vo
is set to 1 second, t denotes the current iteration, T represents the
maximum number of iterations (generations), X→best(t) represents the
best search agent found at iteration t, and X→i(t+1) denotes the new
position of the search agent within the solution search space for the
generation t+ 1.

Fig. 1. Horned Lizard defense behaviors in nature.1.

1 Pictures obtained from https://pixabay.com/ are copyright-free.
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3.5. Move-to-escape strategy

The horned lizard’s survival strategy includes a remarkable evasion
tactic. When threatened, it rapidly and unpredictably changes direction,
confusing predators and making it difficult to anticipate its movements.
HLOA mathematically represents this strategy through an equation
incorporating local and global movements. The local exploration

component, denoted by walk
(

1
2 − ε

)

X→i(t), which guides the search

agent’s movement near its current position (X→i(t)). Additionally,
X→best(t) introduces a global movement aspect, influencing the search
agent’s trajectory towards promising regions within the solution space.
Therefore, this strategy is expressed as follows (Peraza-Vázquez et al.,
2024):

X→i(t + 1) = X→best(t) + walk
(
1
2
− ε

)

X→i(t) (11)

where X→best(t) represents the best search agent found at iteration t, and
X→i(t+1) denotes the new position of the search agent within the solu-
tion search space for the generation t+ 1, walk denotes a random value
generated between -1 and 1, while ε represents a random variable
sampled from a standard Cauchy distribution with a mean of 0 and a
standard deviation (σ) of 1.

3.6. σ -Melanophore stimulating hormone rate strategy

The horned lizard exhibits a remarkable thermoregulatory adapta-
tion. It can dynamically adjust its skin coloration, lightening, or dark-
ening to manage its solar thermal energy absorption. This rapid color-
changing process is primarily driven by the influence of temperature
on α-melanophore stimulating hormone (α-MSH) concentrations.
Consequently, the mathematical representation for a horned lizard’s
α-melanophore rate is expressed in the following equation
(Peraza-Vázquez et al., 2024):

melanophore(i) =
Fitnessmax − Fitness(i)
Fitnessmax − Fitnessmin

(12)

where Fitness(i) represents the objective function value (fitness)
currently associated with the i-th search agent in the population. The
terms Fitnessmax and Fitnessmin denote the worst and best fitness values
observed within the current generation (t), respectively.

Following the calculation in the previous equation, the
melanophore(i) is normalized to a range between 0 and 1. This normal-
ization ensures that the values remain within a valid range for further
calculations. Subsequently, if the α-melanophore rate (represented by a
value in melanophore(i)) falls below a threshold of 0.3, indicating a low
melanophore stimulation level, the corresponding search agent is
updated using the equation presented below (Peraza-Vázquez et al.,
2024).

X→i(t) = X
→
best(t) +

1
2

[

X→r1 (t) − (− 1)σ X→r2 (t)
]

(13)

where X→i(t) denotes the current position of the search agent at iteration
t, X→best(t) represents the position of the best search agent identified so far
in the current iteration (t), while r1 and r2 are two randomly chosen
integer values, each selected from the range of 1 to the total number of
search agents, which are distinct from each other (r1 ∕= r2). Additionally,
σ is assigned a binary value based on a random number generation
process. If the randomly generated value, denoted by rand, is less or
equal to 0.5, σ is set to 0. Conversely, if rand is greater than 0.5, σ takes
on a value of 1.

The pseudo-code of the HLOA algorithm is shown in Algorithm 1.

4. Proposed improved HLOA

While the HLOA algorithm tends to converge towards optimal so-
lutions, it faces challenges when applied to complex optimization
problems. These challenges include susceptibility to getting trapped in
suboptimal solutions (local optima) and inefficient search space explo-
ration, which can lead to neglecting potentially optimal regions. To
address these limitations, this work proposes an improved version of
HLOA named iHLOA. iHLOA incorporates two key enhancements.
Firstly, it introduces the strengthened convergence strategy to accelerate
the search process and guide the population towards the optimal solu-
tion more efficiently. Secondly, the mutation strategy enhances the al-
gorithm’s ability to escape from local optima and explore the search
space more effectively. These modifications aim to overcome the limi-
tations of the original HLOA, as detailed in the following subsections.

4.1. Strengthened convergence strategy

In the HLOA algorithm, the population is guided by the optimal in-
dividual. However, due to the lack of prior knowledge, it is challenging
to determine if this optimal individual is in the globally optimal position.
If the optimal individual is in a locally optimal position, the population
will converge to local optima, leading to suboptimal solutions. To
address this issue, the strengthened convergence strategy is introduced
(Wang et al., 2024). This strategy enables individuals to progressively
move towards the global optimal solution by learning from those with
better fitness values within the archive and distancing themselves from
individuals with the worst fitness values in the population. This
approach improves the quality of the individuals and accelerates
HLOA’s convergence. The strengthened convergence strategy is math-
ematically represented as follows (Wang et al., 2024).

Algorithm 1
The HLOA algorithm.

Input: Upper and lower bounds of variables (Xmax and Xmin),
problem dimension (Dim), the maximum number of iterations (T),
and number of population (N).
Output: the best solution
Begin
Randomly initialize the population by Eq. (1).
Calculate the fitness of all individuals.
Initialize iteration count: t = 1.
While (t <T)
For i =1 to N do
If (0.5 < rand) then
Update the position by Eq. (2).

Else
If (t= odd number) then
Update the position by Eq. (10).

Else
Update the position by Eq. (11).

End if
End if
Generate a random binary value σ (0 or 1)
If (σ is equal to 0) then
Generate randomly Light1 and Light2
Replace the worst agent by Eq. (3).

Else
Generate randomly Dark1 and Dark2
Replace the worst agent by Eq. (4).

End if
Calculate melanophore(i) by Eq. (12).
If (melanophore(i) ≤ 0.3) then
Update the position by Eq. (13).

End if
Check if the new position is within boundaries.
Evaluate the current fitness.

End for
t = t+ 1

End while
End
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X→i(t + 1) =
X→r1 (t) + X

→
r2 (t) + X

→
r3 (t)

3
,

t
T
< 0.4

X→i(t + 1) =
X→r1 (t) + X

→
r2 (t)

2
− Distance(i),

t
T
≥ 0.4

(14)

where X→i(t+1) denotes the new position of the search agent within the
solution search space for the generation t+ 1, r1, r2, r3, and r4 represent
integer values chosen randomly between 1 and the total number of
search agents, which are distinct from each other (r1 ∕= r2 ∕= r3 ∕= r4), T
represents the maximum number of iterations, and t is the current
iteration number. Furthermore, Distance(i) represents the distance be-
tween the current i-ith individual and the position of the worst indi-
vidual in the population, which is expressed below (Wang et al., 2024):

Distance(i) = 0.9 × EC ×

(

X→worst(t) −
⃒
⃒
⃒
⃒X
→
i(t)

⃒
⃒
⃒
⃒

)

(15)

where X→i(t) denotes the current position of the search agent at iteration
t, X→worst(t) represents the position of the worst search agent identified so
far in the current iteration, while EC is an adaptive elite coefficient of
exploration formulated as follows (Wang et al., 2024):

EC =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

1 −
t
T

1
12−

5∗tan (pi∗(rand− 0.5))
3∗T

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(16)

where rand is a uniform random vector ranging from 0 to 1, t is the
current iteration number, while T represents the maximum number of
iterations.

4.2. Mutation strategy

HLOA is recognized for its strong exploitation capabilities and
simplicity, but it can suffer from reduced population diversity and pre-
mature convergence to local optima in later iterations. The introduced
mutation strategy addresses this issue by combining states frommultiple
individuals to generate new solutions, thereby preserving diversity and
facilitating exploring a broader solution space. When integrated with
other metaheuristic algorithms, this approach leverages their global
search strengths, mitigating the risk of local optima and enhancing the
algorithm’s performance in solving complex optimization problems
(Chen, Ouyang, Li, & Zou, 2024). The updated formula for HLOA,
incorporating the mutation strategy, is presented below.

X→i(t+1) = X→i(t) + β × rand×
(

X→r1 (t) − X
→
i(t)

)

(17)

where X→i(t+1) denotes the new position of the search agent within the
solution search space for the generation t+ 1, X→i(t) denotes the current
position of the search agent at iteration t, r1 represents an integer value
chosen randomly between 1 and the total number of search agents, rand
is a uniform random vector ranging from 0 to 1, and β is an updating
coefficient that determines the step size for updating the individual.

A detailed description of the search process for the developed iHLOA
is provided in Algorithm 2.

4.3. Computational complexity of the proposed iHLOA

This section analyzes the time and space complexity of the proposed
iHLOA to assess the computational cost associated with the incorporated
improvements.

4.3.1. Time complexity
For iHLOA, with N solutions, T maximum iterations, and D di-

mensions, the time complexity can be divided into distinct phases. The
initialization phase, which occurs once it requires O(N × D). The
complexity of the fitness function depends on the specific problem. On
the other hand, the position update phase, which includes strategies
such as strengthened convergence, mutation, skin lightening/darkening,
blood squirting strategy, move-to-escape strategy, and σ-Melanophore
stimulating hormone rate, contributes O(T × N × D). Therefore, the
overall computational complexity of iHLOA is as follows:

O(iHLOA) = O(N×D) + O(T×N×D) (18)

O(iHLOA) = O(N×D+T×N×D) (19)

O(iHLOA) ≈ O(T×N×D) (20)

As a result, iHLOA maintains the same time complexity
(O(T×N×D)) as the original HLOA, but it significantly outperforms the
original algorithm in terms of efficiency and solution quality.

4.3.2. Space complexity
In the case of iHLOA, memory allocation depends on the number of

search agents and the dimension size determined during initialization.
As a result, the space complexity of iHLOA is O(N × D).

The following sections highlight the advantages of iHLOA in
addressing various optimization problems, using multiple benchmark
functions, and a real-world engineering application.

5. Experimental results and analysis

This section provides an in-depth evaluation of iHLOAʼs optimization

Algorithm 2
The proposed iHLOA algorithm.

Input: Upper and lower bounds of variables (Xmax and Xmin),
problem dimension (Dim), the maximum number of iterations (T),
and number of population (N).
Output: the best solution
Begin
Randomly initialize the population by Eq. (1).
Calculate the fitness of all individuals.
Initialize iteration count: t = 1.
While (t <T)
For i =1 to N do
If (rand < 0.3) then
Calculate EC by Eq. (16).
Update the position by Eq. (14).

Elseif (rand < 0.8) then
Update the position by Eq. (17).

Else
If (t= odd number) then

Update the position by Eq. (10).
Else
Update the position by Eq. (11).

End if
End if
Generate a random binary value σ (0 or 1)
If (σ is equal to 0) then
Generate randomly Light1 and Light2
Replace the worst agent by Eq. (3).

Else
Generate randomly Dark1 and Dark2
Replace the worst agent by Eq. (4).

End if
Calculate melanophore(i) by Eq. (12).
If (melanophore(i) ≤ 0.3) then
Update the position by Eq. (13).

End if
Check if the new position is within boundaries.
Evaluate the current fitness.

End for
t = t+ 1

End while
End
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performance through various numerical experiments using established
test functions. To ensure consistency, all algorithms are implemented in
MATLAB. The source code for the comparison algorithms is accessible
from the original authors. Importantly, all algorithms are assessed under
identical conditions within the same test category.

5.1. Benchmark description

This section utilizes benchmark functions from the CEC-2022 suite
(Ahrari et al., 2022) to rigorously evaluate algorithm performance

across diverse optimization landscapes. Table 2 provides comprehensive
details about these functions, including their names, value ranges, di-
mensions (Dim), and optimal values (f∗i ). The function set includes
unimodal (F1), multimodal (F2-F4), hybrid (F5-F8), and composite
(F9-F12) functions, facilitating a thorough assessment of each algo-
rithm’s performance across different optimization scenarios. Each
function is denoted by ’F’ followed by a number (F1, F2, ..., F12).
Unimodal functions, characterized by a single global optimum, are used
to test an algorithmʼs exploitation capability, i.e., its ability to find the
best solution. Multimodal functions, which have multiple optima (one
global and others local), evaluate an algorithm’s exploration ability or
its capacity to navigate various options to find the best solution. Hybrid
and composite functions simulate real-world complexities, assessing an
algorithmʼs ability to handle diverse and intricate problem structures.
Fig. 2 presents 3D visualizations of a randomly selected subset of the
CEC-2022 test functions, offering a visual representation of the optimi-
zation landscapes.

5.2. Parameter setting

This study compares the performance of the proposed iHLOA with
seven established optimization algorithms including the Seagull Opti-
mization Algorithm (SOA) (Dhiman & Kumar, 2019), Black Widow
Optimization Algorithm (BWOA) (Hayyolalam & Kazem, 2020), Sinh
Cosh Optimizer (SCHO) (Bai et al., 2023), Osprey Optimization Algo-
rithm (OOA) (Dehghani and Trojovský, 2023), Whale Optimization Al-
gorithm (WOA) (Mirjalili and Lewis, 2016), Greylag Goose Optimization

Table 2
Details of the benchmark functions.

F Name Dim Range f∗i

1 Shifted and full Rotated Zakharov Function 20 [− 100,100] 300
2 Shifted and full Rotated Rosenbrock’s

Function
20 [− 100,100] 400

3 Shifted and full Rotated Expanded Schaffer’s 20 [− 100,100] 600
4 Shifted and full Rotated Non-Continuous

Rastrigin’s
20 [− 100,100] 800

5 Shifted and full Rotated Levy Function 20 [− 100,100] 900
6 Hybrid Function 1 (N = 3) 20 [− 100,100] 1800
7 Hybrid Function 2 (N = 6) 20 [− 100,100] 2000
8 Hybrid Function 3 (N = 5) 20 [− 100,100] 2200
9 Composition Function 1 (N = 5) 20 [− 100,100] 2300
10 Composition Function 2 (N = 4) 20 [− 100,100] 2400
11 Composition Function 3 (N = 5) 20 [− 100,100] 2600
12 Composition Function 4 (N = 6) 20 [− 100,100] 2700

Fig. 2. 3D view of some randomly choosing CEC-2022 benchmark functions.
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(GGO) (El-kenawy et al., 2024), and the basic HLOA (Peraza-Vázquez
et al., 2024). The parameter values for all compared algorithms were
obtained from their original sources. Table 3 provides the specific
parameter settings used for these algorithms.

All simulations were conducted on a standardized computing plat-
form featuring an AMD Ryzen 5 5500H CPU (3.6 GHz), Nvidia GeForce
graphics card, 8 GB of 3200 MHz RAM, a 64-bit operating system, and
MATLAB 2023a. This setup ensured rigorous and reliable evaluation.
Consistent parameters were applied, including a population size (N) of
50, a maximum number of iterations (T) of 1000, 30 independent al-
gorithm runs, and a problem dimension (D) of 20. Each algorithm was
thoroughly evaluated, analyzing the best (minimum), worst
(maximum), average, and standard deviation of their achieved results.
The algorithms were ranked (Rank) based on their average performance
to facilitate a meaningful comparison. In cases where average perfor-
mances were identical, the standard deviation served as a tiebreaker,
with a lower standard deviation indicating greater consistency. The
evaluation criteria for the minimization problem are defined as follows:

• The best value

Best = min(fitness1, fitness2,⋯, fitnessruns), (21)

• The worst value

Worst = max(fitness1, fitness2,⋯, fitnessruns), (22)

• The average value

Mean =
1
runs

∑runs

i=1
fitnessi, (23)

• The standard deviation

Std =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

runs − 1
∑runs

i=1
(fitnessi − Mean)2

√

, (24)

• Rank

This criterion indicates the ranking result of different algorithms. In
this study, the average value mentioned above serves as the basis for
ranking. If two algorithms have the same average value, the standard
deviation is utilized for ranking. A smaller rank signifies better perfor-
mance of the corresponding algorithm in terms of accuracy and stability.

The calculation formula is as follows:

Ranki =
1
k
∑K

k=1

rankki (25)

where K denotes the number of algorithms compared, runs is the total
number of runs executed for each algorithm, while fitness represents the
best fitness value of a single run. Table 4 summarizes these comparative
findings.

5.3. Statistical results

This subsection provides an in-depth analysis and comparison to
evaluate the performance of iHLOA against the original HLOA and
several other prominent optimization algorithms, including SOA,
BWOA, SCHO, OOA, WOA, and GGO. Table 4 presents the best, average,
worst, and standard deviation values for iHLOA and its competitors
across 12 benchmark functions with a dimensionality of 20. The best
(minimum) values are highlighted in bold for emphasis. Along with the
Friedman rank, these statistical metrics provide a robust framework for
assessing and comparing the algorithms’ performance on various opti-
mization tasks. As presented in Table 4, the proposed iHLOA achieved
the highest ranking (Rank 1) for seven benchmark functions (F2, F3, F4,
F5, F7, F8, and F11). It secured second place (Rank 2) for functions F1,
F9, F10, and F12. Only for function F6 iHLOA ranked third (Rank 3)
among the twelve functions tested. This outstanding performance, with
top two rankings in eleven out of twelve functions, demonstrates
iHLOA’s superior capability in finding optimal solutions. Additionally,
iHLOA’s overall ranking across all functions is first, with an average
ranking of 1.5, followed by SOA and SCHO. These results underscore
iHLOA’s exceptional performance in handling complex optimization
problems, indicating a robust and versatile optimization capability with
superior generalization abilities.

Fig. 3 presents radar charts that illustrate the ranking performance of
various algorithms across twelve test functions (F1 to F12). The radar
chart for iHLOA shows the smallest enclosed area, indicating its superior
performance and effectiveness in solving the optimization problems. A
smaller area on the radar chart corresponds to lower ranking values,
reflecting consistent and competitive performance across all test func-
tions. In contrast, algorithms such as GGO, OOA, and BWOA exhibit
larger enclosed areas, suggesting comparatively weaker performance
and lower rankings across multiple functions. For instance, GGO dis-
plays a widespread area, signifying its lower efficiency and inconsistent
results. Similarly, OOA and BWOA show uneven performance, strug-
gling with certain functions. Other algorithms, such as SCHO, SOA, and
WOA, demonstrate moderate performance, with their radar charts dis-
playing a balanced spread but still enclosing larger areas compared to
iHLOA. Notably, the radar chart for the original HLOA reveals signifi-
cant improvements in its improved version (iHLOA), as evidenced by the
reduced area and better performance rankings. This visual representa-
tion clearly highlights the outstanding competitiveness and robustness
of iHLOA in comparison to the tested algorithms across all twelve
functions, reaffirming its ability to outperform existing methods in
diverse optimization challenges.

To further validate iHLOA’s performance, a Wilcoxon rank sum test
(Wilcoxon, 1992) was employed to assess the statistical significance of
its results across various functions, conducted at a significance level (α)
of 0.05. Table 5 summarizes the statistical outcomes when comparing
the optimal solutions generated by iHLOA with seven other algorithms.
This table provides insights into iHLOA’s relative performance and its
statistical reliability. Importantly, the results indicate significant supe-
riority of iHLOA compared to OOA and GGO across all twelve CEC-2022
test functions (p-value < 0.05 denotes a significant difference). Simi-
larly, compared to BWOA, iHLOA achieves statistically better results in
ten out of twelve functions. Compared to standard HLOA and WOA,
iHLOA demonstrates statistically significant improvements in eight and

Table 3
Parameters of algorithms.

Algorithm Year Parameters values Ref.

SOA 2019 fc = 2, A ∈ [0,1] (Dhiman & Kumar,
2019)

BWOA 2020 Pp=0.6, Cr=0.44, Pm=0.4. (Hayyolalam &
Kazem, 2020)

SCHO 2023 p=10, q=9, α=4.6, β=1.55,
ϵ=0.003, n=0.5, ct=3.6, u=0.388,
m=0.45

(Bai et al., 2023)

OOA 2023 Does not require additional
parameter

(Dehghani &
Trojovský, 2023)

WOA 2016 a ∈ [0,1] (Mirjalili & Lewis,
2016)

GGO 2024 α=0.99, β=0.01 (El-kenawy et al.,
2024)

HLOA 2024 Does not require additional
parameter

(Peraza-Vázquez
et al., 2024)

iHLOA - Does not require additional
parameter

This paper
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nine functions, respectively. While iHLOA outperforms SCHO and SOA
in eight and six functions, respectively, the statistical significance varies
across cases. These findings strongly indicate that iHLOA’s superior
performance compared to other algorithms is statistically significant in
many instances, underscoring its robustness and effectiveness across
diverse optimization scenarios.

5.4. Convergence analysis

Convergence curves provide a visual representation of the optimi-
zation process, illustrating how solutions evolve over iterations and
reflecting the effectiveness of each algorithm. Fig. 4 compares the
convergence trends of iHLOA with those of its competitors on the CEC-
2022 functions. iHLOA exhibits diverse convergence behaviors across
different functions, highlighting its adaptability to various optimization
landscapes. For specific functions such as F1, F4, F5, and F10, iHLOA

Table 4
Comparison of iHLOA and its competitors in solving the CEC-2022 functions.

F Index SOA HLOA iHLOA BWOA SCHO OOA WOA GGO

1 Best 3.9141E+02 3.0000Eþ02 3.0515E+02 8.8987E+02 4.0028E+02 3.1625E+03 3.0639E+03 1.5720E+03
Worst 5.6918E+03 3.0348Eþ02 3.9611E+02 2.2446E+04 9.2724E+03 1.0613E+04 4.0248E+04 2.0985E+04
Mean 1.0699E+03 3.0020Eþ02 3.3881E+02 8.3798E+03 3.5632E+03 7.7947E+03 1.5765E+04 8.8607E+03
Std 1.2262E+03 6.6333E-01 2.0228E+01 5.3024E+03 2.6860E+03 1.7795E+03 9.5216E+03 4.9484E+03
Rank 3 1 2 6 4 5 8 7

2 Best 4.0054E+02 4.0000Eþ02 4.0007E+02 4.0969E+02 4.0023E+02 4.9500E+02 4.0006E+02 4.2022E+02
Worst 7.4357E+02 4.8847E+02 4.8160Eþ02 8.2773E+02 6.0886E+02 2.4143E+03 4.9715E+02 1.5169E+03
Mean 4.7221E+02 4.2073E+02 4.1693Eþ02 5.5197E+02 4.4298E+02 1.0767E+03 4.3295E+02 7.4638E+02
Std 1.0569E+02 3.0357E+01 2.6759Eþ01 1.0490E+02 5.3223E+01 4.8251E+02 3.3069E+01 2.3606E+02
Rank 5 2 1 6 4 8 3 7

3 Best 6.0224E+02 6.2055E+02 6.0171Eþ02 6.1729E+02 6.0242E+02 6.2162E+02 6.1038E+02 6.1104E+02
Worst 6.2067Eþ02 6.6747E+02 6.3193E+02 6.6697E+02 6.4569E+02 6.5489E+02 6.6530E+02 6.4584E+02
Mean 6.1172E+02 6.4273E+02 6.1128Eþ02 6.3675E+02 6.1533E+02 6.3823E+02 6.3658E+02 6.2647E+02
Std 4.9026Eþ00 1.3007E+01 7.0266E+00 1.2527E+01 9.4613E+00 9.1322E+00 1.2555E+01 8.9245E+00
Rank 2 8 1 6 3 7 5 4

4 Best 8.0845E+02 8.1293E+02 8.0505Eþ02 8.1674E+02 8.2084E+02 8.3134E+02 8.0810E+02 8.0935E+02
Worst 8.4206E+02 8.7164E+02 8.3693Eþ02 8.5674E+02 8.6479E+02 8.6842E+02 8.7869E+02 8.5363E+02
Mean 8.2245E+02 8.3924E+02 8.2062Eþ02 8.4166E+02 8.3557E+02 8.4566E+02 8.4021E+02 8.3067E+02
Std 8.1991E+00 1.5306E+01 7.9232Eþ00 9.4022E+00 1.0681E+01 8.7598E+00 1.7490E+01 1.1957E+01
Rank 2 5 1 7 4 8 6 3

5 Best 9.0426E+02 9.9571E+02 9.0032Eþ02 1.0379E+03 9.3743E+02 1.0555E+03 9.9643E+02 9.0435E+02
Worst 1.1066E+03 2.0600E+03 9.3436Eþ02 2.0491E+03 1.9607E+03 1.5908E+03 2.8630E+03 1.4712E+03
Mean 9.6662E+02 1.4198E+03 9.0666Eþ02 1.3371E+03 1.3148E+03 1.2579E+03 1.4837E+03 1.1133E+03
Std 3.7950E+01 2.2841E+02 8.9669Eþ00 2.6312E+02 2.5978E+02 1.2605E+02 4.4385E+02 1.7401E+02
Rank 2 7 1 6 5 4 8 3

6 Best 4.9327E+03 1.8179Eþ03 1.9082E+03 1.8838E+03 2.7397E+03 2.1621E+03 1.9862E+03 1.9312E+03
Worst 4.2982E+04 8.1455Eþ03 8.8538E+03 8.2231E+03 3.4869E+04 1.5502E+07 8.1972E+03 3.1747E+08
Mean 1.7195E+04 2.6087Eþ03 3.7422E+03 3.8048E+03 9.3112E+03 9.4926E+05 3.7337E+03 2.0008E+07
Std 8.4781E+03 1.8629Eþ03 1.8918E+03 2.3521E+03 6.1967E+03 3.1248E+06 1.7123E+03 6.0066E+07
Rank 6 1 3 4 5 7 2 8

7 Best 2.0218E+03 2.0383E+03 2.0214Eþ03 2.0366E+03 2.0056E+03 2.0300E+03 2.0237E+03 2.0282E+03
Worst 2.0678E+03 2.1800E+03 2.0666Eþ03 2.2137E+03 2.1157E+03 2.1395E+03 2.1326E+03 2.1041E+03
Mean 2.0411E+03 2.1067E+03 2.0399Eþ03 2.1011E+03 2.0446E+03 2.0776E+03 2.0665E+03 2.0605E+03
Std 1.3692E+01 3.7933E+01 1.3081Eþ01 4.6208E+01 3.0067E+01 2.2757E+01 2.6540E+01 2.0104E+01
Rank 2 8 1 7 3 6 5 4

8 Best 2.2178E+03 2.2232E+03 2.2069Eþ03 2.2234E+03 2.2086E+03 2.2229E+03 2.2150E+03 2.2223E+03
Worst 2.2321Eþ03 2.4552E+03 2.2355E+03 2.3650E+03 2.3474E+03 2.2412E+03 2.2451E+03 2.3468E+03
Mean 2.2266E+03 2.2736E+03 2.2261Eþ03 2.2694E+03 2.2335E+03 2.2309E+03 2.2312E+03 2.2462E+03
Std 2.5744Eþ00 6.5346E+01 5.1879E+00 5.5681E+01 3.0374E+01 4.2541E+00 5.9021E+00 3.5552E+01
Rank 2 8 1 7 5 3 4 6

9 Best 2.5298E+03 2.5293Eþ03 2.5297E+03 2.5480E+03 2.5293Eþ03 2.6579E+03 2.5297E+03 2.6306E+03
Worst 2.6762Eþ03 2.6762Eþ03 2.6764E+03 2.8957E+03 2.7429E+03 2.7906E+03 2.6764E+03 2.7699E+03
Mean 2.5680E+03 2.5369Eþ03 2.5432E+03 2.6811E+03 2.6008E+03 2.7331E+03 2.5642E+03 2.6937E+03
Std 4.3926E+01 2.7201Eþ01 2.7230E+01 6.6141E+01 4.5725E+01 3.5365E+01 3.6565E+01 3.4281E+01
Rank 4 1 2 6 5 8 3 7

10 Best 2.5004Eþ03 2.5005E+03 2.5003E+03 2.5009E+03 2.5003E+03 2.5087E+03 2.5003E+03 2.5016E+03
Worst 2.5057Eþ03 4.1261E+03 2.6153E+03 2.6849E+03 2.9894E+03 2.7645E+03 2.6530E+03 3.7016E+03
Mean 2.5009Eþ03 2.7649E+03 2.5044E+03 2.5733E+03 2.6089E+03 2.6307E+03 2.5551E+03 2.6093E+03
Std 9.8519E-01 4.8639E+02 2.0947E+01 7.4862E+01 1.5424E+02 7.7002E+01 6.7962E+01 2.1755E+02
Rank 1 8 2 4 5 7 3 6

11 Best 2.6845E+03 2.6000Eþ03 2.6034E+03 2.6442E+03 2.6088E+03 2.8068E+03 2.6056E+03 2.7600E+03
Worst 3.3200E+03 3.2266E+03 3.2071E+03 4.0565E+03 3.1869Eþ03 4.0489E+03 3.2108E+03 3.8428E+03
Mean 2.8132E+03 2.7462E+03 2.7253Eþ03 3.0819E+03 2.7958E+03 3.2970E+03 2.8018E+03 3.0824E+03
Std 1.6659E+02 2.0821E+02 1.7683E+02 3.6694E+02 1.6435E+02 3.6877E+02 1.5443Eþ02 2.9984E+02
Rank 5 2 1 6 3 8 4 7

12 Best 2.8596Eþ03 2.8680E+03 2.8652E+03 2.8644E+03 2.8636E+03 2.9073E+03 2.8626E+03 2.9102E+03
Worst 2.8657Eþ03 3.1251E+03 2.9820E+03 3.0854E+03 2.9733E+03 3.2692E+03 3.0313E+03 3.1575E+03
Mean 2.8637Eþ03 2.9136E+03 2.8915E+03 2.9065E+03 2.8969E+03 3.0319E+03 2.8924E+03 3.0046E+03
Std 1.7608Eþ00 5.9936E+01 3.0301E+01 4.9233E+01 2.6723E+01 9.0200E+01 4.1818E+01 5.9220E+01
Rank 1 6 2 5 4 8 3 7

Mean Rank 2.9167 4.7500 1.5000 5.8333 4.1667 6.5833 4.5000 5.7500
Rank 2 5 1 7 3 8 4 6

Bold values represent the best results.
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