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A B S T R A C T

Enhancing the efficiency and energy capacity in composite nanoelectromechanical systems (NEMS) holds sig-
nificant importance in the engineering industry due to its critical role in enhancing the performance, reliability,
and safety of aerospace structures and systems. One key area of application is in the development of advanced
sensors and actuators. Regarding this issue, in the current work, enhancing the efficiency and energy capacity in
the sandwich nanoplate with a tri-directional functionally graded layer and a piezoelectric patch layer is pre-
sented. For capturing the size effects, nonlocal strain-stress gradient theory with two size-dependent factors has
been presented. The transverse shear deformation factor has an important role in the prediction of the me-
chanical performance of various structures. So, in the current work, a new four-variable refined quasi-3D log-
arithmic shear deformation theory has been investigated. Also, for cupling the piezoelectric patch and composite
structure, compatibility conditions have been presented. Hamilton’s principle with three factors has been pre-
sented for obtaining the coupled governing equations of the NEMS. For solving the current electrical system’s
partial differential equations, an analytical solution procedure has been presented. Also, to have a better un-
derstanding of the current electrical system’s fundamental frequency, COMSOL tri-physics simulation has been
presented. For verification of the results, one of the tools of artificial intelligence via the datasets of the math-
ematics and COMSOL multi-physics simulations is presented to verify the results for other input data with low
computational cost. Finally, the effects of various factors such as the geometry of the piezoelectric patch, FG
power index, length scale factor, nonlocal parameter, and location of the piezoelectric patch on the phase ve-
locity have been discussed in detail. One of the important outcomes of the current work is that designers for
modeling the NEMS should pay attention to the applied voltage, location, and geometry of the piezoelectric
patch.

1. Introduction

The aerospace sector places great attention on wave propagation in
NEMS because it plays a crucial role in improving the safety, depend-
ability, and performance of aerospace systems and structures. The cre-
ation of sophisticated sensors and actuators is one important application
area. With the use of wave propagation principles, NEMS-based sensors
are able to precisely measure even the smallest variations in environ-
mental factors like stress, pressure, and temperature. This skill is
necessary to keep an eye on the structural integrity of aeronautical parts,

guarantee early identification of any problems, and avert catastrophic
failures. Another important aspect is the impact on communication
systems. Wave propagation in NEMS can be harnessed to develop high-
frequency communication devices that are crucial for maintaining reli-
able communication links in aerospace operations. The miniaturization
enabled by NEMS technology allows for the integration of these
communication devices into smaller, lighter, and more efficient systems,
which is particularly advantageous for space missions where weight and
space constraints are critical. In addition, wave propagation in NEMS
contributes to the advancement of material science within the aerospace
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sector. By studying how waves propagate through different materials at
the nanoscale, researchers can design and engineer materials with
enhanced mechanical properties, such as increased strength, flexibility,
and resistance to extreme conditions. These improved materials can lead
to the development of more resilient and durable aerospace structures,
capable of withstanding the harsh environments encountered during
space travel. Furthermore, NEMS technology leveraging wave propa-
gation can improve the precision and efficiency of navigation and con-
trol systems in aerospace vehicles. For instance, the accurate
measurement of vibrations and dynamic responses in aircraft and
spacecraft can lead to better control algorithms, resulting in smoother
and more efficient flight dynamics. Overall, the importance of wave
propagation in NEMS within the aerospace industry cannot be over-
stated. It enables the development of innovative solutions that enhance
the safety, performance, and reliability of aerospace systems, paving the
way for future advancements in the field. Fig. 1 illustrates one use of the
FG nanoplate connected with a piezoelectric patch that was proposed as
a sensor/actuator device for aircraft.

The analysis of the MEMS structure due to the non-locality and
length-scale effects in small scales becomes challenging. In this regard,
Controlling the buckling and vibrational stabilities in the micro-scale
structures is an obstacle in using the devices made from FG materials
and MEMS/NEMS [1,2]. Using piezoelectric patches on the micro-plates
is one of the applicable methods to control the buckling and dynamical
instability of the materials [3]. The governing equations of the FG ma-
terials usually involve non-linear terms. Further, the proper modeling of
the plates and shells forces the researcher to employ shear deformation
theories. Thus, both mathematical modeling and numerical solution
approaches require formidable endeavor [4]. In this regard, several
modeling approaches and solution methods can be found in the litera-
ture [5,6]. Safarpour et al. [7] employed NSGT to explore wave propa-
gation in composite cylindrical nanoshells under thermal conditions.
Hamilton’s principle is employed to derive the governing equations and
an analytical solution is provided. Higher-order shear deformation
theory is used to model the nanoplates on an elastic substrate through
NSGT by Ebrahimi and Dabbagh [8]. They also presented an analytical
procedure to solve the governing equations. The importance of the
length scale parameter is shown by Li et al [9] for functionally graded
nano-beams. The buckling and vibrational characteristics of the beams
were assessed via a generalized differential quadrature approach. There
can be found several researches incorporating nonlocal theories in the

analysis of nanoplates [10-12]. Piezoelectric patches to limit the
vibrational instability of the micro/nano structures have been exten-
sively investigated. Mahinzare et al. [13] investigated the applied
voltage to piezoelectric layers on a rotating circular plate. It is demon-
strated that the applied voltage significantly influences the natural fre-
quency of the nano-plates. The effect of constant voltage on piezoelectric
patches, which were used as actuators or sensors, was reported by
Kargarnovin et al. [14]. The superior control of vibrations of the plates
was acquired by increasing the feedback gain. This intensification in
gain results in a decrease in displacement and frequency of the plates.
The optimal positioning of piezoelectric patches on vibrating beams was
considered by Bruant and Proslier [15]. They utilized optimization
techniques to find the optimum location of the patches under different
boundary conditions. Motlagh et al. [16] studied the effects of stiffness
and mass contribution of the piezoelectric patches on the vibration
modes and harmonic behavior of the functionally graded panels. It is
observed in the reviewed literature that the piezoelectric patches both
aid the control of the FG structures and strengthen the sandwich struc-
tures [17].

A sandwich nanoplate consists of multiple layers, typically with a
lightweight core material sandwiched between stiff outer layers,
enhancing its structural efficiency [18]. This configuration provides
high stiffness-to-weight and strength-to-weight ratios, making it ideal
for advanced applications such as aerospace, marine, and nanotech-
nology [19]. Due to its layered construction, the sandwich nanoplate
exhibits superior resistance to buckling, vibration, and external forces
[20]. Additionally, its nano-scale dimensions allow for enhanced me-
chanical properties, including increased resilience, durability, and
thermal resistance [21]. The versatility of material selection for the core
and face sheets offers tailored mechanical and thermal performance to
meet specific design requirements [22].

Stability analysis is a critical aspect of engineering design, ensuring
that structures and systems maintain their integrity and functionality
under various loads and environmental conditions [23]. It allows engi-
neers to predict potential failure modes, such as buckling or collapse,
which can occur when structures are subjected to loads beyond their
critical thresholds [24]. This analysis is essential for optimizing struc-
tural designs to resist dynamic disturbances, ensuring that they return to
equilibriumwithout experiencing excessive deformations or instabilities
[25]. In civil engineering, stability analysis guarantees the safe perfor-
mance of infrastructure like bridges, buildings, and towers, especially
under extreme conditions [26]. Similarly, in aerospace and mechanical
engineering, it ensures that components like wings, beams, and rotating
systems avoid destabilizing phenomena such as aeroelastic flutter or
vibration-induced failures [27]. For composite materials and advanced
structural systems, stability analysis helps assess their behavior under
complex loading scenarios, ensuring their reliability in demanding en-
vironments [28]. It also plays a pivotal role in the design of offshore and
marine structures, where unpredictable environmental forces pose sig-
nificant risks to stability [29]. By accurately determining the safe
load-carrying capacities of structures, stability analysis aids in pre-
venting catastrophic failures and extending the service life of engi-
neering systems [30]. Additionally, it supports the optimization of
material use, contributing to more efficient and cost-effective designs
[31]. Ultimately, stability analysis enhances the safety, reliability, and
durability of engineering designs, reducing the likelihood of unexpected
failures and promoting long-term sustainability [32].

As a first attempt, in the current work, absorbed energy capacity, and
wave dispersion characteristics of the NEMS coupled with the piezo-
electric patch are presented. For capturing the size effects, nonlocal
strain-stress gradient theory with two size-dependent factors is pre-
sented. The transverse shear deformation factor has an important role in
the prediction of the mechanical performance of various structures. So,
in the current work, a new four-variable refined quasi-3D logarithmic
shear deformation theory is investigated. With the aid of Hamilton’s
principle and analytical solution procedure, the current electrical

Fig. 1. One use of the FG nanoplate connected with a piezoelectric patch that
was proposed as a sensor/actuator device for aircraft.
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system’s partial differential equations are derived and solved, respec-
tively. For a better understanding of the current electrical system’s
fundamental frequency, COMSOL multi-physics simulation has been
presented. For verification of the results, one of the tools of artificial
intelligence via the datasets of the mathematics and COMSOL multi-
physics simulations is presented to verify the results for other input
data with low computational cost. Finally, the effects of various factors
such as the geometry of the piezoelectric patch, FG power index, length
scale factor, nonlocal parameter, and location of the piezoelectric patch
on the phase velocity have been discussed in detail.

2. Mathematical simulation

Analyze the sandwich nanostructure shown in Fig. 2 which has a
patch piezoelectric face-sheet layer and a FGM core. The face-sheet layer
has thicknesses of hp, the core has thicknesses of hc, the piezoelectric
patch has lengths of ap and bp, the core has widths of a and b, the length
of the core is a, and the initial external electric field is ϕ0. The equations
for the motion of waves are expected to be obtained in a system of
Cartesian coordinates (x , y, z).

2.1. Tri-directional functionally graded materials (TD-FGMs)

The modified power law defines the material property (E, v, ρ) of the
TD-FGMs core layer as follows:

Ec(x , y, z) = Em + (Ec − Em)
(x

a

)nx(y

b

)ny(
0.5+

z

h

)nz
. (1a)

vc(x , y, z) = vm + (vc − vm)
(x

a

)nx(y

b

)ny(
0.5+

z

h

)nz
. (1b)

ρc(x , y, z) = ρm + (ρc − ρm)
(x

a

)nx(y

b

)ny(
0.5+

z

h

)nz
. (1c)

where the power law index is indicated in the x -, y-, and z - directions by
the variables nx , ny , and nz . Furthermore, the ceramic and metal phases
are indicated by ()c and ()m. Furthermore, the mass density of the core,
Poisson’s ratio, and Young’s modulus are indicated by the values of E(x,
y,z), v(x,y,z), and ρ(x,y,z), respectively. It should be emphasized that for
FGMs, the neutral plane is not in the midplane, despite the fact that we
assume this in our work [33].

2.2. Mathematical modeling

2.2.1. The nonlocal strain gradient theory
The stiffness-hardening and softening-stiffness processes of nano-size

structure systems have been found in the characteristics of nano-
structures via experimental observations and molecular dynamic simu-
lations [34]. The above-indicated processes may be considered using the
nonlocal strain gradient elasticity, a non-classical continuum theory
[34].

σij − μ2σij,mm = Cijkl
(
E kl − l2E kl,mm

)
. (2)

where the elastic moduli are characterized using Cijkl; the stiffness-
enhancement process is anticipated by the strain gradient parameter
(l); the softening-stiffness mechanism is predicted by the nonlocal
parameter (μ). The stress and strain tensors are indicated by σij and E ij,
respectively. Note: Strain gradient one [35] and Eringen’s nonlocal
elasticity model [36] may be obtained by adding the following forms to
Eq. (2), where l = 0 or μ = 0.
(
1 − μ2∇2)σij = tij,

σij = Cijkl
(
E ij − l2E ij,mm

)
.

(3)

in which the Laplacian operator is represented by ∇2 = ∂2
∂x2 +

∂2
∂y2.

2.2.2. Displacement field
The new four-variable refined quasi-3D logarithmic shear deforma-

tion theory (RQ-3DLSDT), which accounts for thickness stretching, is
described in this section. The following is a representation of the core
displacement field [37]:

uc(x , y, z , t) = u0c(x , y) − z
∂w0c(x , y)

∂x + f (z)
∂w1c(x , y)

∂x ,

vc(x , y, z , t) = v0c(x , y) − z
∂w0c(x , y)

∂y + f (z)
∂w1c(x , y, t)

∂y ,

(4)

wc(x , y, z , t) = w0c(x , y) + G (z)w1c(x , y).

where uc, vc, and wc denote the displacement components of a TD-FGMs
core layer in the x , y, and z directions. As can be seen, there are only four
unknown variables in the displacement field discussed earlier: w1c(x , y)

is an extra displacement that is assumed to be a result of normal stress.
The variables u0c(x , y), v0c(x , y) and w0c(x , y), respectively, indicate the
displacements of the center plane (z = 0) in the x , y, and z directions.

f (z) = 3hln[(h − z)/(h+z)]/8+ 4z3/3h2 and G (z) = − h2/4
(
h2 −

z2
)
+ 4z2/3h2, respectively, are the proposed transverse shear defor-

mation functions. The displacement field of a patch piezoelectric is
shown as follows [38]:

up(x , y, z , t) = u0p(x , y) + zu1p(x , y),

vp(x , y, z , t) = v0p(x , y) + zv1p(x , y),

wp(x , y, z , t) = w0p(x , y).

(5)

where up, vp, and wp denote the displacement components of a patch
piezoelectric in the x , y, and z directions. The variables u0c(x ,y), v0c(x , y)
and w0c(x ,y), respectively, indicate the displacements of the center plane
(z = hc

2 +
hp
2 ) in the x , y, and z directions. Also, whereas u1p and v1p

indicate the mid-plane’s rotations in the xz and yz planes, correspond-
ingly [39].

2.2.3. Compatibility conditions
According to the compatibility relations, the following is true if

perfect bonding conditions are present at the top and bottom face sheet-
core interfaces [40]:

ℎ

ℎ

+−

∅

Fig. 2. Sandwich diagrammatic drawing NEMS.
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up

(

x , y,
hc
2

)

= uc

(

x , y,
hc

2

)

,

vp

(

x , y,
hc

2

)

= vc

(

x , y,
hc

2

)

,

wp

(

x , y,
hc
2

)

= wc

(

x , y,
hc

2

)

,

(6)

It may be written using Eqs. (4), (5), and (6) to represent displace-
ment fields.

uc(x ,y,z ,t)= u0c(x ,y)− z
∂w0c(x ,y)

∂x + f (z)
∂w1c(x ,y)

∂x ,

vc(x ,y,z ,t)= v0c(x ,y)− z
∂w0c(x ,y)

∂y + f (z)
∂w1c(x ,y)

∂y ,

wc(x ,y,z ,t)= w0c(x ,y)+G (z)w1c(x ,y),

up(x ,y,z ,t)= u0c(x ,y)−
hc

2
∂w0c(x ,y)

∂x + f

(
hc

2

)
∂w1c(x ,y)

∂x +

(

z −
hc

2

)

u1p(x ,y),

vp(x ,y,z ,t)= v0c(x ,y)−
hc
2

∂w0c(x ,y)
∂y + f

(
hc

2

)
∂w1c(x ,y)

∂y +

(

z −
hc

2

)

v1p(x ,y),

wp(x ,y,z ,t)= w0c(x ,y)+G

(
hc
2

)

w1c(x ,y).

(7)

If the following definition of strain displacement applies

E xx =
∂u
∂x ,E yy =

∂v
∂y,E zz =

∂w
∂z ,E xz =

∂u
∂z +

∂w
∂x ,

E xy =
∂u
∂y +

∂v
∂x ,E yz =

∂v
∂z +

∂w
∂y .

(8)

The non-null strain components of the core and piezoelectric layer
are then defined as:

E xxc=
∂u0c(x ,y)

∂x − z
∂2w0c(x ,y)

∂x 2 + f (z)
∂2w1c(x ,y)

∂x2 ,

E yyc=
∂v0c(x ,y)

∂y − z
∂2w0c(x ,y)

∂y2 + f (z)
∂2w1c(x ,y)

∂y2 ,

E zzc=G 1(z)w1c,

E xzc= f 1(z)
∂w1c
∂x +G (z)

∂w1c
∂x ,

E yzc= f 1(z)
∂w1c
∂y +G (z)

∂w1c
∂y ,

E xyc=

(
∂u0c(x ,y)

∂y +
∂v0c(x ,y)

∂x

)

− 2z
∂2w0c(x ,y)

∂x∂y +2f (z)
∂2w1c(x ,y)

∂x∂y ,

E xxp=
∂u0c(x ,y)

∂x −
hc
2

∂2w0c(x ,y)
∂x 2 + f

(
hc

2

)
∂2w1c(x ,y)

∂x 2 +

(

z −
hc
2

)
∂u1p(x ,y)

∂x ,

E yyp=
∂v0c(x ,y)

∂y −
hc

2
∂2w0c(x ,y)

∂y2 + f

(
hc
2

)
∂2w1c(x ,y)

∂y2 +

(

z −
hc

2

)
∂v1p(x ,y)

∂y ,

E zzp=0,

E xzp=u1p+
∂w0c
∂x +G

(
hc

2

)
∂w1c
∂x ,

E yzp= v1p+
∂w0c
∂y +G

(
hc

2

)
∂w1c
∂y ,

(9)

E xyp =

(
∂u0c(x , y)

∂y +
∂v0c(x , y)

∂x

)

− hc
∂2w0c(x , y)

∂x∂y + 2f
(
hc
2

)
∂2w1c(x , y)

∂x∂y

+

(

z −
hc

2

)(
∂u1p(x , y)

∂y +
∂v1p(x , y)

∂x

)

.

where f 1(z) =
∂f (z)

∂z , and G 1(z) =
∂G (z)

∂z .
It is possible to update the nonlocal strain gradient theory of the

current theory to recast Eq. (2) as follows:
(
1 − μ2∇2)σxxc =

(
1 − l2∇2)(Q11cE xxc + Q12cE yyc + Q13cE zzc

)
,

(
1 − μ2∇2)σyyc =

(
1 − l2∇2)(Q12cE xxc + Q22cE yyc + Q23cE zzc

)
,

(
1 − μ2∇2)σzzc =

(
1 − l2∇2)(Q13cE xxc + Q23cE yyc + Q33cE zzc

)
,

(
1 − μ2∇2)σyzc =

(
1 − l2∇2)Q44cE yzc,(

1 − μ2∇2)σxzc =
(
1 − l2∇2)Q55cE xzc,(

1 − μ2∇2)σxyc =
(
1 − l2∇2)Q66cE xyc,

(10)

where

Q11c =
Ec(x, y, z)(1 − vc(x, y, z))

(1+ vc(x, y, z))(1 − 2vc(x, y, z))
,Q33c = Q22c = Q11c

Q12c =
vc(x, y, z)Ec(x, y, z)

(1+ vc(x, y, z))(1 − 2vc(x, y, z))
,Q13c = Q23c = Q12c,

Q44c =
Ec(x, y, z)

2(1+ vc(x, y, z))
,Q66c = Q55c = Q44c

(11)

The constitutive relations for the piezoelectric layers are developed
as:
(
1 − μ2∇2)σxxp =

(
1 − l2∇2)(Q11pE xxp + Q12pE yyp − e31pEz

)
,

(
1 − μ2∇2)σyyp =

(
1 − l2∇2)(Q12pE xxp + Q22pE yyp − e32pEz

)
,

(
1 − μ2∇2)σyzp =

(
1 − l2∇2)(Q44pE yzp − e24pEy

)
,

(
1 − μ2∇2)σxzp =

(
1 − l2∇2)(Q55pE xzp − e15pEx

)
,

(
1 − μ2∇2)σxyp =

(
1 − l2∇2)(Q66pE xyp

)
,

(12)

The electric displacement relations are developed as
(
1 − μ2∇2)D xp =

(
1 − l2∇2)( e15pE xzp + T 11pEx

)
,

(
1 − μ2∇2)D yp =

(
1 − l2∇2)( e15pE yzp + T 22pEy

)
,

(
1 − μ2∇2)D zp =

(
1 − l2∇2)( e31pE xxp + e32pE yyp + T 33pEz

)
,

(13)

where

Q11p = Q11 −
Q

2
13

Q33
, Q12p = Q12 −

Q13Q23

Q33
, Q22p = Q22 −

Q
2
23

Q33
,

Q44p = Q44,Q55p = Q55,Q66p = Q66,

e31p = e31 −
Q13e33

Q33
, e32p = e32 −

Q23e33

Q33
, e15p = e15, e24p = e24,

T 11p = T 11,T 22p = T 22,T 33p = T 33 +
e233

Q33
,

(14)

The equivalent electric field strengths, Ex , Ey , Ez , that are part of Eqs.
(12) and (13), may be written as follows [1,2,41]:

Ex = −
∂ψ
∂x ,Ey = −

∂ψ
∂y ,Ez = −

∂ψ
∂z , (15)

The following explanation may be given for the electric potential ψ(x ,
y, z , t):

ψ(x , y, z , t) = − cos(βz)ϕ(x , y, t) +
2zϕ0

h
. (16)

where β = π/h and ϕ0 represents the initial external electric field.
Moreover, ϕ(x , y, t) defines a spatial variation for the electric potential in
the x and y axes.

2.3. Hamilton’s principle and governing equations

The following variational energy form is obtained by applying
Hamilton’s principle [40,42] to the fundamental equations of the
problem.

∫t2

t1

(δℑk − (δℑe − δℑw))dt = 0. (17)
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where ℑk, ℑe, and ℑw stand for the system’s work done, strain energy,
and kinetic energy, respectively. The quantities given above are
explained in the following sentences.

ℑk =

∫

ρb

[(
∂uc

∂t

)2

+

(
∂vc
∂t

)2

+

(
∂wc

∂t

)2]

dV

+

∫

ρp

[(
∂up

∂t

)2

+

(
∂vp
∂t

)2

+

(
∂wp

∂t

)2]

dV, (18)

ℑe =

∫
{

σxxcE xxc+σyycE yyc+σzzcE zzc+σyzcE yzc+σxzcE xzc+σxycE xyc
}
dV

+

∫ {
σxxpE xxp+σyypE yyp+σzzpE zzp+σyzpE yzp+σxzpE xzp

+σxypE xyp − D xpExp − D ypEyp − D zpEzp

}

dV.

The first change in the amount of work done with respect to the
external electric force applied is:

ℑw =
1
2

∫

N p

[(
∂w0c
∂x

)2

+

(
∂w0c
∂y

)2]

dA, (19)

The following might be used to determine the electric load:

N P = − 2
(

e31 −
Q13e33

Q33

)

ϕ0. (20)

Where ϕ0 is the initial external electric potential. Eqs. (17) and (19)

may be substituted into Eq. (16) along with a few mathematical pro-
cedures to provide the following equations.

δu0c :

∂N xxc

∂x +
∂N xyc

∂y +
∂N xxp

∂x +
∂N xyp

∂y =I 0c
∂2u0c
∂t2 − I 1c

∂3w0c
∂x∂t2+I 2c

∂3w1c
∂x∂t2

+I 0p
∂2u0c
∂t2 − I 1p

∂3w0c
∂x∂t2+I 2p

∂3w1c
∂x∂t2+I 3p

∂2u1c
∂t2

,

(21a)

δv0c :

∂N yyc

∂y +
∂N xyc

∂x +
∂N yyp

∂y +
∂N xyp

∂x =I 0c
∂2v0c
∂t2 − I 1c

∂3w0c
∂y∂t2+I 2c

∂3w1c
∂y∂t2

+I 0p
∂2v0c
∂t2 − I 1p

∂3w0c
∂y∂t2+I 2py

∂3w1c
∂y∂t2+I 3py

∂2v1c
∂t2

,

(21b)

δu1p :
∂Q xxp

∂x +
∂Q xyp

∂y − N xzp=J 0p
∂2u0p
∂t2 − J 1p

∂3w0p
∂x∂t2+J 2p

∂3w1p
∂x∂t2+J 3p

∂2u1p
∂t2

,

(21e)

δw0c :

∂2M xxc

∂x2 +
∂2M yyc

∂y2 + 2
∂2M xyc

∂x∂y +
∂2M xxp

∂x2 +
∂2M yyp

∂y2 + 2
∂2M xyp

∂x∂y +
∂N xzp

∂x +
∂N yzp

∂y

+2
∂2M xyp

∂x∂y − N P

(
∂2w0c

∂x2 +
∂2w0c

∂y2

)

= J 0c
∂2w0c

∂t2 + J 1c
∂2w1c

∂t2 + O 0p
∂2wp

∂t2

+O 1p
∂2w1p

∂t2 −
∂

∂x

(

L 0cx
∂2u0c
∂t2

)

+
∂

∂x

(

L 1cx
∂3w0c

∂x∂t2

)

−
∂

∂x

(

L 2cx
∂3w1c

∂x∂t2

)

−
∂
∂y

(

L 0c
∂2v0c
∂t2

)

+
∂
∂y

(

L 1c
∂3w0c

∂y∂t2

)

−
∂
∂y

(

L 2c
∂3w1c

∂y∂t2

)

− L 0p
∂3u0c
∂x∂t2 + L 1p

∂4w0c

∂x2∂t2

− L 2p
∂4w1c

∂x2∂t2 − L 3p
∂2u1p
∂t2 − L 0p

∂3v0c
∂x∂t2 + L 1p

∂4w0c

∂y2∂t2 − L 2p
∂4w1c

∂y2∂t2 − L 3p
∂2v1p
∂t2

, (21c)

δw1c :

∂R xzc

∂x +
∂Q xzc

∂x +
∂R yzc

∂y +
∂Q yzc

∂y −
∂2P xxc

∂x2 −
∂2P yyc

∂y2 − S zzc − 2
∂2P xyc

∂x∂y +
∂R xzp

∂x

+
∂R yzp

∂y −
∂2P xxp

∂x2 −
∂2P yyp

∂y2 − 2
∂2P xyp

∂x∂y = J 1c
∂2woc
∂t2 + J 2c

∂2w1c
∂t2 + O 1p

∂2wop

∂t2

+O 2p
∂2w1p
∂t2 +

∂
∂x

(

K 0cx
∂2uoc
∂t2

)

−
∂

∂x

(

K 1cx
∂3woc
∂x∂t2

)

+
∂

∂x

(

K 2cx
∂3w1c
∂x∂t2

)

+
∂
∂y

(

K 0c
∂2v0c
∂t2

)

−
∂
∂y

(

K 1c
∂3w0c

∂y∂t2

)

+
∂
∂y

(

K 2c
∂3w1c

∂y∂t2

)

+ K 0p
∂3w0c

∂x∂t2

− K 1p
∂4w0c

∂x2∂t2 + K 2p
∂4w1c

∂x2∂t2 + K 3p
∂2u1p
∂t2 + K 0p

∂3v0c
∂x∂t2 − K 1p

∂4w0c

∂y2∂t2

+K 2p
∂4w1c

∂y2∂t2 + K 3p
∂2ν1p
∂t2

, (21d)
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δv1p :
∂Q yyp

∂y +
∂Q xyp

∂x − N yzp=J 0p
∂2v0p
∂t2 − J 1p

∂3w0p
∂y∂t2+J 2p

∂3w1p
∂y∂t2+J 3p

∂2v1p
∂t2

,

(21f)

δϕ :

∫

V

{
∂D x

∂x cos(βz) +
∂D y

∂y cos(βz) + βD z sin(βz)

}

= 0. (21g)

The definition of the matching boundary conditions is:

δu0c = 0or
(
N xxc +N xxp

)
n̂x +

(
N xyc +N xyp

)
n̂y = 0, (22a)

δv0c = 0 or
(
N xyc +N xyp

)
n̂x +

(
N yyc +N yyp

)
n̂y = 0, (22b)

δw0c=0 or

(
∂M xxc

∂x +
∂M xyc

∂y +
∂M xxp

∂x +
∂M xyp

∂y +N xzp+N P

∂w0c
∂x

)

n̂x

+

(∂M yyc

∂y +
∂M xyc

∂x +
∂M yyp

∂y +
∂M xyp

∂x +N yzp+N P

∂w0c
∂y

)

n̂y =0
,

(22c)

δu1p = 0 or
(
Q xxp

)
n̂x +

(
Q xyp

)
n̂y = 0, (22e)

δv1p = 0 or
(
Q xyp

)
n̂x +

(
Q yyp

)
n̂y = 0, (22f)

δϕ = 0 , (22g)

∂δw0c
∂x = 0 or

(
M xxc + M xxp

)
n̂x +

(
M xyc + M xyp

)
n̂y = 0 , (22h)

∂δw0c
∂y = 0 or

(
M xyc + M xyp

)
n̂x +

(
M yyc + M yyp

)
n̂y = 0 , (22i)

∂δw1c
∂x = 0 or

(
P xxc + P xxp

)
n̂x +

(
P xyc + P xyp

)
n̂y = 0 , (22j)

∂δw0c
∂y = 0 or

(
P xyc + P xyp

)
n̂x +

(
P yyc + P yyp

)
n̂y = 0 . (22k)

where

δw1c = 0 or

(

−
∂P xxc

∂x −
∂P xyc

∂y + R xzc + Q xzc −
∂P xxp

∂x −
∂P xyp

∂y + R xzp

)

n̂x

+

(

−
∂P yyc

∂y −
∂P xyc

∂x + R yzc + Q yzc −
∂P yyp

∂y −
∂P xyp

∂x + R yzp

)

n̂y = 0
, (22d)

Table 1
The TD-FGMs rectangular plate’s material properties [45].

Ceramic (Al2O3) Metal (SUS304)

Ec = 348.43 × 109[pa] Em = 201.04× 109[pa]
vc = 0.2400 vm = 0.3262

ρc = 2370
[
Kg
m3

]

ρm = 8166
[
Kg
m3

]

Table 2
The PZT-4 material characteristics [46].

Q11 [GPa] Q22 [GPa] Q12 [GPa] Q13 [GPa] Q33 [GPa] Q44 [GPa] Q55 [GPa] Q66 [GPa]

132 132 71 73 115 26 26 30.5
e31
[
C /m2]

e32
[
C /m2]

e33
[
C /m2]

e15
[
C /m2]

e24
[
C /m2]

T 11

[C /Vm]

T 22

[C /Vm]

T 33

[C /Vm]

− 4.1 − 4.1 14.1 10.5 10.5 5.841× 10− 9 5.841× 10− 9 7.124× 10− 9

ρ
[
Kg /m3]

      

7500       

Table 3
Comparison of present results for the circular frequencies (ω) with the results of Ref. [1–3] (ν =0.3, E = 210 [GPa], ρ = 7480 [Kg/m3], h = 0.01 [m])

Mode number k = 2 k = 5 k = 8 k = 11 k = 14 k = 17 k = 20 k = 23

Present 128.22 800.65 2047.20 3862.74 6239.53 9169.50 12641.10 16641.41
Ref. [47] 128.46 802.28 2050.90 3869.44 6250.88 9186.18 12664.47 16673.20
Ref. [48] 128.27 801.71 2052.38 3880.28 6285.41 9267.77 12827.37 16964.19
Ref. [49] 128.26 800.97 2047.55 3863.09 6240.55 9170.85 12643.1 16644.5

Table 4
Comparison of first dimensionless fundamental frequencies of functionally
graded nanoplates with respect to nonlocality, plate’s aspect ratio, and its
length-to-thickness ratio.

a/b μ(nm2) a/h = 10 a/h = 20

Present Ref. [50] Present Ref. [50]

1 0 0.0460 0.0441 0.0115 0.0113
1 0.0420 0.0403 0.0105 0.0103
2 0.0389 0.0374 0.0097 0.0096
4 0.0343 0.0330 0.0085 0.0085

2 0 0.1135 0.1055 0.0286 0.0279
1 0.0928 0.0863 0.0235 0.0229
2 0.0804 0.0748 0.0202 0.0198
4 0.0657 0.0612 0.0165 0.0162
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{N xxc,M xxc,P xxc,Q xxc,R xxc,S xxc} =

∫

V

({1, z , f (z),G (z), f 1(z),G 1(z)}σxxc)dxdydz ,

{
N yyc,M yyc,P yyc,Q yyc,R yyc,S yyc

}
=

∫

V

(
{1, z , f (z),G (z), f 1(z),G 1(z)}σyyc

)
dxdydz ,

{N zzc,M zzc,P zzc,Q zzc,R zzc,S zzc} =

∫

V

({1, z , f (z),G (z), f 1(z),G 1(z)}σzzc)dxdydz ,

{
N yzc,M yzc,P yzc,Q yzc,R yzc,S yzc

}
=

∫

V

(
{1, z , f (z),G (z), f 1(z),G 1(z)}σyzc

)
dxdydz ,

{N xzc,M xzc,P xzc,Q xzc,R xzc,S xzc} =

∫

V

({1, z , f (z),G (z), f 1(z),G 1(z)}σxzc)dxdydz ,

{
N xyc,M xyc,P xyc,Q xyc,R xyc,S xyc

}
=

∫

V

(
{1, z , f (z),G (z), f 1(z),G 1(z)}σxyc

)
dxdydz ,

{
N xxp,M xxp,P xxp,Q xxp,R xxp

}
=

∫

V

({

1,
(
hc
2

)

, f

(
hc

2

)

,

(

z −
hc

2

)

,G

(
hc
2

)}

σxxp

)

dxdydz ,

{
N yyp,M yyp,P yyp,Q yyp,R yyp

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc
2

)

,G

(
hc

2

)}

σyyp

)

dxdydz ,

{
N zzp,M zzp,P zzp,Q zzp,R zzp

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc
2

)

,G

(
hc

2

)}

σzzp

)

dxdydz ,

{
N yzp,M yzp,P yzp,Q yzp,R yzp

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc
2

)

,G

(
hc

2

)}

σyzp

)

dxdydz ,

{
N xzp,M xzp,P xzp,Q xzp,R xzp

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc

2

)

,G

(
hc

2

)}

σxzp

)

dxdydz ,

{
N xyp,M xyp,P xyp,Q xyp,R xyp

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc

2

)

,G

(
hc

2

)}

σxyp

)

dxdydz ,

{I 0c,I 1c, I 2c} =

∫

V

({1, z , f (z)}ρc(x , y, z))dxdydz ,

{L 0c,L 1c,L 2c} =

∫

V

( {
z , z2, z f (z)

}
ρc(x , y, z)

)
dxdydz ,

{K 0c,K 1c,K 2c} =

∫

V

(
f (z), z f (z), f 2(z)ρc(x , y, z)

)
dxdydz ,

{J 0c, J 1c, J 2c} =

∫

V

( {
1,G (z),G

2
(z)
}

ρc(x , y, z)
)
dxdydz ,

{
I 0p,I 1p,I 2p, I 3p

}
=

∫

V

({

1,
(
hc

2

)

, f

(
hc

2

)

,

(

z −
hc

2

)}

ρp

)

dxdydz ,

{
L 0p,L 1p,L 2p,L 3p

}
=

∫

V

({(
hc
2

)

,

(
hc
2

)2

,

(
hc

2

)

f

(
hc

2

)

,

(
hc

2

)(

z −
hc
2

)}

ρc(x , y, z)

)

dxdydz ,

{
K 0p,K 1p,K 2p,K 3p

}
=

∫

V

({

f

(
hc

2

)

,

(
hc

2

)

f

(
hc

2

)

, f 2
(
hc
2

)

, f

(
hc
2

)(

z −
hc
2

)}

ρp

)

dxdydz ,

{
J 0p, J 1p, J 2p, J 3p

}
=

∫

V

({(

z −
hc

2

)

,

(
hc

2

)(

z −
hc

2

)

,

(

z −
hc

2

)

f

(
hc
2

)

,

(

z −
hc

2

)2
}

ρP

)

dxdydz ,

{
O 0p,O 1p,O 2p

}
=

∫

V

({

1,G
(
hc

2

)

,G
2
(
hc

2

)}

ρP

)

dxdydz .

(23)
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Eqs. (10), (12), and (13) are substituted into Eqs. (21a-g) to provide
the equations of motion for the TD-FGMs reinforced nanoplate based on
the general nonlocal strain gradient refined shear deformable theory in
terms of displacement fields.

δu0c :

(
1 − l2∇2)

(
∂N xxc

∂x +
∂N xyc

∂y +
∂N xxp

∂x +
∂N xyp

∂y

)

=

(
1 − μ2∇2)

⎛

⎜
⎜
⎜
⎜
⎝

I 0c
∂2u0c
∂t2 − I 1c

∂3w0c
∂x∂t2 + I 2c

∂3w1c
∂x∂t2

+I 0p
∂2u0c
∂t2 − I 1p

∂3w0c
∂x∂t2 + I 2p

∂3w1c
∂x∂t2 + I 3p

∂2u1c
∂t2

⎞

⎟
⎟
⎟
⎟
⎠

,

(24a)

δv0c :

(
1 − l2∇2)

(∂N yyc

∂y +
∂N xyc

∂x +
∂N yyp

∂y +
∂N xyp

∂x

)

=

(
1 − μ2∇2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0c
∂2v0c
∂t2 − I 1c

∂3w0c
∂y∂t2 + I 2c

∂3w1c
∂y∂t2

+I 0p
∂2v0c
∂t2 − I 1p

∂3w0c
∂y∂t2 + I 2p

∂3w1c
∂y∂t2 + I 3p

∂2v1c
∂t2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(24b)

δw0c :

(
1 − l2∇2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂2M xxc

∂x2 +
∂2M yyc

∂y2 +2
∂2M xyc

∂x∂y +
∂2M xxp

∂x2 +
∂2M yyp

∂y2

+2
∂2M xyp

∂x∂y +
∂N xzp

∂x +
∂N yzp

∂y +2
∂2M xyp

∂x∂y

⎞

⎟
⎟
⎟
⎟
⎟
⎠

− N P

(
1 − μ2∇2)

(
∂2w0c

∂x2 +
∂2w0c

∂y2

)

=
(
1 − μ2∇2)×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J 0c
∂2w0c

∂t2 +J 1c
∂2w1c

∂t2 +O 0p
∂2wp

∂t2 +O 1p
∂2w1p

∂t2 −
∂

∂x

(

L 0cx
∂2u0c
∂t2

)

+
∂

∂x

(

L 1cx
∂3w0c

∂x∂t2

)

−
∂

∂x

(

L 2cx
∂3w1c

∂x∂t2

)

−
∂
∂y

(

L 0c
∂2v0c
∂t2

)

+
∂
∂y

(

L 1c
∂3w0c

∂y∂t2

)

−
∂
∂y

(

L 2c
∂3w1c

∂y∂t2

)

− L 0p
∂3u0c
∂x∂t2+L 1p

∂4w0c

∂x2∂t2 − L 2p
∂4w1c

∂x2∂t2 − L 3p
∂2u1p
∂t2

− L 0p
∂3v0c
∂x∂t2+L 1p

∂4w0c

∂y2∂t2 − L 2p
∂4w1c

∂y2∂t2 − L 3p
∂2v1p
∂t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (24c)

δw1c :

(
1 − l2∇2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂R xzc

∂x +
∂Q xzc

∂x +
∂R yzc

∂y +
∂Q yzc

∂y −
∂2P xxc

∂x2 −
∂2P yyc

∂y2 − S zzc

− 2
∂2P xyc

∂x∂y +
∂R xzp

∂x +
∂R yzp

∂y −
∂2P xxp

∂x2 −
∂2P yyp

∂y2 − 2
∂2P xyp

∂x∂y

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
(
1 − μ2∇2)×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J 1c
∂2w0c

∂t2 + J 2c
∂2w1c

∂t2 + O 1p
∂2w0p

∂t2 + O 2p
∂2w1p

∂t2 +
∂

∂x

(

K 0cx
∂2u0c
∂t2

)

−
∂

∂x

(

K 1cx
∂3w0c

∂x∂t2

)

+
∂

∂x

(

K 2cx
∂3w1c

∂x∂t2

)

+
∂
∂y

(

K 0c
∂2v0c
∂t2

)

−
∂
∂y

(

K 1c
∂3w0c

∂y∂t2

)

+
∂
∂y

(

K 2c
∂3w1c

∂y∂t2

)

+ K 0p
∂3u0c
∂x∂t2 − K 1p

∂4w0c

∂x2∂t2 + K 2p
∂4w1c

∂x2∂t2 + K 3p
∂2u1p
∂t2

+K 0p
∂3v0c
∂x∂t2 − K 1p

∂4w0c

∂y2∂t2 + K 2p
∂4w1c

∂y2∂t2 + K 3p
∂2v1p
∂t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (24d)
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δu1p :

(
1 − l2∇2)

(
∂Q xxp

∂x +
∂Q xyp

∂y − N xzp

)

=

(
1 − μ2∇2)

(

J 0p
∂2u0p
∂t2 − J 1p

∂3w0p
∂x∂t2 + J 2p

∂3w1p
∂x∂t2 + J 3p

∂2u1p
∂t2

) ,

(24e)

δv1p :

(
1 − l2∇2)

(∂Q yyp

∂y +
∂Q xyp

∂x − N yzp

)

=

(
1 − μ2∇2)

(

J 0p
∂2v0p
∂t2 − J 1p

∂3w0p
∂y∂t2 + J 2p

∂3w1p
∂y∂t2 + J 3p

∂2v1p
∂t2

) ,

(24f)

δϕ :

∫

V

(
1 − l2∇2)

{
∂D x

∂x cos(βz) +
∂D y

∂y cos(βz) + βD z sin(βz)

}

= 0.

(24g)

3. Solution procedure

Analytical solution methodology offers several advantages, espe-
cially in engineering, physics, and mathematics. First, it provides exact

solutions, giving precise insights into the system’s behavior without
approximation. This is crucial for verifying numerical methods, as
analytical solutions can serve as benchmarks for comparison. Second,
analytical methods often yield closed-form expressions, allowing for
deeper theoretical understanding. These expressions can reveal under-
lying relationships between variables, offer insights into parameter
sensitivity, and predict system responses under various conditions
without rerunning simulations. Another benefit is computational effi-
ciency. Once an analytical solution is derived, it can be evaluated
quickly without the need for iterative computations, making it ideal for
real-time or embedded systems applications. Moreover, analytical so-
lutions can lead to generalized solutions applicable to a wide range of
problems with similar boundary conditions or governing equations, of-
fering flexibility and scalability in problem-solving. However, analytical
methods are often limited to relatively simple geometries and boundary
conditions. Despite this, their ability to provide exact, insightful, and
efficient solutions remains a valuable tool in theoretical and applied
fields. It is advised to use the generic nonlocal strain gradient second-
order shear deformation theory to solve the partial differential equa-
tions (PDEs) for the dynamic concerns in the previous section. PDEs will
have analytical solutions obtained using a harmonic solution procedure.
The following is a list of expressions:

u0c = u0cexp(kx + ky − ωt)i, v0c = v0cexp(kx + ky − ωt)i,
w0c = W 0cexp(kx + ky − ωt)i,w1c = W 1cexp(kx + ky − ωt)i,
u1p = u1pexp(kx + ky − ωt)i, v1p = v1pexp(kx + ky − ωt)i,

(25)

ϕ = ϕexp(kx + ky − ωt)i,

where wave number and natural frequency are denoted by k, and ω.
Furthermore, i =

̅̅̅̅̅̅̅
− 1

√
. Next, by inserting Eqs. (23), and (25) into Eqs.

(24a-g) we have:
{
[K ] − [M ]ω2}{X} = 0, (26)

where

X =
[
u0c v0c W 0c W 1c u1p v1p ϕ

]T
. (27)

By solving Eq. (26), the eigenvalue and eigenvector of the structure
may be achieved.

Also, the phase velocity may be computed by Eq. (28)

phase velocity =
ω
k
. (28)

4. Introduction of AI to predict the mentioned problem using
appropriate datasets of mathematics simulation

In the context of validating vibrations and energy capacity in tri-
directional functionally graded (FG) nanoplates attached to piezoelec-
tric patches, artificial intelligence (AI) offers a powerful tool to optimize
and verify complex mathematical simulations. The use of AI, particu-
larly through machine learning (ML) models, can assist in identifying
patterns, refining predictions, and enhancing the accuracy of the simu-
lation results [43,44].

For this purpose, AI can leverage large datasets generated from finite
element methods (FEM), meshless methods, or other computational
simulations to train predictive models. These models can validate the
vibrational characteristics and energy harvesting capacity by learning
from the input-output relationships in the dataset, including factors like
material gradation, and boundary conditions.

Typical AI approaches that might be used include:

• Regression Models: These can predict natural frequencies and energy
output based on known parameters, helping to verify whether the
simulations align with real-world results.

Fig. 3. The influence of the AP to AT ratio of the structure to the energy ab-
sorption capacity (U = U

Umax
) of the presented composite structure.
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• Neural Networks: Deep learning models, such as deep neural net-
works (DNN), can model complex relationships between the FG
nanoplate’s vibrational modes and the applied piezoelectric effect,
providing highly accurate validation results.

• Optimization Algorithm: Methods like particle swarm optimization
(PSO) or genetic algorithm can fine-tune simulation parameters,
ensuring that the modeled results (vibration frequencies and energy
capacity) align with experimental or benchmarked data.

• AI-Based Sensitivity Analysis: AI techniques can help perform
sensitivity analyses, identifying which parameters most influence the
vibrational response and energy capacity of the nanoplate-
piezoelectric system.

By incorporating AI into this process, the validation of simulation
results can be more reliable, robust, and faster, providing insights into
the mechanical and electrical behaviors of the FG nanoplate system.
Using artificial intelligence (AI) to predict the vibrations and energy
capacity of a tri-directional functionally graded (FG) nanoplate attached

to a piezoelectric patch offers several advantages over traditional
methods. These advantages stem from AI’s ability to handle complex
systems, manage large datasets, and optimize simulations efficiently.

1. Handling Complexities
• AI: Can model and capture highly relationships between the pa-
rameters of the FG nanoplate (e.g., material gradation, thickness
variation, geometric irregularities) and its vibrational and energy
response. Neural networks, for example, can approximate complex
functions without needing explicit equations.

• Traditional Methods: Often require simplifying assumptions
(such as linearization) to solve problems, which can lead to less
accurate results.

2. Efficient Use of Large Datasets
• AI: Utilizes machine learning models that can be trained on large
datasets generated from finite element simulations or experi-
mental data. Once trained, AI models can quickly predict outcomes

Fig. 4. The effect of the gradient index of the functionally graded (metal-ceramic) plate on the phase velocity as a function of the piezoelectric patch area to
rectangular FG plate area ratio for h = 0.1(nm), b = a, a = 10h, l = h

10, μ = h
10, and ∅0 = 1(mV).
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for new input configurations without needing to run time-
consuming simulations.

• Traditional Methods: Require each new simulation or scenario to
be solved from scratch, leading to long computation times, espe-
cially when using finite element or meshless methods for each
case.

3. Faster Predictions
• AI: After initial training, AI models can make predictions almost
instantaneously, making them extremely useful in real-time ap-
plications, design optimization, and iterative simulations.

• Traditional Methods: Require significant computation time,
particularly for complex structures like FG nanoplates and when
piezoelectric effects are involved. The iterative nature of solving
differential equations using FEM or other numerical methods adds
to the computational cost.

4. Adaptability to New Configurations
• AI: Can generalize from trained data, allowing it to predict the
response of a wide range of nanoplate configurations, material

distributions, and boundary conditions. AI models, especially deep
learning, can adapt to new designs or variations with minimal
reconfiguration.

• Traditional Methods: Need to be recalculated from the ground up
for each new configuration or parameter change, often requiring
new formulations or mesh refinement.

5. Optimization and Inverse Problems
• AI: Can solve optimization problems, such as maximizing energy
harvesting from the piezoelectric patch, by learning from past
simulations or datasets and guiding towards the optimal design.
Techniques like genetic algorithm or particle swarm optimization
can find the best combination of design parameters without
exhaustive trial and error.

• Traditional Methods: Require running numerous simulations with
different parameter sets in a trial-and-error manner to achieve
optimization, which can be slow and inefficient for complex
systems.

6. Data-Driven Insights

Fig. 5. The effect of the gradient index of the functionally graded (ceramic-metal) plate on the phase velocity as a function of the piezoelectric patch area to
rectangular FG plate area ratio with h = 0.1(nm), b = a, a = 10h, l = h

10, μ = h
10, and ∅0 = 1(mV).
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• AI: Extracts insights and trends directly from data, revealing hid-
den patterns and correlations that may not be immediately evident
through traditional theoretical or numerical methods. This can
help engineers understand the sensitivity of different design pa-
rameters on vibrations and energy capacity.

• Traditional Methods: Focus on solving equations derived from
physical laws, which might not expose all relevant trends, espe-
cially in multi-parameter systems like FG nanoplates coupled with
piezoelectric patches.

7. Reduction in Modeling Errors
• AI: Once trained with high-quality data, can reduce human error in
modeling and simulations, as it relies on learning from accurate
datasets and observed phenomena.

• Traditional Methods: May introduce errors through incorrect as-
sumptions, simplifications, or mesh discretization issues, espe-
cially when dealing with complex geometries or material
gradients.

8. Cost-Effective

• AI: Provides significant cost savings in terms of computational
resources and time after the initial training phase. Once trained,
models can predict the outcomes for a wide range of scenarios
without needing new simulations or experiments.

• Traditional Methods: Require expensive computational resources
and high time investments for each new simulation, especially in
high-fidelity models that require large meshes or intricate
boundary conditions.

4.1. Mathematics formulation of the mentioned AI algorithm

o formulates the mathematics behind using AI for predicting the
vibrations and energy capacity of a tri-directional functionally graded
(FG) nanoplate attached to a piezoelectric patch, we must first under-
stand how AI techniques (such as machine learning models) can be
applied to this problem.

Here is a step-by-step breakdown of the mathematical formulation

Fig. 6. Dependency of the phase velocity of the mentioned FG (ceramic-metal) structure on the ratio AP/AT for different values of applied voltages with h = 0.1(nm),
b = a, a = 10h, l = h

10, μ = h
10, and nx , ny , nz = 0.5.
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for using AI to predict the vibration characteristics and energy capacity:
1. Problem Representation
Let’s define the problem using a dataset of input-output relationships

derived from simulations or experiments.

• Input Variables (Features):
○ X1: Material properties (Young’s modulus, Poisson’s ratio, density)
as a function of thickness for the FG nanoplate.

○ X2: Geometrical parameters (length, width, thickness).
○ X3: Piezoelectric material properties (coupling coefficients,
permittivity).

○ X4: Boundary conditions.
○ X5: External forces or vibrations applied to the nanoplate.
○ X6: Temperature effects (if thermal conditions are considered).

• Output Variables (Targets):
○ Y1: Natural frequencies ω\omegaω (e.g., linear and nonlinear
frequencies).

○ Y2: Vibration mode shapes.

○ Y3: Energy capacity EEE harvested by the piezoelectric patch.

We define the system’s input-output relationship in a general form:

Y = f(X) + ϵ. (29)

where f(X) represents the underlying relationship between inputs X and
outputs Y, and ϵ is the error term that accounts for uncertainties or noise.

2. Training Data Generation
Generate a dataset

{
X(i),Y(i) }N

i=1 where N is the number of data
points obtained from:

• Finite element simulations.
• Analytical solutions (if available).
• Experimental measurements.

Each X(i) corresponds to a set of material, geometric, and loading
parameters, and Y(i) corresponds to the resulting natural frequencies

Fig. 7. Dependency of the phase velocity of the mentioned FG (metal-ceramic) structure on the ratio AP /AT for different values of applied voltages with h =

0.1(nm), b = a, a = 10h, l = h
10, μ = h

10, k = 1 (1 /nm), and nx , ny , nz = 0.5.
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and energy capacity.
3. Artificial Intelligence Model
To predict the relationship between the input features and output

targets, a machine learning model can be used. The most common AI
approache is deep neural networks. For complex nonlinear problems like
this, a neural network is a suitable model.

• Neural Network Structure: A feed-forward neural network with
multiple layers (deep learning) can approximate any continuous
function using the following formulation:
○ Input Layer: X ∈ Rn (input features: material properties, geome-
try, etc.).

○ Hidden Layers: Nonlinear activation functions transform the
input through a series of hidden layers:

z(l) = W(l)a(l− 1) + b(l),
a(l) = σ

(
z(l)
)
.

(30)

whereW(l) and b(l) are the weight matrix and bias vector for the l −
th layer, σ(⋅) is the activation function (e.g., ReLU, sigmoid), and
a(l) is the activation output from the layer.

○ Output Layer: The final output predicts the natural frequencies
and energy capacity.

Ŷ = W(L)a(L− 1) + b(L). (31)

• Loss Function: The model’s performance is quantified using a loss
function, typically the Mean Squared Error (MSE) for regression
tasks:

Fig. 8. Dependency of the phase velocity of the mentioned FG (ceramic-metal) structure on the ratio AP/AT for different values of nonlocal parameters for h =

0.1(nm), b = a, a = 10h, l = 0, k = 1 (1 /nm), ceramic/metal, nx , ny , nz = 0.5, and ∅0 = 1 (mV).
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L = (1 /N)
∑N

i=1

(
Y(i) − Ŷ

(i))2 (32)

The neural network minimizes this loss by adjusting weights W(L)

and biases b(L) using an optimization algorithm like gradient descent.
4. Optimization Algorithm for Parameter Tuning
Optimization algorithm can be employed to improve the accuracy

and efficiency of predictions:

• Particle Swarm Optimization (PSO): PSO is used to optimize the
hyperparameters of the neural network (e.g., learning rate, number
of layers, number of neurons). The objective function to minimize is
the validation loss L.

5. Model Validation
After training, the AI model is validated using unseen data from

either:

• Experimental results.
• Simulation data not used during training.
• Analytical or benchmark solutions.

The prediction error is computed as:

Error =
1
M
∑M

j=1

⃒
⃒Ytrue

J − Ŷ j
⃒
⃒. (33)

where M is the number of validation data points, Ytrue
J are the true

values, and Ŷ j are the AI model’s predictions.
6. Final Model Output
Once trained and validated, the AI model can predict:

• Natural frequencies for new FG nanoplate configurations.

Fig. 9. Dependency of the phase velocity of the mentioned FG (metal-ceramic) structure on the ratio AP/AT for different values of nonlocal parameters and wave
numbers for h = 0.1(nm), b = a, a = 10h, l = 0, k = 1 (1 /nm), metal/ceramic, nx , ny , nz = 0.5, and ∅0 = 1 (mV).
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• Energy harvesting capacity from the piezoelectric patch based on
given inputs.

These predictions will be computationally efficient and can be used
in real-time analysis or design optimization.

5. COMSOL multi-physics simulation

COMSOL Multiphysics is a powerful finite element simulation plat-
form widely used to model and predict the behavior of complex physical
systems, including sandwich nanoplates coupled with piezoelectric
patches. In these systems, accurately predicting phase velocity is critical
for assessing wave propagation characteristics, structural integrity, and
energy efficiency in applications such as sensing, actuation, and vibra-
tion control. The sandwich nanoplate typically consists of a lightweight
core material sandwiched between stiff face sheets, which provides
enhanced stiffness-to-weight ratios, while the piezoelectric patch en-
ables active control by converting mechanical strain into electrical

energy and vice versa. The simulation in COMSOL begins by defining the
geometry of the sandwich nanoplate and piezoelectric patch, followed
by the specification of material properties, including mechanical and
electrical characteristics. The coupling between the mechanical de-
formations of the nanoplate and the piezoelectric patch is handled
through multi-physics interfaces, combining structural mechanics and
electrostatics to simulate the interaction between electric fields and
mechanical stresses. The non-homogeneous nature of the sandwich
structure is incorporated through layered composite modeling, which
accounts for different material properties across the thickness. To pre-
dict the phase velocity, harmonic wave analysis is performed, simulating
wave propagation through the structure. The phase velocity depends on
the stiffness, mass distribution, and piezoelectric coupling, all of which
are influenced by the geometry and material properties. The quasi-3D
deformation behavior of the sandwich nanoplate and the piezoelectric
effects are captured by solving coupled partial differential equations
using the finite element method. COMSOL’s flexibility allows for the
integration of advanced theories, such as nonlocal elasticity or shear

Fig. 10. Dependency of the phase velocity of the mentioned FG (ceramic-metal) structure on the ratio AP/AT for different values of length scale and wave numbers
with h = 0.1(nm), b = a, a = 10h, μ = 0, k = 1 (1 /nm), nx , ny , nz = 0.5, and ∅0 = 1 (mV).
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deformation theories, to further enhance accuracy. The results offer
insights into phase velocity and energy transmission, aiding in the
design and optimization of piezoelectric-coupled sandwich structures
for applications in nanotechnology, aerospace, and smart materials. In
the simulation of phase velocity in a sandwich nanoplate coupled with a
piezoelectric patch using COMSOL Multiphysics, a combination of
tetrahedral mesh for the 3D geometry, quadrilateral mesh for thin
layers, and boundary layer mesh near the interfaces is employed to
ensure accurate representation of mechanical and electrical
interactions.

6. Results and discussion

The effects of many factors, such as the location, nonlocal parameter,
length scale factor, FG power index, and form of the piezoelectric patch,
on the phase velocity, are discussed in detail in this section. Unless
specified otherwise, the material properties given in Tables 1 and 2 have
been used in analytical calculations for the nanoplates made of the FGM

and PTZ-4 composites.

6.1. Verification study

Table 3 presents a comparison of circular frequencies (ω) for
different mode numbers (k= 2, 5, 8, 11, 14, 17, 20, and 23) for a circular
plate. The results are derived using the current study’s method (labeled
as "Present") and are compared with those from previous Refs. [47–49].
Each row in the table shows the natural frequencies (in radians per
second) for a particular mode number, k, as calculated by the present
method and compared to the results of Refs. [47–49]. The comparison
demonstrates good agreement, especially for lower and intermediate
mode numbers. Slight discrepancies can be observed at higher modes (e.
g., k = 23), which could result from differences in numerical methods
or boundary conditions. This validates the accuracy and reliability of the
present approach in estimating natural frequencies in comparison to
established methods from the literature.

Table 4 presents a comparison of the first dimensionless fundamental

Fig. 11. Dependency of the phase velocity of the mentioned FG (metal-ceramic) structure on the ratio AP/AT for different values of length scale for h = 0.1(nm), b =

a, a = 10h, μ = 0, k = 1 (1 /nm), nx , ny , nz = 0.5, and ∅0 = 1 (mV).
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frequencies of functionally graded nanoplates, focusing on how these
frequencies vary with nonlocality, aspect ratio (a/b), and length-to-
thickness ratio (a/h). Results from the present study are compared
with those from Ref. [50]. For each aspect ratio (a/b = 1 and a /b =

2), and for different values of μ the dimensionless fundamental fre-
quencies are tabulated. As the nonlocal parameter increases, the fre-
quencies generally decrease, indicating a softening effect due to
nonlocal elasticity. The influence of a/h is also evident, with lower
frequencies observed for a/h = 20 compared to a/h = 10, highlighting
the effect of increasing the plate’s slenderness. The results show good
agreement between the present study and Ref. [50], with only minor
deviations, indicating that the method used in the present study

accurately captures the dynamic behavior of functionally graded
nanoplates. This comparison validates the reliability of the present
model across varying geometric and nonlocal conditions.

6.2. Parametric results

In NEMS, the relationship between energy absorption capacity and
phase velocity can be complex and is influenced by various factors.
NEMS are devices that involve the interaction of mechanical and elec-
trical phenomena at the nanoscale. The energy absorption capacity of a
NEMS device refers to its ability to dissipate or absorb energy when
subjected to mechanical or electrical inputs. This capacity can be

Fig. 12. The impact of the various length and width of piezoelectric layer on the maximum deflection of the sandwich rectangular plate for mode 3, a = 1 (nm), b =

a, h = a
20, hp = h

5, nx , ny , nz = 1, and ∅0 = 1(mV).
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influenced by the material properties, structural design, and operating
conditions of the NEMS device. The phase velocity in NEMS refers to the
speed at which a wave or vibration propagates through the device. The
phase velocity is influenced by the mechanical properties of the device,
such as its mass, stiffness, and damping characteristics. The relationship
between energy absorption capacity and phase velocity in NEMS can be
understood through the concept of resonance. Resonance occurs when
the frequency of an external force matches the natural frequency of the
NEMS device, leading to a significant increase in energy absorption. In
some cases, higher phase velocities in NEMS devices can lead to
enhanced energy absorption capacity. This can occur when the higher
phase velocity allows the device to efficiently dissipate energy through

damping mechanisms or when it enables the device to interact more
effectively with external stimuli. However, the relationship between
energy absorption capacity and phase velocity can also be influenced by
trade-offs. For example, increasing the phase velocity in a NEMS device
may lead to reduced energy absorption capacity if it results in decreased
damping or increased stiffness that limits the device’s ability to dissipate
energy. Overall, the relationship between energy absorption capacity
and phase velocity in NEMS devices is a complex and multifaceted
aspect of their behavior. So, it can be concluded that phase velocity and
energy absorption have a direct influence on each other. Fig. 3 shows the
influence of the AP to AT ratio of the structure on the energy absorption
capacity of the presented composite structure. As is seen, by increasing

Fig. 13. The impact of the various length and width piezoelectric layers on the maximum deflection of the sandwich rectangular plate for mode 4, a = 1 (nm), b = a,
h = a

20, hp = h
5, nx , ny , nz = 1, and ∅0 = 1(mV).
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the AP to AT ratio the number of oscillations in a specific time decreases
so, the stability and finally the absorbed energy in the system decreases.

In Fig. 4, it is demonstrated that with increasing the gradient index of
the FG plate in all directions, the critical area ratio becomes less for a
range of piezoelectric patch area to rectangular FG plate area ratio. In
addition, prior to total values of area ratio, which is the value of interest
in the application, the phase velocity decreases with an increase in the
gradient indices. It is worth mentioning that the area of the piezoelectric
patch is taken to be less than the plate area, AP

AT ≤ 1. In Fig. 4a, the change
of the phase velocity is depicted for the wavenumber k = 1 /nm, and in
Fig. 4b, it is shown for k = 0.5/nm. As can be recognized for the lower
wavenumber, the area ratio falls into the AP

AT ≤ 1. Thus, for lower
wavenumbers, a limitation must be put on the area ratio of the piezo-
electric while there is no limitation in larger wave numbers since the
critical area ratio occurs in AP

AT ≥ 1 for all gradient indices.
For the different k factors, in Fig. 5, it is demonstrated that with

increasing the gradient index of the FG plate in all directions, the critical
area ratio becomes less for a range of piezoelectric patch area to rect-
angular FG plate area ratio. In addition, prior to critical values of area
ratio, which is the values of interest in the application, the phase velocity
decreases with an increase in the gradient indices. It is worthmentioning
that the area of the piezoelectric patch is taken to be less than the plate
area, AP

AT ≤ 1. In Fig. 5a, the change of the phase velocity is depicted for
the wavenumber k = 1/nm, and in Fig. 4b it is shown for k = 0.5 /nm. As
can be recognized for the lower wavenumber, the area ratio falls into the
AP

AT ≤ 1. Thus, for lower wavenumbers, a limitation must be put on the
area ratio of the piezoelectric while there is no limitation in larger wave
numbers since the critical area ratio occurs in AP

AT ≥ 1 for all gradient
indices. By comparing Figs. 4, 5 it is shown that considering metal-
ceramic in fabrication of the presented FG structure has higher stabil-
ity and phase velocity value than ceramic-metal structure

The correlation of the phase velocity with applied voltage and area
ratio AP/AT is shown in Figs. 6a and 6b for wave numbers k = 1.0

nm and =

0.5
nm, respectively. It can be observed that the critical area ratio increases
for the greater wave number. Furthermore, the overall responses of the
phase velocity to the applied voltage are similar in both cases. As the
area ratio increases, the effect of the applied voltage becomes more
dominant. At values underAP/AT ≤ 0.1 The effect of applied voltage can
be neglected.

The correlation of the phase velocity with applied voltage and area

ratio AP /AT is shown in Figs. 7a and 7b for wave numbers k = 1.0
nm and =

0.5
nm, respectively. It can be observed that the critical area ratio increases
for the greater wave number. Furthermore, the overall responses of the
phase velocity to the applied voltage are similar in both cases. As the
area ratio increases, the effect of the applied voltage becomes more
dominant. At values under AP /AT ≤ 0.1 The effect of applied voltage
can be neglected.

In Fig. 8 for different applied voltages, the dependency of the phase
velocity on the nonlocal parameter and area ratio is presented. The
nonlocal parameter change does not alter the critical area ratio. At the
greater wave number, the critical area ratio falls in area ratios greater
than 1. Thus, it is more desirable in design to have a greater wave
number so that the piezoelectric patch area can be selected with no
limitation. As the applied voltage changes the critical area ratio in-
creases. In general, the phase velocity increases with an increase in
nonlocal parameters for both applied voltages. The effect is more
obvious in lower values of area ratios.

Fig. 9 displays the dependency of phase velocity on the AP/AT for a
tri-directional functionally graded nanoplate attached to a piezoelectric
patch. Two subfigures are presented, with the phase velocity plotted on
the y-axis and the AP/AT on the x-axis. The analysis considers different
values of nonlocal parameters, representing the material’s nonlocality
effects, and wave numbers. In subfigure (a), for k = 1 (1 /nm), phase
velocity increases as the AP/AT moves away from 1, either increasing or
decreasing. The curves represent different nonlocal parameter values,
ranging from μ = 2h to μ = 10h, where the highest nonlocal parameter
leads to the lowest phase velocity. The critical point where
AP/AT indicates that the phase velocity is minimized and symmetrical
around this point. In subfigure (b), for k = 0.5 (1 /nm), the same trends
are observed but with lower phase velocity values compared to (a),
highlighting the influence of smaller wave numbers. The dependency of
phase velocity on nonlocal parameters remains evident, as higher values
of μ correspond to reduced phase velocities. The figure effectively
demonstrates how phase velocity changes with the ratio of material
properties and the influence of nonlocal parameters, emphasizing the
sensitivity of wave propagation characteristics to both material and
structural parameters in nanoplates attached to piezoelectric patches.

Fig. 10 illustrates the dependency of phase velocity on the AP/AT for
a tri-directional functionally graded (FG) nanoplate attached to a
piezoelectric patch, considering various length scales and wave
numbers. The phase velocity is plotted against the AP/AT, with two
subfigures showing the results for different wave numbers. In subfigure
(a), the wave number is set at k = 1 (1 /nm). The phase velocity de-
creases as AP/AT approaches 1, reaches a minimum around this value,
and increases again as the ratio moves away from 1. The different curves
represent varying length scales, ranging from l = h/10 to l = h/2. As the
length scale increases, the phase velocity decreases, indicating a strong
dependency on the length scale. In subfigure (b), the wave number is
lower at k = 0.5 (1 /nm), and the overall phase velocity is also lower
compared to subfigure (a). The trends remain similar, with phase ve-
locity minimizing around AP/AT = 1 and varying significantly with
length scale. Larger length scales result in slower phase velocities across
the entire range of AP/AT . This figure demonstrates the influence of both
length scale and wave number on the dynamic response of nanoplates,
particularly their phase velocity, in the presence of piezoelectric effects.
It highlights the importance of these parameters in determining wave
propagation characteristics in nanostructured materials.

The effect of the length scale on the critical area ratio is depicted in
Fig. 11. With increasing the length scale the critical area ratio increases.
Thus, this parameter can be regarded as a control parameter of the
critical area ratio. The two wave numbers k = 1.0

nm and k = 0.5
nm also

changes the phase velocity response of the FG plate. At the wave number
k = 1.0

nm the critical area ratio becomes greater than 1 for all length scales.
On the other hand, for the wavenumber k = 0.5

nm, all the critical area ratio

Fig. 14. Loss factor against epoch for the mentioned artificial intelli-
gence algorithm
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values fall into the span less than unity. For a different boundary con-
dition in Fig. 11a, similar behavior is observed. However, this change in
boundary condition increases the critical area ratio in both wave-
numbers. Generally, the phase velocity increases with an increase in
length scale parameters.

The impact of the different lengths and widths of the piezoelectric
layer on the maximum deflection and frequency of the rectangular
sandwich plate for the first mode of frequency is shown in Fig. 12. It is

clear that the size of the piezoelectric patch has a big impact on the
NEMS frequency information. To put it another way, the frequency
decreases as the size of the piezoelectric patch rises for low size values
(ap, bp<0.4nm). However, for high size values (ap, bp >0.4 nm), an in-
crease in the piezoelectric patch’s size results in an increase in the NEMS
frequency.

For the second mode of frequency, the effect of the piezoelectric

Fig. 15. Measured data against estimated data for various R2 values of the mentioned artificial intelligence algorithm.

Table 5
Dimensionless frequency of the DNN model for different RMSE and h /l values

h
/l

MSR Predicted

RMSETrain = 0.712 RMSETrain = 0.756 RMSETrain = 0.852

10 175.521 142.172 10 175.521
5 182.932 148.1749 5 182.932
4 195.323 158.2116 4 195.323
3 203.355 164.7176 3 203.355
2 231.939 187.8706 2 231.939

Table 6
Performance of the DNN model for dimensionless frequency for various R2 and
μ/h

μ/h MSR Predicted

R2=0.9352 R2=0.9631 R2=0.9916

2 205.921 181.8552 2 205.921
4 212.512 185.2598 4 212.512
6 223.931 193.6234 6 223.931
8 235.428 206.051 8 235.428
10 250.852 215.6986 10 250.852
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patch’s length and width on the amplitude and frequency of the NEMS
coupled with the piezoelectric patch is presented in Fig. 13. As can be
observed, the size of the piezoelectric patch has an important role in the
frequency information and amplitude of the NEMS. For more detail, in
the low values of size (ap, bp <0.3nm), by increasing the size of the
piezoelectric patch, frequency increases. Also, in the high values of size
(ap, bp >0.7nm) increase in the size of the piezoelectric patch results in
an increase in the frequency of the NEMS. As an amazing result, in the
middle value of the piezoelectric patch’s size (0.3nm<ap, bp<0.7nm), an
increase in the piezoelectric patch’s size caused to increase in the fre-
quency of the NEMS.

6.3. Deep neural networks to predict the mentioned problem

DNNs have emerged as a powerful tool for predicting complex
physical phenomena such as the vibrations and energy capacity of tri-
directional functionally graded nanoplates attached to piezoelectric
patches. These systems exhibit intricate nonlinear behaviors due to their
heterogeneous material properties and coupling effects between the
nanoplate and the piezoelectric patch. Traditional analytical and nu-
merical methods often require extensive computational resources and
are limited by simplifying assumptions. DNNs offer a flexible, data-
driven approach to model such systems by learning the underlying re-
lationships from a dataset of simulations or experimental measurements.
A DNN consists of multiple hidden layers, each containing several
neurons, that progressively extract higher-level features from the input
data. For this problem, the input features may include material prop-
erties (such as Young’s modulus, Poisson’s ratio), geometric parameters,
and boundary conditions, while the outputs are the natural frequencies
and energy harvesting capacities. By training the DNN using back-
propagation and optimization techniques, the network adjusts its
weights to minimize the error between predicted and actual values. The
resulting model provides accurate predictions with reduced computa-
tional effort, making it an efficient alternative for real-time design
optimization and dynamic analysis of advanced nanostructures. For
training or tuning the AI model, optimization algorithm is used. Fig. 14
demonstrates the evolution of the loss factor over multiple epochs for
both the training and validation datasets in an artificial intelligence
algorithm. The rapid decrease in loss during the early epochs signifies
effective initial learning, where the model quickly adjusts its weights to
minimize prediction errors. The training loss, depicted by the green
curve, exhibits significant fluctuations after the initial sharp decline,
indicating the model continues fine-tuning its parameters. This oscilla-
tion is common in AI models during the training process, as the algo-
rithm adjusts to variations in the dataset to improve performance. The
validation loss, represented by the red curve, follows a similar trend but
is notably smoother, implying that the model is generalizing well to
unseen data without major fluctuations. The stabilization of both
training and validation losses around lower values suggests that the
model has reached convergence, achieving a balanced trade-off between
bias and variance. The absence of a significant gap between training and
validation loss curves indicates that overfitting is minimal, meaning the
model’s performance is consistent across both the training and valida-
tion sets. This trend highlights the robustness of the AI algorithm and its
capacity to accurately predict outcomes while maintaining generaliza-
tion across different datasets. The steady decline and eventual stabili-
zation of the loss factor signify the effectiveness of the training process in
optimizing the model’s performance.

Fig. 15 displays four subplots, each showing a scatter plot of
measured data against estimated data. The performance of an artificial
intelligence algorithm is evaluated in terms of how well its estimated
values correspond to the measured ones. In each plot, red circular
markers represent the data points, and a green line is drawn to indicate
perfect agreement between the estimated and measured data. The closer
the points align to the green line, the better the accuracy of the model.
Each subplot is annotated with a coefficient of determination (R2) value,

which quantifies the goodness-of-fit. The four subplots exhibit different
R2 values: 0.8745, 0.9125, 0.9682, and 0.9916. As the R2 value in-
creases, the scatter points show better alignment with the green line,
indicating improved model performance. For instance, in the subplot
with R2 = 0.9916, almost all points closely follow the green line,
reflecting a near-perfect estimation. In contrast, the subplot with R2 =
0.8745 shows more scatter, suggesting lower predictive accuracy. In
summary, these visual comparisons show that the AI algorithm’s ability
to predict the measured data improves with increasing R2 values,
reflecting its capacity for more accurate estimations as the correlation
between measured and estimated data strengthens.

This section looks at how R2 and RMSE affect the outcomes shown in
Tables 5 and 6. Higher RMSE and R2 values have been observed to result
in more accurate replies. As a result, while choosing the results, it is
advised to pick R2=0.9916, RMSE=0.852, and 4120 samples. Mathe-
matics simulation results (MSR) also present the outcomes of the
mathematical modeling.

Tables 5 and 6 illustrate how the dimensionless frequency of the
current structure varies with h/l and μ/h. This topic will be covered in
more detail in the following section.

Here are some common parameter values used for this algorithm.
After testing and training the datasets, the following results are
obtained.

Particle Swarm Optimization:

• Population Size: 90 particles.
• Inertia Weight: 0.5.
• Cognitive Coefficient c1 and Social Coefficient c2: 1.4.
• Number of Iterations: 300.

Neural Network Parameters:

• Hidden layers: 5.
• Neurons per layer: 200.
• Activation functions: ReLU for hidden layers.
• Learning rate: 10− 5.
• Batch size: 128.
• Epochs: 300.
• R2: 0. 9916
• RMSE: 0.852

7. Conclusion

Absorbed energy capacity, and wave propagation in NEMS hold
significant importance in the aerospace industry due to their critical role
in enhancing the performance, reliability, and safety of aerospace
structures and systems. One key area of application is in the develop-
ment of advanced sensors and actuators. NEMS-based sensors, utilizing
wave propagation principles, can detect minute changes in environ-
mental conditions, such as temperature, pressure, and stress, with high
precision. This capability is essential for monitoring the structural health
of aerospace components, ensuring early detection of potential issues,
and preventing catastrophic failure. In the current work, dynamic sta-
bility analysis of the NEMS coupled with a piezoelectric patch was
presented. For capturing the size effects, nonlocal strain-stress gradient
theory with two size-dependent factors was presented. For modeling the
displacement fields, a new four-variable refined quasi-3D logarithmic
shear deformation theory was investigated. Also, for coupling the
piezoelectric patch and composite structure, compatibility conditions
were presented. Hamilton’s principle with three factors was presented
for obtaining the coupled governing equations of the NEMS. For solving
the current electrical system’s partial differential equations, an analyt-
ical solution procedure was presented. Also, to gain a better under-
standing of the current electrical system’s fundamental frequency, a
COMSOL multi-physics simulation was presented. For verification of the
results, one of the tools of artificial intelligence via the datasets of the
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mathematics and COMSOL multi-physics simulations was presented to
verify the results for other input data with low computational cost. In the
results section, the effects of various factors such as the geometry of the
piezoelectric patch, FG power index, length scale factor, nonlocal
parameter, and location of piezoelectric patch on the phase velocity
were discussed. Finally, some suggestions for improving the stability
performance of the NEMS were presented in detail. The following points
can be achieved from the results and discussion section:

✓ In the middle value of the piezoelectric patch’s size (0.3nm<ap, bp
<0.7nm), an increase in the piezoelectric patch’s size caused to in-
crease in the frequency of the NEMS.

✓ For high size values (ap, bp >0.4 nm), an increase in the piezoelectric
patch’s size results in an increase in the NEMS frequency.

✓ The dependency of phase velocity on nonlocal parameters remains
evident, as higher values of μ correspond to reduced phase velocities.

✓ The phase velocity increases with an increase in nonlocal parameters
for both applied voltages.

✓ Considering metal-ceramic in the fabrication of the presented FG
structure has higher stability and phase velocity value than ceramic-
metal structure.

✓ By increasing the AP to AT ratio the number of oscillations in a
specific time decreases so, the stability and finally the absorbed en-
ergy in the system decreases.
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