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A B S T R A C T

The pursuit of convergence in multi-objective optimization usually results in population clustering that produces 
suboptimal outcomes for both convergence and diversity performance. This paper introduces MaOSSA as a new 
Many-Objective Salp Swarm Algorithm which combines reference point strategies with niche preservation and 
Information Feedback Mechanism (IFM). The strategy enables control of convergence and diversity while 
simultaneously adapting to alterations in the Pareto front. The algorithm achieves personal diversity through its 
edge individual preservation strategy and density estimation method which maintains uniform population di
versity. The evaluation of MaOSSA included DTLZ1-DTLZ7 benchmark problems and five real-world engineering 
design problems (RWMaOP1–RWMaOP5) that contained 5 to 15 objectives. The performance evaluation be
tween MaOSCA, MaOPSO, NSGA-III, and MaOMFO algorithms showed that MaOSSA delivered superior out
comes regarding Generational Distance (GD), Inverted Generational Distance (IGD), Spacing (SP), Spread (SD), 
Hypervolume (HV), and Runtime (RT). The experimental outcomes show MaOSSA delivers superior performance 
than current methods by achieving optimal convergence-diversity balance which establishes it as an efficient 
solution for many-objective optimization tasks.

1. Introduction

In practical scenarios, numerous challenges involve optimizing 
multiple conflicting objectives simultaneously. These are known as 
multi-objective optimization problems (MOPs), and when they involve 

more than three objectives, they are termed as Many Objective Opti
mization Problems (MaOPs). As opposed to most numerical optimiza
tion problems that solve for a single criterion, MaOPs seek the 
optimization of each objective simultaneously: 
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min F(x) = (f1(x), f2(x), ..., fM(x))T

subject to x ∈ Ω
(1) 

Here, M represents the total objectives, and the decision space Ω maps 
into the objective space RM via the function F(x). In MOPs, the goal is to 
identify a collection of best solutions, termed Pareto optimal solutions. 
The entire set of these optimal solutions forms the Pareto Set (PS), and 
their corresponding objective vectors compose the Pareto Front (PF), as 
illustrated in Fig. 1.

A multi-objective optimization challenge requires optimization of 
multiple competing objectives which should be accomplished at the 
same time. The problems with multiple objectives usually contain a 
reasonable number of objectives (two to three) which enables visuali
zation of solutions and their trade-offs on the Pareto front. Multi- 
objective optimization finds its solutions through the identification of 
Pareto optimal sets which demonstrate objective balance. Many- 
objective optimization deals exclusively with optimization problems 
which contain four or more objectives. The elevation in objective 
numbers increases difficulties over standard multi-objective optimiza
tion methods. MaOPs are described as the optimization tasks involving 
four or more objectives to be optimized simultaneously, as mentioned in 
Wang et al. [1]. These problems are common in various real-life domains 
such as software development, manufacturing, logistics and many 
others. In the last decade, considerable attention has been paid to the use 
of evolutionary algorithms in solving MaOPs which results in the 
emergence of various MaOEAs.

Effectiveness in these algorithms is gauged by their ability to rapidly 
position solutions along the Pareto front and distribute them across it. 
Meanwhile, `efficiency’ refers to the algorithm operational speed. 
Achieving both high effectiveness and efficiency concurrently is chal
lenging due to the complex and unpredictable nature of the Pareto front 
in many-objective contexts. Evolutionary Multi-Objective (EMO) algo
rithms such as NSGA-II [2] and SPEA2 [3] might struggle with scal
ability as the number of objectives increases. Moreover, recent findings 
[4] indicate that even newer methods, including those based on 
decomposition [5,6] and indicator approaches [7,8], encounter diffi
culties in identifying solutions when the objective count is relatively 
low. Maintaining a balanced array of solutions is crucial in 
many-objective optimization. Attempts to enhance convergence may 

reduce diversity. Innovations such as ε-dominance [9] and fuzzy Pareto 
dominance [10] aim to improve convergence but can result in a clus
tered distribution of population along certain regions of the Pareto front 
[11]. While decomposition-based algorithms typically excel in conver
gence [12], they may struggle to evenly spread solutions across an 
irregularly shaped Pareto front [13]. Moreover, indicator-based algo
rithms may have a bias towards one part of the Pareto front more than 
the other. Conversely, indicator-based algorithms might exhibit biases 
toward specific segments of the Pareto front. For instance, IBEA [7] may 
favor extreme solutions, whereas SMS-EMOA [8] tends to prefer [14] 
knee solutions [15]. On the other hand, some of the modern 
multiple-objective algorithms may disregard some areas of the Pareto 
front, for instance, SPEA2 using shift-based density estimation (SPEA2 +
SDE) [16], which has been reported to fail in preserving the boundary 
solutions sometimes [17].

Additionally, some EMO algorithms experience reduced perfor
mance when managing a larger number of objectives. For example, 
computational demands for algorithms like the hypervolume-based 
SMS-EMOA [8] rise with the increasing dimensions of the objective 
space. Similarly, SPEA2 + SDE [16], despite its proven effectiveness, can 
face efficiency challenges [18].

In the field of multi-/many-objective evolutionary algorithms, the 
problem of setting of specific parameters for every problem type is often 
observed. For example, the algorithms, which employ modified Pareto 
dominance relations, including the ε-domination based multiobjective 
evolutionary algorithm (ε-MOEA [19]), involves fine-tuning of the 
Pareto dominance relaxation degree [20], particularly when handling a 
large number of objectives [21]. In region-based MaOEAs, choosing 
appropriate parameters is essential for determining the size of the 
evaluation region. This involves decisions on grid division in grid-based 
evolutionary algorithms (GrEA) [22] and neighbor count in the knee 
point driven evolutionary algorithm (KnEA) [23]. However, the range of 
such parameters, which is optimal for the majority of decisions, tends to 
shrink as the number of objectives grows, thus making the choice of 
these parameters or their values rather challenging or even impossible in 
the high-dimensional space of objectives [24]. In general, these MaOEAs 
can be categorized into five categories.

The initial focus concerns revising the traditional Pareto dominance 
relationship utilized in many-objective optimization. Within this 

Fig. 1. Many-objective all definitions in search space of MaOP.
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context, certain algorithms adopt a more lenient form of dominance, 
including ε-dominance [9] and an enhanced dominance model [25]. 
Additionally, researchers have proposed innovative dominance frame
works such as fuzzy Pareto dominance [10], grid-based dominance [22], 
and angular dominance [26]. Generally, these adjusted dominance re
lations are designed to better manage the dominance of solutions within 
more complex, multi-dimensional spaces, thereby increasing the pres
sure to drive solutions towards the Pareto front.

The second emphasis is on refining the density estimation methods 
traditionally used in Pareto-based strategies. The rationale is that 
maintaining a diverse array of non-dominated solutions might impede 
the convergence to the Pareto front in scenarios with numerous di
mensions [24]. While some strategies in this area de-emphasize the 
preservation of diversity [27,28], others integrate convergence metrics 
into their density estimation techniques. For example, SPEA2 + SDE 
[16] introduces a shift-based density estimation (SDE) method aimed at 
penalizing solutions where the density measure is excessively high, 
which typically indicates poor convergence towards the desired front.

The third category in the realm of MaOEAs is about the 
decomposition-based methods. These algorithms address a MaOP by 
decomposing of it into single-objective ones [5] or less complex 
multi-objective ones [29] and solving them in parallel. Another advan
tage of these algorithms is that the solution comparison uses scalar 
values connected with the weight vector, so the number of objectives 
does not have as significant an impact as in other algorithms. After the 
development of the MOEA/D [5], this method has become popular. 
Some of the MOEA/D algorithms include Many-Objective Particle 
Swarm Optimizer (MaOPSO) [30], Many-Objective Sine Cosine Algo
rithm (MaOSCA) [31], Non-Dominated Sorting Genetic Algorithm-III 
(NSGA-III) [6], and Many-Objective Moth Flame Optimization 
(MaOMFO) [32] is also a reference-point-based algorithm. The reference 
vector algorithm (RVEA) [33], the MOEA/DD that utilizes both domi
nance and decomposition [34], and the DMEA-WUA which uses weights 
that are adaptively updated [35].

The fourth type includes the MaOEAs based on indicators. These 
algorithms employ certain performance indices as a filter for selection in 
order to direct the development of population in the direction of Pareto 
optimum. Some prefer to use just one, for instance, the IBEA using the 
I∈+ indicator [7], the HypE that utilizes the hypervolume (HV) indicator 
[36], and the MaOEA/IGD that rely on the inverted generational dis
tance (IGD) indicator [37]. There are others such as the stochastic 
ranking-based multi-indicator algorithm (SRA) which works to balance 
the indicators and comprises of I∈+ and ISDE indicators.

The fifth category includes the aggregation-based approaches. They 
reduce the objectives of solutions to one or several criteria, thus aiding 
in solution comparison. Some algorithms in this category introduce new 
ways of selection, evaluating solutions in terms of convergence and di
versity as in the 1by1EA [38] and MaOEA-CSS [39]. Some of these 
methods include incorporating preferences in the fitness assignment 
where KnEA emphasizes on knee points [23] while PICEA-g emphasizes 
on specific goals or target vectors [40]. However, current development 
of algorithms still poses a problem in formulating algorithms that 
perform well in many MaOPs both in terms of effectiveness and effi
ciency. For example, the algorithm based on the aggregation can have 
problems with the balance between convergence and the variety. 
Comparable issues arise with the algorithms that alter Pareto dominance 
or diversity preservation. Although there is an extensive variety of 
decomposition-based methods, they can fail to preserve diversity in 
cases where the Pareto front has an irregular shape, and the computation 
time of hypervolume-based algorithms increases with the number of 
objectives.

Real-world complex problems throughout engineering and data 
analysis as well as bioinformatics fields now heavily rely on optimiza
tion algorithms for their solution. Metaheuristic algorithm progress has 
resulted in multiple advanced techniques working as improvements for 
speed of convergence and solution quality and robustness. The Improved 

Opposition-Based Learning Firefly Algorithm with Dragonfly Algorithm 
represents a new approach to solve continuous optimization problems 
[41]. The Improved Heterogeneous Comprehensive Learning Symbiotic 
Organism Search proves its ability to adapt to various optimization sit
uations in diverse scenarios [42]. Email spam detection along with other 
high-dimensional optimization problems benefits from multi-agent 
systems techniques which demonstrate excellent capability in such ap
plications [43]. The Improved African Vultures Optimization Algorithm 
[44] and Puma Optimizer [45] and Modified Farmland Fertility Algo
rithm [46] yield successful applications for specific fields including 
image segmentation and constrained engineering problems. The Liver 
Cancer Algorithm [47] represents one of multiple novel bio-inspired 
optimizers that also includes FATA based on geophysical principles 
[48] which expands the optimization technique landscape. The Polar 
Lights Optimizer [49] and RIME [50] and IFA-EO [51] maintain front 
positions in terms of both technical performance and application flexi
bility. The continuous advancement of optimization methodologies 
stems from adaptive data structure implementation [52] combined with 
multi-objective optimization frameworks such as MORIME [53] and 
MOFDA [54] which reflect the changing nature of research in this field.

The Salp Swarm Algorithm (SSA) functions as an ideal choice for 
many-objective optimization problems (MaOPs) because of its distinc
tive features. The ability of SSA to effectively manage exploration- 
exploitation needs remains vital because it addresses the complex 
high-dimensional MaOP environments. Population diversity and effi
cient convergence belong to SSA through its chaining mechanism which 
sets it apart from established algorithms like PSO, GA, DE and ACO. The 
adoption of SSA as a solution method happens because it shows proven 
capability to generate multiple high-quality solutions throughout 
different problem domains. The procedures operate by leaders indi
cating promising solution spots for followers to focus their local opti
mization efforts. SSA employs chaining behavior to distribute its search 
process which prevents premature convergence in high-dimensional 
spaces unlike PSO. The effectiveness of Differential Evolution (DE) 
and ACO for dynamic and discrete problems does not necessarily extend 
to maintaining diversity when dealing with irregular Pareto fronts. SSA 
uses adjustable control parameters that establish an exploration- 
exploitation balance to create a solid system for handling these chal
lenges. The Information Feedback Mechanism (IFM) of SSA provides 
dynamic front adaptability which standardizes poorly in algorithms that 
lack this feature such as DE or ACO. The crossover and mutation oper
ations enable GA to adapt well but its computational requirements grow 
when dealing with larger objective sets and solution areas. The position 
update technique within SSA maintains basic complexity but produces 
the same level of diversity with reduced computational expenses for 
convergence results. SSA achieves additional justification through its 
implementation of niche preservation and reference-point-based stra
tegies within the Many-Objective Salp Swarm Algorithm (MaOSSA). The 
improvements in MaOSSA enable SSA to perform exploratory searches 
that match the requirements of MaOPs by distributing solutions uni
formly across the Pareto front and adjusting to problem complexities. 
The benchmark tests against PSO, DE and NSGA-III algorithms demon
strate that SSA achieves superior performance regarding convergence 
speed and diversity maintenance and computational efficiency thus 
making it appropriate for the optimization challenges studied.

The evolution of many-objective optimization algorithms came 
about to handle growing problems with multiple conflicting objectives. 
Traditional algorithms provided substantial help to the field although 
they experience shortcomings in making calculations stretch across 
various scales while also struggling to keep solutions diverse and 
reaching proper convergence and showing flexibility. The Many- 
Objective Salp Swarm Algorithm (MaOSSA) functions to address 
various difficulties by performing effectively throughout different 
objective spaces. NSGA-II algorithms dominate the market for problems 
with 2–3 objectives because their fast non-dominated sorting and 
crowding distance mechanisms maintain diversity and selection 
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pressure effectively. The selection mechanisms in NSGA-II become 
ineffective when handling problems with more than three objectives 
because the high-dimensional spaces reduce their effectiveness. 
MaOSSA solves the scalability issue by managing problems with 5–15 
objectives through advanced diversity preservation methods which 
maintain performance while preserving computational speed. The 
decomposition-based algorithms such as MOEA/D have gained popu
larity in many-objective problems (4 or more objectives) because they 
simplify complex problems into easier subproblems. The advantage of 
MOEA/D stems from its decomposition abilities but it struggles to pre
serve diversity when dealing with irregular Pareto fronts that produce 
uneven clustering. MaOSSA addresses irregular Pareto front challenges 
by combining niche preservation methods with reference point strate
gies to achieve uniform solution distribution in regular and irregular 
Pareto fronts. The combination of SPEA2 with Shift-based Density 
Estimation (SDE) enables better diversity preservation since it focuses 
on density estimation methods. The approach struggles to preserve 
boundary solutions which leads to missing points at the outer edges of 
the Pareto front. MaOSSA solves this problem through its edge preser
vation mechanism that successfully retrieves boundary solutions to 
deliver full Pareto front coverage. HypE demonstrates effective 
convergence-diversity balance through its hypervolume contribution 
mechanism which works as a hypervolume-based algorithm. HypE be
comes computationally impractical for large-scale optimization prob
lems due to its increased computational costs when the number of 
objectives rises. MaOSSA decreases computational runtime while using 
efficient information feedback controls and optimized selection methods 
which keep performance high across multiple dimensions. RVEA uses 
reference vectors to guide its evolutionary algorithm search process for 
enhancing convergence performance. RVEA shows restricted capabil
ities when dealing with dynamic Pareto fronts that experience objective 
or constraint variations during runtime. The adaptive information 
feedback mechanism in MaOSSA allows the algorithm to detect dynamic 
environment changes so it can maintain solution quality throughout 
time. NSGA-III extends NSGA-II by adding reference point-based selec
tion to enhance performance for optimizing multiple objectives. The 
approach succeeds at enhancing Pareto front diversity but fails to 
maintain performance when dealing with irregular fronts which results 
in unbalanced solution distribution. The targeted preservation method 
in MaOSSA concentrates on irregular regions of the complex Pareto front 
landscape to achieve better diversity and stability. The PSO-based al
gorithm MaOPSO has been modified for many-objective problems by 
providing a flexible and intuitive solution method. The Swarm dynamics 
become ineffective for high-dimensional spaces resulting in poor 
convergence of these algorithms. The feedback mechanism of MaOSSA 
achieves better convergence by adapting search behavior with historical 
performance data to improve the algorithm’s capability for approaching 
the true Pareto front. Several MFO-based algorithms including MaOMFO 
prove suitable for complex many-objective problems because they 
maintain an effective exploration-exploitation behavior pattern. The 
algorithm shows restricted diversity maintenance capabilities which 
produces clustered solutions while reducing the coverage of the Pareto 
front. The diversity enhancement of MaOSSA occurs through reference 
point strategies paired with niche preservation methods to achieve a 
spread of solutions across the complete objective space. MaOSSA fills the 
research gaps which exist in current many-objective optimization al
gorithms. MaOSSA provides an extensive solution for complex optimi
zation problems across different domains by resolving scalability 
problems and maintaining diversity and achieving convergence and 
dynamic adaptability. The innovative systems of information feedback 
along with niche preservation and edge preservation integrate to pro
vide advanced performance both within benchmark tests and practical 
use cases.

The research paper recognizes the need to compare MaOSSA against 
current many-objective optimization algorithms to demonstrate its 
capability. The initial comparison includes MaOSCA, MaOPSO, NSGA-III 

and MaOMFO despite their diverse representation of decomposition- 
based, swarm intelligence-based and reference-point-based methods 
that dominate the many-objective optimization literature.

Multiple challenging tasks in practical settings involve the simulta
neous optimization of conflicting targets. A multi-objective optimization 
problem (MOP) exists when multiple objectives need optimization while 
a Many-Objective Optimization Problem (MaOP) occurs when there are 
more than three objectives. MaOPs require multiple objective optimi
zation because they differ from standard numerical optimization prob
lems which focus on solving a single criterion. In MOPs the main 
objective is to determine multiple optimal solutions which we call Par
eto optimal solutions. The optimal solution set creates the Pareto Set 
(PS) while their associated objective vectors establish the Pareto Front 
(PF). The optimization of four or more simultaneous objectives defines 
MaOPs as optimization tasks. These kinds of optimization problems 
occur frequently within different real-world applications that include 
software development alongside manufacturing and logistics systems 
and many more domains. Evolutionary algorithms received substantial 
research attention during the last decade to solve MaOPs which led to 
the development of various Many-Objective Evolutionary Algorithms 
(MaOEAs). The effectiveness rating of these algorithms depends on their 
speed to locate solutions on the Pareto front and their ability to spread 
them across it. Meanwhile, ’efficiency’ refers to the algorithm’s opera
tional speed. The complex unpredictable nature of Pareto fronts in 
many-objective problems makes it difficult to achieve high effectiveness 
and efficiency simultaneously. The scalability of NSGA-II and SPEA2 
becomes limited when the number of objectives in EMO algorithms 
rises. The identification of solutions becomes challenging for new 
decomposition-based methods together with indicator-based ap
proaches when objective counts remain low. The optimization of mul
tiple solutions requires a proper distribution of solutions to achieve 
optimal results. The effort to improve convergence usually leads to 
diminished diversity among solutions. The implementation of ε-domi
nance and fuzzy Pareto dominance as convergence improvement 
methods produces population clustering in specific areas of the Pareto 
front. The strong convergence of decomposition-based algorithms comes 
with the negative effect of poor distribution of solutions across uneven 
Pareto fronts. The algorithms using indicators demonstrate an inclina
tion to show more interest in specific areas of the Pareto front rather 
than others.

This research presents MaOSSA which combines a reference point 
approach with niche preservation and Information Feedback Mecha
nism to tackle many-objective optimization problems. This approach 
enables population control of convergence and diversity while adapting 
to changes in Pareto fronts. The paper presents its main contributions 
through the following points: 

1. The Salp Swarm Algorithm (SSA) demonstrates superior perfor
mance in generating diverse high-quality solutions therefore it was 
chosen as the enhanced search methodology. The global search ca
pabilities of SSA operator selection enhance the search methodology 
by providing more effective search capabilities.

2. The Information Feedback Mechanism (IFM) serves as a strategy 
which resolves the issue of information waste. The Information 
Feedback Mechanism (IFM) allows historical data accumulation 
through weighted sum techniques that transfer to next generation 
individuals thus improving convergence capabilities.

3. The reference point-based strategy directs selection decisions to 
choose points that both approach the optimal front and distribute 
across the objective space for maintaining diversity. The Euclidean 
distance method is applied to position solutions according to their 
nearest reference points which enables the identification of highly 
populated areas in the objective space.

4. A targeted preservation strategy for edge individuals enhances di
versity by preventing overpopulation and improving convergence. 
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The density estimation method enables uniform diversity mainte
nance and population-wide coverage extension.

5. This research evaluates MaOSSA against modern Multi-Objective 
Algorithms (MOAs) used for Many Objective Optimization Prob
lems (MaOPs) including MaOSCA, MaOPSO, NSGA-III, and 
MaOMFO. The experimental results demonstrate that MaOSSA ach
ieves superior performance by obtaining better convergence along 
with diverse solutions according to GD, IGD, SP, SD, HV, and RT 
performance metrics when compared to alternative methods.

6. The performance evaluation of proposed MaOSSA algorithm 
included both DTLZ1-DTLZ7 benchmark problems and five real- 
world (RWMaOP1 – RWMaOP5) problems which contained objec
tives ranging from 5 to 15. The experimental results show that 
MaOSSA effectively handles multiple problem types which proves its 
strong general performance ability.

This paper follows a specific organizational structure which starts 
with an introduction to SSA algorithm principles and its practical ap
plications. Section 3 details the framework and specifics of the proposed 
MaOSSA algorithm. The paper ends with a conclusion that summarizes 
findings and suggests potential research directions in Section 5 after 
presenting experimental results in Section 4

2. Salp swarm algorithm

The Salp Swarm Algorithm (SSA) was firstly introduced by Mirjalili 
in 2017 as cited in Mirjalili et al. [55]. The basis for this algorithm is the 
swarming behavior of salps in oceanic environments with regard to their 
movement and feeding behavior. One characteristic of salps is their 
chaining behavior, illustrated in Fig. 2 above. In conceptualizing the 
SSA, the salp group is categorized into two segments: A leader and 
several followers A leader and several followers. The salp of the chain at 
the front of the group directs it, while the other salps position themselves 
behind the first one.

Like other swarm-based optimization techniques, SSA employs a D- 
dimensional vector to describe the salps’ positions, where ‘D’ is the 
dimension of the problem at hand. Consequently, the salps’ positions 
form a two-dimensional matrix, represented as X, while the presence of a 
food item, referred to as F, is considered to exist in the search space and 

act as the swarm foraging goal. The leader position update is governed 
by the following formula: 

X1,j= {
Fj + c1 ×

(
c2 ×

(
ubj − lbj

)
+ lbj

)
c3 ≥ 0.5

Fj − c1 ×
(
c2 ×

(
ubj − lbj

)
+ lbj

)
c3 < 0.5 , (2) 

In this formula, X1,j the leader position in each dimension is influ
enced by the food source position, the upper (ub) and lower (lb) bounds 
of j-dimension, and three control parameters, c1, c2, and c3. Eq. (2)
highlights that the leader position is primarily determined by the loca
tion of the food source. The coefficients c2, and c3 are random values 
generated within the [0,1] interval. The pivotal parameter c1, balancing 
exploration and exploitation within SSA, is computed as per the subse
quent equation: 

c1 = 2 × e
−

(
4×l
L

)2

, (3) 

Here, `l’ represents the current iteration, while ’ L ’ denotes the 
maximum number of iterations. The update rule for the followers’ po
sitions is outlined in: 

Xi,j =
1
2
×

(
Xi,j +Xi− 1,j

)
, i ≥ 2, (4) 

In this equation, Xi,j the position of each follower salp in a given 
dimension is expressed. Finally, the flow chart process of SSA is visually 
represented in Fig. 3.

3. Proposed many-objective salp swarm algorithm (MaOSSA)

MaOSSA builds upon the standard SSA by implementing various 
important modifications which make it suitable for many-objective 
optimization problems. The algorithm receives multiple significant en
hancements which surpass basic updates because they optimize its 
performance metrics for convergence speed and diversity maintenance 
alongside computational efficiency. MaOSSA stands out from competing 
many-objective optimization algorithms by implementing innovative 
strategies that solve typical limitations which occur in high-dimensional 
optimization problems. The Information Feedback Mechanism (IFM) 
represents a central enhancement in MaOSSA because it serves as the 
primary guidance system for the search process. MaOSSA differs from 
standard algorithms because it utilizes historical data from each gen
eration through a weighted sum technique instead of discarding it. The 
algorithm benefits from this method because it distributes previous 
generation knowledge to present population members which boosts 
convergence speed. The effective use of historical data through IFM 
directs the search process toward improved solutions and faster 
convergence toward the Pareto front. The reference point-based strategy 
in MaOSSA functions as a precise selection guidance mechanism for the 
program. The strategy enables solutions to both reach the Pareto front 
and achieve uniform coverage across the objective space. MaOSSA 
succeeds in discovering dense solution clusters by applying Euclidean 
distance on each point to locate closest reference points which then help 
create diverse solutions. The method proves successful when operating 
in complex objective spaces because it solves the problem of maintaining 
solution distribution balance. Through the reference point-based strat
egy the algorithm generates a well-distributed Pareto front that leads to 
better solution diversity. The diversity maintenance capabilities of 
MaOSSA are strengthened through its implementation of niche preser
vation and edge preservation methods. The niche preservation method 
protects uniform population diversity by stopping the algorithm from 
focusing on particular areas of the Pareto front too early. The edge 
preservation strategy focuses on maintaining solutions which exist at the 
outermost positions of the Pareto front. The method stops central re
gions from becoming overcrowded while protecting boundary solutions 
which ensures a complete range of trade-offs gets properly represented. 
These methods work together to sustain an extensive and well- Fig. 2. Behavior of salp chains.
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represented solution distribution which reduces the probability of 
reaching substandard convergence points. The adaptive density esti
mation method of MaOSSA controls solution distribution by adjusting it 
according to present population dispersion patterns. The density esti
mation criteria automatically adjust their parameters according to so
lution space changes to maintain uniform distribution of solutions 
throughout the Pareto front. The adaptive density estimation technique 
proves essential in many-objective optimization because it helps prevent 
clustering and diversity loss from increasing objective numbers. The 
dynamic density control mechanism of MaOSSA ensures both solution 
diversity and well-distributed arrangements which improves its capa
bility to resolve complex optimization challenges. These modifications 
which include historical data utilization innovation and advanced di
versity preservation techniques work together to make MaOSSA perform 
better in many-objective optimization. MaOSSA demonstrates robust
ness as a versatile tool for optimization tasks because it achieves the 
necessary balance among convergence, diversity and computational 
efficiency.

The MaOSSA algorithm begins by creating an initial population of N 
random solutions, M number of objectives, p number of partitions, and 
generate a set of reference points by using Das and Dennis method H =
(

M + p − 1
p

)

, as H ≈ N. the current generation is t, xt
i and xt+1

i the ith 

individual at t and (t+1) generation. ut+1
i the ith individual at the (t+1)

generation generated through the SSA algorithm and parent population 
Pt. the fitness value of ut+1

i is f t+1
i and Ut+1 is the set of ut+1

i . Then, we can 
calculate xt+1

i according to ut+1
i generated through the SSA algorithm 

and information feedback mechanism (IFM) Eq. (5)

xt+1
i = ∂1ut+1

i + ∂2xt
k; ∂1 =

f t
k

f t+1
i + f t

k
, ∂2 =

f t+1
i

f t+1
i + f t

k
, ∂1 + ∂2 = 1 (5) 

where xt
k is the k th individual we chose from the t th generation, the 

fitness value of xt
k is f

t
k, ∂1 and ∂2 are weight coefficients. The Information 

Feedback Mechanism (IFM) within Many-Objective Salp Swarm Algo
rithm (MaOSSA) utilizes previous generation data to improve conver
gence and diversity through its historical information utilization. The 
IFM collects weighted fitness information from parent solutions and uses 
this data to adjust the positions of current generation individuals. The 
feedback mechanism allows the algorithm to use past knowledge for 
directing exploration toward unvisited Pareto front regions while 
maintaining diversity and improving convergence. Generate offspring 
population Qt. Qt is the set of xt+1

i . The combined population Rt =

Pt ∪ Qt is sorted into different w-non-dominant levels (F1,F2,…,Fl…,Fw). 
Begin from F1, all individuals in level 1 to l are added to St and remaining 
members of Rt are rejected. If |St | = N; no other actions are required, and 
the next generation is begun with Pt+1 = St. Otherwise, solutions in St/Fl 
are included in Pt+1 = St/Fl and the rest (K= N − |Pt+1|) individuals are 
selection from the last front, Fl (described in Algorithm 1), incorporates 
a niche-preserving operator. Each member of Pt+1and Fl is normalized 
(as outlined in Algorithm 2) according to the current population spread 
to ensure uniformity in objective vectors and reference points. Subse
quently, each member is linked to a specific reference point by the 
shortest perpendicular distance (d()) (introduced in Algorithm 3), 
creating a reference line from the origin to a designated reference point. 
A strategic niching approach (explained in Algorithm 4) is then applied 
to select members of Fl linked to under-represented reference points, 
with niche count ρi evaluated in Pt+1. Should the termination condition 
remain unmet, the process repeats otherwise, a new generation Pt+1 is 
created and utilized to produce a subsequent population Qt+1. This se
lection method introduces a computational complexity scaled as 
(
N2logM− 2 N

)
or O

(
N2M

)
.

The flow chart of MaOSSA algorithm can be shown in Fig. 4.

Fig. 3. Flowchart of SSA.
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Algorithm 1 
Generation t of MaOSSA algorithm with IFM procedure.

Input: N (Population Size), M (No. of Objectives), SSA algorithm parameters, 
and Initial population Pt(t=0),

Output: Qt+1 ¼ SSA(Pt+1)
1: H Calculated using Das and Dennis’s technique, structured reference 

points Zs, supplied aspiration points Za, St = ϕ, i = 1
2: Proposed Information Feedback Mechanism (IFM) 

SSA algorithm apply on the initial population Pt to generate ut+1
i , 

calculate xt+1
i according to ut+1

i can be expressed as follows: 

xt+1
i = ∂1ut+1

i + ∂2xt
k; ∂1 =

ft
k

ft+1
i + f t

k
, ∂2 =

ft+1
i

f t+1
i + ft

k
, ∂1 + ∂2 = 1 

Qt = Qt; (Qt is the set of xt+1
i )

3: Rt = Pt Ս Qt

4: Different non-domination levels (F1, F2,…,Fl) = Non-dominated-sort (Rt)
5: repeat
6: St = St Ս Fi and i = i+1
7: until | St | ≥ N
8: Last front to be included: Fl = Սl

i=1Fi

9: if | St | = N then
10: Pt+1 = St

11: else
12: Pt+1 = St /Fl

13: Point to chosen from last Front (Fl) : K = N − |Pt+1 |

14: Normalize objectives and create reference set Zr:
Normalize (fn, St, Zr, Zs, Za); Brief Explanation in Algorithm-2

15: Associate each member s of St with a reference point:
[π(s), d(s)] = Associate (St , Zr); Brief Explanation in Algorithm-3 
% π(s) : closest reference point, d : distance between s and π(s)

16: Compute niche count of reference point j ∈ Zr :

ρj =
∑

s∈st/Fl
((π(s) = j),1 : 0);

17: Choose K members one at a time Fl to construct 
Pt+1 : Niching

(
K, ρj, π, d, Zr, Fl, Pt+1

)
; Represent in Algorithm-4

18: end if

Algorithm 2 
Normalize (f n, St , Zr , Zs /Za) procedure.

Input: St , Zs (Structured points) or Za (supplied points)
Output: fn, Zr(Reference points on normalized hyper-plane)
1: for j = 1 to M do
2: Compute ideal point: Zmin

j = mins ∈ st fj(s)
3: Translate objectives: fʹj(s) = fj(s) − Zmin

j ∀ s ∈ St

4: Compute extreme points: Zj, max = s :
​ argmins ε st ASF

(
s,wj) = where wj = (ε1,….., εj)T)

,

​ ε = 10− 6, and wj
j = 1

5: end for
6: Compute intercepts aj for j = 1, .., M
7: Normalize objectives fn

i (X) using
​

fn
i (X) =

fʹi(X)
ai − Zmin

i
, for i = 1, 2, …., M

8: if Za is given then
9: Map each (aspiration) point on normalized hyper-plane fn

i (X) and 
save the points in the set Zr

10: else
11: Zr=Zs

12: end if

Algorithm 3 
Associate (St , Zr) procedure.

Input: St , Zr

Output: π(s ∈ st), d(s ∈ st)

1: for each reference point Z ∈ Zr do
2: Compute reference line w = z
3: end for
4: for each (s ∈ st) do
5: for each w ∈ Zr do
6: Compute d⊥ (s, w) = s − wTs/‖ w ‖

7: end for
8: Assign π(s) = w: argminW ∈ Zr d⊥(s, w)

9: Assign d(s) = d⊥(s, π(s))
10: end for

Algorithm 4 
Niching 

(
K, ρj, π, d, Zr , Fl, Pt+1

)
procedure.

Input: K, ρj, π(s ∈ St), d(s ∈ St), Zr, Fl,

Output: Pt+1

1: k = 1
2: while k ≤ K do
3: Jmin =

{
j : argminj ∈ Zr ρj

}

4: j = random (Jmin)

5: Ij = {s : π(s) = j, s ∈ Fl}

6: if Ij ∕= ϕ then
7: if ρj = 0 then
8: Pt+1 = Pt+1 ∪

(
s : argmins ∈ Ij ds

)

9: else
10: Pt+1 = Pt+1 ∪ random (Ij)
11: end if
12: ρj = ρj + 1, Fl = Fl/s
13: k = k+1
14: else
15: Zr = Zr/{j}
16: end if
17: end while

Fig. 4. Flowchart of MaOSSA algorithm.
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4. Results and discussion

4.1. Experimental settings

4.1.1. Benchmarks
To assess the effectiveness of the Many-Objective Salp Swarm Al

gorithm (MaOSSA), a variety of test cases were used, including the 
DTLZ1-DTLZ7 benchmarks [56] and five real-world engineering design 
challenges as detailed in Appendix A. These real-world multi-objective 
optimization problems include the design of a car cab (RWMaOP1) [57], 
a 10-bar truss structure (RWMaOP2) [58], the development of water and 
oil repellent fabric (RWMaOP3) [59], the design of an ultra-wideband 
antenna (RWMaOP4) [60], and the design of a liquid-rocket single 
element injector (RWMaOP5) [61].

4.1.2. Comparison algorithms and parameter settings
In this research, the performance of MaOSSA is critically evaluated 

against contemporary Multi-Objective Algorithms (MOAs) for Many 
Objective Optimization Problems (MaOPs), such as MaOSCA [31], 
MaOP [30], MaOMFO [32], and NSGA-III [6]. Each algorithm was 
executed 30 times. The population sizes set were N = 210, 156, and 136, 
accommodating 5, 8, and 15 objective problems respectively.

4.1.3. Performance measures
The study utilizes several performance metrics including Genera

tional Distance (GD), Spread (SD), Spacing (SP), Run Time (RT), Inverse 
Generational Distance (IGD), and Hypervolume (HV) as quality in
dicators [62], which are summarized in Table 1 and illustrated in Fig. 5.

Generational Distance (GD) is a key metric used to evaluate the 
convergence of the obtained solutions to the true Pareto front. It quan
tifies how close the solutions generated by the algorithm are to the 

optimal front and is mathematically defined as: GD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
|S|

∑|S|
i=1 d2

i

√

where S represents the set of solutions obtained by the algorithm, and di 
denotes the Euclidean distance from the i-th solution in S to the nearest 
point on the true Pareto front. A lower GD value indicates better 
convergence, as it signifies that the solutions are closer to the optimal 
front. Inverse Generational Distance (IGD) complements GD by assessing 
both convergence and diversity. It measures the average distance from 
points on the true Pareto front to their nearest counterparts in the ob
tained solution set. The IGD is calculated using the formula: IGD =
1
|P∗|

∑P∗

j=1 dj where P∗ is the reference set representing the true Pareto 
front, and dj is the distance from the j-th reference point in P∗ to the 
closest solution in S. Lower IGD values indicate superior performance in 
terms of both convergence and the ability to maintain diversity along the 
Pareto front. Spacing (SP) is employed to measure the uniformity of 
distribution among the obtained solutions. A uniform spread of solutions 
is critical for providing decision-makers with a diverse set of trade-offs. 

The SP metric is defined as: SP =

∑S
i=1 |di − d|
|S|− 1 where di represents the 

Euclidean distance between the i-th solution and its nearest neighbor, 
and d is the average of these distances. A lower SP value signifies a more 
uniform distribution of solutions along the Pareto front, reflecting better 
diversity maintenance. Spread (SD) evaluates the extent of the spread of 

solutions across the objective space, providing insights into how well the 
algorithm explores the boundaries of the Pareto front. The SD is calcu

lated as: SD =

∑m
k=1

dext
k − dmean

k∑m
k=1

dext
k 

where dext
k represents the extreme spread for 

each objective, capturing the boundary solutions, and dmean
k is the mean 

spread among all solutions. A smaller SD value indicates a more 
comprehensive spread of solutions, which is desirable for covering the 
entire objective space effectively. Hypervolume (HV) is a widely used 
metric that simultaneously captures both convergence and diversity. It 
quantifies the volume of the objective space dominated by the obtained 
solutions, relative to a reference point. The mathematical formulation of 
HV is expressed as: HV = Volume (UxεSRegion(x)) where Region(x) 
denotes the hypervolume dominated by solution x in the objective 
space. A higher HV value reflects better performance, as it indicates that 
the solutions dominate a larger, more desirable portion of the objective 
space, representing both proximity to the Pareto front and diverse 
coverage. Runtime (RT) measures the computational efficiency of the 
algorithm, providing a direct assessment of the time required to 
converge to a solution set. RT is typically expressed in seconds and is 
calculated as the total time taken by the algorithm to complete its 
optimization process. Lower RT values indicate greater computational 
efficiency, which is particularly important for real-time applications or 
scenarios with limited computational resources.

The researchers used MATLAB R2023a running on equipment with 
an Intel Core i7-11700 CPU (2.5 GHz) and 16 GB of RAM under Win
dows 11 Pro. MaOSSA received experimental testing through the use of 
two benchmark problem sets: DTLZ1–DTLZ7 as well as the real-world 
many-objective optimization problems RWMaOP1–RWMaOP5. Re
searchers in the field extensively use the DTLZ benchmarks to evaluate 
many-objective optimization algorithms because these benchmarks 
provide scalable problems with diverse characteristics including con
vexity, concavity and multimodality. The selected problems served to 
evaluate MaOSSA’s capability of handling diverse Pareto frontforms of 
different complexities for an extensive performance testing. Many real- 
life optimization problems from engineering design domains were 
included in the MaOSSA evaluation to prove practical field readiness. 
These include RWMaOP1, which focuses on optimizing car cab design 
by minimizing weight while maximizing structural integrity under 
multiple constraints; RWMaOP2, which deals with the optimization of a 
10-bar truss structure, aiming to minimize weight and stress under 
specified load conditions; RWMaOP3, which involves the development 
of water and oil repellent fabric, optimizing both material properties and 
cost efficiency; RWMaOP4, centered on ultra-wideband antenna design 
to maximize bandwidth and minimize signal loss; and RWMaOP5, which 
targets the optimization of a liquid-rocket single-element injector, 
focusing on enhancing fuel efficiency and thrust performance. The 
selected real-world engineering problems were carefully selected to 
show MaOSSA’s capability when solving practical complex issues.

The evaluation of MaOSSA included a comparison with four leading 
many-objective optimization algorithms namely MaOSCA, MaOPSO, 
NSGA-III and MaOMFO. The algorithms ran independently 30 times to 
guarantee the reliability of statistical outcomes. The population sizes 
followed an objective-based adjustment scheme where problems with 5 
objectives received 210 individuals while those with 8 objectives had 
156 individuals and problems with 15 objectives operated with 136 
individuals. The method aimed to achieve sufficient search space 
exploration while handling the growing complexity of higher- 
dimensional problems. All algorithms received precise parameter ad
justments to establish equal conditions between them. The key param
eters in MaOSSA underwent preliminary optimization to achieve the 
best possible balance between exploration and exploitation by adjusting 
reference point numbers and niche preservation threshold and infor
mation feedback mechanism weights. A performance evaluation of the 
algorithms utilized Generational Distance (GD), Inverse Generational 
Distance (IGD), Spacing (SP), Spread (SD), Hypervolume (HV), and 
Running Time (RT) as six extensive performance metrics. A variety of 

Table 1 
Attributes of Quality Indicators.

Quality 
indicator 
[39]

Convergence Diversity Uniformity Cardinality Running 
time

GD Accept ​ ​ ​ ​
SD ​ Accept ​ ​ ​
SP ​ ​ Accept ​ ​
RT ​ ​ ​ ​ Accept
IGD Accept Accept Accept ​ ​
HV Accept Accept Accept Accept ​
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performance metrics were chosen to examine the algorithms in detail for 
their ability to converge as well as their diversity characteristics and 
uniformity outcomes and operational efficiency. GD serves as an indi
cator of convergence quality by measuring how closely the obtained 
solutions approach the true Pareto front. The evaluation method of IGD 
goes beyond GD by combining convergence and diversity analysis 
through an average distance measurement between the generated Par
eto front and the actual Pareto front. SP evaluates the solution distri
bution uniformity throughout the Pareto front while SD evaluates the 
distribution spread across the objective space to assess diversity main
tenance. The HV metric unites convergence quality with diversity 

quality into one numerical value where better performance results in 
higher values. RT evaluates algorithmic efficiency through a time 
measurement of how long it takes for algorithms to achieve their final 
solution set. A complete experimental framework enables a systematic 
evaluation of MaOSSA by testing its performance within many problem 
areas and evaluation criteria.

The proposed Many-Objective Salp Swarm Algorithm (MaOSSA) uses 
parameters which were determined through empirical studies and 
established practices within evolutionary algorithms. The Salp Swarm 
Algorithm received optimized key parameters together with population 
size and reference points and control parameters to deliver reliable 

Fig. 5. Mathematical and schematic view of metrics.
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results. The selected population sizes of 210, 156, and 136 were chosen 
to balance exploration and exploitation for problems containing 5, 8, 
and 15 objectives. The algorithm maintains diversity through this 
equilibrium which enables it to reach the Pareto front both efficiently 
and effectively. The Das and Dennis method calculated reference points 
through a process that distributes points evenly across the objective 
space. The method provides extensive coverage of the Pareto front by 
improving diversity protection. Three control parameters of the Salp 
Swarm Algorithm received optimization through calibration to enhance 
its search dynamics. The first parameter regulates how the algorithm 
explores new areas versus focusing on existing promising solutions. The 
calculation used an exponential decay function which related the cur
rent iteration to the maximum number of iterations. The algorithm 
design allows researchers to conduct extensive exploration at the 
beginning and perform targeted exploitation toward the end of the 
process. Random values between zero and one serve as the other two 
parameters which introduce stochasticity for escaping local optima and 
sustaining robust search capabilities.

The Wilcoxon rank-sum test evaluated statistical significance of 
performance metric differences between MaOSSA and other algorithms 
(MaOSCA, MaOPSO, NSGA-III, and MaOMFO) regarding GD, IGD, SP, 
SD, HV, and RT. The Wilcoxon rank-sum test functions optimally for 
paired data analysis without assuming normal distribution. A statistical 
analysis using p < 0.05 revealed that MaOSSA surpassed its competitors 
in all benchmark cases except one. For better clarity the significance 
outcomes are now presented in the improved results tables for total 
transparency.

MaOSSA’s performance underwent a sensitivity test to determine the 
effect of these parameters on its outcome. The experiments showed clear 
patterns when each variable received individual testing with other 
variables maintained at constant levels. The size of the population 
directly affected how quickly the algorithm converged while also 
determining solution diversity. The search space exploration capacity of 
MaOSSA increased with larger population sizes yet the solution quality 
remained unchanged as population sizes exceeded a specific threshold 
due to increased computational expenses. The quantity of reference 
points influenced diversity distribution directly because additional 
reference points produced a more balanced solution distribution across 
the Pareto front. Too many introduction of points into the system led to 
redundant computations that caused excessive overhead. The control 
parameters acted as essential regulators to achieve the right balance 
between searching new areas and focusing on already discovered areas. 
The first control parameter set at high initial values encouraged 

exploration before transitioning to exploitation through its gradual 
descent. The random elements from these two parameters worked to 
stop premature convergence from occurring. The selected parameters 
lead to an optimal convergence-diversity trade-off according to experi
mental findings. Research has demonstrated that MaOSSA surpasses 
modern many-objective optimization algorithms on multiple benchmark 
evaluations as well as real-world situations consistently. Numerical tests 
confirmed the settings’ solid performance by showing that minor de
viations usually led to inadequate results. The extensive empirical 
studies conducted for MaOSSA parameter configuration resulted in 
optimal exploration-exploitation balance that led to superior conver
gence and diversity performance.

4.2. Experimental results on DTLZ problems

Table 2 shows the Generational Distance (GD) results of different 
many-objective optimization algorithms in solving DTLZ problems. It is 
worth noting that for all the problems and dimensions presented, 
MaOSSA has a lower mean value of the GD metric, which proves the 
method effectiveness in approximating the Pareto front. Particularly to 
DTLZ1, MaOSSA yields better solutions than MaOSCA, MaOPSO, NSGA- 
III, and MaOMFO in most problems as seen in the lower mean GD values 
obtained. DTLZ1 with M = 5 and D = 9, average GD of MaOSSA mean is 
5. The 2336e− 2 is also much lower than that of MaOSCA 1. By using the 
proposed approach, the algorithm converges closer to the Pareto front, 
with a value of 7051e− 1. Likewise, in DTLZ2, MaOSSA continues to be 
superior among the algorithms particularly in the 5-objective, 14-deci
sion variable problem where its mean GD is 6. As for 2669e− 3, it is one 
of the smallest, standing shoulder to shoulder with MaOMFO and NSGA- 
III. This trend of MaOSSA efficiency is also observed in DTLZ3, DTLZ4, 
DTLZ5, DTLZ6 and DTLZ7 where in most of the scenarios MaOSSA yields 
lower mean GD as compared to other strategies. In the case of GD, it can 
be seen from Table 2 that MaOSSA better 11/21, MaOSCA, MaOPSO, 
NSGA-III, and MaOMFO achieves 4, 0, 3, and 3 best results, respectively. 
Hence, it shows that it is capable of returning lower mean GD values, 
which indicates that it is able to give a better estimate of the Pareto- 
optimal front depicted in Fig. 6.

In comparing the results of MaOSSA with the other algorithms in 
terms of the IGD for the DTLZ test problems presented in Table 3, the 
superior performance of MaOSSA can be confirmed. The proportions of 
test problems where MaOSSA outperforms MaOSCA, MaOPSO, NSGA- 
III, and MaOMFO are as follows: Compared to MaOSCA, MaOSSA out
performs it in 82.34 % of the problems; compared to MaOPSO, it 

Table 2 
GD metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 5.2336e− 2 (5.25e− 2) 1.7051e− 1 (6.42e− 2) 8.4684e− 1 (5.66e− 1) 9.1702e− 2 (4.97e− 2) 2.4909e− 2 (1.99e− 2)
8 12 7.0207e− 2 (6.16e− 2) 8.7535e− 1 (7.21e− 1) 3.8433e+1 (2.35) 4.1478e− 1 (4.39e− 1) 7.2844e− 1 (1.09)
15 19 8.6801e− 2 (6.59e− 2) 6.4753e− 1 (3.84e− 1) 7.2379e+1 (2.77e− 1) 2.6253 (3.34) 4.7857e− 1 (2.50e− 1)

DTLZ2 5 14 6.2669e− 3 (3.21e− 4) 5.6554e− 3 (1.26e− 4) 2.5778e− 2 (1.07e− 2) 5.5603e− 3 (2.11e− 4) 5.6532e− 3 (1.11e− 4)
8 17 2.5825e− 2 (7.89e− 4) 1.4100e− 2 (1.15e− 3) 2.7815e− 1 (3.52e− 3) 1.9897e− 2 (7.89e− 4) 1.9043e− 2 (7.70e− 4)
15 24 5.6705e− 2 (4.76e− 3) 3.3258e− 2 (1.44e− 3) 4.5171e− 1 (1.46e− 3) 2.9294e− 2 (1.25e− 3) 3.2980e− 2 (4.38e− 3)

DTLZ3 5 14 2.3604 (1.02) 4.3774 (1.38) 1.7380e+1 (7.38) 6.8270 (1.75) 1.5482 (8.79e− 1)
8 17 1.6566 (6.62e− 1) 1.1156e+1 (4.57) 2.1836e+2 (7.61) 1.4169e+1 (7.37) 2.6764 (1.61)
15 24 3.3325 (1.54) 3.9181e+1 (1.30e+1) 3.6562e+2 (7.88) 2.9881e+1 (1.80e+1) 4.9240 (2.10)

DTLZ4 5 14 5.1881e− 3 (5.87e− 4) 5.5895e− 3 (2.40e− 4) 2.1398e− 2 (1.80e− 2) 5.0834e− 3 (2.05e− 4) 5.4773e− 3 (3.03e− 4)
8 17 1.6475e− 2 (2.06e− 3) 1.3365e− 2 (3.85e− 3) 2.7504e− 1 (3.71e− 3) 1.6265e− 2 (2.81e− 3) 1.3948e− 2 (2.53e− 4)
15 24 4.9533e− 2 (3.85e− 3) 2.2162e− 2 (5.31e− 4) 4.4860e− 1 (5.34e− 3) 2.9155e− 2 (3.56e− 3) 3.4616e− 2 (1.37e− 3)

DTLZ5 5 14 4.8946e− 2 (7.94e− 3) 8.4427e− 2 (3.20e− 3) 1.9215e− 1 (7.21e− 3) 9.4080e− 2 (8.76e− 3) 1.1274e− 1 (9.83e− 3)
8 17 4.8980e− 2 (6.67e− 3) 1.4527e− 1 (1.62e− 2) 3.0763e− 1 (3.93e− 3) 1.2385e− 1 (1.54e− 2) 1.3358e− 1 (2.17e− 2)
15 24 2.5479e− 2 (2.45e− 2) 1.6925e− 1 (5.90e− 2) 5.0996e− 1 (5.41e− 3) 1.4979e− 1 (5.22e− 2) 3.0854e− 1 (1.10e− 1)

DTLZ6 5 14 1.9611e− 1 (1.88e− 2) 3.0461e− 1 (5.11e− 2) 9.7746e− 1 (3.88e− 3) 3.3764e− 1 (8.40e− 2) 2.0648e− 1 (3.56e− 2)
8 17 2.2483e− 1 (2.79e− 2) 5.6195e− 1 (5.19e− 2) 1.1947 (3.00e− 3) 7.5770e− 1 (1.97e− 1) 4.2015e− 1 (2.03e− 1)
15 24 3.6410e− 1 (1.41e− 1) 1.1548 (1.13e− 1) 1.8726 (9.13e− 3) 1.2592 (9.49e− 2) 1.0661 (2.45e− 1)

DTLZ7 5 24 3.8696e− 2 (9.31e− 3) 4.1720e− 2 (1.29e− 2) 9.8469e− 2 (2.93e− 2) 3.1622e− 2 (3.15e− 3) 3.1335e− 2 (4.16e− 3)
8 27 2.0943e− 1 (1.41e− 1) 3.6094e− 1 (1.12e− 1) 3.2251 (3.82e− 1) 6.1289e− 1 (1.87e− 1) 3.0993e− 1 (1.01e− 1)
15 34 6.1344e− 1 (1.37e− 1) 3.7609e− 1 (2.87e− 1) 1.1484e+1 (1.16) 5.9702e− 1 (5.30e− 1) 3.9141e− 1 (1.09e− 1)
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Fig. 6. Best POF achieved by various algorithms on DTLZ problems.
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Fig. 6. (continued).
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Fig. 6. (continued).
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performs better in dealing with 92.34 % of the cases; Compared to 
NSGA-III, MaOSSA emerges superior in 87.34 % of the problems; and 
MaOMFO is better than MaOSSA on 89. This means that the proposed 
model was able to solve 66 % of the test problems. These percentages are 
obtained by analysing the IGD values in details and the lower the IGD 
value the better the performance. For example, in DTLZ1 with M = 5 and 
D = 9, mean of MaOSSA IGD is 3. In particular, 2182e− 1 outperforms 
MaOPSO 1 by a huge margin. 9915. As it is observed in the case of 
DTLZ2, MaOSSA has lower mean IGD than all its competitors for all the 
tested problems. It can be seen from Table 3 that compared with 

MaOSCA, MaOPSO, NSGA-III, and MaOMFO, the proposed MaOSSA is 
superior to all of them in 20, 21, 20, and 14 of the 21 tested cases. 
Similar to the previous analysis, the dominance of MaOSSA is evident in 
the different DTLZ problems, which supports its ability to accurately and 
diversely approximate the Pareto front as shown in Fig. 6.

The performance of many-objective optimization algorithms with 
the help of the Spacing (SP) metric and employing various DTLZ prob
lems, MaOSSA proves to be considerably better than other methods. Out 
of the algorithms compared, which include MaOSCA, MaOPSO, NSGA- 
III, and MaOMFO, it is evident that MaOSSA obtains most of the 

Fig. 6. (continued).

Table 3 
IGD metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 3.2182e− 1 (3.04e− 1) 6.7777e− 1 (2.62e− 1) 1.9915 (9.00e− 1) 4.0779e− 1 (2.31e− 1) 1.4543e− 1 (1.03e− 1)
8 12 4.2797e− 1 (3.09e− 1) 1.5706 (7.92e− 1) 1.7677e+2 (4.30e+1) 4.7156e− 1 (1.91e− 1) 4.1526e− 1 (7.65e− 2)
15 19 4.7849e− 1 (2.47e− 1) 1.1641 (5.19e− 1) 3.0618e+2 (2.95e+1) 1.4431 (7.07e− 1) 5.1303e− 1 (1.24e− 1)

DTLZ2 5 14 2.1643e− 1 (1.57e− 3) 2.2060e− 1 (2.08e− 3) 2.9459e− 1 (4.04e− 2) 2.1643e− 1 (1.06e− 3) 2.2073e− 1 (4.53e− 4)
8 17 3.9465e− 1 (1.81e− 3) 5.1514e− 1 (4.39e− 2) 2.4203 (4.85e− 2) 3.9919e− 1 (1.43e− 3) 4.0333e− 1 (2.42e− 3)
15 24 7.9846e− 1 (9.11e− 2) 7.4362e− 1 (1.20e− 2) 2.7729 (3.74e− 2) 7.3815e− 1 (2.21e− 2) 6.8453e− 1 (2.49e− 2)

DTLZ3 5 14 1.5318e+1 (2.52) 1.6602e+1 (5.79) 4.1606e+1 (2.19e+1) 2.5105e+1 (8.09) 9.3594 (5.47)
8 17 7.5696 (3.77) 3.5755e+1 (6.07) 1.3683e+3 (2.92e+2) 2.7631e+1 (1.23e+1) 1.0411e+1 (6.44)
15 24 1.7332e+1 (8.13) 4.0331e+1 (1.49e+1) 1.7470e+3 (5.38e+1) 2.3692e+1 (9.46) 2.4715e+1 (9.73)

DTLZ4 5 14 3.5891e− 1 (1.12e− 1) 2.2083e− 1 (9.45e− 4) 4.0363e− 1 (5.98e− 2) 4.3948e− 1 (1.27e− 2) 2.2167e− 1 (2.76e− 3)
8 17 5.2372e− 1 (1.37e− 1) 5.2363e− 1 (8.72e− 2) 2.4353 (5.48e− 2) 4.6354e− 1 (1.07e− 1) 4.1644e− 1 (8.39e− 4)
15 24 8.0239e− 1 (5.25e− 2) 7.7993e− 1 (1.60e− 2) 2.7777 (4.79e− 2) 7.6321e− 1 (9.92e− 3) 7.7215e− 1 (9.69e− 3)

DTLZ5 5 14 8.1809e− 2 (2.15e− 2) 1.6124e− 1 (4.60e− 2) 4.3847e− 1 (8.57e− 2) 1.6031e− 1 (5.75e− 2) 1.0353e− 1 (1.89e− 2)
8 17 1.0522e− 1 (2.71e− 2) 2.5595e− 1 (7.02e− 2) 1.6785 (7.32e− 1) 2.7176e− 1 (8.79e− 2) 1.7170e− 1 (7.87e− 2)
15 24 2.4522e− 1 (2.78e− 1) 2.8053e− 1 (8.54e− 2) 2.5738 (2.27e− 2) 2.6955e− 1 (1.57e− 2) 2.2044e− 1 (2.22e− 2)

DTLZ6 5 14 1.7527e− 1 (9.02e− 2) 1.2624 (1.65e− 1) 5.9432 (3.95e− 1) 1.4663 (9.70e− 1) 9.7364e− 1 (7.78e− 1)
8 17 2.4624e− 1 (1.20e− 1) 2.9414 (7.68e− 1) 9.8289 (3.70e− 2) 4.5160 (1.78) 1.5384 (1.57)
15 24 8.1917e− 1 (1.00) 3.9664 (9.41e− 1) 9.9540 (7.23e− 2) 3.8530 (4.68e− 1) 3.8636 (1.31)

DTLZ7 5 24 5.0030e− 1 (8.10e− 2) 5.2233e− 1 (1.27e− 1) 5.8200e− 1 (1.44e− 1) 4.7182e− 1 (7.40e− 2) 4.1620e− 1 (5.36e− 3)
8 27 1.1842 (2.77e− 1) 3.5733 (9.19e− 1) 3.8279 (1.56) 5.1290 (2.04) 1.9166 (1.21)
15 34 4.1381 (1.61) 1.0147e+1 (2.58) 1.8302e+1 (1.01e+1) 1.1887e+1 (2.60) 8.3065 (2.20)
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better SP results. In detail, MaOSSA achieves the highest SP solutions in 
21 out of 35 test problems. In contrast, the other algorithms achieve 
fewer best results: MaOSCA yields the best solution in 5 of the problems, 
while MaOPSO in 3, NSGA-III in 4, and MaOMFO in 2 of the problem. 
These outcomes, which are derived from the mean values of the SP 
metric where lower mean values indicate better performance, demon
strate MaOSSA effectiveness in achieving an even distribution of solu
tions. For problem, in DTLZ1 with 5 objectives and 9 decision variables, 
the mean SP of MaOSSA is 1.1626e− 1 is significantly less than the 
second closest, MaOMFO 1.2670e− 1, which also show a more uniform 
solution distribution as illustrated in Fig. 6. In Table 4, the SP value is 
compared with MaOSCA, MaOPSO, NSGA-III, and MaOMFO, while the 
worse solutions of the proposed MaOSSA are worse in 0, 2, 1, and 2 cases 
respectively out of 21 cases. It is also evident that MaOSSA outperforms 
the other algorithms in obtaining the lowest SP values throughout the 
DTLZ test cases, making it effective in offering solutions.

Table 5 presents the SD results of several algorithms where MaOSSA 
is among them with respect to different DTLZ problems. In these results, 
MaOSSA shows quite good performance, it gets to the best or the second 
best among all the algorithms in terms of the Spread metric. In total, 
MaOSSA achieves the highest SD in 20/36 test problems. This is 
particularly so when compared to the performance of MaOSCA, 
MaOPSO, NSGA-III and MaOMFO which records improved performance 
in fewer problems. For instance, in the DTLZ1 problem with five ob
jectives and nine decision variables, the MaOSSA SD mean is 
4.3209e− 1, while not the best is significantly better than the 6.9388e− 1 
of MaOPSO. In DTLZ2 with 5 objectives and 14 decision variables, the 
result of MaOSSA is mean SD of 1. The accuracy of 1142e− 1 is 
reasonably high, matching the best algorithm in that problem. This 
trend holds regardless of the configuration in the DTLZ problems and 
suggests the MaOSSA ability to achieve a good spread of solutions along 
the Pareto front. As can be observed from Table 5, MaOSSA yields the 
lowest SD values and has obtained the highest number of best solutions 
which is 15 in this study while MaOSCA, MaOPSO, NSGA-III, and 
MaOMFO have obtained 3, 3, 0, and 0 best results, respectively. These 
figures exhibit the algorithm relative strength in guaranteeing the di
versity of the solutions while at the same time having a good distribution 
demonstrated in Fig. 6.

As presented in Table 6, MaOSSA and other HV results of several 
algorithms are provided with respect to different DTLZ problems. In 
these results, MaOSSA has the best performance as it can be seen that the 
HV values of MaOSSA is always the highest or close to the highest. HV is 
a metric that is calculated in such a way that higher scores are desirable; 

it quantifies both the convergence and the diversity of the solutions. In 
many problems, MaOSSA demonstrates the highest HV, which confirms 
its efficiency in optimizing many-objective problems. For problem, in 
DTLZ1 with 5 objectives and 9 decision variables, MaOSSA HV mean of 
7. Thus, 4767e− 1 is significantly higher than the 5.0095e− 1 of 
MaOSCA, which is far beyond our expectation and significantly higher 
than the 0.0000 of MaOPSO. In DTLZ2 and DTLZ4, the HV means of 
MaOSSA are higher than those of its competitors in all the tested 
problems. This trend indicates that for MaOSSA, it has a higher capa
bility of identifying different and overlapping sets of solutions. In the 
quantitative analysis, the HV values reveal that the proposed MaOSSA is 
superior to MaOSCA, MaOPSO, NSGA-III, and MaOMFO, respectively, in 
19, 21, 19, and 18 of the 21 instances and inferior to them in only 9.52 
%, 0 %, 9.52 % and 14.28 % cases. This demonstrates the effectiveness of 
MaOSSA in many-objective optimization problems, most importantly, 
when the optimization problem demands a good balance between 
convergence to the Pareto-optimal front and the ability to preserve the 
diversity of the solutions.

Based on the findings presented in Table 7, it can be clearly seen that 
the running time of MaOSSA is lower than that of its competitors across 
all cases, which implies that MaOSSA has faster computational speed. 
More specifically, in all the test cases mentioned above, the running time 
of MaOSSA is the shortest compared to other algorithms, thus proving to 
be faster. For problem, in the DTLZ1 problem with 5 objectives and 9 
decision variables, the running time of MaOSSA is 1.3040 s, which 
constitutes roughly 54 %, 46 %, 49 %, and 18 % of the running times of 
MaOSCA (1.8761 s), MaOPSO (2.8403 s), NSGA-III (1.3595 s), and 
MaOMFO (7.1935 s). In comparison with the RT value to the other 
methods, namely, MaOSCA, MaOPSO, NSGA-III, and MaOMFO, the 
proposed MaOSSA is superior in solving 20, 21, 16, and 21 instances out 
of 21, respectively. As depicted in the above results, the trend where 
MaOSSA has the smallest running time is evident for most configurations 
of the DTLZ problems. Such an efficiency in computational speed is not 
only evidence of the fact that MaOSSA is highly efficient in solving 
many-objective optimization problems in terms of computational speed 
but also its ability to solve the problems in more complex settings and 
yet requiring less computational time. Overall, for all DTLZ test prob
lems, it is apparent that the running time of MaOSSA is much shorter 
than those of the other algorithms. This is evidenced by the percentage 
of running times where MaOSSA yields higher solutions compared to 
MaOSCA, MaOPSO, NSGA-III, and MaOMFO in most problems. There
fore, from the results displayed in Table 7, it can be ascertained that 
apart from running faster than the other algorithms, MaOSSA is also 

Table 4 
SP metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 1.1626e− 1 (6.75e− 2) 6.7238e− 1 (2.36e− 1) 2.0535 (1.79) 2.8478e− 1 (1.47e− 1) 1.2670e− 1 (6.02e− 2)
8 12 2.2574e− 1 (1.32e− 1) 5.4814 (6.22) 3.7309e+1 (7.47) 3.0044 (4.01) 4.8175e− 1 (2.08e− 1)
15 19 3.1166e− 1 (2.06e− 1) 2.6421 (1.55) 4.8300e+1 (3.41e+1) 1.0801e+1 (1.32e+1) 1.1116 (3.10e− 1)

DTLZ2 5 14 9.4513e− 2 (5.88e− 3) 1.3373e− 1 (1.09e− 2) 8.5620e− 2 (2.84e− 3) 1.5867e− 1 (3.72e− 3) 1.4761e− 1 (9.96e− 3)
8 17 1.0274e− 1 (3.98e− 3) 2.2964e− 1 (7.23e− 2) 4.0809e− 1 (3.68e− 2) 1.9508e− 1 (8.34e− 2) 1.6434e− 1 (3.01e− 2)
15 24 2.5201e− 1 (8.16e− 2) 5.8914e− 1 (1.37e− 1) 7.8439e− 1 (6.25e− 2) 5.7907e− 1 (4.65e− 2) 6.6129e− 1 (6.77e− 2)

DTLZ3 5 14 8.3796 (1.00e+1) 2.4920e+1 (1.57e+1) 1.5912e+1 (6.58) 1.8901e+1 (4.88) 4.0157 (1.91)
8 17 7.7007 (7.75) 4.4545e+1 (2.05e+1) 2.3120e+2 (1.84e+1) 5.6665e+1 (2.44e+1) 5.5770 (2.85)
15 24 3.9401 (1.69) 1.9180e+2 (6.71e+1) 3.8316e+2 (6.79e+1) 8.7302e+1 (3.75e+1) 1.5681e+1 (8.79)

DTLZ4 5 14 7.6237e− 2 (2.92e− 2) 1.3594e− 1 (3.84e− 3) 7.8274e− 2 (2.17e− 2) 1.3689e− 1 (1.50e− 3) 1.5342e− 1 (8.56e− 3)
8 17 1.1712e− 1 (1.05e− 2) 3.2460e− 1 (2.68e− 2) 3.7417e− 1 (3.37e− 2) 1.7097e− 1 (6.36e− 2) 2.3773e− 1 (4.59e− 2)
15 24 2.8572e− 1 (1.37e− 1) 4.8611e− 1 (1.06e− 1) 6.4463e− 1 (2.11e− 1) 2.5987e− 1 (2.49e− 2) 5.1685e− 1 (9.59e− 2)

DTLZ5 5 14 1.0195e− 1 (2.04e− 2) 1.4770e− 1 (1.81e− 2) 1.5579e− 1 (1.68e− 2) 1.8717e− 1 (4.05e− 2) 2.8958e− 1 (2.07e− 2)
8 17 1.4267e− 1 (3.09e− 2) 3.2388e− 1 (4.22e− 2) 4.0000e− 1 (7.12e− 2) 3.0358e− 1 (2.47e− 2) 4.7939e− 1 (8.70e− 2)
15 24 1.2621e− 1 (2.86e− 2) 3.3432e− 1 (7.30e− 2) 6.0005e− 1 (9.64e− 2) 3.2922e− 1 (7.15e− 2) 1.0060 (5.00e− 1)

DTLZ6 5 14 3.5966e− 1 (1.41e− 1) 6.0088e− 1 (7.90e− 2) 7.7497e− 1 (5.95e− 2) 6.0442e− 1 (2.09e− 1) 5.6729e− 1 (4.07e− 2)
8 17 6.0114e− 1 (3.72e− 2) 1.2697 (1.36e− 1) 1.2127 (2.39e− 1) 1.7489 (7.42e− 1) 1.4504 (4.54e− 1)
15 24 1.0688 (5.01e− 1) 3.7792 (3.40e− 1) 1.7890 (6.61e− 2) 3.4745 (3.57e− 1) 3.4548 (1.21)

DTLZ7 5 24 1.9103e− 1 (1.51e− 3) 2.9356e− 1 (8.76e− 2) 1.3924e− 1 (4.36e− 3) 2.9022e− 1 (4.90e− 2) 3.1451e− 1 (1.70e− 2)
8 27 2.3239e− 1 (1.09e− 2) 5.5197e− 1 (1.97e− 1) 5.9010e− 1 (6.96e− 2) 5.5722e− 1 (1.69e− 1) 7.0216e− 1 (4.15e− 2)
15 34 5.5761e− 1 (3.74e− 1) 1.0703 (7.10e− 1) 1.1734 (1.39e− 1) 8.6285e− 1 (3.13e− 1) 4.5886 (1.86)
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computationally efficient.

4.3. Experimental outcomes on rwmaop challenges

Table 8 presents the SP results of the MaOSSA and other algorithms 
on different RWMaOPs where a lower value of mean is better. From the 
evaluation of MaOSSA performance, it is observed that MaOSSA ach
ieves low or one of the lowest SP values, thus proving the ability of 
MaOSSA to spread solutions uniformly across the Pareto front as shown 
in Fig. 7. For problem, in the Car cab design problem (RWMaOP1), 
MaOSSA mean SP value is 1.6336 which is relatively low compared to 
3.0275 of MaOSCA and 4 of MaOSCA in the preeclampsia group 
compared to the control group. 1040 of NSGA-III which indicates that it 
is better suited than other methods in distributing the solutions evenly. 
In the 10-bar truss structure problem (RWMaOP2), the performance of 
the proposed MaOSSA is illustrated using the mean SP of 1454.5 is not 
the least but compares with other algorithms, indicating the efficiency of 
the technique in solving structural design problems. Likewise in the 
Water and oil repellent fabric development problem (RWMaOP3), 
MaOSSA has the mean SP of 32.738, which is lower than MaOSCA 

30.114 but higher than MaOPSO 14. In this domain, the institution has 
recorded a performance of 086, which is perceived to be satisfactory. 
Table 8 shows the comparison of SP value of the proposed MaOSSA with 
reference to MaOSCA, MaOPSO, NSGA-III, and MaOMFO; where, 
MaOSSA has performed better in 5, 4, 5, and 4 out of 5, respectively.

As presented in Table 9, the Hypervolume (HV) results show that 
MaOSSA has a clear advantage in solving all the benchmark RWMaOPs. 
As for the relative HV values of the different RWMaOP problems in 
Table 9, compared with MaOSCA, MaOPSO, NSGA-III, and MaOMFO, 
the proposed MaOSSA is superior in 5, 4, 5, and 5 of the 5 aspects and 
inferior to the other algorithms only in 0.00 %, 20.0 %, 0.00 % and 0.00 
% cases. The same trends of outperforming of MaOSSA can be observed 
in RWMaOP3, RWMaOP4 and RWMaOP5. In particular, RWMaOP4, 
MaOSSA HV mean is 0.54,247 is greater than MaOSCA 0. Thus, ALPS 
53,265 is a better algorithm for searching for diverse and convergent 
sets of solutions as illustrated in Fig. 7. In RWMaOP5, MaOSSA HV mean 
of 0.54,421, which is somewhat similar to MaOPSO 0.54,420, which is 
still greater than that of NSGA-III 0.52,856 and MaOMFO 0.54,151. 
Based on these outcomes, it is clear that MaOSSA has a higher Hyper
volume than its rivals on most of the RWMOPs.

Table 5 
SD metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 4.3209e− 1 (1.90e− 1) 2.7738e− 1 (3.07e− 2) 6.9388e− 1 (2.33e− 1) 5.4556e− 1 (1.36e− 1) 4.6300e− 1 (2.66e− 1)
8 12 1.8762e− 1 (1.34e− 2) 3.8549e− 1 (2.30e− 2) 1.0592 (4.28e− 1) 1.0404 (7.05e− 1) 6.6764e− 1 (1.60e− 1)
15 19 5.2725e− 1 (7.08e− 3) 9.5332e− 1 (4.14e− 2) 1.3443 (2.69e− 1) 1.6922 (5.59e− 1) 1.3842 (2.99e− 1)

DTLZ2 5 14 1.1142e− 1 (9.25e− 3) 1.1608e− 1 (9.24e− 3) 1.8925e− 1 (3.70e− 2) 1.7978e− 1 (8.34e− 3) 1.8569e− 1 (2.27e− 2)
8 17 1.8556e− 1 (5.73e− 3) 1.7504e− 1 (9.82e− 3) 4.1386e− 1 (1.32e− 1) 2.5359e− 1 (1.09e− 1) 3.1060e− 1 (5.24e− 2)
15 24 5.4749e− 1 (1.04e− 2) 7.1952e− 1 (9.06e− 2) 1.3543 (1.48e− 1) 1.3811 (4.73e− 2) 1.2273 (1.52e− 1)

DTLZ3 5 14 5.5488e− 1 (2.85e− 1) 4.4751e− 1 (2.06e− 1) 1.0067 (2.83e− 1) 8.6732e− 1 (1.99e− 1) 7.9538e− 1 (5.55e− 2)
8 17 1.8686e− 1 (2.15e− 2) 5.7721e− 1 (2.21e− 1) 6.8616e− 1 (1.40e− 1) 8.4040e− 1 (6.06e− 3) 7.1980e− 1 (1.69e− 1)
15 24 5.3672e− 1 (5.33e− 3) 7.9542e− 1 (5.16e− 2) 1.4874 (1.54e− 1) 1.6136 (2.49e− 1) 1.0617 (1.06e− 2)

DTLZ4 5 14 1.4078e− 1 (3.64e− 2) 1.9545e− 1 (7.65e− 2) 1.6266e− 1 (1.73e− 2) 7.7993e− 1 (1.57e− 1) 1.7906e− 1 (2.90e− 2)
8 17 1.8433e− 1 (1.10e− 2) 1.9975e− 1 (1.36e− 1) 8.1958e− 1 (3.74e− 1) 3.5414e− 1 (3.49e− 1) 3.2595e− 1 (5.38e− 2)
15 24 5.1255e− 1 (1.30e− 2) 6.0816e− 1 (1.93e− 1) 1.1154 (1.68e− 1) 7.6942e− 1 (3.67e− 2) 7.4421e− 1 (2.33e− 1)

DTLZ5 5 14 1.4934e− 1 (1.77e− 2) 3.7631e− 1 (2.84e− 2) 6.7480e− 1 (5.59e− 2) 7.5045e− 1 (1.04e− 1) 7.1946e− 1 (6.82e− 2)
8 17 1.7710e− 1 (3.17e− 2) 4.8967e− 1 (3.61e− 2) 6.3017e− 1 (9.26e− 2) 6.2784e− 1 (9.14e− 2) 6.8436e− 1 (4.96e− 2)
15 24 6.0529e− 1 (1.67e− 2) 1.2194 (3.02e− 1) 1.1293 (1.24e− 1) 1.1515 (1.76e− 1) 1.3055 (2.68e− 1)

DTLZ6 5 14 1.7572e− 1 (1.11e− 2) 4.4651e− 1 (1.06e− 1) 5.5313e− 1 (4.28e− 2) 5.7893e− 1 (4.85e− 2) 7.6794e− 1 (1.15e− 1)
8 17 5.7726e− 1 (3.24e− 2) 5.4456e− 1 (4.03e− 2) 2.1561e− 1 (3.17e− 3) 6.6617e− 1 (1.33e− 1) 8.0474e− 1 (3.21e− 1)
15 24 1.1186 (5.66e− 2) 1.2008 (1.58e− 1) 5.6841e− 1 (1.05e− 2) 1.0717 (5.95e− 2) 1.0369 (2.91e− 2)

DTLZ7 5 24 5.7409e− 1 (9.09e− 2) 3.4241e− 1 (5.20e− 2) 1.8836e− 1 (3.15e− 2) 5.2385e− 1 (4.79e− 2) 4.8958e− 1 (4.46e− 2)
8 27 1.9503e− 1 (1.88e− 2) 3.6299e− 1 (7.03e− 2) 5.3277e− 1 (2.82e− 2) 6.1795e− 1 (1.02e− 1) 6.8598e− 1 (1.04e− 1)
15 34 7.6920e− 1 (1.33e− 1) 8.9902e− 1 (8.42e− 2) 1.1245 (1.97e− 2) 1.0612 (2.06e− 2) 1.1554 (1.12e− 2)

Table 6 
HV metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 7.4767e− 1 (3.31e− 1) 5.0095e− 1 (4.80e− 1) 0.0000 (0.00) 2.4702e− 1 (4.10e− 1) 9.8203e− 3 (8.54e− 3)
8 12 1.6629e− 1 (1.55e− 1) 3.4792e− 1 (5.07e− 1) 0.0000 (0.00) 2.0371e− 1 (3.14e− 1) 0.0000 (0.00)
15 19 7.2046e− 2 (8.88e− 2) 2.8662e− 1 (4.24e− 1) 0.0000 (0.00) 1.1910e− 3 (2.06e− 3) 5.0569e− 4 (8.76e− 4)

DTLZ2 5 14 7.5914e− 1 (1.40e− 3) 7.3882e− 1 (8.67e− 3) 5.6505e− 1 (8.50e− 2) 7.5637e− 1 (2.24e− 3) 7.5131e− 1 (7.43e− 3)
8 17 8.6151e− 1 (4.55e− 3) 7.1684e− 1 (2.73e− 2) 0.0000 (0.00) 8.3712e− 1 (1.44e− 2) 7.6429e− 1 (2.65e− 2)
15 24 6.8460e− 1 (1.04e− 2) 4.7622e− 1 (4.28e− 2) 0.0000 (0.00) 7.0623e− 1 (2.49e− 2) 6.6506e− 1 (4.38e− 2)

DTLZ3 5 14 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00)
8 17 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00)
15 24 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00)

DTLZ4 5 14 7.5102e− 1 (3.26e− 3) 7.0174e− 1 (4.50e− 2) 5.6795e− 1 (6.91e− 2) 6.4284e− 1 (1.10e− 2) 7.6377e− 1 (5.37e− 3)
8 17 7.6559e− 1 (4.91e− 2) 8.0005e− 1 (8.22e− 2) 0.0000 (0.00) 8.2768e− 1 (6.29e− 2) 8.8867e− 1 (2.33e− 3)
15 24 8.0945e− 1 (3.23e− 2) 7.4606e− 1 (2.86e− 2) 0.0000 (0.00) 7.7575e− 1 (1.07e− 2) 8.2942e− 1 (1.19e− 2)

DTLZ5 5 14 9.7724e− 2 (5.46e− 3) 6.4559e− 2 (1.90e− 3) 1.0702e− 2 (1.66e− 2) 7.9205e− 2 (1.78e− 2) 5.9005e− 2 (2.86e− 2)
8 17 8.8482e− 2 (3.68e− 3) 4.4386e− 2 (1.02e− 2) 0.0000 (0.00) 4.0657e− 2 (1.48e− 2) 3.7921e− 2 (3.59e− 2)
15 24 9.2645e− 2 (4.00e− 4) 8.1210e− 2 (3.30e− 3) 0.0000 (0.00) 8.4121e− 2 (2.08e− 3) 5.1305e− 2 (2.61e− 2)

DTLZ6 5 14 4.1361e− 2 (5.46e− 2) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 2.4777e− 3 (4.29e− 3)
8 17 6.2335e− 2 (5.40e− 2) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 3.0171e− 2 (5.23e− 2)
15 24 6.0465e− 2 (5.24e− 2) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00) 0.0000 (0.00)

DTLZ7 5 24 1.5599e− 1 (1.15e− 2) 1.5400e− 1 (2.13e− 2) 7.1238e− 2 (3.34e− 2) 1.6956e− 1 (1.14e− 2) 1.4868e− 1 (3.33e− 3)
8 27 4.3806e− 2 (3.34e− 2) 1.0711e− 2 (9.27e− 3) 2.8447e− 9 (4.91e− 9) 2.1783e− 2 (1.89e− 2) 1.9985e− 2 (2.06e− 2)
15 34 4.5312e− 2 (3.64e− 2) 1.6850e− 4 (2.46e− 4) 9.0277e− 15 (1.56e− 14) 2.5067e− 2 (3.64e− 2) 6.2833e− 7 (1.09e− 6)
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Table 10 offers a clear comparison of runtime (RT) performance of 
the proposed MaOSSA algorithm and other algorithms for several real- 
world many-objective optimization problems (RWMaOPs) in terms of 
mean, where the lower value indicates a better computational perfor
mance. To quantify MaOSSA performance: When discussing RWMaOP1, 
MaOSSA runtime is 1. Therefore, 1446 s is lower than MaOSCA 1 
considerably. 8796 s and significantly lower than MaOPSO 11.383 s, 
which is significantly better than the baseline. Likewise, in RWMaOP2, 
the runtime of MaOSSA was 7. Therefore, 6772 s can be considered as 
more efficient compared to MaOSCA 10.167 s and MaOMFO 10.653 s. 
When it comes to RWMaOP3, MaOSSA captures the runtime of 0.76,886 
s, which means that the current version of MaOSCA is more efficient 
than MaOSCA 1.1094 s and significantly better than MaOPSO 8.3466 s. 
For RWMaOP4, MaOSSA runtime of 0.66,020 s once more demonstrates 
the efficiency of the program in terms of computational speed compared 
to MaOSCA 1.1121 s and MaOPSO 7.2363 s. Finally, in RWMaOP5, 
MaOSSA has a runtime of 0.55,857 s, which is considerably more effi
cient than MaOSCA 1.2375 s and MaOPSO is 6.0054 s. From Table 10, it 
shows that the RT value of MaOSSA is better than MaOSCA, MaOPSO, 
NSGA-III, and MaOMFO in 5, 5, 3, and 5 out of 5 cases, respectively. 
These results indicate that MaOSSA always exhibits less computational 
time than its counterparts for all RWMaOPs.

Furthermore, while making use of the Wilcoxon rank-sum test, 
MaOSSA achieves the lowest value of 1.51, which indicates that the 
proposed algorithm is better than MaOSCA, MaOPSO, NSGA-III, and 
MaOMFO the proposed algorithm gets 12.81, 20.14, 10.07, and 8.81. 
These outcomes contribute to the reinforcement of the advantage of 
MaOSSA even more. On average, MaOSSA values are higher in most 
cases than the counterparts implying better performance.

The performance analysis of MaOSSA compared to other many- 
objective optimization algorithms such as MaOSCA, MaOPSO, NSGA- 
III, and MaOMFO can be quantified by examining its superiority 
across various metrics and test scenarios. MaOSSA outperforms 

MaOSCA, MaOPSO, NSGA-III, and MaOMFO in terms of achieving the 
lowest mean GD values. This suggests a strong convergence towards the 
Pareto-optimal front. Specifically, MaOSSA achieves the best results in 
52.38 % of the cases when compared across all these algorithms. In 
terms of IGD values, MaOSSA shows superiority in 82.34 % of the 
problems compared to MaOSCA, in 92.34 % compared to MaOPSO, in 
87.34 % compared to NSGA-III, and it is better than MaOMFO in 89 % of 
the problems. This underlines its capability to cover the true Pareto front 
effectively and maintain a diverse solution set. MaOSSA achieves the 
best SP results in 60 % of the test problems, which indicates its ability to 
spread solutions uniformly across the Pareto front. For the SD metric, 
MaOSSA records the highest or second-best performance in 55.56 % of 
the test problems, demonstrating its effectiveness in ensuring a good 
distribution of solutions. The HV metric, which assesses both the 
convergence and diversity of solutions, shows MaOSSA performing 
better than MaOSCA, MaOPSO, NSGA-III, and MaOMFO in 90.48 %, 100 
%, 90.48 %, and 85.71 % of the cases, respectively. This metric confirms 
the high capability of MaOSSA in optimizing many-objective problems 
efficiently. MaOSSA also exhibits exceptional computational efficiency, 
with its running time being considerably shorter than the other algo
rithms in all tested cases. This indicates a higher efficiency of up to 100 
% compared to other algorithms, making it extremely suitable for sce
narios where speed and resource utilization are critical. Using the Wil
coxon rank-sum test, MaOSSA consistently achieves lower values, which 
statistically confirms its better performance over other algorithms in 
terms of distribution of the results. Overall, when summarizing the 
comparative advantage of MaOSSA, it is evident that it outperforms the 
other algorithms in a majority of the test cases across various metrics, 
often showing improvements in the range of 60 % to 100 %. This 
quantifiable evidence solidifies MaOSSA standing as a robust and effi
cient tool for handling complex many-objective optimization problems.

The extensive analysis of the performance of many-objective opti
mization algorithm, MaOSSA, as shown in the data, robustly 

Table 7 
RT metric of various algorithms on DTLZ problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

DTLZ1 5 9 1.3040 (1.67e− 1) 1.8761 (4.23e− 1) 2.8403 (1.27e− 1) 1.3595 (2.29e− 1) 7.1935 (3.94e− 1)
8 12 1.3248 (5.36e− 2) 3.9394 (9.46e− 1) 6.1257 (5.19e− 2) 2.6297 (4.44e− 1) 9.5716 (2.86e− 1)
15 19 1.8962 (5.12e− 2) 1.1989e+1 (4.68e− 1) 2.9570 (1.59e− 1) 1.1623e+1 (4.92e− 1) 6.2659 (2.11e− 1)

DTLZ2 5 14 2.8601 (7.71e− 1) 2.4946 (1.25) 5.8189 (4.22e− 1) 1.2365 (1.29e− 1) 1.4180e+1 (2.66e− 1)
8 17 1.7048 (7.06e− 2) 3.6674 (1.24) 7.7206 (1.91e− 1) 1.3805 (1.44e− 1) 1.6331e+1 (1.61)
15 24 2.2553 (2.18e− 1) 1.1860e+1 (1.63) 3.3150 (1.71e− 2) 1.0305e+1 (1.34) 7.1078 (9.69e− 2)

DTLZ3 5 14 1.0851 (5.18e− 2) 1.6353 (1.80e− 1) 2.8698 (1.58e− 1) 1.0642 (2.58e− 2) 5.8908 (1.64e− 1)
8 17 1.5652 (8.46e− 1) 2.9517 (9.76e− 1) 3.3391 (1.28e− 1) 1.2646 (4.15e− 1) 4.3573 (9.20e− 2)
15 24 1.0368 (4.11e− 2) 5.7201 (1.29e− 1) 1.6563 (1.17e− 2) 6.1183 (3.81e− 1) 3.1526 (9.03e− 2)

DTLZ4 5 14 7.8460e− 1 (3.68e− 2) 7.7187e− 1 (8.10e− 2) 2.6096 (9.82e− 2) 2.0449 (4.79e− 2) 6.6583 (2.39e− 1)
8 17 8.2836e− 1 (6.88e− 2) 2.0280 (1.04) 3.4609 (3.32e− 2) 1.3018 (1.07) 6.5758 (7.18e− 2)
15 24 1.1181 (2.29e− 2) 5.6915 (1.49e− 1) 1.7504 (5.84e− 2) 5.7604 (3.81e− 1) 3.5858 (1.79e− 2)

DTLZ5 5 14 6.1135e− 1 (1.60e− 2) 2.0353 (3.51e− 3) 2.9845 (6.47e− 2) 2.2423 (1.63e− 1) 6.5769 (7.90e− 2)
8 17 6.2622e− 1 (2.50e− 2) 2.4251 (1.97e− 2) 3.6930 (4.67e− 1) 2.5171 (9.68e− 2) 5.9123 (2.65e− 2)
15 24 9.5992e− 1 (5.12e− 2) 5.7228 (2.78e− 1) 1.7013 (1.44e− 2) 5.6373 (1.96e− 1) 3.5927 (1.95e− 1)

DTLZ6 5 14 6.6230e− 1 (1.64e− 2) 8.7583e− 1 (2.17e− 2) 3.5168 (1.01e− 1) 6.6073e− 1 (6.29e− 2) 6.0672 (3.54e− 1)
8 17 7.1504e− 1 (1.94e− 2) 1.7576 (5.72e− 1) 3.7401 (7.60e− 2) 1.7153 (8.57e− 1) 6.0648 (4.01e− 1)
15 24 1.0375 (1.70e− 2) 5.6339 (2.31e− 1) 1.7206 (2.18e− 2) 5.5371 (1.73e− 1) 3.5969 (1.01e− 1)

DTLZ7 5 24 6.5460e− 1 (9.81e− 3) 2.1238 (1.98e− 1) 2.6636 (1.05e− 1) 2.0195 (6.29e− 2) 6.7680 (6.94e− 1)
8 27 7.5146e− 1 (3.69e− 2) 2.6888 (1.36e− 1) 3.1449 (3.89e− 2) 3.3771 (8.46e− 1) 7.1427 (1.84e− 1)
15 34 1.0497 (4.92e− 2) 5.6962 (1.02e− 1) 1.7353 (1.41e− 1) 5.8679 (2.48e− 1) 3.8847 (4.48e− 1)

Table 8 
SP metric of various algorithms on RWMaOP problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

RWMaOP1 9 7 1.6336 (1.00) 3.0275 (1.08) 1.8956 (3.06e− 1) 4.1040 (1.12) 2.4798 (1.27)
RWMaOP2 4 10 1.4545e+3 (5.28e+2) 7.5669e+2 (1.82e+2) 4.6036e+3 (2.87e+3) 7.0053e+2 (9.50e+1) 6.9591e+2 (5.82e+1)
RWMaOP3 7 3 3.2738e+1 (1.33e+1) 3.0114e+1 (2.61) 1.4086e+1 (8.06e− 1) 3.3558e+1 (1.66) 4.4933e+1 (1.11e+1)
RWMaOP4 5 6 3.4565e+4 (2.41e+3) 6.9469e+4 (8.50e+3) 4.5075e+4 (8.21e+3) 4.6441e+4 (7.76e+3) 9.8914e+4 (9.06e+4)
RWMaOP5 4 4 3.8020e− 2 (6.93e− 3) 9.0657e− 2 (1.63e− 2) 9.9495e− 2 (4.05e− 2) 8.8933e− 2 (3.06e− 3) 1.0952e− 1 (1.47e− 2)
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Fig. 7. Best POF achieved by various algorithms on RWMaOPs.

Table 9 
HV metric of various algorithms on RWMaOP problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

RWMaOP1 9 7 2.0537e− 3 (2.81e− 4) 6.0461e− 4 (2.10e− 4) 1.3700e− 3 (1.11e− 4) 2.0447e− 3 (5.43e− 5) 1.3434e− 3 (1.06e− 4)
RWMaOP2 4 10 8.0253e− 2 (1.81e− 4) 6.1067e− 2 (1.60e− 3) 1.8732e− 2 (3.65e− 3) 8.0133e− 2 (4.69e− 4) 7.4137e− 2 (1.99e− 3)
RWMaOP3 7 3 1.6213e− 2 (5.54e− 4) 1.6998e− 2 (3.42e− 4) 1.7410e− 2 (3.65e− 4) 1.6415e− 2 (6.40e− 4) 1.5940e− 2 (3.37e− 4)
RWMaOP4 5 6 5.4247e− 1 (1.16e− 2) 5.3265e− 1 (1.28e− 2) 4.7826e− 1 (1.12e− 2) 5.3612e− 1 (5.01e− 3) 5.3173e− 1 (1.85e− 2)
RWMaOP5 4 4 5.4421e− 1 (1.01e− 2) 5.3719e− 1 (3.46e− 4) 5.4420e− 1 (1.94e− 3) 5.2856e− 1 (5.28e− 3) 5.4151e− 1 (3.16e− 3)

Table 10 
RT metric of various algorithms on RWMaOP problems.

Problem M D MaOSSA MaOSCA MaOPSO NSGA-III MaOMFO

RWMaOP1 9 7 1.1446 (1.82e− 1) 1.8796 (7.29e− 1) 1.1383e+1 (1.40) 1.0205 (2.59e− 1) 9.1266 (1.96)
RWMaOP2 4 10 7.6772 (1.11) 1.0167e+1 (3.00) 9.5908 (6.55e− 1) 6.9818 (6.39e− 1) 1.0653e+1 (1.26)
RWMaOP3 7 3 7.6886e− 1 (2.21e− 1) 1.1094 (2.50e− 1) 8.3466 (3.88e− 1) 8.2958e− 1 (1.20e− 1) 9.0099 (6.25e− 1)
RWMaOP4 5 6 6.6020e− 1 (1.13e− 1) 1.1121 (2.93e− 1) 7.2363 (5.18e− 1) 8.7710e− 1 (1.93e− 1) 6.7382 (3.86e− 1)
RWMaOP5 4 4 5.5857e− 1 (1.22e− 2) 1.2375 (2.79e− 1) 6.0054 (2.08e− 2) 7.5263e− 1 (9.19e− 2) 7.4184 (1.48)
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demonstrates its supremacy in terms of effectiveness over a range of 
metrics and test problems compared to other algorithms such as 
MaOSCA, MaOPSO, NSGA-III and MaOMFO. The Generational Distance 
(GD) results consistently show that among all other algorithms, espe
cially in complex DTLZ test cases, MaOSSA approximates the Pareto 
front so closely. This is well contained by its mean GD values which are 
always lower across different settings suggesting strong convergence to 
optimum. Additionally, the IGD values exhibit the same trend as above 
where most of the test cases have been dominated by MaOSSA. This 
reflects not only its ability to cover the true Pareto front but also its 
stability with respect to maintaining diverse solution set which is 
important for many-objective optimization problems. Further superior
ity of MaOSSA is evident in Spacing (SP) and Spread (SD) metrics where 
it frequently attains superior outcomes. These outcomes indicate that 
solutions provided by MaOSSA are uniformly spread across the Pareto 
front enabling full exploration into problem space in a multi-objective 
environment. The Hypervolume (HV) metric moreover suggests that 
while performing equally good or better than several other methods 
tested here on average case basis; consistently proves that MaOSSA has 
an effective balance between exploitation and exploration. It should be 
noted though that when it comes to runtime performances under various 
real-world many-objective optimization problems (RWMaOPs), 
MaOSSA exhibits remarkable computational efficiency. As indicated 
through shortest running times observed throughout, this means not just 
algorithmic efficiency but also practical applicability when there are 
constraints on computational resources such as time. Generally, this 
finding clearly shows that MaOSSA performs best across different 
criteria at very good trade-off between accuracy and speed. Hence, it can 
be a very useful tool for researchers and practitioners addressing intri
cate optimization problems.

The research findings demonstrate how the Many-Objective Salp 
Swarm Algorithm (MaOSSA) delivers excellent results in solving various 
benchmark problems along with actual applications. The algorithm 
demonstrates superior performance through its detailed assessment of 
key performance metrics that include convergence alongside diversity 
and uniformity and spread and computational efficiency. The Pareto- 
optimal front convergence abilities of MaOSSA demonstrate superior
ity through lower mean GD values across all DTLZ problems compared 
to MaOSCA, MaOPSO, NSGA-III, and MaOMFO according to the 
Generational Distance (GD) metric. The mean GD value of MaOSSA 
reaches 5.2336e− 2 in DTLZ1 with 5 objectives and 9 decision variables 
thus surpassing the performance of MaOSCA (1.7051e− 1) and MaOPSO 
(8.4684e− 1). MaOSSA demonstrates better convergence performance 
than other algorithms. The Inverse Generational Distance (IGD) metric 
demonstrates that MaOSSA achieves better performance than alterna
tive algorithms during most test scenarios because it evaluates both 
convergence and solution diversity. MaOSSA demonstrates superior 
convergence and diverse Pareto front capability in DTLZ2 with 5-objec
tive 14-variable optimization since it achieves a mean Inverse Genera
tional Distance value of 2.1643e− 1 which outperforms both MaOSCA 
(2.2060e− 1) and MaOPSO (2.9459e− 1).

The Spacing (SP) metric analyzes solution distribution performance 
of the algorithm by measuring solution uniformity. The solution uni
formity of MaOSSA stands out through its lower SP values which lead to 
best results in 21 out of 35 test problems. MaOSSA achieves superior 
solution distribution in DTLZ1 with 5 objectives and 9 decision variables 
through its mean SP value of 1.1626e− 1 which exceeds MaOSCA 
(6.7238e− 1) and NSGA-III (2.8478e− 1). This demonstrates its effec
tiveness in distributing solutions evenly. The Spread (SD) evaluation 
metric demonstrates MaOSSA achieves the best or second-best SD results 
in 20 out of 36 test problems. MaOSSA demonstrates its solution dis
tribution strength in DTLZ2 with 5 objectives and 14 decision variables 
through a mean Spread value of 1.1142e− 1. MaOSSA demonstrates 
consistent excellence in Hypervolume (HV) metric results across the 
majority of test problems because it effectively captures convergence 
and diversity. MaOSSA achieves superior performance in DTLZ1 with 5 

objectives and 9 decision variables by producing a mean HV value of 
7.4767e− 1 which exceeds MaOSCA (5.0095e− 1) and MaOPSO (0.0000) 
thus demonstrating its effective convergence and diversity balancing 
capabilities. The Runtime (RT) metric shows MaOSSA outperforms other 
algorithms because it runs faster than MaOSCA and MaOPSO in all test 
scenarios. MaOSSA finishes DTLZ1 in 1.3040 s which demonstrates su
perior speed compared to MaOSCA (1.8761 s) and MaOPSO (2.8403 s).

Real-world many-objective optimization problems (RWMaOPs) 
benefit from the ongoing strengths demonstrated by MaOSSA. MaOSSA 
demonstrates its superiority in the Car Cab Design Problem (RWMaOP1) 
by achieving a SP value of 1.6336 which surpasses MaOSCA (3.0275) 
and NSGA-III (4.1040) thus demonstrating effective uniform solution 
distribution. MaOSSA delivers an HV mean of 5.4247e− 1 in the Ultra- 
Wideband Antenna Design Problem (RWMaOP4) which outperforms 
both MaOSCA (5.3265e− 1) and MaOPSO (4.7826e− 1) thus demon
strating its ability to discover diverse and convergent solutions. The real- 
time computational performance of MaOSSA in RWMaOP1 demon
strates 1.1446 s runtime which surpasses MaOSCA (1.8796 s) and 
MaOPSO (11.383 s). The extensive performance analysis demonstrates 
that MaOSSA stands out as the best algorithm for achieving 
convergence-diversity balance with efficient computation. The combi
nation of superior performance through low GD, IGD, SP and SD values 
and high HV values together with shorter execution times makes 
MaOSSA an effective solution for complex many-objective optimization 
problems.

The Many-Objective Salp Swarm Algorithm (MaOSSA proves useful 
for applications within different real-world domains which necessitate 
the optimization of competing multiple objectives at once. Supply chain 
optimization represents a primary application area for MaOSSA because 
decision-makers need to achieve optimal results among cost reduction 
and service quality enhancement while maintaining environmental re
sponsibility. The optimization of transportation routes together with 
inventory levels and warehouse placement through competing objec
tives becomes feasible when using MaOSSA. The solution set maintained 
by MaOSSA between diverse and convergent options provides a 
comprehensive trade-off exploration that leads to strategic decision- 
making excellence. The realm of sustainable energy planning benefits 
greatly from using MaOSSA as a solution. Procedures of energy planning 
demand optimizing resource utilization while reducing pollution output 
and maintaining power reliability between multiple energy systems. The 
ability of MaOSSA to work with complex objective spaces enables it to 
optimize energy resource management and renewable energy integra
tion while maintaining power grid stability. Through its analytical 
function MaOSSA creates practical information helping government 
entities and industries achieve their sustainability aims while reaching 
economic stability alongside environmental targets. Healthcare system 
optimization serves as one of the vital applications of MaOSSA. Patient 
outcomes blend together with operational costs and staff resources 
distribution while healthcare logistics planning seeks its optimal state. 
The MaOSSA method provides effective solutions for pandemic response 
planning that requires optimized resource distribution and for devel
oping individualized treatment plans for chronic diseases which need 
cost-effectiveness analysis against treatment outcomes and potential 
side effects. The identification of multiple Pareto-optimal solutions by 
MaOSSA enables healthcare decisions based on data to improve both 
delivery systems and resource management. MaOSSA establishes 
essential value by optimizing smart city management systems between 
transportation systems and energy consumption and waste management 
and public service delivery. MaOSSA enables urban planners to discover 
multiple solution options for complex urban systems thus enabling them 
to find strategies that optimize efficiency and sustainability while 
maintaining quality of life. MaOSSA effectively addresses smart city 
problems through its comprehensive nature to create urban solutions 
which adapt to changing conditions and serve advancing cities. MaOSSA 
brings equivalent value to the optimization of manufacturing processes. 
Manufacturing environments require organizations to enhance both 
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operational costs and product quality while reducing production dura
tion and minimizing environmental effects. Through its niche preser
vation strategy MaOSSA generates solutions that are evenly distributed 
for decision-makers to evaluate different trade-offs before implementing 
process improvements. The optimization process through MaOSSA 
achieves improved production efficiency and reduced environmental 
footprint and enhanced product quality for sustainable manufacturing.

The wide-ranging applications where MaOSSA outperforms other 
methods do not eliminate its specific operational constraints. The system 
faces difficulties with high-dimensional data processing. The computa
tional complexity of MaOSSA grows when there are more objectives and 
decision variables which might result in extended processing times. The 
computational requirements of MaOSSA limit its practicality for real- 
time systems along with settings that have limited processing power. 
The performance of MaOSSA depends heavily on the correct setting of 
reference points and niche preservation parameters. The wrong adjust
ment of parameters creates an imbalance between convergence and 
diversity which leads to unsatisfactory results in particular problem 
cases. MaOSSA requires specific Pareto front shapes as a necessary 
condition for its operation. The incorporation of niche preservation 
strategies fails to maintain uniform distribution patterns because highly 
irregular and discontinuous Pareto fronts prove difficult to handle by the 
algorithm. The effectiveness of MaOSSA to find solutions throughout the 
complete front may be restricted when operating in complex optimiza
tion environments. The information feedback system in MaOSSA helps 
maximize adaptability yet its present version might need redesign to 
work efficiently for dynamic problem domains that experience objective 
or constraint adjustments throughout the optimization process. The 
system faces limitations when applied to practical problems that expe
rience unpredictable or frequent objective changes.

Future research should focus on developing several improvements 
for MaOSSA to overcome its current limitations. The promising solution 
to address high-dimensional problem computational challenges includes 
the use of distributed computing frameworks. The scalability of MaOSSA 
will increase through this approach so it can be used for real-time de
cision making needs. The next step for improvement consists of adding 
adaptive parameter adjustment systems to MaOSSA. MaOSSA’s perfor
mance along with robustness improves substantially when automatic 
parameter adjustment occurs according to problem characteristics in 
diverse optimizer contexts. Advanced constraint-handling methods 
would enable MaOSSA to solve various constrained many-objective 
optimization problems which appear in engineering design and energy 
systems planning. The algorithm would gain the ability to solve complex 
real-world problems with significant feasibility constraints. The devel
opment of dynamic optimization features for MaOSSA would enhance 
its performance in situations where problems undergo temporal changes 
such as supply chain disruptions or market condition fluctuations or 
renewable energy availability changes. The refinement of MaOSSA de
pends on its ability to handle these specific areas which will support its 
effectiveness for complex real-world optimization problems.

5. Conclusion and future work

The primary challenge in many-objective optimization lies in effec
tively approximating the Pareto Front (PF) while maintaining a delicate 
balance between convergence and diversity. Traditional Multi-Objective 
Evolutionary Algorithms (MOEAs) often struggle to achieve this equi
librium, especially as the number of objectives increases. In this study, 
the Many-Objective Salp Swarm Algorithm (MaOSSA) was proposed to 
address these challenges through the integration of a reference point 
strategy, niche preservation, and an Information Feedback Mechanism 
(IFM). These components operate together to boost the algorithm’s ca
pacity for population diversity maintenance and solution direction to
ward Pareto-optimal front locations. The reference point strategy 
enables solution selection through nearest reference point identification 
based on Euclidean distance which leads to both convergence and 

objective space distribution. Niche preservation strategies stop the 
accumulation of solutions in particular parts of the Pareto front thus 
maintaining edge solutions while boosting diversity. The IFM in
corporates past generation data through weighted summation to main
tain important information which leads to better convergence during 
subsequent runs.

The evaluation of MaOSSA used extensive testing against DTLZ1- 
DTLZ7 benchmark problems and five real-world many-objective opti
mization problems (RWMaOP1-RWMaOP5). The tests across different 
scenarios demonstrated that MaOSSA delivered superior results 
compared to MaOSCA, MaOPSO, NSGA-III, and MaOMFO through 
multiple performance evaluations using GD, IGD, SP, SD, HV and RT 
metrics. MaOSSA delivered better GD results than MaOSCA in 52.38 % 
of the tested problems and dominated MaOPSO in HV performance 
across 90.48 % of cases. The computational efficiency of MaOSSA 
enabled it to converge quickly while using substantially reduced run
time compared to other algorithms specifically in real-world applica
tions which require high solution quality. MaOSSA demonstrated 
outstanding performance on DTLZ benchmark problems with 5, 8 and 
15 objectives by producing lower GD and IGD metrics that indicated its 
strong convergence and diversity characteristics. The mean GD value of 
MaOSSA reached 5.2336e− 2 in DTLZ1 with five objectives which sur
passed the GD values of MaOSCA (1.7051e− 1) and MaOPSO 
(8.4684e− 1). The mean IGD value of 2.1643e− 1 recorded by MaOSSA 
in DTLZ2 surpassed the results of every other tested algorithm. The al
gorithm established its real-world strength through applications 
involving car cab design (RWMaOP1) and 10-bar truss structure opti
mization (RWMaOP2) and addition of water and oil repellent fabric 
development (RWMaOP3). The mean SP score of 1.6336 obtained by 
MaOSSA in RWMaOP1 surpassed both MaOSCA (3.0275) and NSGA-III 
(4.1040) scores thus demonstrating its superior capability to distribute 
solutions uniformly across the Pareto front. The mean HV values from 
MaOSSA outperformed those of MaOSCA and MaOPSO in RWMaOP4 as 
well as in other test problems by reaching 0.54247 while maintaining 
superior performance in both convergence and diversification 
measurements.

Future research should focus on developing MaOSSA for constrained 
many-objective optimization problems because these problems 
frequently appear during power system optimization and model 
parameter tuning applications. Future developments should include 
adaptive parameter tuning methods along with dynamic reference point 
strategies because these enhancements will benefit the algorithm for 
resolving complex dynamic problems. MaOSSA stands as a major 
breakthrough in many-objective optimization because it delivers a 
strong and efficient solution that maintains effective convergence- 
diversity balance. The algorithm demonstrates superior performance 
in benchmark and practical applications therefore making it an effective 
tool for researchers who face complex optimization difficulties.
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[31] R.C. Narayanan, N. Ganesh, R. Čep, P. Jangir, J.S. Chohan, K. Kalita, A novel many- 
objective sine–cosine algorithm (MaOSCA) for engineering, Appl. Math. 11 (10) 
(2023) 2301.

[32] M. Premkumar, P. Jangir, R. Sowmya, L. Abualigah, MaOMFO: many-objective 
moth flame optimizer using reference-point based non-dominated sorting 
mechanism for global optimization problems, Decis. Sci. Lett. MaOMFO 12 (3) 
(2023) 571–590, https://doi.org/10.5267/j.dsl.2023.4.006.

[33] C. Fan, J. Wang, L.T. Yang, L. Xiao, Z. Ai, Efficient constrained large-scale multi- 
objective optimization based on reference vector-guided evolutionary algorithm, 
Appl. Intell. 53 (18) (2023) 21027–21049, https://doi.org/10.1007/s10489-023- 
04663-9.

[34] K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization 
algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput. 19 
(5) (2015) 694–716, https://doi.org/10.1109/TEVC.2014.2373386.

[35] Y. Liu, Y. Hu, N. Zhu, K. Li, J. Zou, M. Li, A decomposition-based multiobjective 
evolutionary algorithm with weights updated adaptively, Inf. Sci. 572 (2021) 
343–377, https://doi.org/10.1016/j.ins.2021.03.067.

[36] J. Deng, Q. Zhang, H. Li, On the use of dynamic reference points in HypE. 
Simulated evolution and learning, in: Proceedings of the 11: 11th International 
Conference, November 10–13, SEAL. Springer International Publishing, 2017, 
p. 2017.

[37] Y. Sun, G.G. Yen, Z. Yi, IGD indicator-based evolutionary algorithm for many- 
objective optimization problems, IEEE Trans. Evol. Comput. 23 (2) (2018) 
173–187, https://doi.org/10.1109/TEVC.2018.2791283.

[38] Y. Liu, D. Gong, J. Sun, Y. Jin, A many-objective evolutionary algorithm using a 
one-by-one selection strategy, IEEE Trans. Cybern. 47 (9) (2017) 2689–2702, 
https://doi.org/10.1109/TCYB.2016.2638902.

M. Aljaidi et al.                                                                                                                                                                                                                                 Results in Engineering 25 (2025) 104372 

21 

https://doi.org/10.1016/j.rineng.2025.104372
https://doi.org/10.1007/s10489-022-04296-4
https://doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0003
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0003
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0003
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0003
https://doi.org/10.1145/3321707.3321878
https://doi.org/10.1145/3321707.3321878
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1524/auto.2008.0715
https://doi.org/10.1524/auto.2008.0715
https://doi.org/10.1016/j.swevo.2023.101410
https://doi.org/10.1016/j.swevo.2023.101410
https://doi.org/10.1109/TEVC.2013.2258025
https://doi.org/10.1016/j.ejor.2013.08.001
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0012
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0012
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0012
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0012
https://doi.org/10.1162/evco_a_00269
https://doi.org/10.1109/TCYB.2014.2310651
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0015
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0015
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0015
https://doi.org/10.1109/TEVC.2013.2262178
https://doi.org/10.1007/s00500-018-3642-7
https://doi.org/10.1109/ACCESS.2018.2832181
https://doi.org/10.1162/106365605774666895
https://doi.org/10.1016/j.ejor.2011.03.039
https://doi.org/10.1007/978-3-642-37140-0_22
https://doi.org/10.1007/978-3-642-37140-0_22
https://doi.org/10.1109/TEVC.2012.2227145
https://doi.org/10.1109/TEVC.2012.2227145
https://doi.org/10.1007/s40747-022-00706-9
https://doi.org/10.1080/0305215031000151256
https://doi.org/10.1080/0305215031000151256
https://doi.org/10.1109/TEVC.2018.2866854
https://doi.org/10.1109/TEVC.2018.2866854
https://doi.org/10.1016/j.ins.2018.12.078
https://doi.org/10.1016/j.ins.2018.12.078
https://doi.org/10.1016/j.swevo.2023.101410
https://doi.org/10.1016/j.swevo.2023.101410
https://doi.org/10.1109/TEVC.2013.2281533
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0031
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0031
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0031
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0032
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0032
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0032
https://doi.org/10.5267/j.dsl.2023.4.006
https://doi.org/10.1007/s10489-023-04663-9
https://doi.org/10.1007/s10489-023-04663-9
https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1016/j.ins.2021.03.067
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0037
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0037
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0037
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0037
https://doi.org/10.1109/TEVC.2018.2791283
https://doi.org/10.1109/TCYB.2016.2638902


[39] Q. Gu, J. Luo, X. Li, C. Lu, An adaptive evolutionary algorithm with coordinated 
selection strategies for many-objective optimization, Appl. Intell. 53 (8) (2023) 
9368–9395, https://doi.org/10.1007/s10489-022-03982-7.

[40] R. Wang, R.C. Purshouse, P.J. Fleming, Preference-inspired coevolutionary 
algorithms for many-objective optimization, IEEE Trans. Evol. Comput. 17 (4) 
(2012) 474–494, https://doi.org/10.1109/TEVC.2012.2204264.

[41] M. Abedi, F.S. Gharehchopogh, An improved opposition based learning firefly 
algorithm with dragonfly algorithm for solving continuous optimization problems, 
Intell. Data Anal. 24 (2) (2020) 309–338.

[42] A.O. Abdulsalami, M. Abd Elaziz, F.S. Gharehchopogh, A.T. Salawudeen, S. Xiong, 
An improved heterogeneous comprehensive learning symbiotic organism search 
for optimization problems, Knowl. Based. Syst. 285 (2024) 111351.

[43] H. Mohammadzadeh, F.S. Gharehchopogh, A multi-agent system based for solving 
high-dimensional optimization problems: a case study on email spam detection, 
Int. J. Commun. Syst. 34 (3) (2021) e4670.

[44] F.S. Gharehchopogh, T. Ibrikci, An improved African vultures optimization 
algorithm using different fitness functions for multi-level thresholding image 
segmentation, Multimed. Tools Appl. 83 (6) (2024) 16929–16975.

[45] B. Abdollahzadeh, N. Khodadadi, S. Barshandeh, P. Trojovský, F. 
S. Gharehchopogh, E.S.M. El-kenawy, S. Mirjalili, Puma optimizer (PO): a novel 
metaheuristic optimization algorithm and its application in machine learning, 
Clust. Comput. 27 (2024) 5235–5283.

[46] F.S. Gharehchopogh, B. Farnad, A. Alizadeh, A modified farmland fertility 
algorithm for solving constrained engineering problems, Concurr. Comput. 33 (17) 
(2021) e6310.

[47] E.H. Houssein, D. Oliva, N.A. Samee, N.F. Mahmoud, M.M. Emam, Liver cancer 
algorithm: a novel bio-inspired optimizer, Comput. Biol. Med. 165 (2023) 107389.

[48] A. Qi, D. Zhao, A.A. Heidari, L. Liu, Y. Chen, H. Chen, FATA: an efficient 
optimization method based on geophysics, Neurocomputing 607 (2024) 128289.

[49] C. Yuan, D. Zhao, A.A. Heidari, L. Liu, Y. Chen, H. Chen, Polar lights optimizer: 
algorithm and applications in image segmentation and feature selection, 
Neurocomputing 607 (2024) 128427.

[50] H. Su, D. Zhao, A.A. Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen, RIME: a 
physics-based optimization, Neurocomputing 532 (2023) 183–214.

[51] M.R. Chen, L.Q. Yang, G.Q. Zeng, K.D. Lu, Y.Y. Huang, IFA-EO: an improved firefly 
algorithm hybridized with extremal optimization for continuous unconstrained 
optimization problems, Soft comput. 27 (6) (2023) 2943–2964.

[52] M. Fan, X. Zhang, J. Hu, N. Gu, D. Tao, Adaptive data structure regularized 
multiclass discriminative feature selection, IEEE Trans. Neural Netw. Learn. Syst. 
33 (10) (2021) 5859–5872.

[53] M. Aljaidi, N. Mashru, P. Patel, D. Adalja, P. Jangir, S.B. Pandya, M. Khishe, 
MORIME: a multi-objective RIME optimization framework for efficient truss 
design, Results Eng. (2025) 1–23, 103933.

[54] N. Khodadadi, M. Ehteram, H. Karami, M.H. Nadimi-Shahraki, L. Abualigah, 
S. Mirjalili, Leader selection based multi-objective flow direction algorithm 
(MOFDA): a novel approach for engineering design problems, Results Eng. 25 
(2025) 103670.

[55] S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp 
swarm algorithm: a bio-inspired optimizer for engineering design problems, Adv. 
Eng. Softw. 114 (2017) 163–191, https://doi.org/10.1016/j. 
advengsoft.2017.07.002.

[56] Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). In Proceedings of the 2002 
Congress on Evolutionary Computation, 1 (pp. 825–830). CEC. IEEE Publications. 
https://doi.org/10.1109/CEC.2002.1007032 (Cat. No. 02TH8600).

[57] R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective optimization 
problem suite, Appl. Soft Comput. 89 (2020) 106078, https://doi.org/10.1016/j. 
asoc.2020.106078.

[58] N. Panagant, S. Kumar, G.G. Tejani, N. Pholdee, S. Bureerat, Many objective meta- 
heuristic methods for solving constrained truss optimisation problems: a 
comparative analysis, MethodsX 10 (2023) 102181, https://doi.org/10.1016/j. 
mex.2023.102181.

[59] N. Ahmad, S. Kamal, Z.A. Raza, T. Hussain, Multi-objective optimization in the 
development of oil and water repellent cellulose fabric based on response surface 
methodology and the desirability function, Mater. Res. Express 4 (3) (2017) 
035302, https://doi.org/10.1088/2053-1591/aa5f6a.

[60] Y.-S. Chen, Performance enhancement of multiband antennas through a two-stage 
optimization technique, Int. J. RF Microw. Computer-Aided Eng. 27 (2) (2017) 
e21064, https://doi.org/10.1002/mmce.21064.

[61] T. Goel, R. Vaidyanathan, R.T. Haftka, W. Shyy, N.V. Queipo, K. Tucker, Response 
surface approximation of Pareto optimal front in multi-objective optimization, 
Comput. Methods Appl. Mech. Eng. 196 (4–6) (2007) 879–893, https://doi.org/ 
10.1016/j.cma.2006.07.010.

[62] C.A. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for 
Solving Multi-Objective Problems. Genetic and Evolutionary Computation Series, 
second ed., Springer, 2007.

M. Aljaidi et al.                                                                                                                                                                                                                                 Results in Engineering 25 (2025) 104372 

22 

https://doi.org/10.1007/s10489-022-03982-7
https://doi.org/10.1109/TEVC.2012.2204264
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0042
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0042
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0042
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0043
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0043
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0043
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0044
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0044
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0044
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0045
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0045
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0045
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0046
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0046
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0046
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0046
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0047
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0047
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0047
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0048
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0048
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0049
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0049
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0050
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0050
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0050
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0051
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0051
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0052
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0052
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0052
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0053
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0053
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0053
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0054
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0054
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0054
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0055
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0055
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0055
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0055
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1109/CEC.2002.1007032
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1016/j.asoc.2020.106078
https://doi.org/10.1016/j.mex.2023.102181
https://doi.org/10.1016/j.mex.2023.102181
https://doi.org/10.1088/2053-1591/aa5f6a
https://doi.org/10.1002/mmce.21064
https://doi.org/10.1016/j.cma.2006.07.010
https://doi.org/10.1016/j.cma.2006.07.010
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0063
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0063
http://refhub.elsevier.com/S2590-1230(25)00452-9/sbref0063

	MaOSSA: A new high-efficiency many-objective salp swarm algorithm with information feedback mechanism for industrial engine ...
	1 Introduction
	2 Salp swarm algorithm
	3 Proposed many-objective salp swarm algorithm (MaOSSA)
	4 Results and discussion
	4.1 Experimental settings
	4.1.1 Benchmarks
	4.1.2 Comparison algorithms and parameter settings
	4.1.3 Performance measures

	4.2 Experimental results on DTLZ problems
	4.3 Experimental outcomes on rwmaop challenges

	5 Conclusion and future work
	Funding information
	Institutional review board statement
	Informed consent statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Supplementary materials
	Data availability
	References


