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A B S T R A C T

Chloride penetration and carbonation resistance are critical durability attributes that assess 
concrete’s ability to withstand challenging environmental conditions. However, determining 
these parameters requires time-consuming and resource-intensive physical experiments. 
Accordingly, this study employed gene expression programming (GEP) and multi-expression 
programming (MEP) to develop a robust model for predicting these parameters, providing 
mathematical equations for their estimation. Additionally, the study to develop a graphical user 
interface that would allow for predictions based solely on input values, thereby eliminating the 
need for extensive physical testing. To thoroughly assess the effectiveness of the proposed GEP 
and MEP models, a range of statistical metrics were employed, including the coefficient of 
determination (R²), adjusted R², root mean square error (RMSE), mean absolute error (MAE), and 
root mean square error to observation’s standard deviation ratio (RSR), along with engineering 
indices like the a10-index and a20-index. Both GEP and MEP models consistently demonstrated 
outstanding performance across all statistical indicators for both carbonation rate and chloride 
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penetration. The GEP model showed high precision in modeling chloride penetration with an R² 
of 0.954, MAE of 0.252, and RMSE of 1.050, and for carbonation rate with an R² of 0.99, MAE of 
0.230, and RMSE of 1.100. Similarly, the MEP model performed well, achieving an R² of 0.913, 
MAE of 0.489, and RMSE of 1.434 for chloride penetration, and an R² of 0.985, MAE of 0.560, and 
RMSE of 1.440 for carbonation rate. In addition, the SHapley Additive exPlanation (SHAP) 
method was employed to comprehend the model estimations. In predicting chloride penetration, 
cement to water ratio (C/B) emerged as the most impactful feature, followed by silica fume to 
binder ratio (SF/B) and water to binder ratio (W/B) in terms of importance. For carbonation rate, 
W/B stood out as the most influential, with C/B and fly ash to binder ratio (FA/B) being the 
subsequent key factors. These intuitions are further supported by partial dependence plots (PDPs). 
Furthermore, the SHAP summary plots distinctly reveal the relationships between the various 
parameters and the estimated characteristics.

1. Introduction

Ordinary Portland Cement (OPC), comprising 10–12 % of concrete, is energy-intensive, emitting 0.85 tons of CO₂ per ton produced, 
with global output now over 3 billion tons annually [1]. To lessen concrete’s environmental impact, researchers are exploring 
alternative materials to partially replace OPC. Blended cement concrete (BCC) is a concrete variety that includes a mixture of different 
cementitious materials alongside or in place of traditional Portland cement [2]. These supplementary cementitious materials (SCMs), 
like blast furnace slag (BFS), fly ash (FA), silica fume (SF), and natural pozzolans, can improve the properties of concrete, including 
durability, workability, and environmental sustainability [3]. The lifespan of blended cements having greater levels of cement sub
stitution, such as CEM III/A (containing 50 % BFS), CEM III/B (with 80 % BFS), and CEM II/B-V (incorporating 35 % FA), was 
approximately reduced by 10 % owing to an increased coefficient of carbonation rate. Despite the decreased capture of carbon dioxide 
and lifespan compared to Portland cement, CEM III/B produced 20 % fewer CO2 annually [4]. Volcanic ash (VA), BFS, FA, volcanic 
pumice (VP), SF, and similar materials are utilized as substitutes for cement. These materials generally enhance the durability of 
concrete and decrease the heat generated during hydration, which is advantageous for applications involving mass concrete [5]. The 
slump of corn cob ash (CCA) concrete and compacting factor showed reduction with increasing CCA content, indicating reduced 
workability and increased stiffness. Initially, the crushing strength of CCA-blended cement concrete was lower than that of the control 
mix during beginning phases, but it notably improved and exceeded the control’s strength in later phases, specifically after 120 days 
[6]. It was noted that the alkalinity and strength of the BCC was comparable to those of ordinary concrete. Moreover, the pH levels of 
the BCC exceeded the recommended limit for depassivation [7]. The effectiveness of various pozzolans in enhancing strength becomes 

Fig. 1. Types of cement (EN 107–1).
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more evident when used as additives in blended cement concrete. The 28-day strength improvement in concrete, in contrast to the 
control mix, reached up to 75 % for silica fume, 45 % for metakaolin, 27 % for fly ash, and 40 % for ground granulated slag (GGBS). 
Similarly, when these pozzolans replaced part of the cement, the strength enhancements were up to11 % for GGBS, 50 % for silica 
fume, 3 % for metakaolin, and 9 % for fly ash [8]. BCC mixtures incorporating type I/V (low C3A) cement with VA or finely ground VP 
demonstrated reduced durability performance in comparison to type I/V plain cements over a 48-month period [9]. Alkali concen
trations typically decrease as the replacement of PC with SCMs increases. This decrease in alkali levels within the pore solution results 
in lower hydroxide ion concentrations. Sulfate concentrations are not significantly impacted by blending with GGBS or FA [10]. The 
European standard EN 197–1 categorizes cement into 27 distinct common types, organized into five groups, as depicted in Fig. 1.

Chloride penetration and carbonation resistance are critical durability attributes that evaluate concrete’s ability to withstand 
challenging environmental conditions. These characteristics play a vital role in the longevity, durability, and overall functionality of 
concrete structures, highlighting their importance in assessing extended-term robustness [3]. Corrosion in reinforced concrete (RC) is 
primarily induced by chloride infiltration. Chloride-induced corrosion initiates upon reaching a critical concentration of chloride ions 
at the steel bars, causing the breakdown of a thin protective layer of corrosion products. The presence of this protective layer, which 
develops as a result of the elevated alkaline environment of concrete during construction completion, protects the steel bars against 
corrosion [11]. Carbonation occurs when CO2 penetrates the porous system of concrete, creating a lower pH environment around the 
reinforcement, which allows corrosion to occur [12]. The depth of carbonation is commonly utilized to forecast the lifespan of con
crete. The pivotal factors that significantly influence carbonation resistance of concrete include relative water-cement ratio and hu
midity (RH) [13]. The resistance of mortar and concrete to carbonation mainly depends on the CO2 buffering capacity per unit volume 
of cement paste. This can be quantified as the proportion of water used during production to the quantity of reactive CaO in the binder 
[14]. The polycarboxylic acid (PC) superplasticizer significantly enhances concrete’s carbonation resistance, though increasing its 
dosage does not amplify this effect. Naphthalene sulfonate (NS) superplasticizer also improves anti-carbonation. Both superplasticizers 
influence carbonation resistance by altering the pore structures and morphologies of the concrete, thereby reducing its porosity [15]. 
The effect of substituting OPC with SCMs on the resulting concrete varies significantly based on the variety of SCM, its quantity, and 
the blend design. Therefore, enhancing the attributes of BCC with one or more SCMs to create a green concrete blend is challenging, 
laborious, and feasible solely through individualized experimental analysis for each case. This highlights the necessity to estimate the 
characteristics of a BCC mix and minimize the scope of the experimental study [2].

Machine learning (ML) methods provide an effective solution by efficiently capturing these complex relationships, significantly 
reducing the computational costs associated with physically-based models [16]. The decision tree (DT) model effectively predicted the 
compressive strength of BCC mixes, achieving a high correlation coefficient (R) of 0.99 in both the training and validation datasets. The 
AdaBoost regressor (AR) model predicted both durability characteristics of BCC with an R-value over 0.98 [3]. Machine learning 
approaches were applied to high-strength ternary blended concrete with varying silica quantities. Both BO-XGBoost and linear 
regression demonstrated higher coefficients of determination (R²) and lower error values compared to the KNN model, indicating 
better predictive success. For instance, the R² values were 0.883 for linear regression, 0.736 for k-nearest neighbor (KNN), and 0.880 
for BO-XGBoost [17]. Numerous models, encompassing random forest (RF), artificial neural network (ANN), SVM, and DT, have been 
developed to predict ternary-blend concrete compressive strength. Coupled simulated annealing (CSA) was utilized to fine-tuned the 
least square support vector machine (LSSVM) model. The LSSVM model outperformed others, achieving an R² value of 0.954 [18]. 
Three ML approaches, namely genetic programming, water cycle algorithm, and soccer league competition programming, were 
developed for designing sustainable concrete mixtures. Their accuracy was compared to three conventional methods: support vector 
machine, artificial neural network, and linear regression [19]. An exhaustive dataset of concrete and corresponding disruptive lab
oratory assessments was utilized to train the selected best configuration of an ANN. The final ANN model adopted has four predictors, 
six hidden neurons, four principal components, and one response parameter [20]. A RF model was used to attain high-fidelity forecasts 
of time-sensitive hydration kinetics in systems based on OPC. The results indicate that the RF model is capable of developing mixture 
designs that align with user-defined kinetics-related requirements [21]. The multilayer perceptron model showed high effectiveness 
for predicting the growth of static yield stress in blended cement pastes [22]. Various models, encompassing gene expression pro
gramming (GEP), ANN, support vector (SV), RF, adaptive neuro-fuzzy inference system (ANFIS), gradient boost (GB), extreme gradient 
boost (XGB), optimized gaussian process regression (OGPR), KNN, adaBoost (AB), and bagging regressor (BR), were used to estimate 
compressive strength. The XGB model attained the greater efficacy, with an R² score of 0.89 [23]. Random forest, AdaBoost, SVM, and 
Bayes classifier ML models were employed to estimate properties of blast furnace slag (BFS) and waste tire rubber powder (WTRP) 
blended cement mortar. Among these algorithms, AB showed the best performance with R², mean absolute percentage error (MAPE), 
root mean square error (RMSE), and scores of 5.2425, 0.9831, and 0.1105, respectively [24].

Blended cement substantially influences the characteristics of concrete, particularly impacting its chloride ion penetrability and 
carbonation rate. These are critical durability attributes that assess concrete’s ability to withstand challenging environmental con
ditions. However, determining these parameters requires time-consuming and resource-consuming physical experiments. Accordingly, 
this study employed gene expression programming (GEP) and multi-expression programming (MEP) to develop a robust model for 
predicting these parameters. MEP and GEP offer clear interpretability by providing explicit mathematical expressions that reveal the 
relationships between inputs and outputs, making them more transparent. Both methods naturally perform feature selection, adapt to 
various problem types, and are computationally efficient, requiring minimal training and resources compared to deep learning. They 
excel with small datasets and can produce empirical equations ideal for practical applications in engineering, where simplicity, 
transparency, and robustness are essential for reliable predictions. Additionally, the study to develop a graphical user interface that 
would allow for predictions based solely on input values, thereby eliminating the need for extensive physical testing.
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2. Overview of ML approaches employed

This section entails the theory of ML techniques utilized.

2.1. Gene expression programming

GEP was introduced by Ferreira in 1999 as an innovative algorithm that integrates aspects of Genetic Algorithms (GA) and Genetic 
Programming (GP). GEP marks a major advancement by exceeding the phenotype threshold, the second evolutionary threshold, 
through the isolation of phenotype and genotype [25]. GEP is a well-known Evolutionary Algorithm (EA) designed to solve 
user-defined problems by evolving computer programs. In GEP, these programs are typically represented by gene expression strings of 
fixed length, which undergo natural operations like crossover and mutation. GEP has demonstrated to be an efficient approach for 
creating clear and precise programs [26]. Lately, GEP has seen significant advancements and developments. Numerous improved 
versions of GEP have been suggested, and their practical applications are rapidly increasing [26]. GEP is an innovative EA that ad
dresses many of the limitations found in traditional GA and GP. In GEP, the chromosome is responsible for encoding the potential 
solution, which is then interpreted as an expression tree, symbolizing the real solution. This conventional method is analogous to the 
translation of genetic information from DNA into proteins in biological systems. The genetic operators of GEP are employed to the 
chromosome itself, rather than directly to the expression tree [27]. Fig. 2 illustrates the process flow of GEP, while Fig. 3 depicts the 
chromosome expression tree.

2.2. Multi expression programming

MEP is a variant of GP that employs a linear format for chromosomes. MEP individuals consist of gene sequences that encode 
intricate computer programs. The format of MEP individuals, representing expressions, bears similarity to how compilers convert C or 
Pascal expressions into machine code [28]. MEP possesses a distinctive capability to encode numerous programs related to a problem 
in a single chromosome. Numerical tests have demonstrated MEP’s superiority over comparable methods, positioning it as an effective 
substitute for conventional tree-based Genetic Programming [29]. MEP stands out from other methods by improving efficiency and 
reducing computation time through its linear-based approach and the inclusion of multiple solutions within each chromosome. The 
results from MEP are represented as linear instruction strings, combining mathematical operators (functions) and variables (termi
nals). The chromosome’s length is determined by the quantity of MEP genes per chromosome, offering a flexible and adaptable 
framework for problem-solving [30]. An MEP chromosome comprises several expressions, corresponding to the number of genes it 
holds. This multi-expression structure transforms an MEP chromosome into a collection of trees rather than a singular tree. Each of 
these expressions represents a potential solution to a given problem. The overall fitness of an MEP chromosome is gauged by the fitness 
level of the best expression it encodes [31]. The process flow of MEP is illustrated in Fig. 4.

3. Methodology

3.1. Description of database

The database employed comprised 362 sets of experimental data for carbonation rate and 326 sets for chloride penetration, 
collected from various literature sources [4,14,32–157]. The predictor variables used in this study include binder (B), cement to binder 

Fig. 2. Process flow of GEP.

B. Fu et al.                                                                                                                                                                                                              Case Studies in Construction Materials 22 (2025) e04209 

4 



ratio (C/B), water to binder ratio (W/B), ground granulated blast furnace slag to binder ratio (GGBF/B), fly ash to binder ratio (FA/B), 
silica fume to binder ratio (SF/B), limestone powder to binder ratio (LP/B), calcined clay to binder ratio (CCl/B), fine aggregate to 
binder ratio (FiA/B), coarse aggregate to binder ratio (CoA/B), and superplasticizer to binder ratio (SP/B). The target variables (TV) 
are chloride penetration and carbonation rate of BCC. Fig. 5 illustrates the predictors and response parameters. For the training of the 
chloride penetration model, 70 % of the database comprising 228 data points is allocated, while the remaining 30 %, totaling 98 data 
points, is dedicated to testing. Likewise, in the training phase of the carbonation rate model, 70 % of the dataset consisting of 253 data 
points is utilized, with the remaining 30 %, amounting to 109 data points, reserved for testing purposes. This random partitioning 
ensures that the model has an adequate amount of data to learn and recognize patterns, thereby enhancing its generalization ability. 
The larger training set enables the model to capture intricate relationships within the data, while the test set serves as a reliable 
measure of the model’s performance and its ability to make accurate predictions on unseen data [158–160]. Table 1 presents statistical 
data on carbonation rate and chloride penetration in concrete, detailing various parameters like mean, median, mode, standard de
viation, maximum, minimum, and skewness. For carbonation rate, the mean is 363.02 mm/year0.5, with a median of 
350.00 mm/year0.5 and a mode of 400.00 mm/year0.5. The maximum and minimum values are 635.00 mm/year0.5 and 
204.00 mm/year0.5, respectively. Chloride penetration shows a mean of 405.37 Coulombs, with a median of 400.00 Coulombs and a 
mode of 400.00 Coulombs. The maximum chloride penetration is 600.00 Coulombs, while the minimum is 237.00 Coulombs. Both 

Fig. 3. Chromosome expression tree.

Fig. 4. Process flow of MEP.
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parameters exhibit notable skewness, indicating the distribution asymmetry in the data. Chloride penetrability based on charge passed 
is illustrated in Fig. 6. Box plots of the response parameters are presented in Fig. 7.

Fig. 8 depicts the correlation heatmaps. The Pearson correlation matrix shows that chloride penetration correlates positively with 
C/B (0.39), Co/B (0.27), and W/B (0.24),and negatively with SF/B (-0.34), FA/B (-0.23), and GGBF/B (-0.17)Similarly, the Spearman 
correlation matrix shows positive correlations with C/B (0.45), W/B (0.26), and CoA/B (0.20), and negative correlations with SF/B 
(-0.39), FA/B (-0.23), and Cl/B (-0.19).For carbonation rate, the Pearson matrix indicates positive correlations with CoA/B (0.27), W/ 
B (0.24), and Fi/B (0.17). and negative correlations with B (-0.24), C/B (-0.19), and CCl/B (-0.05). In the same way, the Spearman 
matrix shows positive correlations with W/B (0.30), Co/B (0.29), and FiA/B (0.29), and negative correlations with B (-0.34), FA/B 
(-0.23), and C/B (-0.28).

Fig. 5. Predictors and response parameters.

Table 1 
Statistical intuitions into the parameters.

Statistics B (kg/m3) W/B C/B FA/B GGBF/B SF/B LP/B CCl/B CoA/B FiA/B SP/B TV

Carbonation rate (mm/year0.5) ​ ​ ​ ​
Mean 363.02 0.49

0.72
0.12 0.14 0.00 0.01 0.01 2.86 2.47 0.00 4.80

Median 350.00 0.50
0.74

0.00 0.00 0.00 0.00 0.00 2.74 2.25 0.00 4.02

Mode 400.00 0.50
1.00

0.00 0.00 0.00 0.00 0.00 2.45 4.02 0.00 4.00

SD 75.34 0.10
0.23

0.17 0.23 0.01 0.04 0.05 0.77 0.82 0.00 4.07

Maximum 635.00 0.70
1.00

0.70 0.85 0.10 0.25 0.40 5.32 4.73 0.03 40.27

Minimum 204.00 0.25
0.15

0.00 0.00 0.00 0.00 0.00 1.50 1.18 0.00 0.01

Skewness 0.51 − 0.04
− 0.47

1.25 1.37 13.38 3.97 5.60 0.76 0.65 2.12 3.17

Chloride penetration (Coulomb) ​ ​ ​ ​
Mean 405.37 0.44

0.68
0.21 0.08 0.02 0.00 0.01 2.29 2.08 0.00 2121.58

Median 400.00 0.40
0.70

0.15 0.00 0.00 0.00 0.00 2.36 1.96 0.00 1456.00

Mode 400.00 0.40
1.00

0.00 0.00 0.00 0.00 0.00 0.00 1.87 0.00 1000.00

SD 82.09 0.11
0.27

0.24 0.19 0.04 0.02 0.04 1.15 0.58 0.01 1780.06

Maximum 600.00 0.80
1.00

0.90 0.90 0.20 0.20 0.30 5.04 6.19 0.03 13226.0

Minimum 237.00 0.25
0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 100.00

Skewness 0.27 1.15
− 0.55

0.86 2.53 1.70 8.64 6.33 − 0.20 2.48 1.52 1.74

SD: Standard deviation.
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3.2. Preprocessing of data

In data preprocessing, the main goal is to ensure data integrity by fixing errors and removing duplicates. A key step in this process is 
data transformation, particularly standardization, which adjusts the scales of different variables to prevent bias in machine learning 
models [161]. In this study, we used the StandardScaler method to standardize the dataset [162,163]. This method centers the data 
around the mean and scales each feature to have a unit variance [164,165]. By applying StandardScaler, the data is transformed to a 
common scale, reducing bias and enhancing model accuracy [166]. Standardization is especially important for models sensitive to 
feature scaling, such as those using distance metrics or gradient-based methods, as it ensures that all features are treated equally, 
leading to more reliable and accurate predictions [167–169]. Furthermore, box plots were used to identify and remove outliers, 
ensuring data’s integrity and accuracy.

3.3. Model development

The process flow of model development is depicted in Fig. 9. The GEP algorithm was utilized with GeneXpro tool version 5.0, 
renowned for its strong data processing abilities, including efficient handling of missing values. This versatile tool can create several 
models from different datasets and supports code generation in several programming languages [170,171]. The general parameters 
include 4 genes, a head size of 10, and 1000 chromosomes, with a linking function of multiplication. The function set comprises + , − , 

Fig. 6. Chloride penetrability based on charge passed.

Fig. 7. Box plots of response variables.
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* , /, Inv, Ln, Exp, x², x ³ , x⁴, x⁵, ³ √, and ⁶√. For numerical constants, each gene contains 10 constants, with a floating-point data type 
ranging from an upper bound of 10 to a lower bound of − 10. The genetic operators are set with a mutation rate of 0.00138, per
mutation rate of 0.00546, inversion rate of 0.00546, IS transportation rate of 0.00546, random cloning rate of 0.00102, RIS trans
portation rate of 0.00546, gene transportation rate of 0.00277, recombination rate of 0.00277, RNC mutation rate of 0.00206, and Dc 
mutation rate of 0.00206. These parameters were carefully chosen to enhance the performance and accuracy of the GEP model.

In MEP modeling, providing several setup parameters is essential to create an efficient model. These parameters were set up 
following suggestions and after several initial tests. The population size, which dictates the quantity of generated programs, signifi
cantly impacts the model’s complexity and accuracy. A larger size of population generally leads to a more intricate and robust model, 
but it also increases the convergence time. However, increasing the population size beyond a certain limit can result in model 
overfitting [169]. The MEP model consists of 50 subpopulations, each with a size of 250, and a code length of 50. The tournament size 
is set to 2, with a function probability of 0.5. The mutation probability is 0.01, while the crossover probability is 0.9, and the variable 
probability is 0.5. The functions used in the model include addition (+), subtraction (− ), multiplication (*), division (/), power 
(Power), square root (Sqrt), exponential (Exp), power of 10 (Pow10), sine (Sin), cosine (Cos), inverse (Inv, 1/x), arccosine (ACos), 
arctangent (Atan), tangent (Tan), and arcsine (ASin). These settings were carefully chosen to optimize the development and perfor
mance of the MEP model. Fig. 10 shows the convergence fitness curve, a graphical tool that illustrates the performance of optimization 
algorithms over successive iterations. The curve displays iterations on the x-axis and average fitness on the y-axis, demonstrating how 

Fig. 8. Correlation heatmaps.
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the algorithm progressively enhances solution quality as it converges toward an optimal result. This visualization provides valuable 
insights into the algorithm’s convergence dynamics, allowing for the assessment of its efficiency and stability throughout the opti
mization process.

Fig. 9. Model development.

Fig. 10. Convergence fitness curve.

B. Fu et al.                                                                                                                                                                                                              Case Studies in Construction Materials 22 (2025) e04209 

9 



3.4. Evaluation of model effectiveness

3.4.1. Statistical assessment
Each model undergoes a comprehensive evaluation process, which includes assessing various performance metrics to thoroughly 

assess its reliability and effectiveness. These metrics encompass a wide range of statistical measures like the coefficient of determi
nation (R²), adjusted R² (Adj R²), root mean square error (RMSE), mean absolute error (MAE), and root mean square error to ob
servation’s standard deviation ratio (RSR), along with engineering indices like the a10-index and a20-index. These metrics collectively 
provide valuable insights into the model’s predictive capability under different conditions. By comparing the model’s estimations 
against specific error thresholds, this evaluation ensures a robust assessment of its performance across diverse scenarios. The math
ematical formulations of these metrics are presented in Eqs. 1 to 7. 

R2 =

[
∑i=n

i=1
(Gi − Gi)(Hi − Hi)

]2

∑i=n

i=1
(Gi − Gi)

2 ∑i=n

i=1
(Hi − Hi)

2
(1) 

Adj R2 = 1 −
(1 − R2)(N − 1)

N − Kn − 1
(2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑i=n

i=1
(Gi − Hi)

2

√

(3) 

MAE =
1
N

∑i=n

i=1
|Gi − Hi| (4) 

RSR =
RMSE

SD
(5) 

a10_index =
M10

N
(6) 

a20_index =
M20

N
(7) 

Where Gi depicts the experimental value and Hi showcases the estimated value for the ith observation, with N stands for the entire 
count of observations, Hi represents the mean average of the actual values, and Km shows the quantity of independent parameters. The 
terms M20 and M10 stand for the expected quantities of values falling within certain ranges of the experimental-to-model estimated 
value ratio. M20 refers to values within the range of 0.90–1.20, whereas M10 pertains to values within the range of 0.80–1.10.

3.4.2. K-fold cross-validation
K-fold cross-validation (kfcv) is a widely adopted method for evaluating the performance and generalizability of ML models. This 

technique is particularly beneficial for assessing how well a model will perform on unseen data, thus providing a reliable estimate of its 

Fig. 11. 10-fold cross-validation.
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effectiveness on an independent dataset [107]. By systematically partitioning data into k subsets and alternately using each subset for 
testing while training on the remaining data, kfcv effectively reduces sampling bias and mitigates the risk of overfitting. This approach 
minimizes the impact of any single, possibly unrepresentative, split by ensuring that the model is tested on multiple data subsets, thus 
yielding a more reliable performance assessment [108]. In this study, a 10-fold cross-validation was implemented, as shown in Fig. 11. 
The dataset was randomized and divided into ten equal parts; in each cycle, nine subsets (90 %) were used for training, while one 
subset (10 %) served for testing. This process was repeated across all folds, and the model’s overall performance was determined by 
averaging the accuracy scores across the ten iterations. This method not only ensures a balanced evaluation by reducing variance and 
potential biases but also enhances computational efficiency, making it an effective approach for robust model assessment.

3.5. SHapely additive exPlanations (SHAP)

In addition to attaining high levels of accuracy, understanding the logic behind a model’s estimations is crucial across various 
implementations [172–174]. Developing precise ML models using extensive datasets requires the application of complex and advanced 
methodologies, which include both traditional machine learning and deep learning techniques. Even experienced practitioners often 
find it challenging to explain the underlying logic of the predictive outcomes [160]. SHAP, grounded in cooperative game theory, 
examines the mechanics of Shapley values, offering a systematic approach in machine learning for the detailed interpretation of in
dividual predictions [175]. SHAP introduces a distinct set of metrics to evaluate the significance of additional features [176,177]. 
Theoretical insights indicate the presence of a unique solution within this metric category, showcasing favorable properties [178]. 
Analyzing SHAP values allows for identifying the attributes with the greatest influence on the estimations of model and understanding 
their interactions. This examination aids in interpreting and validating the model’s behavior, pinpointing areas for potential 
improvement or optimization [177].

4. Results and discussions

4.1. Mathematical formulations

Using expression trees, simplified mathematical expressions (Equations 8 and 9) were developed to predict the carbonation rate 
and chloride penetration in blended cement concrete. These empirical formulations, based on GEP, provide accurate estimates of these 
parameters.
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4.2. Regression analysis

The regression slopes (Fig. 12) for the GEP and MEP models were analyzed to evaluate their predictive accuracy for chloride 
penetration and carbonation rate in concrete. For chloride penetration, the GEP model demonstrated a regression slope of 0.91 during 
the training phase and 0.96 during the testing phase. In comparison, the MEP model exhibited regression slopes of 0.85 and 0.94 for the 
training and testing phases, respectively, which are slightly lower than those of the GEP model. For the carbonation rate, the GEP 
model again demonstrated higher regression slopes with scores of 0.91 during the training phase and 0.87 during the testing phase as 
shown in Fig. 10. The MEP model had regression slopes of 0.82 for the training phase and 0.83 for the testing phase. These results 
indicate that the GEP model maintains a closer fit to the actual data compared to the MEP model in both training and testing phases for 
both chloride penetration and carbonation rate. Overall, the higher regression slopes achieved by the GEP model in both phases for 
both parameters further underscore its superior performance and reliability in estimating the durability characteristics of BCC 
compared to the MEP model.

4.3. Evaluation of model effectiveness

4.3.1. Statistical assessment
The effectiveness of GEP and MEP models was evaluated for predicting carbonation rate and chloride penetration in concrete as 

presented in Table 2. For the carbonation rate, the GEP model surpassed the MEP model in both training and testing phases. Spe
cifically, the GEP model attained an R² of 0.978 and an adjusted R² of 0.977 in the training set, compared to the MEP model’s R² of 
0.919 and adjusted R² of 0.972. The GEP model also had lower values for RMSE (0.487), MAE (0.282), and RSR (0.164), and higher a- 
10 (0.739) and a-20 (0.870) indices, indicating superior predictive accuracy and precision. In the testing phase, the GEP model 
maintained its superior performance with an R² of 0.954, adjusted R² of 0.951, RMSE of 1.050, MAE of 0.252, and an RSR of 0.180, 

Fig. 12. Regression analysis.
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along with higher a-10 (0.682) and a-20 (0.800) indices, compared to the MEP model’s R² of 0.913, adjusted R² of 0.910, RMSE of 
1.434, MAE of 0.489, and RSR of 0.246, and a-10 (0.418) and a-20 (0.664) indices.

Similarly, for chloride penetration, the GEP model again demonstrated superior performance over the MEP model. In the training 
phase, the GEP model achieved an R² of 0.973, adjusted R² of 0.971, RMSE of 0.505, MAE of 0.830, and RSR of 0.015, with a-10 (0.840) 
and a-20 (0.920) indices, whereas the MEP model showed an R² of 0.924, adjusted R² of 0.921, RMSE of 0.957, MAE of 0.950, and RSR 
of 0.166, with a-10 (0.680) and a-20 (0.890) indices. In the testing phase, the GEP model sustained its lead with an R² of 0.990, 

Table 2 
Performance summary of statistical indicators.

Set Model R2 Adj R2 RMSE MAE RSR a-10 index a-20 index

Carbonation rate ​ ​
Training MEP 0.919 0.972 0.921 0.584 0.310 0.522 0.731
​ GEP 0.978 0.977 0.487 0.282 0.164 0.739 0.870
Testing MEP 0.913 0.910 1.434 0.489 0.246 0.418 0.664
​ GEP 0.954 0.951 1.050 0.252 0.180 0.682 0.800
Chloride penetration ​ ​
Training MEP 0.924 0.921 0.957 0.950 0.166 0.680 0.890
​ GEP 0.973 0.971 0.505 0.830 0.015 0.840 0.920
Testing MEP 0.985 0.984 1.440 0.560 0.340 0.694 0.847
​ GEP 0.990 0.990 1.100 0.230 0.230 0.745 0.867

Fig. 13. Spider plots of statistical indicators.
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adjusted R² of 0.990, RMSE of 1.100, MAE of 0.230, and RSR of 0.230, with a-10 (0.745) and a-20 (0.867) indices, compared to the 
MEP model’s R² of 0.985, adjusted R² of 0.984, RMSE of 1.440, MAE of 0.560, and RSR of 0.340, and a-10 (0.694) and a-20 (0.847) 
indices.

Overall, the GEP model consistently demonstrated superior results compared the MEP model across all statistical indicators for both 
carbonation rate and chloride penetration, making it the preferred choice for predicting these parameters in blended cement concrete. 
Spider plots of statistical indicators are depicted in Fig. 13.

4.3.2. K-fold cross-validation
In this study, a 10-fold cross-validation was implemented, as shown in Figs. 14 and 15. The dataset was randomized and divided 

into ten equal parts; in each cycle, nine subsets (90 %) were used for training, while one subset (10 %) served for testing. This process 
was repeated across all folds, and the model’s overall performance was determined by averaging the accuracy scores across the ten 
iterations. Both GEP and MEP models demonstrated strong performance. For carbonation rate prediction, GEP achieved an average R2 

of 0.962 and an RMSE of 0.829, while MEP achieved an average R2 of 0.932 and an RMSE of 1.143. For chloride penetration prediction, 
GEP achieved an average R2 of 0.965 and an RMSE of 0.858, whereas MEP achieved an average R2 of 0.931 and an RMSE of 1.247.

4.4. SHAP interpretation

4.4.1. Mean SHAP plots
Mean SHAP plots are showcased in Fig. 16. The SHAP scores for chloride penetration and carbonation rate reveal significant in

tuitions into the impact of various features on the model’s estimations. For chloride penetration, C/B stands out with the highest mean 
SHAP value of approximately 800, indicating its dominant role in affecting the model output. The SF/B follows with a mean SHAP 
value of around 370, and W/B has a mean SHAP value of approximately 280. The CoA/B, Binder, FA/B, and FiA/B each have mean 
SHAP values of around 180, suggesting their moderate impact. The SP/B has a mean SHAP value of around 120, and the GGBF/B has a 
mean SHAP score of around 30, indicating a lesser influence on chloride penetration. For the carbonation rate, the W/B depicts the 
highest mean SHAP score of around 1.4, highlighting its significant effect on the model’s predictions as depicted in Fig. 16. The C/B has 
a mean SHAP value of approximately 1, followed by the FA/B with a mean SHAP value of around 0.8. The CoA/B has a mean SHAP 
value of around 0.42, and the SP/B shows a mean SHAP value of approximately 0.35. The Binder has a substantial mean SHAP value of 
around 3, indicating its strong influence. Finally, the GGBF/B has a mean SHAP value of around 0.8, reflecting its moderate impact on 
the carbonation rate. Overall, these SHAP values emphasize the critical features driving the model’s predictions for both chloride 
penetration and carbonation rate, with C/B and W/B ratios consistently showing high influence across both parameters. It was 
observed that Portland cement concretes are more susceptible to carbonation than their counterparts that incorporate limestone or 
pozzolanic materials [179]. After 56 days, two types of concrete, one made with Portland cement and the other with Portland-fly ash 
cement, exhibited a tendency to reach the maximum depth of carbonation [180].

4.4.2. SHAP summary plots
SHAP summary plots are illustrated in Fig. 17. For chloride penetration, the SHAP score of the C/B rises with an increase in C/B and 

vice versa, showing a peak SHAP value of around 3200 and a maximum negative SHAP value of around − 1800. The SHAP value of the 
SF/B decreases with an increase in SF/B and vice versa, with a highest SHAP value of approximately 3900 and a greatest negative 
SHAP value of around − 1100. The SHAP value of the W/B also increases with a rise in W/B and vice versa, reaching a peak SHAP value 
of around 1200 and a highest negative SHAP value of about − 1400. Additionally, the SHAP value of the CoA/B decreases with an 

Fig. 14. 10-fold cross-validation of the models for carbonation rate.
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increase in CoA/B and vice versa, exhibiting a greatest SHAP value of around 2100 and a maximum negative SHAP value of 
approximately − 900. The Binder demonstrates a similar trend, with its SHAP value decreasing as Binder increases and vice versa, 
showing a maximum SHAP value of around 800 and a maximum negative SHAP value of approximately − 1100. The SHAP score of the 
FA/B escalates with a rise in FA/B and vice versa, reaching a maximum SHAP value of about 1900 and a maximum negative SHAP 
value of around − 300. Finally, the SHAP value of the Fi/B decreases with an increase in FiA/B and vice versa, with a maximum SHAP 
value of around 2000 and a maximum negative SHAP value of about − 600. Polycarboxylate superplasticizers result in reduced 
carbonation depth, water penetration depth, and chloride permeability of concrete. This improvement is attributed to the denser 
microstructure they promote in the concrete [181]. In the early stages of curing, a small addition of fly ash can actually increase the 
chloride migration coefficient. However, a significant reduction in the coefficient is observed with a higher amount of fly ash 
incorporation during this period [182]. Concrete made with slag cements exhibits significantly lower chloride permeability when 
compared to other concrete mixtures [183]. Silica incorporation improved the resistance of concrete to chloride and sulfate attacks, as 
evidenced by the reduced strength loss following exposure to sulfate attack [184].

The SHAP values for the carbonation rate reveal detailed insights into how various features influence the model’s predictions. The 
SHAP value of the W/B increases with a rise in W/B and vice versa, with a maximum SHAP value of around 25 and a maximum 
negative SHAP value of around − 6 as depicted in Fig. 17. Conversely, the SHAP value of the C/B decreases with an increase in C/B and 
vice versa, showing a maximum SHAP value of approximately 4 and a maximum negative SHAP value of around − 4. The FA/B exhibits 
a complex behavior, indicating a nuanced influence on the estimations of the model. The SHAP value of the FiA/B increases with an 
increase in FiA/B and vice versa, reaching a maximum SHAP value of around 3 and a maximum negative SHAP value of about − 2. 
Similarly, the SHAP value of the CoA/B rises with an increase in CoA/B and vice versa, showing a maximum SHAP value of around 4 
and a maximum negative SHAP value of approximately − 2. The SP/B demonstrates a decrease in SHAP value with an increase in SP/B 
and vice versa, with a maximum SHAP value of around 4 and a maximum negative SHAP value of about − 2.5. The Binder also shows 
complex behavior, indicating its varied influence on the carbonation rate. Features such as the GGBF/B, LP/B, CCI/B, and SF/B also 
influence the estimations of the model but to a lesser extent. Their SHAP values are relatively centered around zero, indicating a lower 
overall impact on the carbonation rate. The carbonation rate of the Portland cement mixture exceeded that of blended cement mix
tures. Among all the mixtures tested, those with Ptolemaida treated fly ash blended cements exhibited the lowest carbonation rate 
[185]. When the water/binder ratio increased from 0.30 to 0.35, the CO2 uptake ratio rose from 3.84 % to 5.38 % due to the greater 
carbonation depth and reaction level of the binders [186].

4.5. PDP interpretation

Understanding how functions behave with inputs in multiple dimensions can be complex. Therefore, studying the partial depen
dence of the estimated function on specific subsets of input variables can be advantageous. Although a collection of these plots may not 
completely capture the approximation, they can offer valuable insights, especially when the function is primarily influenced by lower- 
order interactions [187,188]. Partial dependence plots (PDP) are visual tools frequently used in machine learning to understand the 
relationship between predictor variables and the target variable [189]. These plots show the average predicted outcome across all data 
points for a specific predictor variable, taking into account the influences of other predictor variables [190].

In Fig. 18, PDPs are depicted. The trend in chloride penetration shows a relatively stable pattern as B, GGBF/B, LP/B, and CCl/B 
increase. However, it increases notably with higher W/B and FA/B ratios. Specifically, chloride penetration maintains a nearly con
stant level within the range of approximately 0.35–0.78. Beyond 0.78 and up to 0.8, there is a sharp escalation, followed by a decrease 
from 0.8 to around 0.98, and then another rapid increase from 0.98 to 1. Additionally, chloride penetration remains stable up to 

Fig. 15. 10-fold cross-validation of the models for chloride penetrability.
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approximately 0.30 of SF/B, after which it experiences a steep decline until around 0.35, beyond which it stabilizes again. Notably, 
chloride penetration exhibits a complex relationship with CoA/B. It increases as Fi/B rises, particularly showing a rapid surge from 
2.75 to about 2.9. Conversely, it decreases as SP/B increases, maintaining stability beyond a ratio of 1. The utilization of fly ash 
decreased the chloride permeability of the concrete [183]. Blended cement concrete mixtures demonstrate significantly improved 
resistance to chloride ion penetration and reduced risk of reinforcement corrosion compared to plain Portland cement concrete 
mixtures [191]. An increase in the water-to-cement ratio leads to a greater depth of chloride penetration, all other factors being equal 
[192].

The rate of carbonation exhibits a relatively stable trend with increasing GGBF/B, SF/B, LP/B, and CCl/B ratios (Fig. 18). However, 
it shows a slight decrease with an increase in B, with a rise observed from 350 to 390. Furthermore, the carbonation rate decreases as 
W/B increases, with a notable increase noted from 0.55 to 0.65. Similarly, there is a decreasing trend in the carbonation rate with 

Fig. 16. Mean SHAP plots.
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higher C/B ratios. Interestingly, the carbonation rate initially increases with an increase in FA/B, reaching a peak around 0.26, then 
decreases until approximately 0.32, and stabilizes thereafter. Regarding Co/B, the carbonation rate decreases initially, reaching a 
minimum around 2.8, then rises until about 3.25 before decreasing again. It also shows an increasing trend with higher Fi/B ratios. 
Conversely, the carbonation rate decreases initially with an increase in SP/B up to around 0.0065, beyond which it starts to increase. 
The addition of 10 % silica fume and 0.07 % propylene short fibers by volumetric fraction effectively reduced carbonation depth 
[193]. An increase in the W/B ratio resulted in higher CO2 uptake [186]. It has demonstrated that combining pulverized coal 

Fig. 17. SHAP summary plots.

B. Fu et al.                                                                                                                                                                                                              Case Studies in Construction Materials 22 (2025) e04209 

17 



Fig. 18. PDPs.
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combustion ash with circulating fluidized bed combustion ash enhances the CO2 sequestration properties of belite-rich cement [194].

5. Graphical user interface

A user-friendly graphical interface (GUI), illustrated in Fig. 19, was developed to simplify predicting the durability characteristics 
of BCC. This tool significantly improves the efficiency of strength estimation by removing the need for traditional, labor-intensive, and 
time-consuming laboratory tests. Users can input relevant parameters to quickly generate accurate predictions of carbonation rates and 
chloride penetrability. Utilizing advanced machine learning algorithms, this interface provides a practical and accessible solution for 
researchers and industry professionals to assess durability performance without requiring physical testing.

6. Limitations of the study and research directions for future

The dataset utilized for this study included 362 experimental data sets for carbonation rate and 326 for chloride penetration, 
gathered from various literature sources. However, this dataset size is relatively small for developing a robust machine learning model. 
Increasing the dataset is crucial for improving the model’s accuracy. A larger and more diverse dataset would provide the model with 
more comprehensive information, enhancing its ability to generalize and perform better in predictions. Additionally, it is important to 
highlight that the data for this study was sourced from existing literature. The experimental conditions across these studies varied 
widely, resulting in a dataset with limited diversity. To develop more reliable models, it is crucial to conduct controlled experiments 
under consistent conditions and gather data from a single, unified source that accurately reflects real-world environmental scenarios. 
This approach would enhance the dataset’s uniformity and relevance, thereby improving the robustness and applicability of the 
machine learning models. Furthermore, gene expression programming could be employed to develop empirical formulae for pre
dicting the chloride penetration and carbonation rate of blended cement concrete. This approach would enable the derivation of 
precise mathematical models that account for the complex interactions between various factors affecting these properties. Moreover, it 
is worth noting that the exploration of hybrid models and machine learning models optimized using advanced optimization algorithms 
could be a valuable direction for future research. Integrating these sophisticated techniques has the potential to significantly enhance 
model accuracy and reliability.

7. Conclusions

This study employed GEP and MEP to predict the chloride penetration and carbonation rate of blended cement concrete. The 
database employed comprised 362 sets of experimental data for carbonation rate and 326 sets for chloride penetration, collected from 
various literature sources. To thoroughly assess the effectiveness of the proposed models, a range of statistical metrics including R2, adj 
R2, RMSE, MAE, RSR, a-10 index, and a-20 index were utilized. Moreover, to enhance the interpretability of model predictions, the 
SHAP method was utilized. Furthermore, PDP analysis was conducted to provide deeper insights. The key findings derived from this 
research effort are summarized below. 

Fig. 19. GUI for forecasting the durability characteristics of BCC.
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• Both GEP and MEP models consistently demonstrated superior performance across all statistical indicators for both carbonation 
rate and chloride penetration, making them the preferred choices for predicting these parameters in blended cement concrete. 
Notably, for chloride penetration, the GEP model attained a high R² score of 0.954, along with minimal MAE and RMSE values of 
0.252 and 1.050, respectively. Similarly, for carbonation rate, the GEP model attained a near-perfect R² value of 0.99, with cor
responding MAE and RMSE values of 0.230 and 1.100, underscoring its precision in modeling this parameter. For chloride 
penetration, the MEP model achieved a high R² score of 0.913, alongside minimal MAE and RMSE values of 0.489 and 1.434, 
respectively. Similarly, for carbonation rate, the MEP model achieved a near-perfect R² value of 0.985, with corresponding MAE 
and RMSE scores of 0.560 and 1.440, further highlighting its accuracy in modeling this parameter.

• The SHAP values highlight the significant impact of various parameters on the forecasts. In predicting chloride penetration, C/B 
emerged as the most impactful feature, followed by SF/B and W/B in terms of importance. For carbonation rate, W/B stood out as 
the most influential, with C/B and FA/B being the subsequent key factors. These intuitions are further supported by PDP plots.

• The SHAP summary plot clearly delineates the relationships between different parameters and the estimated characteristics. 
Regarding chloride penetration, there is a notable positive correlation with C/B, with W/B also displaying a positive relationship. 
Conversely, SF/B shows a negative impact on chloride penetration. For carbonation rate, W/B emerges as a key driver with a strong 
positive correlation, emphasizing its influence. FA/B also shows a positive association with the carbonation rate. However, it is 
notable that C/B displays a negative association with the carbonation rate.

• Mathematical equations have been developed to predict chloride penetration and carbonation resistance. Additionally, a graphical 
user interface is being developed to enable predictions based solely on input values, thereby eliminating the need for extensive 
physical testing.
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