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A B S T R A C T

This work introduces novel advancements in automatic voltage regulator (AVR) control, addressing key chal-
lenges and delivering innovative contributions. The primary motivation lies in enhancing AVR performance to
ensure stable and reliable voltage output. A crucial innovation in this work is the introduction of the random
walk aided artificial rabbits optimizer (RW-ARO). This novel optimization strategy incorporates a random walk
approach, enhancing the efficiency of AVR control schemes. The proposed cascaded RPIDD2-PI controller, fine-
tuned using the RW-ARO, stands out as a pioneering approach in the AVR domain. It demonstrates superior
stability, faster response times, enhanced robustness, and improved efficiency compared to existing methods.
Comparative analyses with established controller approaches reaffirm the exceptional performance of the pro-
posed method. The new approach results in shorter rise times, quicker settling times, and minimal overshoot,
highlighting its effectiveness and speed in achieving desired system responses. Moreover, the novel approach
attains higher phase and gain margins, showcasing its superior performance in the frequency domain. The
disturbance rejection and harmonic analysis are performed in order to demonstrate the efficacy of the proposed
approach for potential real-world applications. The latter analyses further cement the superior capability of the
proposed approach for the automatic voltage regulation.

1. Introduction

Automatic voltage regulators (AVRs) play a vital role in the realm of
electrical systems, ensuring a stable and reliable voltage output that is
essential for optimal performance and the protection of equipment [1,
2]. The efficacy of an AVR is dependent on its capacity to effectively
control essential variables, such as voltage regulation, response time,
stability, and efficiency [3]. Understanding of these factors is essential
for guaranteeing a dependable and flexible power supply, even in the
face of varying demands and input voltages [4–6]. As a result, the en-
gineering community is devoted to exploring innovative avenues [7,8]

to enhance AVR control methodologies [9–14].
The integration of a controller in conjunction with an AVR carries

substantial significance for a variety of convincing rationales. To begin
with, a controller serves as a centralized system that facilitates diligent
monitoring and regulation of the AVR, hence improving the efficiency
and effectiveness of voltage control. The controller serves as the central
point for gathering essential data pertaining to voltage, frequency, and
various other system factors, facilitating immediate modifications to
uphold voltage stability. In addition, a controller integrates advanced
features such as remote monitoring, defect detection, and automated
shutdown in the event of emergencies, serving as a safeguard against
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equipment damage, minimizing operational disruptions, and ensuring
the welfare of personnel. In essence, a controller enhances the depend-
ability and effectiveness of the system through the provision of timely
feedback and control over the AVR. This optimization enhances the ef-
ficiency of the generator or alternator, decreases energy consumption,
and prolongs the lifespan of the equipment. Consequently, a range of
controllers are utilized in this particular context, encompassing the
conventional proportional-integral-derivative (PID) as well as PIDA,
PIDD2, RPID, FOPID, and FOPIDD2. Each of these controllers offers
unique features to cater to a wide range of AVR control needs [15–25].

In the existing literature, the standard PID controller is widely
employed. It consists of three key components: the proportional (Kp),
integral (Ki), and derivative (Kd) gains, combined to compute the control
signal [26]. The promise of PID controller was demonstrated in a recent
study reported in ref [27]. This study focuses on optimizing the AVR by
employing PID controller and it utilizes integrated square error perfor-
mance index together with exponential distribution and transit search
optimizers for tuning the parameters. Comparative results with various
techniques demonstrate superior stability, reduced steady-state error,
and improved damping frequency, lowering oscillations and overshoot.
Robustness testing further confirms the reliability and effectiveness of
the proposed methods.

Despite the demonstrated efficacy of the classical PID controller, its
more advanced versions have greater promise. For example, The RPID
controller is a variation of the PID controller, introducing a modification
to the derivative term with an additional filter coefficient, N, enhancing
control flexibility [28]. FOPID controllers provide a more adaptable
approach by introducing fractional orders (λ and μ) to the integral and
derivative terms, allowing for customization based on the specific sys-
tem’s needs [29]. The PIDD2 controller extends the PID controller by
introducing a second-order derivative term, enhancing its capability to
address specific system dynamics [30].

It is feasible to encounter different control structures such as the ones
reported in [31–40]. All these controllers offer distinct advantages and
characteristics, making them suitable for AVR control applications.
However, in addition to control structures, the choice of a cost function
significantly impacts performance [41]. Various cost functions are uti-
lized by researchers, such as the integral of time-weighted squared error,
integral of squared error, integral of absolute error, and integral of
time-weighted absolute error. Additionally, the Zwe-Lee Gaing (ZLG)
cost function, which is based on dynamic response performance criteria,
is also employed [42–44].

Within a power system, the AVR serves a crucial function in the
preservation of voltage stability, hence guaranteeing that inter-
connected electrical apparatus functions within acceptable voltage
thresholds [45–49]. Inadequate voltage control can result in significant
repercussions, such as harm to equipment, operational malfunctions,
expensive periods of inactivity, and the requirement for major repairs.
Therefore, the AVR plays a crucial role in power systems that depend on
generators or alternators to produce energy. Although current control
approaches have demonstrated some degree of success, they are not
without their limits [50]. Challenges related to robustness, relatively
higher overshoots, prolonged rise, settling, and peak times, as well as
persistent steady-state errors, persist in these existing control ap-
proaches. These challenges underscore the motivation for our study. The
primary motivation behind this research is to propose an advanced
control scheme that can effectively address the aforementioned limita-
tions. Furthermore, as part of our motivation, we have developed a
novel optimizer based on the artificial rabbits optimizer (ARO) [51] to
fine-tune the parameters of our proposed control scheme, improving its
overall performance and adaptability. The objective of these endeavors
is to expand the limits of AVR control and provide a valuable contri-
bution to the advancement of power systems that are more resilient and
effective.

In line with the motivations presented above, we introduce a novel
cascaded RPIDD2-PI controller as an innovative alternative to existing

controller types. The purpose of this setup is to provide improved ac-
curacy, stability, and responsiveness in voltage control, thereby
addressing the constraints commonly associated with traditional ap-
proaches. Furthermore, we have developed an enhanced ARO (RW-
ARO) algorithm, integral to the motivation of this work. The original
ARO technique utilizes an iterative procedure in which rabbits can
randomly choose burrows. This method accelerates the process of
reaching a consensus, but it may inadvertently diminish the variety of
possible alternatives. To address these challenges, we integrated a
random walk (RW) strategy for enhanced explorative performance [52].
In this regard, the presented methodology in this study is different that
of the one presented in ref [21], which has also been used to improve the
structure of the original ARO. The improvement approach presented in
ref [21] employs adaptive local search (ALS) and experience-based
perturbed learning (EPL) mechanisms. In contrast, in this study, the
innovation lies in enhancing the exploration capability of the ARO al-
gorithm through the introduction of a random walk mechanism for the
first time. The optimization algorithm employed in this study refines the
parameters of the control scheme suggested, resulting in enhanced
performance and flexibility. Utilizing the ZLG cost function [53] for the
purpose of minimization has several benefits. The aforementioned
methodology effectively mitigates the performance metrics associated
with dynamic response, such as maximum overshoot, steady-state error,
settling time, and rising time. Consequently, the AVR system is able to
meet rigorous performance standards [54]. Significantly, this work is
the first publication on the application of such a methodology for AVR
systems.

The main objective of this study is to showcase the enhanced effec-
tiveness of the cascaded RPIDD2-PI controller, which has been optimized
using the innovative RW-ARO algorithm, in tackling the aforementioned
difficulties associated with AVR control. The goal is to outperform other
documented AVR control methods in terms of stability, response speed,
resilience, and effectiveness. To verify the superiority of the proposed
RW-ARO algorithm, the stability of the cascaded RPIDD2-PI controller
was assessed by employing the original ARO [51], differential evolution
[55], gravitational search algorithm [56] and particle swarm optimi-
zation [57]. The results indicated that the RW-ARO algorithm consis-
tently achieved the lowest average fitness value with accuracy.
Additionally, the convergence profile analysis demonstrated that
RW-ARO achieved a lower objective function value in fewer iterations
while maintaining the lowest value through continuous iterations
compared to the other algorithms. The RW-ARO-tuned system also
exhibited the fastest rise time, the shortest settling time, and minimal
overshoot, indicating a highly stable and well-tuned control system.
Moreover, the RW-ARO provided a higher phase margin and gain
margin compared to the other algorithms, signifying enhanced perfor-
mance and improved stability. Superiority verification in terms of
disturbance rejection and harmonic analysis further confirm the effec-
tiveness of the proposed approach.

We conducted a comparative analysis between the suggested RW-
ARO-based cascaded PIDD2-PI controller system and many other well-
established controller approaches documented in the literature to
evaluate its efficacy. These included the tree seed optimization based
PID controller [58], symbiotic organism search optimization based PID
with filter controller [59], slime mould optimization based FOPID
controller [60], teaching learned optimization based PIDA controller
[61] and improved Lévy flight distribution algorithm with fitness dis-
tance balance based PIDD2 controller [62]. The comparative responses
revealed that the proposed approach outperformed other methods in
terms of shorter rise times, settling times, and minimal overshoot,
highlighting its effectiveness and speed in achieving desired system re-
sponses. The comparative Bode plots illustrated that the proposed
approach achieved a higher phase margin and gain margin compared to
the other methods, signifying its robustness and superior performance in
the frequency domain. Further performance evaluation against the other
reported approaches [31–40] confirmed the efficacy of the proposed
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approach for the automatic voltage regulation. Besides, the external
disturbance rejection and the total harmonic distortion analyses were
performed to demonstrate the better convenience of the proposed
approach in terms of real conditions that may be encountered in
real-world.

2. Artificial Rabbits Optimizer

The ARO is a recently developed metaheuristic approach, drawing
inspiration from the survival strategies of rabbit populations [51]. The
objective of this algorithm is to simulate the complex behaviors
exhibited by rabbits, with a specific focus on their employment of
random concealment and detour foraging strategies. In this algorithm, a
population of virtual rabbits forms a collective, with each member being
responsible for a designated eating zone teeming with vegetation and
burrows. While foraging, these virtual rabbits embark on a serendipitous
exploration of burrows belonging to their peers in search of sustenance.
This process encompasses not only the collection of food resources but
also introduces a certain level of unpredictability into their actions,
achieved by updating their positions based on interactions with fellow
rabbits. This intricate foraging behavior can be expressed mathemati-
cally as follows:
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⇀
(t) + ρ.

(
zi
⇀
(t) − zj

⇀
(t)

)
+ round(0.5 .(0.05+ g1)).n1, i, j

= 1,2……,M and i ∕= j (1)

E =

⎛

⎜
⎜
⎝e − e

(
1− t
T

)2⎞

⎟
⎟
⎠.sin(2πg2) (2)

c(k) =
{
1
0
if k == h(u)

else , k = 1,…, d & u = 1, 2,…,
⌈
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where ρ = E.c, h = randperm(d), n1 follows a normal distribution, and
g1, g2 and g3 represent uniform random numbers within the interval [0,

1]. zi
⇀
(t), Δi

⇀
(t + 1), M, T, d, round, randperm, and E identify the present

location of ith candidate at time t, ith updated candidate at time t+ 1, the
population size of rabbits, the final number of repetitions, the problem
size the rounding process to the closest integer value, a random per-
mutation function encompassing values from 1 to the problem size and
the total time of the foraging round, respectively. During the phase of
exploitation, rabbits utilize a strategic approach of random concealment
in order to elude predators, wherein they construct burrows in close

Fig. 1. Flowchart of RW-ARO.
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proximity to their initial positions. During each cycle, a rabbit produces
b burrows in each dimension and chooses one to seek shelter. Mathe-
matically, this process can be expressed as:

BUij
⇀

(t) = zi
⇀
(t) + H.h.zi

⇀
(t), i = 1,2……,M and j = 1, 2……, d (4)

H =
1 − t + T

T
g4 (5)

h(k) =
{
1
0
if k == j
else , k = 1,…, d (6)

Here, n2 ∼ N(0, 1), H represents the hiding function, and d is the
number of formed burrows within the rabbit’s area. The size of the
neighborhood where burrows are generated shrinks as the number of
iterations increases. In the random hiding mode, the rabbit’s position is
updated as follows:

Δi
⇀

(t+ 1) = zi
⇀
(t) + ρ.

(
g4.BUir(t) − zi

⇀
(t)

)
, i = 1, 2,……M (7)
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[
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]

else , k = 1,…, d (8)

BUir(t) = zi
⇀
(t) + H.hr.zi

⇀
(t) (9)

In this context, BUir(t) indicates the burrow selected by the rabbit
during the concealment phase, and g4 and g5 denote random values
falling within the [0,1] range. The position of the rabbit is subject to
updates through either a detour foraging mode or a randomized hiding
process, as described in the following manner.

zs
⇀
(t+1) =

{
⇀ zs(t)

⇀ Δs(t + 1)
f(⇀ zs(t)) ≤ f(⇀ Δs(t + 1))
f(⇀ zs(t)) > f(⇀ Δs(t + 1)) (10)

Should the fitness of the sth rabbit’s candidate surpass the fitness of its
present position, the rabbit relocates to the candidate’s location,
determined by either Eq. (1) or Eq. (7). Rabbit energy diminishes as
iterations advance, facilitating the shift from an exploratory phase to an
exploitative one, characterized as follows:

A(t) = 4
(
1 −

t
T

)
ln
(
1
α

)

(11)

where α represents a random number. When A(t) > 1, the algorithm
focuses on global search (exploration), and when A(t) ≤ 1, it focuses on
local search (exploitation).

3. Random Walk ARO Algorithm

The random walk artificial rabbits optimization (RW-ARO) algo-
rithm leverages the concept of random walk [63], which is a stochastic
process characterized by consecutive random steps. In mathematical
terms, a random walk (RW) can be expressed as follows [64].

WN =
∑N

i=1
Si (12)

Here, WN represents the final state after N random steps, and Si
signifies each individual random step taken from a specific distribution.
The crucial aspect of a random walk is that the next state (WN) solely
depends on the current state (WN− 1) and the step taken from the current
state to the next state (SN). The step size, si, can either be fixed or vary in
each iteration. This variability is controlled by a parameter αi, where αi
> 0. Essentially, for a "rabbit" starting from a point x0 and ending at xn,
the random walk can be defined as a summation of these steps, as shown
in the equation below:

xn = x0 + α1s1 + α2s2 + … + αNsN = x0 +
∑N

i=1
αiSi (13)

The parameter αi dictates the step size, and this allows the random
walk to be utilized within various search algorithms. It serves the pur-
pose of perturbing the population of solutions, preventing them from
getting trapped in local optima. The choice of the step size distribution is
a critical factor in the search process. A small step size encourages
exploitation of the search space in the vicinity of the current state,
focusing on fine-tuning existing solutions. In contrast, a sufficiently
large step size promotes exploration of uncharted territories within the
search space, potentially unveiling new and promising regions to
explore. In line with this strategy, the RW-ARO algorithmwas developed
as an enhancement to the original ARO approach. Its goal is to improve
the search process (exploration) and the quality of solutions achieved. In
the context of an AVR system, this algorithm ensures that the AVR
system operates efficiently by optimizing its parameters and responses.
In the RW-ARO algorithm, the original ARO algorithm is performed as a
foundation, and then further improvements are achieved through the
incorporation of a random walk mechanism as outlined in the flowchart
given in Fig. 1. This random walk strategy helps diversify the solutions
and avoid convergence to local optima, ultimately leading to better and
more effective control of the AVR system. The RW-ARO algorithm’s
application in the AVR system demonstrates its efficacy in fine-tuning
and optimizing system parameters to maintain voltage regulation and
stability, making it a valuable tool in the field of control systems. Be-
sides, the developed RW-ARO algorithm is more preferrable in the
proposed design approach for the AVR as it does not require additional
parameter tuning beyond population size and total iteration number.

4. Experimental results on twenty-three benchmark functions

The performance of ARO and RW-ARO was assessed in our study,
encompassing a wide range of twenty-three benchmark functions. These

Table 1
Statistical results on unimodal functions.

Function (Name/Global
Optimum)

Statistical
metric

ARO RW-ARO

BF1 (“Sphere”/0) Average 1.0558E− 31 6.2215E¡34
Standard
deviation

5.7343E− 31 2.3148E¡33

Minimum 8.1192E− 41 1.2169E¡42
Maximum 3.1417E− 30 1.2398E¡32

BF2 (“Schwefel 2.2”/0) Average 2.1257E− 19 1.2112E¡19
Standard
deviation

5.8767E− 19 2.5143E¡19

Minimum 2.5847E− 23 6.5891E¡24
Maximum 3.0268E− 18 1.0189E¡18

BF3 (“Schwefel 1.2”/0) Average 2.0920E− 22 4.4928E¡24
Standard
deviation

1.1152E− 21 1.5680E¡23

Minimum 3.2710E− 33 2.1775E¡35
Maximum 6.1126E− 21 8.4084E¡23

BF4 (“Schwefel 2.21”/0) Average 6.1879E− 14 9.3145E¡15
Standard
deviation

2.7366E− 13 2.3281E¡14

Minimum 1.3534E− 17 1.3533E¡17
Maximum 1.5050E− 12 1.1621E¡13

BF5 (“Rosenbrock”/0) Average 1.4640E+00 9.9950E¡01
Standard
deviation

2.5371E+00 1.2516Eþ00

Minimum 7.0600E− 02 1.2700E¡02
Maximum 1.1210E+01 4.3556Eþ00

BF6 (“Step”/0) Average 0 0
Standard
deviation

0 0

Minimum 0 0
Maximum 0 0

BF7 (“Quartic”/0) Average 9.9374E− 04 8.8510E¡04
Standard
deviation

5.5624E¡04 5.6936E− 04

Minimum 1.7418E− 04 5.2610E¡05
Maximum 2.6215E− 03 2.6000E¡03
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functions are categorized into three groups: unimodal, multimodal, and
low-dimensional, and we conducted 30 runs for each with a population
size of 40 and a total of 300 iterations.

Table 1 presents the statistical results for unimodal benchmark
functions (BF1 to BF7). It is evident that RW-ARO consistently out-
performs ARO across all these functions. RW-ARO achieves lower
average fitness values, smaller standard deviations, and superior mini-
mum and maximum fitness values. Notably, in BF1 ("Sphere"), RW-ARO
reaches an astonishing minimum fitness value of 1.2169E− 42, signifi-
cantly better than ARO’s 8.1192E− 41.

Table 2 provides clear evidence of the superior performance of RW-
ARO in relation to the multimodal benchmark functions (BF8 to BF13).
It consistently provides more accurate results with lower average fitness
values, narrower standard deviations, and improved minimum and
maximum fitness values. In BF10 ("Ackley"), RW-ARO achieves a
maximum fitness value of 8.8818E− 16, whereas ARO reaches
4.4409E− 15, showcasing the precision of RW-ARO.

The results for low-dimensional benchmark functions (BF14 to BF23)
are presented in Table 3. RW-ARO continues to exhibit superior per-
formance. It maintains the precision and consistency that we observed in
the previous categories. For example, in BF20 ("Hartman 6"), RW-ARO
outperforms ARO in terms of both average and minimum fitness values.

5. AVR System

An AVR is a vital device utilized in power systems to control and
stabilize the output voltage of a generator. Its primary function is to
ensure a consistent output voltage, regardless of fluctuations in the load
or input voltage, as described in [3]. The AVR operates by receiving
signals from the generator’s output voltage (Vt), comparing them to a
reference voltage (Vref ), and adjusting the field current of the alternator
to maintain a steady output voltage. To achieve this control, the AVR
typically employs electronic components such as amplifiers, exciters,
generators, and sensors, as depicted in the block diagram shown in Fig. 2
[42].

The AVR is a crucial component in a power system since it is
responsible for maintaining voltage stability and ensuring that electrical
equipment linked to the system operates within acceptable voltage
thresholds. However, effective control is crucial to achieve this objec-
tive. Figs. 3 and 4 provide insights into the step response and Bode plot
of an uncontrolled AVR system, respectively. These figures reveal that
the system’s response exhibits pronounced oscillations, highlighting the
need for regulation. Given the high voltage levels in power systems,
these oscillations pose significant risks. Without proper voltage regula-
tion, electrical equipment may be at risk of damage or operational
failure, resulting in costly downtime and repairs.

6. Proposed RW-ARO-based design method

In AVR related studies, extended version standard PID controller
known as PID plus second order derivative (PIDD2) has so far been re-
ported [30]. By introducing a second-order derivative term, the PIDD2

controller effectively improves the system’s phase margin, minimizes
steady-state error, and enhances overall stability. However, it’s

Table 2
Statistical results on multimodal benchmark functios.

Function (Name/Global
Optimum)

Statistical
metric

ARO RW-ARO

BF8 (“Schwefel”/
− 1.2569E+04)

Average − 9.9154E+03 ¡9.9384Eþ03
Standard
deviation

4.3461Eþ02 4.9039E+02

Minimum − 1.0768E+04 ¡1.0905Eþ04
Maximum − 8.9888E+03 ¡9.0812Eþ03

BF9 (“Rastrigin”/0) Average 0 0
Standard
deviation

0 0

Minimum 0 0
Maximum 0 0

BF10 (“Ackley”/0) Average 1.1250E− 15 8.8818E¡16
Standard
deviation

9.0135E− 16 1.0029E¡31

Minimum 8.8818E− 16 8.8818E¡16
Maximum 4.4409E− 15 8.8818E¡16

BF11 (“Griewank”/0) Average 0 0
Standard
deviation

0 0

Minimum 0 0
Maximum 0 0

BF12 (“Penalized”/0) Average 4.2465E− 03 9.7430E¡04
Standard
deviation

1.9051E− 02 1.4000E¡03

Minimum 1.3022E− 04 5.8094E¡05
Maximum 1.0496E− 01 6.8000E¡03

BF13 (“Penalized2”/0) Average 8.0105E− 03 5.4336E¡03
Standard
deviation

8.0093E− 03 5.1455E¡03

Minimum 5.6591E− 04 3.4087E¡04
Maximum 2.7334E− 02 1.8562E¡02

Table 3
Statistical results on low-dimensional benchmark functions.

Function (Name/Global
Optimum)

Statistical
metric

ARO RW-ARO

BF14 (“Foxholes”/0.998) Average 9.9800E¡01 9.9800E¡01
Standard
deviation

3.3876E¡16 3.3876E¡16

Minimum 9.9800E¡01 9.9800E¡01
Maximum 9.9800E¡01 9.9800E¡01

BF15 (“Kowalik”/
3.0749E− 04)

Average 3.2383E− 04 3.1013E¡04
Standard
deviation

5.7098E− 05 6.9340E¡06

Minimum 3.0749E− 04 3.0749E¡04
Maximum 6.2191E− 04 3.4243E¡04

BF16 (“Six-Hump Camel”/
− 1.0316)

Average − 1.0316E+00 ¡1.0316Eþ00
Standard
deviation

1.8278E− 15 0

Minimum − 1.0316E+00 ¡1.0316Eþ00
Maximum − 1.0316E+00 ¡1.0316Eþ00

BF17 (“Branin”/0.39789) Average 3.9790E¡01 3.9790E¡01
Standard
deviation

1.8266E− 12 1.7964E¡13

Minimum 3.9790E¡01 3.9790E¡01
Maximum 3.9790E¡01 3.9790E¡01

BF18 (“Goldstein-Price”/
3)

Average 3.0000Eþ00 3.0000Eþ00
Standard
deviation

4.5168E¡16 4.5168E¡16

Minimum 3.0000Eþ00 3.0000Eþ00
Maximum 3.0000Eþ00 3.0000Eþ00

BF19 (“Hartman 3”/
− 3.8628)

Average ¡3.8628Eþ00 ¡3.8628Eþ00
Standard
deviation

2.7101E¡15 2.7101E¡15

Minimum ¡3.8628Eþ00 ¡3.8628Eþ00
Maximum ¡3.8628Eþ00 ¡3.8628Eþ00

BF20 (“Hartman 6”/
− 3.322)

Average − 3.2863E+00 ¡3.3061Eþ00
Standard
deviation

5.5401E− 02 4.1100E¡02

Minimum ¡3.3220Eþ00 ¡3.3220Eþ00
Maximum ¡3.2031Eþ00 ¡3.2031Eþ00

BF21 (“Shekel 5”/
− 10.1532)

Average − 9.8999E+00 ¡1.0150Eþ01
Standard
deviation

1.3730E+00 1.6300E¡02

Minimum ¡1.0153Eþ01 ¡1.0153Eþ01
Maximum − 2.6304E+00 ¡1.0064Eþ01

BF22 (“Shekel 7”/
− 10.4029)

Average − 1.0003E+01 ¡1.0395Eþ01
Standard
deviation

1.5319E+00 1.4199E¡09

Minimum ¡1.0403Eþ01 ¡1.0403Eþ01
Maximum − 3.7243E+00 ¡1.0403Eþ01

BF23 (“Shekel 10”/
− 10.5364)

Average − 1.0313E+01 ¡1.0536Eþ01
Standard
deviation

1.2234E+00 3.2242E¡05

Minimum ¡1.0536Eþ01 ¡1.0536Eþ01
Maximum − 3.8354E+00 ¡1.0536Eþ01
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important to note that the additional derivative term in this controller
may not be effective in high-frequency domains. This is due to the risk of
amplifying control signals with sensor noise, which can negatively
impact performance. To mitigate this issue, a low-pass filter can be
added to the derivative term which is known as real PIDD2 (RPIDD2)
controller [65].

In order to further increase the performance of the controller, we
have also adopted a PI controller in a cascaded manner, resulting in the
transfer function of the cascaded real PIDD2 controller as shown in Eq.

(14):

CPIDD2 − PI(s) =

[

Kp1 +
Ki1
s
+Kd1

N1s
s+ N1

+Kd2
(
N2s
s+ N2

)2
]

×

(

Kp2 +
Ki2
s

)

(14)

where Kp1, Ki1, Kd1, and Kd2 denote proportional, integral, derivative,
and second-order derivative gains, respectively. N1 and N2 represent the
filter coefficients. Besides, Kp2 and Ki2 are proportional and integral
gains of the employed PI controller, respectively. In light of this
expression, Fig. 5 illustrates the block diagram of the proposed cascaded
real PIDD2-PI controller.

In this study, the following F cost function [42,53] has been
employed for minimization as it can effectively minimize the dynamic
response performance criteria such as percentage maximum overshoot
(Mp), steady-state error (Ess), settling time (St) and rise time (Rt) [54]. To
reach a good performance, the balancing coefficient, ρ, has been set to 1.
This coefficient is used for the optimal selection of performance metrics
such as rise time, settling time, overshoot, and steady-state error, which
are among the most important stability criteria of a system. Although the
value of this coefficient varies, it is generally taken as 1 in literature [41,
66–68].

F = ρ × (St − Rt) + (1 − ρ) ×
(
Mp +Ess

)
(15)

For the minimization of F cost function, the limits of the parameters
of cascaded real PIDD2-PI controller have been chosen as 10− 3 ≤ Kp1,
Ki1, Kd1, Kp2, Ki2, Kd2 ≤ 4 and 100 ≤ N1, N2 ≤ 2000. Through detailed
and extensive analyses, it has been deemed appropriate to select the
controller parameters within these limits. If the specified limits are
exceeded, significant impacts on the stability performance of the
controller would occur.

Fig. 6 shows the implementation of the RW-ARO to the AVR system
controlled by the cascaded RPIDD2-PI controllers. The related Fig. also
provides the transfer functions of the respective AVR components
(amplifier, exciter, generator and sensor) [69–72]. As depicted in the
latter figure, the RW-ARO optimizes the controller parameters through
the iterations by evaluating the F cost function. In this way, it achieves
the best controller parameters for the AVR system.

7. Comparative simulation results on AVR system

7.1. Superiority verification of the RW-ARO over other competitive
optimizers

To verify the superiority of the proposed RW-ARO algorithm, the
stability of the cascaded real PIDD2-PI controller has been assessed by
employing the original ARO [51], differential evolution (DE) [55],
gravitational search algorithm (GSA) [56] and particle swarm optimi-
zation (PSO) [57]. The population size, total number of iterations and
number of runs have been selected as 40, 50 and 30, respectively.

Table 4 presents numerical results for comparative assessment of the
statistical performance of the algorithms. The results in Table 4 indicate

Fig. 2. Block diagram of an uncontrolled AVR system.

Fig. 3. Step response of an uncontrolled AVR system.

Fig. 4. Bode plot of an uncontrolled AVR system.
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that the RW-ARO algorithm outperforms the other optimization algo-
rithms. It achieves the lowest average fitness value (6.0415E− 03)
among all algorithms, which is notably better than ARO, DE, GSA, and
PSO. The standard deviation for RW-ARO is also the smallest
(9.0497E− 05), highlighting its consistency and accuracy. Furthermore,
RW-ARO reaches the lowest minimum fitness value (5.8973E− 03) and
maintains a competitive maximum fitness value (6.2222E− 03).

In Fig. 7, we can observe the convergence behavior of the algorithms.
RW-ARO stands out by achieving a lower objective function value in
fewer iterations compared to the other algorithms. It not only converges
faster but also maintains the lowest value through continuous iterations,

indicating its efficiency in finding optimal solutions.
Table 5 displays the obtained controller parameters via RW-ARO,

ARO, DE, GSA and PSO algorithms. With the adoption of those param-
eters, the comparative responses presented in Figs. 8 and 9 can be ob-
tained for employed algorithms. Fig. 8 illustrates the comparative step
responses for the AVR systems tuned by the different algorithms. It is
evident that the RW-ARO-tuned system exhibits the fastest rise time, the
shortest settling time, and minimal overshoot among all the systems.
This indicates that RW-ARO not only converges quickly but also pro-
vides a highly stable and well-tuned control system. In Fig. 9, the Bode
plots for the open-loop AVR systems reveal that RW-ARO provides a

Fig. 5. Block diagram of proposed cascaded real PIDD2-PI controller.

Fig. 6. Detailed block diagram of proposed novel approach.

Table 4
Statistical performance comparison for AVR system

Statistical metric RW-ARO ARO DE GSA PSO

Average 6.0415E¡03 7.1301E− 03 8.3352E− 03 7.5815E− 03 8.8660E− 03
Standard deviation 9.0497E¡05 1.3273E− 04 1.0649E− 04 1.1249E− 04 1.1615E− 04
Minimum 5.8973E¡03 6.9547E− 03 8.1730E− 03 7.4272E− 03 8.7000E− 03
Maximum 6.2222E¡03 7.4853E− 03 8.6127E− 03 7.8268E− 03 9.1463E− 03
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higher phase margin and gain margin compared to the other algorithms.
This signifies that the RW-ARO-tuned system is more robust and exhibits
better control performance, with improved stability and robustness in
the frequency domain. The related illustrations are numerically sup-
ported with the data presented in Table 6.

7.2. Superiority verification of the proposed approach over other effective
approaches

To assess the effectiveness of the proposed RW-ARO/PIDD2-PI

controller approach, we conducted a comparative analysis with various
other well-established controller methodologies documented in the
literature. These approaches include tree seed algorithm (TSA) based
PID controller [58], symbiotic organism search (SOS) algorithm-based
PID with filter (PID-F) controller [59], slime mould algorithm (SMA)
based fractional order PID (FOPID) controller [60], teaching learned
optimization (TLBO) based PID acceleration (PIDA) controller [61] and
improved Lévy flight distribution algorithm with fitness distance bal-
ance (FDB-LFD) based PIDD2 controller [62].

In Fig. 10, we observe the comparative step responses for the RW-
ARO/PIDD2-PI controller approach and the other recent reported ap-
proaches. It is evident that the RW-ARO/PIDD2-PI approach out-
performs the other methods with the shortest rise time, settling time,
and minimal overshoot. This demonstrates the effectiveness and speed
of the proposed controller approach in achieving desired system
responses.

Fig. 11 presents the comparative Bode plots for the RW-ARO/PIDD2-
PI controller approach and the other recent reported approaches. These
plots reveal that the RW-ARO/PIDD2-PI approach achieves a higher
phase margin and gain margin compared to the other methods. This
signifies its robustness and superior performance in the frequency
domain, highlighting its ability to provide stable and accurate control
over a wide range of frequencies.

The numerical results in Table 7 provide clear evidence of the su-
periority of the RW-ARO/PIDD2-PI approach over the other controllers
in terms of various stability metrics. The RW-ARO/PIDD2-PI controller
exhibits the shortest rise time (0.0318 seconds) among all the control-
lers, showcasing its ability to reach the desired setpoint rapidly. In
comparison, most other controllers require considerably more time to
achieve the same response. It also excels in settling time (0.0478 sec-
onds), outperforming all other controllers. It quickly settles to a stable
state, indicating its efficiency in reducing oscillations and ensuring
system stability. Remarkably, the RW-ARO/PIDD2-PI controller ach-
ieves zero overshoot, signifying that it can maintain system response
without any initial transitory deviation. In contrast, some other con-
trollers exhibit significant overshoot, indicating less effective control.

The proposed approach also offers a substantial phase margin
(70.6399 degrees), indicating its robustness and ability to handle dis-
turbances and variations. This surpasses most other controllers, which
have smaller phase margins. It also boasts a notably higher gain margin
(28.5713 dB) compared to other controllers. A higher gain margin
suggests better stability and resilience against changes in the system’s
characteristics. The RW-ARO/PIDD2-PI controller exhibits a broader
bandwidth (68.3194 rad/s), enabling it to effectively control the system

Fig. 7. Convergence evolutions of RW-ARO, ARO, DE, GSA and
PSO algorithms.

Table 5
Obtained controller parameters via RW-ARO, ARO, DE, GSA and PSO.

Controller parameter RW-ARO ARO DE GSA PSO

Kp1 3.8975 3.9716 3.8570 3.4083 3.2206
Ki1 0.65239 1.3686 1.6342 1.4468 0.85335
Kd1 1.4213 1.7505 1.9765 1.2922 1.7663
Kp2 1.2530 0.95493 0.80180 1.3570 0.98144
Ki2 0.30956 0.2633 0.30084 0.057177 0.29219
Kd2 0.12524 0.14375 0.15255 0.10611 0.13404
N1 1887.8 1879.7 1921.8 1143.6 987.64
N2 1975.1 981.98 839.57 1236.2 1730.8

Fig. 8. Comparative step responses for RW-ARO, ARO, DE, GSA and PSO tuned AVR system.
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over a wide range of frequencies. This is an advantage, particularly in
systems with varying dynamics.

Further performance comparisons were also considered in this study
in order to better demonstrate the efficacy of the proposed approach
from a wider perspective. In this regard, the reported works in refs.
[31–40] were also considered. In Table 8, the comparative time domain
performance analysis against reported works in the literature showcases
the efficacy of the proposed RW-ARO/PIDD2-PI in terms of rise time,
settling time, and overshoot. The proposed method exhibits a remark-
ably low rise time of 0.0318 s, indicating its ability to reach a stable
output voltage quickly after a disturbance. Similarly, the settling time of

0.0478 s for the proposed method suggests its capability to settle down
to the desired output voltage within a short duration after a disturbance.
Besides, the proposed method shows no overshoot, which is a significant
improvement compared to several other methods in the literature.
Comparing these results with other reported methods, it’s evident that
the RW-ARO/PIDD2-PI approach outperforms many of them in terms of
both rise time and settling time while maintaining zero overshoot. This
suggests the effectiveness and superiority of the proposed method in
enhancing the performance of the AVR system.

7.3. Superiority verification of the RW-ARO-based approach via
disturbance rejection and harmonic analysis

7.3.1. Considering external disturbance, noise disturbance and saturation-
related nonlinearities

In this study, the performance of the RW-ARO-based approach was
also assessed by considering the more real conditions such as measure-
ment noise as a disturbance source and the saturation at the input of the
generator as a nonlinear effect in the AVR system. Fig. 12 displays the
real model of the AVR system with the stated non-ideal conditions. For
the saturation block of Fig. 12, the saturating upper and lower values
were chosen to be +10 pu and − 10 pu, respectively [2].

With regards to measurement noise, a white Gaussian noises with the
signal-to-noise ratio (SNR) of 30 dBwas considered. Besides, an external
disturbance of 30% was also introduced to the system at time t = 1 s.
The non-ideal model response of the proposed method considering these
cases is presented in Fig. 13. As can be observed from this figure, the
proposed method demonstrates a good immunity against noise and
disturbance, thus, handles non-ideal cases effectively.

7.3.2. Total harmonic distortion
In this section, we analyze the results of the total harmonic distortion

(THD) which is a crucial metric for assessing the quality of an AVR
system. Maintaining THD values as low as possible is imperative to
ensure the connected equipment remains unaffected by electrical noise
and disturbances. In this study, the analysis of THD was conducted
utilizing the fast Fourier transform (FFT) tool within the MATLAB/
Simulink environment. The fundamental frequency utilized in the sys-
tem was set to 0.25 Hz.

To gauge the performance of the AVR system, Fig. 14 showcases the
output voltage response concerning a reference sine wave input.
Remarkably, the output of the proposed RW-ARO/PIDD2-PI controller
aligns closely with the reference signal, exhibiting minimal distortion
and highlighting the effectiveness of the approach.

Fig. 9. Comparative Bode plots for RW-ARO, ARO, DE, GSA and PSO tuned open-loop AVR systems.

Table 6
Time and frequency domains based comparative results.

Stability metric RW-ARO ARO DE GSA PSO

Rise time (s) 0.0318 0.0355 0.0402 0.0343 0.0388
Settling time (s) 0.0478 0.0544 0.0624 0.0519 0.0588
Overshoot (%) 0 0 0 0.1464 0.2109
Phase margin (◦) 70.6399 69.9419 70.0744 70.1472 70.5673
Gain margin (dB) 28.5713 23.9044 23.5564 25.4066 28.8856
Bandwidth (rad/s) 68.3194 61.0391 53.7273 63.1620 55.3019

Fig. 10. Comparative step responses for RW-ARO/PIDD2-PI and other recent
reported approaches.
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Fig. 15 presents the plot of THD level against frequency. As shown in
this figure, the THD oscillates around a mere 0.13%, signifying a good
achievement. This result stands in stark contrast to reported values
ranging from 0.5% to 4%, underscoring a substantial improvement
achieved through the proposed approach. The analysis of THD un-
derscores the effectiveness of the proposed RW-ARO/PIDD2-PI
controller in mitigating harmonic distortions within the AVR system. By
achieving remarkably low THD levels, the proposed approach demon-
strates its potential in ensuring the reliability and stability of connected
electrical equipment.

8. Conclusion

This study has presented a significant advancement in AVR control,
focusing on addressing inherent challenges and introducing pioneering
contributions to the field. The central motivation was to enhance AVR

performance to ensure a consistent and reliable voltage output, critical
for optimal electrical system operation and equipment protection. The
core of this innovation lies in the development and application of the
RW-ARO within the AVR control framework. The RW-ARO strategy le-
verages a random walk approach to optimize control parameters,
resulting in notable improvements in the efficiency and effectiveness of
AVR schemes. The novel cascaded RPIDD2-PI controller, fine-tuned
using RW-ARO, represents a groundbreaking advancement in the
realm of AVR systems. Its performance surpasses existing methods, of-
fering superior stability, faster response times, enhanced robustness, and
improved energy efficiency. Comparative assessments with established
controller approaches reaffirm the unique benefits of the proposed
methodology. The new approach consistently exhibits shorter rise times,
faster settling times, and minimal overshoot, underscoring its excep-
tional effectiveness and efficiency in achieving desired system re-
sponses. Additionally, Bode plots illustrate that the novel approach
consistently achieves higher phase and gain margins, further high-
lighting its superior performance in the frequency domain. In conclu-
sion, this work marks a significant milestone in the domain of AVR
control. The incorporation of innovative optimization techniques and
advanced controller configurations leads to substantial improvements in
stability, speed, robustness, and efficiency. The introduction of the RW-
ARO optimization strategy and the cascaded RPIDD2-PI controller, fine-
tuned using this novel approach, underpin the key contributions of this
study. Additional assessment of performance compared to previously
reported methods reaffirmed the effectiveness of the proposed approach
in automatic voltage regulation. Furthermore, analyses of external
disturbance rejection and total harmonic distortion were conducted to
showcase the superior suitability of the proposed approach for real-
world scenarios. These advancements offer enhanced control capabil-
ities and contribute to the development of more resilient and efficient
power systems. The insights and innovations presented in this work lay
the foundation for future advancements in AVR system control strategies
and power system stability.

Fig. 11. Comparative Bode plots for RW-ARO/PIDD2-PI and other recent reported approaches.

Table 7
Comparative numerical values for time and frequency domains related performance metrics.

Stability metric RW-ARO/PIDD2-PI TSA/PID [58] SOS/PID-F [59] SMA/FOPID [60] TLBO/PIDA [61] FDB-LFD/PIDD2 [62]

Rise time (s) 0.0318 0.1312 0.2658 0.0875 0.2731 0.0638
Settling time (s) 0.0478 0.7577 1.3527 0.4979 1.0668 0.0925
Overshoot (%) 0 15.5811 0.0224 15.9979 1.0029 1.7034
Phase margin (◦) 70.6399 48.6094 66.9107 49.1418 71.1892 72.0921
Gain margin (dB) 28.5713 19.1608 23.8855 20.1925 23.8899 Infinite
Bandwidth (rad/s) 68.3194 16.2326 8.6985 23.9141 8.7835 32.4815

Table 8
Comparative time domain performance analysis against reported works in the
literature.

Proposed control method Rise time
(s)

Settling time
(s)

Overshoot
(%)

RW-ARO/PIDD2-PI (novel
method)

0.0318 0.0478 0

ICA/Gray PID [31] 0.2305 0.3193 1.23
EO/FOPID-DN [32] 0.076 0.144 0
GA/Fuzzy PID [33] 0.1857 0.2963 1.0407
iRUN/Real PIDD2 [34] 0.0399 0.0626 0
Nonlinear SCA/Sigmoid PID
[35]

0.498 0.579 2.2

PSO/FHODFC [36] 0.373 0.685 0.001
WOA/2DOF fractional PI [37] 1.12 1.74 1.17
IABC/LOA-FOPID [38] 0.1373 0.3129 2.3323
MA/PIλ1Iλ2Dµ1Dµ2 [39] 0.0323 0.0500 0
h-ASPSO/PID [40] 0.3097 0.4679 1.2476
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Fig. 12. Real model of the AVR system with non-ideal conditions.

Fig. 13. Non-ideal model response of RW-ARO based cascaded real PIDD2-PI controlled AVR system with measurement noise and external disturbance.

Fig. 14. Output voltage change against a reference sine wave.
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