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Abstract: The application of magnetic resonance imaging (MRI) in the classification of brain tumors
is constrained by the complex and time-consuming characteristics of traditional diagnostics proce-
dures, mainly because of the need for a thorough assessment across several regions. Nevertheless,
advancements in deep learning (DL) have facilitated the development of an automated system that
improves the identification and assessment of medical images, effectively addressing these difficulties.
Convolutional neural networks (CNNs) have emerged as steadfast tools for image classification and
visual perception. This study introduces an innovative approach that combines CNNs with a hybrid
attention mechanism to classify primary brain tumors, including glioma, meningioma, pituitary,
and no-tumor cases. The proposed algorithm was rigorously tested with benchmark data from
well-documented sources in the literature. It was evaluated alongside established pre-trained models
such as Xception, ResNet50V2, Densenet201, ResNet101V2, and DenseNet169. The performance
metrics of the proposed method were remarkable, demonstrating classification accuracy of 98.33%,
precision and recall of 98.30%, and F1-score of 98.20%. The experimental finding highlights the
superior performance of the new approach in identifying the most frequent types of brain tumors.
Furthermore, the method shows excellent generalization capabilities, making it an invaluable tool for
healthcare in diagnosing brain conditions accurately and efficiently.

Keywords: deep learning; brain tumors; magnetic resonance imaging (MRI); classification; healthcare;
neural network; medical image

1. Introduction

An abnormal cell that proliferates within brain tissues can result in the transformation
of a brain tumor. Tumors are the second most common cause of mortality globally, as
reported by the World Health Organization [1,2]. Brain tumors are primarily characterized
as benign or malignant. Benign tumors are often not considered a significant threat to a
person’s health. The main reasons include their inability to infiltrate neighboring tissues or
cells, slower growth compared to malignant tumors, and limited spreading. In addition,
recurrence after surgically removing benign tumors is typically rare.
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On the other hand, malignant tumors tend to infect nearby organs and tissues more
than benign tumors. They can significantly disrupt normal bodily functions if not treated
swiftly and effectively. Early detection is crucial for the survival of patients with brain
tumors, which are primarily classified into three forms: meningioma, glioma, and pituitary
tumors. Moreover, meningioma and pituitary tumors are classified as benign, whereas
glioma tumors are recognized as malignant. Furthermore, meningioma tumors arise from
the meninges, the three layers of tissue covering the brain and spinal cord. Gliomas develop
from ependymal cells, oligodendrocytes, and astrocytes, and pituitary tumors develop in
the pituitary gland [3–5].

Consequently, it is crucial to discriminate between different tumor types to identify
a patient precisely and select the most suitable treatment. Magnetic resonance imaging
(MRI) is frequently used to identify various types of cancer despite the obstacles associated
with human interpretation and managing huge quantities of data. Biopsies are commonly
employed for the diagnosis and treatment of brain lesions.

However, the radiologist’s proficiency greatly impacts their ability to identify brain
cancers quickly. Developing a diagnostic mechanism is essential for diagnosing cancers
using MR imaging [6]. Implementing this method will maintain the objectivity of the
diagnostic process and effectively decrease the chances of handed procedures. Artificial
intelligence (AI) and machine learning (ML) have greatly revolutionized the healthcare
industry [7–11]. The advent of technologies has brought forth innovative methodologies
for radiologists in classifying MRI images, effectively tackling numerous health-related
obstacles [12,13]. Medical imaging methods are acknowledged for their efficacy and are
extensively used to identify cancer. The approach is significant because of its non-invasive
nature, as it does not require intrusive processes [14,15].

Medical imaging is significant in healthcare, particularly for attaining all-inclusive
visualization of brain tissue, which is essential in classifying brain tumors. The tumors
vary in shape, size, and density. The tumors that appear similar may have different clinical
characteristics. The large number of images in medical databases makes it complicated
to classify MRI scans using neural networks effectively. Advances in generating MRI
images from various perspectives could significantly increase the data sizes. In order to
achieve better classification precision, the data must be preprocessed before feeding into
different networks. CNNs are known for their robust characteristics, which include reduced
preprocessing requirements and improved feature extraction abilities. Simpler network
structures save resources during setup and training while increasing operating efficiency.
Nonetheless, the use of these methods in clinical diagnostics and handheld tools may be
limited by resource constraints. The appropriate approach is important for routine clinical
evaluation of brain tumors.

The main contributions of this study are delineated as follows:

• This study presents a novel approach that combines hybrid attention with convolution
neural networks to improve the efficiency of diagnosing glioma, meningioma, pituitary,
and no-tumor cases.

• The objective of this study is to emphasize the effectiveness of the proposed method
in comparison to previous studies, showcasing its capacity to provide effective results
with fewer resources. Moreover, the method’s capacity for usage in a clinical research
context is thoroughly evaluated.

• The findings from this study demonstrate that the proposed method surpasses the
previous studies in terms of performance, as demonstrated on the benchmark dataset.
Additionally, the study evaluates the prediction competencies of the framework by
comparing it to pre-trained models, ultimately improving diagnostics methodologies
and clinical necessities.

This article contains several sections. Section 2 of this study provides an overview of
the literature. Section 3 highlights the dataset, methodology, and optimization approach.
Section 4 presents the results derived from the experiments. Section 5 entails a discussion,
and finally, Section 6 provides a conclusion.
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2. Literature Review

Due to the above considerations, it may be difficult to distinguish between different
forms of brain tumors. The authors explored the use of deep learning in the field of
radiology, detailing the essential steps for implementing DL projects within this area. In
addition, they explored the possible applications of DL in various medical sectors. Although
DL has shown potential in some radiology applications, it is still not advanced enough to
take over the roles played by radiologists [16,17]. However, there is potential for combining
radiologists with deep learning procedures to improve diagnostic efficacy and precision.
Various research approaches have been used to explore the effectiveness of MRI in the
classification of brain tumors. Gumaei et al. proposed a strategy for classifying brain tumors
that combines hybrid feature extraction techniques with RELM. The authors attained
an accuracy of 94.23% by preprocessing brain images with min–max normalization and
features extracted by the hybrid method and classifying them using the RELM method [18].
Srujan et al. constructed a deep learning system of sixteen CNN layers. This system
included the Rectified Linear Unit (ReLU) as an activation function, and utilized the
Adam optimizer within its architecture. The system attained a 95.36% accuracy rate,
demonstrating its ability to classify various primary types of cancers [19]. Kaplan et al.
introduced a novel classification method for identifying brain malignancies utilizing nLBP
and αLBP for feature extraction. This approach particularly achieved a notable accuracy
rate of 95.56% when combined with the nLBPD = 1 feature extraction method with the
KNN classifier [14].

Huang et al. developed a CNNBCN network to categorize brain tumors. The method
was evaluated using a randomly generated graph algorithm, which yielded an accuracy
rate of 95.49% [20]. Deepak et al. employed a combination of CNN and SVM methods
to categorize medical images depicting brain tumors based on a fivefold cross-validation
method; the automated system demonstrated a notable accuracy rate of 95.82%, surpass-
ing the performance of the state-of-the-art approaches [21]. Ghassemi et al. suggested a
deep learning framework as a potential treatment method for classifying brain cancers.
The framework extracted robust features from MRI images using pre-trained networks as
GAN discriminators and achieved a 95.6% accuracy rate. In addition, the framework was
involved in fivefold cross-validation, data augmentation, and dropout [22]. Ayadi et al. sug-
gested brain tumor classification algorithms that included normalization, dense speeded-up
robust features, and the histogram of gradient methods to improve the image quality and
provide distinctive features. Additionally, the authors utilized Support Vector Machines
(SVMs) as a classifier and attained a classification accuracy of 90.27% on the benchmarked
dataset [23].

Noreen et al. reformed pre-trained networks, namely InceptionV3 and Xception,
for classifying brain tumors. The models were combined with various ML classifiers,
such as softmax, Random Forest, KNN, and SVM, and attained 94.34% accuracy with the
InceptionV3 ensemble [24]. Ahmad et al. suggested a deep generative neural network as a
classifier to categorize brain tumors. The method used generative adversarial networks
combined with a variational auto-encoder to generate realistic tumor MRI images, which
attained 96.25% accuracy [25]. Swati et al. proposed block-wise transfer learning to
employ a pre-trained deep convolutional neural network (CNN) model. This approach was
evaluated through 5-fold cross-validation using a representative dataset of T1-weighted
images with minimal preprocessing approaches and eliminated manually designed features.
The method attained an accuracy of 94.82% with VGG19, 94.65% with VGG16, and 89.95%
with AlexNet [26]. Satyanarayana et al. proposed a method integrating CNN with mass
correlation analysis (MCA). Initially, the Average Mass Elimination Algorithm (AMEA)
removed unwanted noise. Subsequently, the CNN model was trained on these features, and
MCA played a critical role in determining the weight measures assumed and maximizing
the model performance. The strategy yielded an impressive 94% accuracy rate [27].

Deepak et al. proposed a class-weighted focal loss to solve the unbalanced training
data problem in CNN-based tumor classification data. The authors investigated the effect



Bioengineering 2024, 11, 701 4 of 17

of the loss on feature learning. They proposed two methods for improving the perfor-
mance: majority voting, which involved aggregating classifier prediction from feature sets,
and deep feature fusion, which involved combining features from CNNs trained using
different loss functions. Furthermore, SVM and KNN models attained 94.9% and 95.6%
accuracy, respectively, outperforming typical CNNs trained with cross-entropy loss [28].
Rezaei et al. introduced an integrated method for segmenting and classifying brain tumors
using Figshare data. The methodologies encompassed feature extraction, noise reduction,
Support Vector Machine (SVM)-based implementation for segmentation, and differentiation
extraction (DE) selection. The classification of tumor slices was performed using WSVM,
HIK-SVM, and KNN classifiers. When combined with MODE-based ensemble approaches,
these classifiers demonstrated a precision rate of 92.46% [29].

3. Materials and Methods

The present study introduces an innovative methodology comprising several stages:
The framework commenced by resizing the dimensions of the input data in order to
achieve consistency in aspect ratio. Subsequently, a process of labeling was used to ensure
a uniform distribution of data. The dataset was distributed into two subsets: 80% was used
for training purposes, and the remaining 20% was reserved for testing. Following this, the
model was trained through 5-fold cross-validation [30] using the Adam optimizer [31,32],
which integrated callbacks for learning rate adjustment during the training procedure.
Various metrics were employed to assess the efficacy of the model, including accuracy,
precision, recall, and the F1-score, specifically for classification tasks. The procedural
framework of the suggested methodology is illustrated in Figure 1.

Figure 1. Procedural structure of the proposed framework.

3.1. Dataset

This study utilized an openly available MRI data set from the Kaggle repository [33].
The dataset integrates three publicly accessible sources: Figshare [34], SARTAJ [35], and
BR35H [36]. It comprises 7023 grayscale and jpg format MRIs of the human brain, covering
primary brain tumor types such as glioma, meningioma, and pituitary, as well as images
without tumors. Figure 2 illustrates the various tumor types included in the dataset.

3.2. Proposed Architecture

In this study, a novel convolutional neural network is employed, incorporating ad-
vanced attention mechanisms to enhance the feature extraction for brain tumor classification.
The proposed architecture consists of a convolutional block and a hybrid attention block.
The convolutional block, as shown in Figure 3, is an integral module of the proposed model
that comprises convolutional layers, batch normalization, ReLU, and skip connections. The
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block utilized two distinct convolutional operations, each followed by batch normalization
(BN) [37], to optimize learning efficiency and model stability. Initially, input was processed
through a convolutional operation using kernel size 3 × 3, stride size of 1, “same” padding,
and L2 regularization (10−3), extracting spatial features while preserving the input dimen-
sion. The output was normalized using batch normalization (BN). This was followed by the
ReLU activation function which introduced non-linearity, enhancing the network’s ability
to learn the complex pattern.

Figure 2. The different types of tumors contained in the dataset.

Figure 3. Illustration of the convolution blocks utilized in the suggested design.

Following the initial convolutional process, the second convolutional operation was
performed using a 1 × 1 kernel and regularized by L2 10−3. This convolutional primarily
aids in increasing feature map depth without altering the spatial dimension of the data.
Subsequently, a batch normalization layer was employed, which further assists in stabi-
lizing the model by ensuring a normalized feature map before activation. Furthermore,
shortcut path adjustments were configured; if the number of filters or stride did not match
between the shortcut path and the output from the convolutional layers, the shortcut was
adjusted with (1 × 1 convolution, stride = 1, same padding, and L2 10−3 followed by batch
normalization) to match the main path’s stride and padding. This ensures the smooth
addition of the shortcut, preserves essential information, and improves training stability.
Finally, the output of the main path and adjusted shortcut were merged using an element-
wise addition followed by a ReLU activation [38]. This combination allows for effective
integration of features and enhances the stability and robustness of the training process.
Moreover, max-pooling layers with a 2 × 2 pool size and stride of two were strategically
positioned after certain convolutional blocks in the model to decrease the spatial dimension.

As shown in Figure 4, convolutional blocks involve increasing filter sizes: 16, 32, 64,
128, and 256 filters. After the max pooling layer, Algorithm 1 was employed to integrate the
hybrid attention mechanism enhancing the model’s ability to recognize a relevant feature
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of brain tumor, the mechanism employed both channel and spatial attention, focusing the
model processing capacity on the most informative parts of the features maps [39], which
is essential for precise brain tumor classification. The architecture concluded with a robust
classification head, which transforms the refined feature maps into a compact vector by
utilizing a global average pooling layer. This vector feeds into a dense layer of 512 neurons,
which is further processed with dropout for regularization [40,41].

Figure 4. Proposed architecture for classification of brain tumors.

In the end, a dense layer with softmax activation [41] was employed to determine
the probability score for each class, classifying the decision labels as to whether the input
images contained glioma, meningioma, pituitary, or no tumor cases. The pseudo-code for
the hybrid attention mechanism is given below:

Algorithm 1: Pseudo-code for Hybrid Attention Mechanism

Input:

• F: Input feature map of dimension C × H ×W
• Ratio: reduction factor in channel attention, set to 2

Output:

• F′′ : Refined output features map after applying hybrid attention

1. Channel Attention:

• Reduce channel: FR = ReLU(BN(Conv(F, max( C
ratio , 1), 1 × 1)))

• Pooling: Aavg = GAP(FR), Amax = GMP(FR)
• Reshape: AF = Reshape(Concat(Aavg, Amax), [1, 1, 2 × max( C

ratio , 1)])
• Scale: S = Sigmoid(Conv(AF, C, 1 × 1))
• F′ = F⊕(F

⊗
S)

2. Spatial Attention:

• Condense to single Channel: FC = ReLU(BN(Conv(F′, 1, 1 × 1)))
• Multi-Scale convolution: C1 =Conv(FC, 1, 3 × 3,’ same’), C2 =Conv(FC, 1, 5 × 5,’same’)
• Attention map: A = Sigmoid(Conv(Concat(C1, C2), 1, 3 × 3,’same’))
• Apply: F′′ = F′⊕(F′

⊗
A)

3. Combine with original input:

• F′′ = F⊕F′′

Return F′′
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3.3. Activation and Losses Functions

The Rectified Linear Unit (ReLU) was employed in the presented framework as an
activation function, which introduces non-linearity into a neural network architecture [38].
It processes an input value by returning the maximum between 0 and the input. This
operation is mathematically desrcribed as follows:

ReLU(x) = max(0, x) (1)

where x is the input to the ReLU function. This setup ensures that positive inputs retain their
original value, thereby maintaining their complete impact within the network. For inputs
that are zero or negative, the function outputs zero, which effectively prevents negative
values from affecting the subsequent layers of the network. The sigmoid function used in
the attention mechanism normalizes scores to a range between 0 and 1. This normalization
reflects the relative importance of the channel, enabling the network to prioritize the most
significant feature of the task. The sigmoid function is denoted as follows:

σ(x) =
1

1 + e−x (2)

where σ(x) has a characteristic sigmoid curve, e is the base of the natural logarithms, and
x is the input variable. Moreover, the softmax function was applied at the output layer
of the presented model. This function transforms a set of real values into a probability
distribution over brain tumor classes. The mathematical expression for the softmax role is
as follows:

σ(
→
z )i =

eZi

∑K
j=1 eZj

(3)

where σ denotes softmax,
→
z represents the input vector to function, eZi applies the standard

exponential function to each element i of the input vector, and K denotes the total number of
classes into which the inputs can be classified. Additionally, eZj computes the exponential
for each element j of the output vector, used in the denominator to normalize the results.
Figure 5 illustrates the function of softmax as the output layer [41].

Figure 5. Depiction of the implementation of the softmax function as the output layer for the
classification of brain tumors, where the input vector x is subjected to changes through hidden layers,
which ultimately produce an output vector z that represents the score for each class. Subsequently,
the softmax function transforms z into a probability distribution that encompasses the brain tumors.
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The categorical cross entropy was utilized for classification to measure the disparity
between the predictions made by the algorithm’s actual values. The formulation of cat-
egorical cross entropy CE involves determining the error rate through the utilization of
an equation.

CE = −∑N
i ytrue[i]· log(ypred[i]) (4)

where ytrue[i] symbolizes the true class probabilities, ypred[i] represents the predicted proba-
bilities of each class, and N is the number of classes.

3.4. Optimization Techniques

The developed model employed various optimization techniques to specifically ad-
dress the critical issue of overfitting in neural networks [42]. Overfitting is significant
because it leads to a model that performs well on training data but does not generalize
effectively to unseen data. To mitigate this, techniques such as dropout, L2 regularization,
and ReduceLROnPlateau callbacks were incorporated. The dropout strategy is employed
to selectively deactivate a portion of neurons wherein outputs were randomly set to zero
during the training process [43]. This method reduces the model’s dependence on specific
neurons, hence facilitating the development of a more robust feature representation and per-
mitting a more general learning approach. By incorporating a 50% dropout rate, the model’s
flexibility was enhanced and its ability to generalize effectively on unseen data was boosted.
Figure 6 illustrates an example of a 50% dropout rate used in the proposed method.

Figure 6. Visualization of a dropout layer on the right side, applying a 50% dropout rate.

L2 regularization [42], also known as weight decay, is employed in the neural network
to mitigate the issue of overfitting and enhance performance. This technique was utilized
in the proposed model due to its usefulness among the other regularization methods. The
presented framework sets the hyperparameter 10−3 to regularization strength effectively.
L2 regularization can be expressed as follows:

L2 Regularization (weight decay)
Cost f unction = loss f unction + λ∑N

i=1
∣∣w2

i

∣∣ (5)

where λ is a hyperparameter that regulates the regularization strength, N represents the
total number of parameters, wi signifies the ith parameters, and summation encompasses
all parameters. The cost function combined with the loss represents the difference between
the predictions and actual target values to form an objective function. The proposed
model integrated the ReduceLROnPlateau callback with the Adam optimizer, as defined
in Keras [44]. The callback is involved in dynamically adjusting the learning rate when a
plateau in the target metric, such as validation loss. This adjustment ultimately enhanced
the optimization process of the model. During the training process, it tracks the metric. If
the metric does not demonstrate improvement over a predetermined number of epochs,
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the callback activates a reduction in the learning rate. The adjustment to the learning rate,
denoted as LRnew, can be calculated using the following equation.

LRnew = LRcurrent × f actor (6)

where LRcurrent denotes the learning rate of 0.001 before adjustment, and the f actor rep-
resents the reduction factor that is applied to the learning rate set at 0.4 to prevent an
excessive decrease in the learning rate and to ensure that the training process remains
within operational limits.

3.5. Pre-Trained Models

Pre-trained neural networks, which have been trained on large-scale datasets like
ImageNet that contain a wide range of image categories, have demonstrated their immense
value in applications like as image classification and object recognition. These models are
vastly proficient at analyzing intricate data patterns, facilitating their use as an initial frame-
work for subsequent analytical tasks without requiring extensive training from scratch.
The present study examined five pre-trained models, namely Xception [45], ResNet50V2,
ResNet101V2 [46], DenseNet201, and DenseNet169 [47].

The Xception model improves the design of convolutional neural networks by substi-
tuting standard convolutions with depth-wise separable convolutions. This adjustment
distinctly separates the process of spatial features and channel correlations into two phases.
Initially, a pointwise convolution that modifies the dimension of the channel. Subsequently,
depth-wise spatial convolution operates independently across each channel, thereby re-
ducing the computational power and model complexity. The Residual Network (ResNet)
architecture tackles the difficulties of training deep neural networks by including a residual
learning framework. This method includes skip connections that help alleviate the problem
of vanishing gradient. ResNet employed two primary types of blocks: identity blocks,
which ensure dimensional consistency, and convolutional blocks, which adapt dimension
as a requisite. ResNetV2 is an improved version that enhances the efficiency of identity
mapping across skip connections, enhancing data transfer speed within blocks and offering
variants like ResNet50V2 and ResNet101V2 with different layer counts to accommodate
varying computational requirements.

Dense Convolutional Networks (DenseNets) utilize architectural features in which
each layer is connected directly to subsequent layers in a feed-forward technique. DenseNets
are structured into dense blocks. The pattern of these dense blocks varies between the
models, such as DenseNet169 and DenseNet201, persuading their capacity for feature ex-
traction. DenseNet169 comprises four dense blocks with layers distributed as 6, 12, 32, and
32, respectively. In contrast, DenseNet201 expands on the third block using a configuration
of 6, 12, 48, and 32 layers. The arrangement of these blocks, coupled with downsampling,
ensures that the model variant can optimally balance the depth and computational demand.

4. Experimental Results

The primary objective of this study is to perform classification on extensive data com-
prising 7023 MRI scans that illustrate glioma, meningioma, pituitary, and no-tumor cases.
Classification development was achieved by incorporating the categorical cross-entropy loss
function and softmax activation in order to achieve precise classification of MRI data. Initially,
the data preparation involved resizing, labeling, and dividing data into 80% for training
and 20% for testing with a random state value of 101, which was applied to shuffle the data
effectively. The frameworks were trained over 50 epochs with eight batch sizes, including
fivefold cross-validation [30] with Adam optimizer, and learning rate reduction was employed
using the ReduceLROnPlateau callback to optimize the performance.

The platform employed well-known libraries, TensorFlow, Keras, Pandas, Numpy,
Matplotlib, and Sklearn, facilitating the model building and analyzing data. For efficient
training and optimization of models, the system included an NVIDIA GeForce GTX1080Ti
GPU with Intel (R) Core (TM) i7-7800 CPU 3.5 GHz and 32 GB RAM. Python 3.7 was chosen
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as the programming language because of its comprehensive capabilities in data handling,
analysis, and visualization. Algorithm 2 outlines the training and evaluation process.

Algorithm 2: 5-Fold Cross-Validation for Model Evaluation

1. Initialize Metrics collection

• M←[] initialize list for evaluation metrics

2. 5-Fold Cross-validation

• D←Training data
• For each k ϵ{1, 2, 3, 4, 5}:
2.1. Data Division

• Traink = D− Dk
• Valk = Dk

2.2. Model Training

• Train model using Traink (D) andValk(Dk)
• Setup (callbacks and optimizer)

2.3. Evaluate on testing set (T)

• tempM ← model.evaluate(T)
• Append tempM to M

2.4. Compute Average Metrics

• Final metrics← 1
5 ∑5

k=1 M[k]

3. Output Results

• Final metrics hold the average values on the set T

4.1. Evaluation Matrices

The effectiveness of the proposed framework was assessed using a range of measures.
The framework employed precision, recall, F1-score, and accuracy for classification. These
measures are crucial for evaluating the model’s ability to predict positive outcomes for
various types of brain tumors accurately. Equations (7)–(10) provide the mathematical
expressions for Precision, Recall, F1-score, and Accuracy.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− Score = 2× Recall × Precision
Recall + Precision

(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Table 1 presents a comprehensive evaluation of both proposed and pre-existing mod-
els, highlighting a presented model improved with a hybrid attention mechanism. This
advanced model achieved an exceptional accuracy of 98.33%, with precision and recall
both at 98.30% and F1-score of 98.20%. In contrast, ResNet101V2 demonstrated suboptimal
performance with an accuracy of 86.51%, precision of 86.10%, and recall and F1-score of
86.15%. The diminished efficacy of ResNet101V2 may be attributed to its distinct architec-
tural attributes, which do not adequately accommodate the distinctive traits of the dataset
employed in the study. The proposed model without attention also shows commendable
results, attaining an accuracy of 96.97%, precision of 96.85%, recall of 96.75%, and F1-score
of 96.80%, indicating robust base model capabilities. Furthermore, DenseNet169 outper-
formed other pre-trained architectures, achieving the highest metrics among them with an
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accuracy of 95.29%, precision and F1-score of 94.90%, and recall of 95.00%. Models such as
DenseNet169, DenseNet201, and Xception showed better results compared to ResNet50V2.
The models DenseNet169, DenseNet201, ResNet50V2, and ResNet101V2 were all trained
using images with a size of 224 × 224 pixels. On the other hand, the Xception model was
trained using images with a size of 299 × 299 pixels. In order to preserve the weights, the
layers in these base models were kept non-trainable. The efficiency of the proposed model is
evidenced by its training time of 460.17 s, indicating not only superior performance but also
operational effectiveness compared to pre-trained models. The metrics clearly highlighted
that the proposed model, particularly with the addition of the hybrid attention mechanism,
is highly effective and demonstrates the potential for generalization across similar tasks.

Table 1. Comparative analysis of the proposed and pre-trained models.

Models Parameters Precision Recalls F1-Score Accuracy Training Time(s)

Xception 22,963,756 92.35 92.20 92.25 92.64 1228.13

ResNet50V2 25,667,076 90.00 90.05 90.10 90.39 614.07

DenseNet201 20,293,188 92.95 92.75 92.85 93.20 1274.99

ResNet101V2 44,728,836 86.10 86.15 86.15 86.51 1035.39

DenseNet169 14,351,940 94.90 95.00 94.90 95.29 964.36

Proposed method
without Attention 829,172 96.85 96.75 96.80 96.97 423.99

Proposed method
with Attention 928,688 98.30 98.30 98.20 98.33 460.17

4.2. Confusion Matrices

A confusion matrix is an essential tool for evaluating classification methods [48].
The network developed in this study showed exceptional results in classifying different
forms of brain tumors, consistently and correctly detecting each type during the testing
phase. Figure 7 illustrates a visual comparison between the proposed mode and pre-
trained models, highlighting the improved performance of the presented model. The
findings demonstrate that the suggested method surpassed the performance of the pre-
trained models with impressive accuracy scores: 98% for glioma, 96% for meningioma,
99% for pituitary tumors, and a flawless 100% for no-tumor cases. These accomplishments
exceed the standards established by the presented model. Nevertheless, it is essential to
recognize that the efficacy of glioma and meningioma falls behind the precision of the
exceptional diagnostic prominence, demonstrating the pressing requirement for more study
and thorough exploration in future investigations.

Figure 7. Cont.
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Figure 7. Illustration of the confusion matrix of the presented and pre-trained model using the testing
data, showing the prediction score of each model. Specifically, (a) demonstrates that the proposed
model with hybrid attention attained a high accuracy of 98.33%. In comparison, (b) indicates that the
Xception model attained an accuracy of 92.64%, (c) shows the ResNet50V2 model achieved 90.39%,
(d) reveals the ResNet101V2 model attained an accuracy of 86.51%, (e) displays the DenseNet201
model obtained an accuracy of 93.20%, and (f) highlights that the DenseNet169 achieved an accuracy
of 95.29%.

5. Discussion

This study introduces a novel methodology for evaluating the benchmark dataset,
which consists of a comprehensive collection of 7023 primary brain tumor cases and normal
brain cases. The proposed framework marked a significant advancement over methodolo-
gies that relied on extensive preprocessing and manual interventions to identify regions
of interest. By reducing the need for complex preprocessing, the presented method not
only simplifies the classification process but also enhances efficiency. Furthermore, Table 2
presents the results obtained from prior investigations that have examined similar brain
tumor forms, although employing distinct methodologies for classification. Gumaei et al.
proposed a hybrid approach that combined PCA, NGIST, and RELM. Although this hybrid
method endeavored to capture an inclusive feature set, PCA might not consistently capture
the non-linear pattern characteristic in MRI, possibly omitting essential tumor details and
resulting in lower accuracy [18]. Swati et al. and Noreen et al. employed techniques that
focused on improving generic architectures, particularly cutting-edge models [24,26]. The
process of fine-tuning deep networks can take a significant amount of time. Due to the
need to adjust numerous parameters in these enormous networks, the initiative process is
arduous and requires a significant amount of resources. Perversely, the suggested approach
is intentionally designed for brain tumor classification. The proposed approach effectively
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captures tumor-specific features while minimizing the processing requirements commonly
concomitant with deep architectures.

Kaplan et al. primarily depend on traditional feature extraction methods, which are
computationally challenging yet may inadvertently disregard subtle features and patterns
in magnetic resonance (MR) images, resulting in lower accuracy [14]. Huang et al. de-
veloped the CNNBCN, a neural network architectural model that utilized a randomly
generated graph approach, resulting in 95.49% classification accuracy [20]. Conversely, our
methodology demonstrated enhanced classification capabilities. Ghassemi et al. investi-
gated the domain of Generative Adversarial Networks (GANs) through the utilization of
CNN-based GANs. Although GANs excel at generating synthetic pictures, their application
in classification may include false subtleties that deviate from real-world MRI changes,
thus compromising the accuracy of the classification [22].

Ayadi et al. developed a combination of DSURF-HOG and SVM for classification
purposes. However, the method might not adequately address the hierarchical and spatial
structures present in MRI images, areas where deep learning-based models demonstrate
better performance [23]. Satyanarayana et al. utilized AMEA for noise reduction. They
included these characteristics in a CNN with MCA in order to optimize the overall perfor-
mance [27]. Similarly, Deepak et al. incorporated class weight focus loss into a Convolu-
tional Neural Network (CNN) and employed the K-Nearest Neighbors (KNN) algorithm
with the majority voting for optimal classification [28].

In contrast, the suggested approach demonstrates superior comparative performance.
Furthermore, methods such as SURF-KAZE by Almalki et al. [49] and HOG-XG Boost by
Shilaskar et al. [50] could face limitations in accurately capturing spatial and hierarchical
patterns in MRI images, a domain where the deep learning model has shown strong ca-
pabilities, as evidenced by this study. Although the GAN-softmax method by Asiri et al.
introduced several enhancements, it might demand more computational effort [51]. Con-
trarily, the suggested approach attained an impressive accuracy of 98.33% without relying
on the preprocessing techniques. The model demonstrated strong performance directly on
input images without the need for image manipulation, which makes it more adaptable
and efficient in clinical settings.

Table 2. Comparative analysis of classification performance comparing the proposed method with
the previous approach.

Authors Dataset Classes Methods Precision Recall F1-Score Accuracy

Gumaei et al. [18] Figshare
3064 Images 3

Hybrid
PCA-NGIST-

RELM
- - - 94.23

Swati et al. [26] Figshare
3064 Images 3 VGG19-Fine tune 89.52 - 91.73 94.82

Kaplan et al. [14] Figshare
3064 Images 3 NLBP-αLBP-

KNN - - - 95.56

Huang et al. [20] Figshare
3064 Images 3 CNNBCN - - - 95.49

Ghassemi et al. [22] Figshare
3064 Images 3 CNN-based

GAN 95.29 - 95.10 95.60

Ayadi et al. [23] Figshare
3064 Images 3 DSURF-HOG-

SVM - 88.84 89.37 90.27

Noreen et al. [24] Figshare
3064 Images 3 InceptionV3

Ensemble 93.00 92.00 92.00 94.34

Satyanarayana et al. [27] Figshare
3064 Images 3 AMEA-CNN-

MCA - - - 94.00
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Table 2. Cont.

Authors Dataset Classes Methods Precision Recall F1-Score Accuracy

Deepak et al. [28] Figshare
3064 Images 3 CNN-MV-KNN - - 95.06 95.60

Almalki et al. [49] Kaggle 2870
Images 4 SURF-KAZE-

SVM - - - 95.33

Asiri et al. [51] Kaggle 2870
Images 4 GAN-Softmax 92.00 93.00 93.00 94.32

Shilaskar et al. [50]
Figshare,

SARTAJ, Br35H
7023 Images

4 HOG-XG Boost 92.07 91.82. 91.85 92.02

Our work
Figshare,

SARTAJ, Br35H,
7023 Images

4 CNN-Hybrid
Attention 98.30 98.30 98.20 98.33

6. Conclusions

This study presented an advanced method for precise classification of several types
of primary brain tumors, such as glioma, meningioma, pituitary, and no-tumor instances.
The suggested techniques attained an outstanding accuracy of 98.33% by integrating a
convolutional neural network with a hybrid attention mechanism. The proposed method
improved the efficiency of brain tumor classification by reducing the feature extraction
processes, resulting in a more streamlined diagnostic process. The results illustrate the
suggested model’s exceptional ability to generalize, confirming its reliability and value in
medical diagnostics. Moreover, it assists healthcare professionals in promptly and precisely
identifying brain tumors. In the future, the aim is to enhance patient care by developing
advanced systems that identify brain tumors in real-time and creating networks to analyze
different forms of medical imaging in three dimensions.
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