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Abstract

Fiber reinforced polymer (FRP) has emerged as a significant advancement in

construction, with design provisions outlined by codes such as GB/T

30022-2013, CSA S806-12 (R2017), and ACI 440:2015. While the use of FRP

bars as alternatives to conventional reinforcement in columns has been exten-

sively studied, their application in hollow concrete columns (HCCs) remains

underexplored. This study investigates the behavior of FRP-reinforced HCCs

using advanced machine learning (ML) models, focusing on the prediction of

two critical outputs: first peak load (Y1) and failure load (Y2), based on eight

input parameters. Models evaluated include extreme gradient boosting (XGB),

light gradient boosting (LGB), and categorical gradient boosting (CGB). A rig-

orous comparative analysis demonstrated that all models achieved high predic-

tive accuracy, with deviations within ±10% of actual results, validating their

reliability. Among the models, CGB exhibited superior generalization and

robustness, emerging as the most reliable predictor for FRP-reinforced HCC

behavior. To enhance practicality, a user-friendly graphical user interface was

developed to allow engineers to input design parameters and instantly obtain

predictions for Y1 and Y2. This study not only advances understanding of

FRP-reinforced HCCs but also bridges the gap between computational predic-

tions and real-world applications, contributing a robust predictive tool to struc-

tural engineering design.
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1 | INTRODUCTION

Reinforced concrete (RC) is one of the promising mate-
rials which has several uses in the field of construction.

In order to attain economic design and high strength-
to-weight ratio, several researchers,1,2 investigate the hol-
low RC structures, in which the investigation of hollow
RC columns is most common. However due to changes
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in the environmental conditions, it get deteriorates due
to corrosion, and with the passing of time results in the
reduction of durability and hence, undergoes the retrofit-
ting and rehabilitation of structures. To overcome these
problems, fiber reinforced polymer (FRP) reinforced hol-
low RC structures are one of the promising solutions
because of their high strength-to-weight ratio, corrosion
resistance, and economical construction. In the construc-
tion of important structures like bridges, hollow RC col-
umns can act as an alternative to solid concrete piers
because it reduce the contribution of the mass of the col-
umn to the seismic response and reduce the load-carrying
demand on the foundations.3,4

However, because of their anisotropic and non-
homogenous nature, FRP bars are still thought to be
difficult to utilize in compression members. A few
researchers,5,6 have recently looked into the application
of corrosion-free FRP reinforcement in hollow-core con-
crete columns. According to these investigations, FRP
reinforcement outperformed steel reinforcement in
hollow-core circular concrete columns because longitu-
dinal FRP bars' greater axial strain capacity allowed
them to support a greater axial load following the con-
crete cover's spalling.5,6 Additionally, the concrete core
was more successfully contained by the FRP-reinforced
hoop bars than by the steel stirrups due to the higher
tensile strength of FRP-reinforced hoop bars. Some of
the researchers7–10 investigated that the inclusion of
FRP bars not only imparts the corrosion resistance but
also enhances tensile strength up to 25%, because of
its higher tensile yield strain than the traditional rein-
forcement bars. The same has been also verified by the
ACI 440.11

Over the last few decades, different investigations12–14

have been involved in conducting the test by incorporat-
ing FRP bars as a replacement of traditional reinforce-
ment in the solid as well as HCCs. Almost all of them
found that there is considerable increase in axial
strength. Additionally, it has been shown that FRP col-
umns exhibit significant strain hardening, ductility, and
energy absorption capacity, even under high strain rates
and large deformations Some of them used as lateral con-
finement and obtain the enhanced strength and ductility
of the columns.15 Researchers examined how FRP-
reinforced HCCs responded experimentally to axial load-
ing and contrasted their findings with those of conven-
tional hollow RC columns. They discovered that the size
and diameter of GFRP bars, the quantity of lateral rein-
forcement, the inner diameter to outer diameter ratio (i/
o) of the columns, and the ratio of the actual load to the
axial load-carrying capacity are the main factors influenc-
ing the structural axial response of hollow RC
columns.5,10

Valuable research has been done over the past
20 years on the applications of fiber-reinforced polymers
(FRPs) as strengthening and retrofitting materials for
structures.16–19 Additionally, FRP bars have been used as
flexural and shear reinforcement for concrete struc-
tures.12,20,21 Consequently, several design codes11,22,23

have been created for the design of FRP-reinforced struc-
tures. Eventually, the usage of FRP bars and ties in com-
pression members became the focus of various
researchers. According to studies by Zhang et al.,24 Liao
et al.,25 and Zeng et al.,26 steel ties offer continuous con-
fining pressure after the ties yield, while FRP ties exhibit
a linear-elastic behavior up to failure, which improves
their confining performance. Apart from the low com-
pression resistance offered by the bars due to reduced
elastic modulus under compression compared to steel,
which is equally good in compression and tension,25–28

the usage of longitudinal bars in compression members
was also shown to be suitable.

In response to issues with solid sections and steel-
reinforced HCCs, AlAjarmeh et al.5 first presented circu-
lar HCC reinforced with FRP bars. On the other hand, a
thorough understanding of the axial behavior of FRP-
reinforced HCC is required for their practical application,
as is the measurement of their mechanical attributes
including strength, stiffness, and ductility. Nonetheless, it
is preferable to switch to non-destructive testing when
approaching sustainability as opposed to destructive
experimental activity. Utilizing the most recent methods
and tools is also essential to comprehending the behavior
of HCC reinforced with fiber-reinforced polymer. As a
result, over the past few years, a few researchers10,26,29–31

have used machine learning (ML) and finite element
modeling (FEM) techniques to study the behavior of rein-
forced with fiber-reinforced polymer (FRP).

Using ML to forecast models can cut down on the
number of trials needed while managing the risks and
expenses associated with these kinds of investigations.
Numerous fields have successfully used ML to solve engi-
neering difficulties13,21,24,29,32–34 established a model that
determined the priority among input parameters and pro-
posed a new high-precision formula in order to conduct a
sensitivity analysis on the performance of GFRP using
the artificial neural network (ANN) method. Fei et al.35

proposed an optimization model to estimate the bond
strength of the GFRP columns by combining the global
search capability of the genetic algorithm with the non-
linear mapping relationship of ANN. In order to test the
theory that ML techniques offer a more understandable
visual representation of failure modes in composite col-
umns, Aravind et al.36 subjected the beams to a four-
point bending test, after which they processed the images
and identified the fault modes using six distinct machine-
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learning techniques. A high-precision XGBoost model
was developed to examine column performance after
Bakouregui et al.37 found that the XGBoost model out-
performs other numerical models in estimating the bear-
ing capacity of FRP-RC columns. Basaran et al.38 looked
into the bond strength and development length of FRP
columns using a variety of machine-learning techniques,
such as ANN, MLP, and SVMR.

However, it is quite limited and requires more explo-
ration using cutting-edge approaches such as advanced
ML models. This paper fills this research gap by doing a
thorough numerical evaluation using the ML to better
understand the performance of FRP-reinforced HCCs.
The purpose of this study was to use ML techniques to
examine parameters and the failure load of FRP-
reinforced HCCs without the need for cumbersome,
time-consuming, and destructive experimental tests. As a
result, this paper is designed to provide a clear and thor-
ough examination of FRP reinforcement in hollow con-
crete columns (HCC). Section 1: “Introduction,” it gives
an overview of FRP utilization in structural engineering
and highlights the research aims. Section 2: “Research
significance,” it addresses the necessity of studying FRP-
reinforced HCC, particularly in light of the scarcity of
prior studies. Section 3: “Methodology,” it explains the
methodology used to simulate HCC behavior, including
data gathering and ML approaches, as well as the param-
eters employed in prediction analysis. Section 4: “Results
and discussion,” shows findings from several models,
including XGB, LGB, and CGB assesses model perfor-
mance in forecasting load capacities. Finally, Section 5:
“Conclusions,” it summarizes the study's main outcomes,
emphasizing the potential of the robust predictive model,
and suggests future research directions for FRP applica-
tions in structural engineering.

2 | RESEARCH SIGNIFICANCE

The few investigations have been done for design of FRP-
reinforced HCC. Additionally, the design codes have
incorporated the provisions for FRP RC column but none
of them includes the provisions of FRP-reinforced HCC.
Therefore, in order to obtain optimized design and rec-
ommendations of proper guidelines, a lot of investigation
is needed in this field, and keeping in view of present sce-
nario, more advanced techniques are necessary to
achieve accurate, optimized, risk-free results with sus-
tainable construction. Hence, the following are the
authors’ specific contributions: (1) Advanced ML models
are introduced and their effectiveness in predicting the
target outputs is thoroughly evaluated; (2) Predictive
accuracy is significantly enhanced through

hyperparameter tuning using Bayesian optimization
(BO); (3) A comprehensive performance evaluation is
conducted, incorporating both visual methods (scatter
plots, regression error characteristics (REC), violin plots,
and Taylor diagrams) and quantitative analyses (uncer-
tainty evaluation and regression metrics) to assess the
predictive capabilities of the models; (4) SHapley Addi-
tive Explanations (SHAP) and partial dependence plot
(PDP) analyses are utilized to determine the key parame-
ters that most significantly influence discharge predic-
tion; (5) To bridge the gap between computational
predictions and practical real-world applications, a user-
friendly graphical user interface (GUI) is developed,
enabling engineers to efficiently predict the outputs with
ease and practicality.

3 | METHODOLOGY

Within the vast domain of artificial intelligence (AI), ML
and deep learning (DL) are established as progressive sub-
sets that delve deeper into the capabilities of automated
data processing and pattern recognition.39 ML represents a
significant advancement in AI, where algorithms learn from
data and make predictions.40 ML models identify trends
and patterns through iterative learning from input data,
improving with experience akin to human knowledge.
These models excel at handling structured datasets and per-
forming various tasks, from classification to regression,
without specific programming for each task's nuances. In
this study, three advanced ML models: extreme gradient
boosting (XGB), light gradient boosting (LGB), and categori-
cal gradient boosting (CGB) was conducted using the
Python programming environment within the Anaconda
software.41–43 The ensemble techniques boost the perfor-
mance metrics of predictive models, notably diminishing
error rates and increasing higher correlations between pre-
dicted and actual values. The improvement in the model's
performance can be credited to the ensemble's ability to
mitigate issues like underfitting, overfitting, or the lack of
unity between the model and the dataset.

3.1 | Dataset description

The dataset contains 144 samples and documented in the
Appendix A (Table A1). It is designed to support
the development of the adopted models to predict the
first peak load (Pn,1, kN) and failure load (Pn,2, kN) of
FRP-RC HCCs using a final dataset of 144 data points
with 8 input features and 2 output features. The compres-
sive strength of the standard cylinder (fo, MPa), the diam-
eter of the internal hole (Do, mm), the outer diameter of
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the HCC (D, mm), the column's height (H, mm), the cen-
ter to center spacing of hoop reinforcing bars (S', mm),
area of FRP reinforcing hoop bar (Ab, mm2), the tensile
strength of FRP hoop bar (fh, MPa), the ratio of longitudi-
nal FRP reinforcing bars multiplied by its tensile strength
(ρv fv, MPa). These variables were designated as X1, X2,
X3, X4, X5, X6, X7, and X8, respectively. Pn,1 and Pn,2
were considered the outputs and denoted Y1 and Y2,
respectively.

3.1.1 | Statistical summary

To provide a foundational understanding of the dataset
utilized in this study, Table 1 presents the descriptive sta-
tistics for the input variables (X1 to X8) and the output
variables (Y1 and Y2), providing a summary of their dis-
tributions in terms of minimum (Min), maximum (Max),
mean, median, and standard deviation (SD) values. These
statistics offer insight into the variability and central ten-
dencies of the dataset, which are crucial for understand-
ing the underlying data characteristics and their potential
influence on predictive modeling.44

Considering the input variables, X1 (fo, MPa) repre-
sents a parameter with a minimum value of 21.20 and a
maximum value of 70.20, with a mean of 31.03 and a SD
of 10.43. These values suggest that X1 exhibits moderate
variability, as evidenced by its SD relative to its range. X2
(Do, mm) has a wide range from 0.00 to 120.00, a mean of
54.21, and a SD of 40.39, indicating significant variability
and potential skewness, as its median (60.00) is slightly
higher than the mean. Similarly, X3 (D, mm) ranges from
205.00 to 305.00 with a mean of 252.33 and a SD of 25.58,
showing a relatively narrow distribution around the
mean. X4 (H, mm) spans a very broad range from 800.00
to 3000.00, with a mean of 1457.64 and a high SD of
619.65, reflecting substantial variability and dispersion
around its median (1150.00). Other input variables, such

as X5 (S', mm), range from 0.00 to 200.00, with a mean of
98.89 and a SD of 43.33, showing moderate variability. X6
(Ab, mm2), with a narrower range of 50.29 to 81.50, has a
mean of 70.87 and a small SD of 5.91, indicating that its
values are tightly clustered around the mean. X7 (fh,
MPa) demonstrates a broader range, from 975.00 to
1562.00, with a mean of 1309.73 and a SD of 110.72, sug-
gesting moderate variability. Finally, X8 (ρv fv, MPa)
ranges from 6.04 to 77.97, with a mean of 35.78 and a SD
of 14.68, showing moderate spread in its distribution.

Considering the output variables, Y1 (Pn,1, kN) and
Y2 (Pn,2, kN), the ranges are from 842.01 to 4716.00
and 707.25 to 4222.37, respectively. Y1 has a mean of
1544.78 and a SD of 884.82, while Y2 has a mean of
1548.23 and a SD of 802.17. These high standard devia-
tions relative to their means indicate considerable vari-
ability in the output variables, which is expected given
the range of the inputs and their potential influence on
the outputs. Overall, the descriptive statistics indicate a
diverse dataset with varying degrees of variability among
the input and output variables. Inputs such as X4, X2,
and X7 show significant dispersion, which could have a
substantial impact on the outputs. Meanwhile, inputs like
X6 display relatively low variability, suggesting a more
stable influence.

3.1.2 | Hexbin graphs

Figure 1 presents hexbin plots to visualize the relation-
ships between the eight input variables (X1 to X8) and
the two output variables (Y1 and Y2). Hexbin plots are
particularly useful for examining the density and distri-
bution of data points in a two-dimensional space, provid-
ing insight into patterns and correlations while
highlighting areas with higher concentrations of data. In
the plots for Y1 (top figure), distinct patterns are observed
across the input variables. For X1, the distribution of data

TABLE 1 Descriptive statistics of

the input and output variables.
Input Unit Symbol Min Max Mean Median SD

fo MPa X1 21.20 70.20 31.03 31.80 10.43

Do mm X2 0.00 120.00 54.21 60.00 40.39

D mm X3 205.00 305.00 252.33 250.00 25.58

H mm X4 800.00 3000.00 1457.64 1150.00 619.65

S' mm X5 0.00 200.00 98.89 100.00 43.33

Ab mm2 X6 50.29 81.50 70.87 70.80 5.91

fh MPa X7 975.00 1562.00 1309.73 1315.00 110.72

ρv fv MPa X8 6.04 77.97 35.78 34.31 14.68

Pn,1 kN Y1 842.01 4716.00 1544.78 1204.06 884.82

Pn,2 kN Y2 707.25 4222.37 1548.23 1299.50 802.17
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points shows a noticeable trend where higher values of
X1 correspond to increased values of Y1, indicating a pos-
itive correlation. Similar behavior is seen for X3 and X7,
where the higher values of these inputs are associated
with larger Y1 values, suggesting these variables are sig-
nificant predictors for Y1. For X2, X4, and X5, the distri-
butions are more dispersed, with no distinct trend
connecting their values to Y1. This indicates a weaker or
less direct influence of these variables on Y1. X6 and X8
show moderate clustering, where specific ranges of these
inputs seem to correspond to certain Y1 values,

suggesting a more conditional or nonlinear relationship.
In the plots for Y2 (bottom figure), the trends are some-
what consistent with those observed for Y1, with X1, X3,
and X7 again showing strong associations with Y2.
Higher values of these inputs generally align with higher
Y2 values, confirming their predictive significance. How-
ever, the influence of X2, X4, and X5 appears less promi-
nent, with scattered data points and no clear patterns of
correlation. For X6 and X8, clustering patterns suggest
that certain input ranges may impact Y2, though the rela-
tionship is less straightforward than for X1, X3, and X7.

FIGURE 1 Hexbin graphs of input variables versus (a) Y1 and (b) Y2.
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The color gradients in the hexbin plots represent the
density of data points within each hexagonal bin. Darker
or more intense colors signify higher concentrations of
data points, highlighting regions with significant data
clustering. For both Y1 and Y2, the clustering patterns
reflect the dataset's structure, revealing which input
ranges are more frequent and how they correspond to the
outputs. The observed trends underscore the importance
of variables such as X1, X3, and X7 while indicating
weaker or more complex relationships for other inputs.
These findings can inform feature selection and modeling
strategies to optimize predictions for Y1 and Y2.

3.1.3 | Correlation analysis

The heatmap in Figure 2 not only highlights the correla-
tion between the input variables (X1 to X8) and the out-
put variables (Y1 and Y2) but also reveals the
interrelationships among the input variables themselves.
As shown in the heatmap, the relationships between the
inputs and outputs, X1, X3, and X7 stand out as the most
influential predictors for both Y1 and Y2. For Y1, X1
exhibits the highest positive correlation (0.81), followed
closely by X3 (0.79) and X7 (0.48). This suggests that
increases in these variables lead to significant increases
in Y1. A similar pattern is observed for Y2, where X3 has
the strongest correlation (0.77), followed by X1 (0.70) and
X7 (0.55). These results indicate that these three variables

serve as critical drivers for both output variables, making
them prime candidates for further analysis and feature
importance evaluation. X2 shows a weak negative corre-
lation with both Y1 (�0.25) and Y2 (�0.26), indicating
that it has an inverse and less significant effect on the
outputs. Similarly, variables such as X4, X5, and X8 dem-
onstrate much weaker correlations with both outputs,
ranging between �0.2 and 0.3. These results suggest that
these inputs have either negligible or highly indirect
influences on the prediction of Y1 and Y2.

Examining the interrelationships among the inputs
themselves reveals a complex structure of dependen-
cies.45 For instance, X3 and X7 have a strong positive cor-
relation (0.76), indicating that these variables share
similar trends or information. This strong interdepen-
dence could potentially lead to multicollinearity issues
when included in predictive models. X6 also shows mod-
erate positive correlations with X3 (0.38) and X7 (0.53),
suggesting it shares some predictive patterns with these
variables, albeit to a lesser degree. In contrast, X2 demon-
strates weak or negative correlations with most other
input variables, particularly with X1 (�0.22) and X4
(�0.11). This indicates that X2's behavior is distinct and
relatively independent from other inputs. The observed
interrelationships among inputs can influence the model-
ing process. Variables with high correlations, such as X3
and X7, may introduce redundancy in the model, and
techniques like feature selection or dimensionality reduc-
tion might be necessary to address this issue. Conversely,

FIGURE 2 Heatmap

indicating correlation values of

inputs versus (a) Y1 and (b) Y2.
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inputs like X2, which are less correlated with others, may
offer unique and complementary information to the
model, despite their weaker correlation with the outputs.
Overall, the heatmap highlights the intricate web of rela-
tionships between the inputs and outputs. It emphasizes
the importance of variables such as X1, X3, and X7 in
driving the outputs while suggesting that variables like
X2, X4, X5, and X8 may have more limited roles. Addi-
tionally, the interdependencies among inputs underscore
the need to carefully evaluate feature contributions and
manage multicollinearity to ensure robust and interpret-
able predictive models.

3.2 | Description of ML models

XGBoost is a highly effective and versatile ML library that
excels in handling large datasets and complex predictive
modeling tasks.46 Its ability to handle missing values, regu-
larization techniques, and parallel processing capabilities
make it a reliable choice for various applications. With its
high accuracy, speed, and scalability, XGBoost is a popular
choice for many industries, including finance, computer
vision, and natural language processing.47 Overall, XGBoost
is a powerful tool for data scientists and ML engineers, offer-
ing a robust and efficient way to build predictive models that
can drive business decisions and improve outcomes.
LightGBM is a fast and efficient gradient-boosting frame-
work well-suited for large-scale ML tasks.48 It is designed to
be quicker and more scalable than other popular gradient-
boosting libraries, such as XGBoost while maintaining simi-
lar performance. LightGBM is known for its ability to han-
dle large datasets and complex models efficiently, making it
a popular choice for many applications, including classifica-
tion, regression, and ranking tasks.49 CatBoost is an
advanced, open-source gradient-boosting library optimized
for categorical data, integrating decision trees with gradient-
boosting methods. It directly incorporates categorical fea-
tures, reducing the need for extensive pre-processing and
enhancing model accuracy. Renowned for its high perfor-
mance in various prediction tasks, CatBoost effectively mini-
mizes overfitting and improves model generalization,
making it suitable for regression applications.50

3.3 | Hyperparameters tuning

Hyperparameter tuning using BO is a sophisticated
method for optimizing ML models.51,52 Unlike brute
force or grid search methods, BO intelligently explores
the hyperparameter space by leveraging probabilistic
models. It begins with an initial set of hyperparameters
and evaluates their performance using a chosen metric.53

Based on these results, BO updates its probabilistic model
to predict which hyperparameters will yield better perfor-
mance. It then selects new hyperparameters to evaluate,
balancing exploring new regions with exploiting known
good areas. This iterative process continues until satisfac-
tory hyperparameters are found. By dynamically adapting
to the model's performance, BO offers a more efficient and
effective approach to hyperparameter tuning, saving time
and resources while maximizing model performance.54

3.4 | Performance metrics

Assessing the effectiveness of each model is essential to
ensure the practicality and scientific reliability of the
outcomes.55–57 While training datasets help construct
models, they only reveal how well they fit the given data.
Therefore, testing datasets are crucial for validating the
models. Evaluation and comparison of models typically
involve two main methods: visual and quantitative
assessments. Visual methods include scatter plots, violin
boxplots, and Taylor diagrams, which offer quick insights
into the accuracy prediction of various statistical mea-
sures such as maximum, minimum, median, and quar-
tiles.58,59 Unlike quantitative metrics, which may not
capture these aspects, visual methods provide rapid,
engaging, and informative comparisons. As a result, three
quantitative metrics were utilized: determination coeffi-
cient (R2), RMSE, and mean absolute error (MAE). The
equations for these performance metrics and their ideal
values are listed in Table 2.

Moreover, an uncertainty analysis is conducted as it
is a crucial component of model evaluation, providing
insight into the reliability and robustness of predictions
by quantifying the confidence intervals around predicted
values. It is particularly important in applications where
accurate and consistent predictions are critical, as it helps
identify the range of potential errors and ensures the

TABLE 2 Equations of performance metrics and their ideal

values.

Metric Equation
Ideal
value

Determination
coefficient (R2) R2 ¼

Pn

i¼1
yi�ymeanð Þ2�

Pn

i¼1
yi�byi� �2Pn

i¼1
yi�ymeanð Þ2

1

Root mean square
error (RMSE) RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

yi�byi� �2

n

s
0

Mean absolute error
(MAE) MAE¼

Pn

i¼1

yi�byi�� ��
n

0

Note: Where n is the dataset number yi and byi are actual and predicted ith

values, respectively.
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model's outputs are interpretable and dependable. One
commonly used metric for expressing uncertainty is the
95% uncertainty interval (U95), which captures the range
within which 95% of the prediction errors are expected to
fall. U95 is calculated using the RMSE and the SD of the
prediction values, combining these metrics to reflect both
the average error magnitude and the spread of the predic-
tions.60 During the training stage, U95 provides an indica-
tion of the model's ability to fit the data and minimize
variability, while in the testing stage, it reflects the
model's generalization capability to unseen data. A nar-
rower U95 indicates higher model reliability and lower
variability in predictions, while a broader U95 suggests
greater uncertainty and less consistent performance. By
evaluating U95 across both training and testing stages,
researchers can assess not only the predictive accuracy of
the model but also the confidence in its outputs, enabling
informed decisions based on the model's predictions.

3.5 | Feature interpretation and
importance analysis

SHAP values are derived from cooperative game theory and
offer a unified approach to interpreting ML models.13,41 The
core concept behind SHAP is to fairly distribute the predic-
tion among the input features by assigning an “importance
value” to each feature, representing its contribution to the
overall prediction. This is achieved by calculating the mar-
ginal contribution of each feature across different subsets of
the input features, ensuring a consistent measure of feature
importance. One of the key advantages of SHAP is its ability
to provide local interpretability, meaning it can explain
individual predictions rather than just general trends across
the dataset. This allows practitioners to understand why
the model made a specific prediction for a given instance,
thereby enhancing transparency. Moreover, SHAP values
are consistent and additive, making them a reliable tool for
feature importance analysis in complex, non-linear models.

Partial dependence plots (PDPs), on the other hand,
are graphical representations that help to visualize the
relationship between one or more input features and
the predicted outcome of a ML model.61 By averaging out
the effects of other features, PDPs depict how changes in
a specific feature, or a pair of features influence the
model's predictions. This enables researchers to interpret
the global behavior of the model with respect to the
selected features. PDPs are particularly useful for under-
standing the direction and magnitude of feature influ-
ence. For example, they can reveal whether an increase
in a particular feature value leads to higher or lower pre-
dictions and whether this relationship is linear, mono-
tonic, or more complex. However, PDPs assume feature

independence, which can sometimes limit their effective-
ness when features are strongly correlated. Despite this,
PDPs remain a valuable tool for assessing feature impor-
tance and gaining insight into the model's predictive
patterns.

4 | RESULTS AND DISCUSSION

4.1 | Optimal hyperparameters

Table 3 provides a detailed overview of the optimized
hyperparameters for the adopted ML models to predict Y1
and Y2. The hyperparameters for each model were carefully
tuned based on the BO method to achieve the best predic-
tive performance for both outputs. For the XGBoost model,
several key hyperparameters were optimized. The number
of trees in the model (n_estimators) was set to 939 for pre-
dicting Y1 and 955 for predicting Y2. The maximum depth
of each tree (max_depth) was set to 3 for both outputs. The
step size for updating weights (learning_rate) was set at
0.171 for Y1 and increased to 0.266 for Y2. Additionally, the
fraction of features to consider for each tree (colsample_by-
tree) was set to 0.945 for Y1 and slightly adjusted to 0.934
for Y2. The sample fraction for fitting each tree (subsample)
was set to 0.915 for Y1 and 0.919 for Y2. The LightGBM
model's hyperparameters also underwent optimization. The
maximum number of leaves in one tree (num_leaves) was
set to 100 for Y1 and significantly reduced to 10 for Y2. The
learning rate for LGB was set to 0.2 for Y1 and increased to
0.262 for Y2, reflecting the adjustment needed to achieve
better performance for the second output. The number of
trees was set to 633 for Y1 and 1000 for Y2, showing a sub-
stantial increase for the latter. For the CatBoost model, the
hyperparameters remained consistent for both outputs,
reflecting the model's stability across different tasks. The
depth of each tree was set to 3 for both Y1 and Y2. The
learning rate was set to 0.254 for Y1 and slightly increased
to 0.262 for Y2. Finally, the L2 regularization on leaf
weights (l2_leaf_reg) was set to 1 for both outputs.

4.2 | Visual performance assessment

4.2.1 | REC curves

Figure 3 presents cumulative distribution plots for resid-
ual errors obtained from three ML models during both
the training and testing stages for two output variables
(Y1 and Y2). The cumulative distribution functions
(CDFs) provide a detailed assessment of the models' error
distributions and their predictive performance. In the
training stage for Y1 (Figure 3a), the performance of
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XGBoost and CatBoost appears nearly identical, as their
CDF curves overlap significantly, reflecting similar error
distributions. However, LightGBM displays larger resid-
ual errors for a substantial fraction of predictions, evi-
denced by the delayed rise in its CDF curve. The testing
stage for Y1 (Figure 3b) reveals a similar trend, with
XGBoost and CatBoost maintaining their advantage over
LightGBM in terms of error distribution. However, all
three models show slightly extended error distributions

in the testing phase, as expected due to the challenges of
generalizing to unseen data. Figure 3c and d correspond
to the training and testing stages for Y2. As in the case of
Y1, XGBoost, and CatBoost outperform LightGBM, with
their CDF curves rising more sharply and reaching
cumulative distributions near 1 at smaller residual error
values. In the training stage (Figure 3c), CatBoost demon-
strates slightly better error performance compared to
XGBoost, as its curve reaches a higher cumulative

TABLE 3 Optimized hyperparameters for the adopted ML models in predicting the two outputs.

Model Output 1 (Y1) Output 2 (Y2)

XGB n_estimators = 939
max_depth = 3
learning_rate = 0.171
colsample_bytree = 0.945
subsample = 0.915

n_estimators = 955
max_depth = 3
learning_rate = 0.266
colsample_bytree = 0.934
subsample = 0.919

LGB num_leaves = 100
learning_rate = 0.2
n_estimators = 633

num_leaves = 10
learning_rate = 0.262
n_estimators = 1000

CGB depth = 3
learning_rate = 0.254
l2_leaf_reg = 1

depth = 3
learning_rate = 0.262
l2_leaf_reg = 1

FIGURE 3 Regression error characteristics (REC) curves for Y1 in the (a) training and (b) testing stages; and for Y2 in the (c) training

and (d) testing stages.
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distribution at lower residual errors. LightGBM again
trails both models, with a flatter curve and residual errors
spread over a wider range. In the testing stage for Y2
(Figure 3d), the trends remain consistent, with XGBoost
and CatBoost retaining their advantage. However, the
spread of residual errors increases for all models, as indi-
cated by the broader distribution along the residual error
axis. LightGBM shows the poorest performance in terms
of error distribution, with its CDF curve rising more grad-
ually and extending further along the error axis.

Overall, the plots highlight the superior predictive
performance of XGBoost and CatBoost over LightGBM
for both outputs, Y1 and Y2, during both training and
testing stages. The results suggest that XGBoost and Cat-
Boost consistently produce predictions with lower resid-
ual errors, making them more reliable for this dataset.
These observations provide valuable insights into the
error characteristics of the models and reinforce
the importance of using robust evaluation metrics to
assess predictive accuracy.

4.2.2 | Scatter plots

Figure 4 presents scatter plots comparing the actual ver-
sus predicted values for two output variables (Y1 and Y2)
across three ML models during both training and testing
phases. For Y1, Figure 4a–c correspond to XGBoost,

LightGBM, and CatBoost, respectively. In Figure 4a,
XGBoost achieves excellent performance in both training
and testing stages, with an R2 value of 1.00 for
training and 0.97 for testing, indicating a nearly perfect
fit during training and high generalization accuracy dur-
ing testing. The RMSE and MAE values in the testing
phase are relatively low (54.03 and 36.79 kN, respec-
tively), further confirming the model's robustness. The
predicted points closely align with the equality line (45�

line), with minimal scatter beyond the ±10% deviation
lines, demonstrating high prediction accuracy. In
Figure 4b, LightGBM exhibits slightly lower performance
than XGBoost. The R2 value for testing is 0.93, indicating
a reduced ability to capture the variance in the testing
data. The RMSE and MAE values are higher at 119.81
and 86.39 kN, respectively, reflecting greater residual
errors. The scatter points deviate more from the equality
line compared to XGBoost, particularly for higher actual
Y1 values, suggesting potential limitations in LightGBM
predictive capability for this dataset. Figure 4c illustrates
the performance of CatBoost, which closely rivals
XGBoost. The R2 value is 0.98 for testing, and the RMSE
and MAE values (52.09 and 34.95 kN, respectively) are
comparable to those of XGBoost. The predicted points
are densely clustered along the equality line, with only
minor deviations, indicating that CatBoost effectively pre-
dicts Y1 with high accuracy. The model shows strong
generalization across the training and testing datasets.

FIGURE 4 Performance scatter plots for Y1 based on (a) XGB, (b) LGB, and (c) CGB; for Y2 based on (d) XGB, (e) LGB, and (f) CGB.
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For Y2, Figure 4d–f correspond to XGBoost,
LightGBM, and CatBoost, respectively. In Figure 4d,
XGBoost again demonstrates strong predictive perfor-
mance, with an R2 value of 0.94 for testing and relatively
low RMSE (107.49 kN) and MAE (70.43 kN) values. The
scatter points show good alignment with the equality
line, though slight deviations are observed, particularly
for higher Y2 values. These results indicate reliable pre-
dictive capabilities, albeit with slightly larger errors com-
pared to Y1. In Figure 4e, LightGBM displays reduced
accuracy for Y2 compared to XGBoost and CatBoost. The
testing R2 value is 0.87, with higher RMSE (193.20 kN)
and MAE (131.81 kN) values, suggesting a larger degree
of error in predictions. The scatter points exhibit notice-
able dispersion around the equality line and frequently
fall outside the ±10% deviation lines, indicating weaker
performance in capturing Y2's variance. Figure 4f demon-
strates that CatBoost maintains strong performance for
Y2, similar to its results for Y1. The testing R2 value is
0.90, with RMSE and MAE values (89.90 and 61.70 kN,
respectively) lower than those of LightGBM and compa-
rable to XGBoost. The scatter points closely follow the
equality line, with minimal dispersion, reflecting Cat-
Boost's reliability and accuracy for predicting Y2. Overall,
the scatter plots reveal that XGBoost and CatBoost out-
perform LightGBM in terms of both predictive accuracy
and error metrics for Y1 and Y2. The alignment of pre-
dicted values with the equality line, along with low
RMSE and MAE values, underscores the effectiveness of
XGBoost and CatBoost in modeling the dataset.
LightGBM, while still effective, shows comparatively
weaker performance, particularly for the testing data,
with higher residual errors and greater deviations from
the equality line.

4.2.3 | Violin boxplots

Figure 5 presents violin plots that visualize the distribu-
tion of predictions for the first peak load (Pn,1) and the
failure load (Pn,2) using the three adopted models, that is,
XGBoost (XGB), LightGBM (LGB), and CatBoost (CGB),
alongside the actual test data (TS). The violin plots pro-
vide a detailed representation of the data distribution,
combining kernel density estimation with boxplot ele-
ments to show the spread, central tendency, and variabil-
ity of the predictions and actual values. In Figure 5a,
which corresponds to Pn,1, the violin plots reveal that all
three models successfully capture the general distribution
of the actual test data. XGBoost and CatBoost exhibit nar-
rower distributions, suggesting higher consistency and
lower variability in their predictions. Their median pre-
dictions (XGBoost: 1180.54 kN, CatBoost: 1188.86 kN)
closely align with the actual median (1173.78 kN). The
interquartile ranges (IQRs), represented by the white box-
plots within the violins, are also comparable to the actual
data, indicating that these models can reliably predict
values within the central range. LightGBM, on the other
hand, shows a broader distribution, with its median
(1173.93 kN) still close to the actual TS but with slightly
more variation in predictions. The tails of the distribu-
tions suggest that LightGBM is more prone to occasional
over- or under-predictions compared to XGBoost and
CatBoost. In Figure 5b, representing Pn,2, a similar pat-
tern is observed. XGBoost and CatBoost again demon-
strate narrower distributions, with median values
(XGBoost: 1257.91 kN, CatBoost: 1260.24 kN) that align
closely with the actual median (1269.99 kN). Their IQRs
are consistent with the actual test data, and their distri-
butions are tightly centered around the median,

FIGURE 5 Violin boxplots during the testing phase for (a) Y1 and (b) Y2.
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indicating reliable and accurate predictions. LightGBM,
while capturing the general distribution, exhibits a wider
spread (median: 1258.89 kN), with a larger proportion of
its predictions falling in the tails of the distribution. This
suggests that LightGBM, although effective, is less consis-
tent in predicting extreme values compared to XGBoost
and CatBoost. Overall, the violin plots highlight the
alignment of the models' predictions with the actual data
through the positioning of the median and the range of
variability. Both XGBoost and CatBoost exhibit superior
predictive performance, as evidenced by their tight distri-
butions and close agreement with the actual test data.
LightGBM, while capturing the central tendency, shows
slightly higher variability and a broader range of predic-
tions. These findings reinforce the robustness of XGBoost
and CatBoost in capturing the behavior of both Pn,1 and
Pn,2 with high precision and consistency during the test-
ing phase.

4.2.4 | Taylor diagrams

Taylor diagrams are a specialized graphical representa-
tion that quantifies the similarity between actual and pre-
dicted values. These diagrams plot the correlation, the
standard deviation, and the root mean square error of
predictions on a single chart. This provides a comprehen-
sive view of a model's accuracy, variability, and overall
performance compared to the actual observations.
Figure 6 shows the Taylor diagrams during the testing
phase for Y1 and Y2. Figure 6a shows the Taylor diagram
for Y1. The XGB model has a SDof 476.71 kN and a cor-
relation coefficient of 0.994, indicating a strong linear
relationship with the TS dataset and moderate prediction
variability. The LGB model exhibits the lowest SDat

467.93 kN but has a lower correlation coefficient of 0.969,
suggesting less accurate predictions despite minimal vari-
ability. The CGB model balances a low SD of 473.99 kN
with the highest correlation coefficient of 0.995, making
it the most accurate and reliable predictor for Y1. There-
fore, CGB is the best model for predicting Y1, demon-
strating the closest alignment with the TS dataset.
Figure 6b shows the Taylor diagram for output Y2, evalu-
ating the performance of the same three models against
the TS dataset. The XGB model has a SD of 521.67 kN
and a correlation coefficient of 0.984, indicating a strong
linear relationship and relatively accurate predictions.
The LGB model has the lowest SD at 487.21 kN, suggest-
ing less variability. However, its correlation coefficient of
0.942 is significantly lower than that of XGB and CGB,
indicating less accurate predictions. The CGB model,
with a SD of 523.84 kN and a correlation coefficient of
0.987, shows the highest reliability and accuracy in pre-
dictions. In summary, while the CGB model remains the
best predictor for output Y2 due to its highest correlation
coefficient and balanced standard deviation, XGB also
demonstrates strong predictive performance. The LGB
model shows lower variability but suffers from reduced
predictive accuracy compared to the other two models.
Overall, the CGB model emerges as the most reliable and
accurate predictor for both Y1 and Y2.

4.3 | Uncertainty assessment

Figure 7 presents the estimated U95 metric in kN, which
quantifies the uncertainty of predictions for the adopted
models across both the training and testing stages for two
outputs, Y1 and Y2. The U95 metric represents the 95%
uncertainty interval, offering insights into the variability

FIGURE 6 Taylor diagrams during the testing phase for (a) Y1 and (b) Y2.
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and reliability of each model's predictions. For output Y1
during the training stage (Figure 7a), XGBoost and Cat-
Boost demonstrate comparable U95 values of 59.296 and
60.321 kN, respectively, indicating low variability
and high consistency in predictions. LightGBM, on the
other hand, exhibits a significantly higher U95 value of
235.476 kN, suggesting greater uncertainty and less stable
predictions during the training phase. In the testing stage
for Y1, CatBoost achieves the lowest U95 value of
145.05 kN, followed closely by XGBoost at 149.625 kN,
reflecting their strong generalization capabilities to
unseen data. LightGBM shows a much higher U95 value
of 331.948 kN, indicating greater variability and reduced
reliability in its predictions during testing. For output, Y2
(Figure 7b), a similar pattern is observed. During the
training stage, XGBoost and CatBoost show low U95

values of 91.773 and 91.215 kN, respectively, demonstrat-
ing minimal uncertainty and high consistency.
LightGBM, with a U95 value of 230.633 kN, displays sig-
nificantly higher uncertainty during the training phase.
In the testing stage for Y2, CatBoost achieves the lowest
U95 value of 260.041 kN, outperforming XGBoost, which
has a U95 value of 288.125 kN. LightGBM, with a U95

value of 532.536 kN, exhibits the highest uncertainty,
indicating considerable variability and less reliable pre-
dictions in testing.

The analysis of U95 values across both outputs and
stages highlights the superior performance of CatBoost
and XGBoost in maintaining lower uncertainty levels,
particularly in the testing phase, where generalization is
critical. LightGBM consistently shows higher U95 values,
indicating greater variability and less reliable predictions
compared to the other models. These findings underscore

the robustness and reliability of CatBoost and XGBoost in
capturing both outputs with minimal prediction uncer-
tainty, making them more suitable for applications
requiring accurate and consistent predictions.

FIGURE 7 Estimated U95 metric in kN for checking the uncertainty of the predictions from the adopted models across both the training

and testing stages (a) Y1 and (b) Y2.

FIGURE 8 SHAP summary plots based on the CGB model for

(a) Y1 and (b) Y2.
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4.4 | Feature importance and
interpretability analysis

4.4.1 | SHAP analysis

Figure 8 shows the SHAP summary plots illustrating the
effect of the inputs on the prediction of a target variable
of the two outputs based on the best predictive model,
that is, the CGB model in both training and testing
stages. In Figure 8a, X7 is identified as having the most
significant impact on the prediction, with higher values
of X7 generally increasing the model output, as shown by
the red points on the right side of the plot. Following X7,
X1 also exhibits a strong influence on the prediction. Fea-
tures X3 and X2 also have substantial impacts, though
they display mixed effects where both high and low
values can significantly influence the prediction. Further
down the list, X5, X8, X4, and X6 have relatively lesser
impacts than the top features. Among these, X6 has the
least influence on the model's output. Figure 8b shows
that it is evident that feature X7 has the highest impact
on the prediction, with both high and low values signifi-
cantly influencing the model's output. X1 follows as the

next most important feature, showing a range of SHAP
values predominantly on the positive side, indicating that
higher values of X1 generally increase the model's output.
X5 is the third most influential feature, with a mix of
high and low values substantially affecting the prediction.
Features X3 and X8 also show significant impacts, with
X3 having a balanced spread of SHAP values around zero
and X8 showing a similar distribution with slightly more
influence on the positive side. Lower down the list, X2
shows a varied impact with a notable spread of SHAP
values, suggesting it has a moderate but consistent influ-
ence on the prediction. X4 and X6 have the least impact
among the listed features, with X4 showing a more cen-
tralized distribution of SHAP values around zero, indicat-
ing a minimal effect on the prediction, and X6 displaying
the least variance, suggesting it has the least influence on
the model's output.

4.4.2 | PDP analysis

Figure 9 shows PDPs for the eight input variables (X1 to
X8) against two outputs, Y1 and Y2. In Figure 9a, which

FIGURE 9 PDPs for each input feature based on the CGB model for (a) Y1 and (b) Y2.
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corresponds to Y1, distinct patterns are observed for each
input variable. For X1, a clear positive relationship exists,
with increasing values of X1 leading to a steady rise in
the partial dependence of Y1, indicating that higher
values of X1 positively influence Y1. A similar trend is
observed for X3, where Y1 increases linearly as X3
increases. X2, however, exhibits a negative relationship,
where higher values of X2 correspond to a decrease in
Y1, suggesting an inverse influence. X4 shows a non-
linear pattern, with a sharp increase in Y1 followed by a
plateau, indicating a threshold effect. For X5, the partial
dependence fluctuates significantly, suggesting a complex
and possibly non-monotonic relationship with Y1. X6
shows a relatively stable and slightly positive trend, while
X7 presents a distinct step-like pattern, indicating a sud-
den change in Y1 at specific values of X7. X8 demon-
strates a jagged upward trend, suggesting a somewhat
irregular but overall positive influence on Y1.

Figure 9b, which corresponds to Y2, shares some sim-
ilarities with the trends observed in Y1 but also displays
distinct differences. For X1, the relationship remains pos-
itive and linear, indicating that higher values of X1 con-
sistently lead to an increase in Y2. X3 again shows a
strong linear positive relationship, while X2 retains its
negative association with Y2, reflecting its inverse influ-
ence. X4 exhibits a nonlinear and fluctuating pattern,
with Y2 increasing sharply in some regions and
stabilizing in others, indicating a complex interaction. X5

continues to show significant variability, suggesting a
non-monotonic influence on Y2. X6 demonstrates a
steeper change compared to Y1, indicating a more pro-
nounced effect on Y2 at specific ranges. X7 retains its
step-like behavior, with sharp increases in Y2 at certain
values, suggesting the presence of thresholds or categori-
cal effects. X8 displays a more prominent upward trend
with fluctuations, indicating a stronger but somewhat
irregular positive relationship with Y2. Overall, the PDPs
highlight the differing contributions of the input vari-
ables to the two outputs, Y1 and Y2. Variables such as X1
and X3 consistently exhibit strong positive linear rela-
tionships across both outputs, while X2 consistently
shows an inverse influence.

4.5 | Interactive GUI

This section presents a significant advancement to meet
the practical needs of engineers and designers in effi-
ciently utilizing ML models.62 Although the complex pro-
cesses of database assembly, model training, and
validation have traditionally impeded the seamless inte-
gration of ML into everyday design tasks, an innovative
solution has been developed. A Python web application
has been created featuring a model with optimized
hyperparameters accessible through an intuitive GUI
built with the Tkinter package.63 This GUI is specifically

FIGURE 10 GUI screenshot for predicting Y1 and Y2.

ZHANG ET AL. 15



designed to predict outputs, as shown in Figure 10. The
GUI presents a streamlined layout where users can enter
values for the input variables. Upon inputting these vari-
ables, both calculated outputs are dynamically displayed,
thereby providing immediate and tangible insights into
the structural capacity of the column under consider-
ation. To facilitate wider access and foster collaborative
improvements, the GUI was and has been hosted on
GitHub, making it readily available for use and further
development by the community. This not only democra-
tizes the use of advanced predictive models but also
invites contributions to refine the tool and adapt it to var-
ious specific needs within the field of structural engineer-
ing. Finally, the GUI can be freely accessed at the
following URL: https://github.com/mkamel24/PF.

5 | CONCLUSIONS

This study investigates the behavior of FRP-reinforced
HCC using advanced ML models, including XGB, LGB,
and CGB. The influence of eight key input parameters (fo
(X1), Do (X2), D (X3), H (X4), S' (X5), Ab (X6), fh (X7), ρv
fv (X8)) on two critical outputs, the first peak load (Pn,1
(Y1)) and failure load Pn,2 (Y2) was analyzed. Prediction
models were developed to assess the optimal parameter
values and the structural performance of the column,
with particular focus on determining the optimal design
of FRP-reinforced HCC. The following conclusions are
drawn:

1. ML models demonstrated a high degree of accuracy in
predicting both the first peak load (Y1) and failure
load (Y2). The XGB and CGB models emerged as the
most accurate predictors, with R2 values of 1.0 and
0.99 for Y1 during training and testing, respectively.
For Y2, XGB and CGB achieved R2 values of 0.99 dur-
ing training and 0.96–0.97 during testing, reflecting
their robust generalization capabilities. The LGB
model, while effective, exhibited higher variability
and reduced consistency, with R2 values of 0.94 and
0.87 for testing Y1 and Y2, respectively. This suggests
that LGB's performance, though adequate, is less reli-
able on unseen data.

2. Visual assessments, including scatter plots and violin
boxplots, reveal that the CGB model provides the clos-
est alignment with actual TS for both outputs. Its bal-
anced distribution and controlled variability make it
the top-performing model. Quantitative evaluations,
such as Taylor diagrams and REC curves, further con-
firm CGB's superior predictive accuracy and lower
residual errors compared to XGB and LGB. The XGB
model, though slightly less accurate than CGB,

consistently ranks as a strong performer, particularly
in capturing the variability in both Y1 and Y2. LGB,
despite its lower consistency, demonstrates reasonable
accuracy and remains a viable alternative for predic-
tions when computational efficiency is prioritized.

3. Feature importance analysis using SHAP values iden-
tifies fh (X7) and fo (X1) as the most influential input
parameters for both Y1 and Y2. SHAP analysis high-
lights the significant and consistent impact of these
features, with higher values of X7 and X1 generally
increasing the predicted outputs. Other features, such
as D (X3), Do (X2), and S0 (X5), also show substantial
influence but exhibit more varied effects depending
on their ranges. Features like H (X4) and Ab (X6) are
identified as having minimal influence on the outputs,
contributing less to the model's predictions.

4. PDPs provide further insights into the relationships
between input features and outputs. A strong positive
linear relationship is observed for X1 and X3 with
both Y1 and Y2, indicating that increasing these vari-
ables leads to higher output values. Conversely, X2
consistently shows an inverse relationship, highlight-
ing its negative contribution to both outputs.

5. A user-friendly GUI was developed to apply the CGB
model for predicting Y1 and Y2, allowing engineers to
input parameters and obtain instant predictions. It
ensures accessibility by hosting on GitHub that sup-
ports collaborative improvements and enhances the
practical application of ML models in structural
design.

This study highlights the strong predictive capabilities
of ML models, particularly CGB and XGB, for FRP-
reinforced HCC, despite limitations such as a relatively
small dataset and limited exploration of multicollinearity
among inputs. These models demonstrate exceptional
accuracy and reliability within these constraints. Future
work should focus on expanding datasets and incorporat-
ing additional environmental factors to enhance general-
izability. Exploring hybrid modeling approaches that
integrate physical models with ML could further refine
prediction accuracy and adaptability for diverse engineer-
ing applications.
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APPENDIX A

TABLE A1 Database of the input parameters and their actual and predicted outputs.

S.
no.

X1 X2 X3 X4 X5 X6 X7 X8 Y1
Predicted
Y1 Y2

Predicted
Y2

fo
(MPa)

Do

(mm)
D
(mm)

H
(mm)

S'
(mm)

Ab

(mm2)
fh
(MPa)

ρv �
fv (MPa) Pn,1 (kN) Pn,2 (kN)

1 21.20 120.00 250.00 2000.00 100.00 70.80 1315.00 38.98 842.01 839.31 888.33 888.57

2 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 25.76 905.54 907.15 827.58 828.15

3 21.20 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 907.00 926.97 849.00 925.75

4 21.20 90.00 250.00 2000.00 200.00 70.80 1315.00 30.79 908.05 908.22 906.88 906.33

5 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 26.00 910.01 909.28 830.15 844.86

6 21.20 90.00 250.00 2000.00 100.00 70.80 1315.00 34.47 930.06 931.13 1000.16 983.53

7 21.20 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 942.63 926.97 1001.61 925.75

8 34.00 0.00 215.00 1150.00 120.00 50.29 975.00 6.04 943.00 989.45 707.25 749.98

9 21.20 65.00 250.00 2000.00 100.00 70.80 1315.00 32.18 968.54 972.13 1036.98 1038.18

10 36.00 90.00 214.00 850.00 60.00 78.57 1219.00 26.17 980.35 1022.64 942.05 1043.78

11 36.00 90.00 214.00 850.00 90.00 78.57 1219.00 26.17 982.10 980.65 901.77 902.56

12 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 22.99 983.30 1015.82 875.50 923.57

13 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 38.64 984.69 985.99 969.38 969.94

14 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 39.00 995.06 956.97 973.14 945.22

15 21.20 40.00 250.00 2000.00 200.00 70.80 1315.00 30.79 1006.65 1017.52 989.54 1031.91

16 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 22.77 1011.17 1034.75 919.94 983.57

17 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 22.99 1015.58 1015.82 922.00 923.57

18 21.20 0.00 250.00 2000.00 200.00 70.80 1315.00 30.00 1020.60 1038.18 990.90 1011.83

19 26.80 90.00 250.00 1000.00 0.00 70.80 1315.00 34.47 1022.00 1020.78 854.65 855.04

20 21.20 90.00 250.00 3000.00 50.00 70.80 1315.00 34.47 1028.02 1060.37 1251.85 1286.54

21 34.00 0.00 215.00 1150.00 120.00 50.29 975.00 8.05 1031.00 1046.24 773.25 770.18

22 21.20 120.00 250.00 2000.00 100.00 70.80 1315.00 77.97 1034.53 1032.12 1388.63 1387.65

23 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.16 1035.00 1054.81 1204.20 1141.01

24 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 22.77 1035.30 1034.75 985.10 983.57

25 34.00 0.00 215.00 1150.00 120.00 50.29 975.00 6.04 1039.25 989.45 791.70 749.98

26 21.20 40.00 250.00 2000.00 100.00 70.80 1315.00 30.79 1044.34 1036.45 1149.99 1148.53

27 34.00 0.00 215.00 1150.00 120.00 50.29 975.00 8.05 1052.04 1046.24 768.10 770.18

28 26.80 90.00 250.00 1000.00 0.00 70.80 1315.00 34.47 1055.52 1020.78 926.22 855.04

29 36.00 56.00 214.00 850.00 90.00 78.57 1219.00 23.13 1061.00 1079.33 845.00 927.84

30 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.16 1067.16 1054.81 1078.70 1141.01

31 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 51.99 1067.21 1064.73 1139.57 1139.44

32 34.00 0.00 215.00 1150.00 80.00 50.29 975.00 8.05 1068.85 1076.11 853.22 840.42

33 21.20 0.00 250.00 2000.00 100.00 70.80 1315.00 30.00 1073.88 1070.06 1167.07 1182.24

34 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 21.03 1079.79 1083.86 993.99 996.75

35 21.20 90.00 250.00 2000.00 200.00 70.80 1315.00 68.94 1083.26 1110.81 1384.68 1393.04

36 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 21.23 1083.94 1083.86 996.03 996.75

37 34.00 0.00 215.00 1150.00 80.00 50.29 975.00 8.05 1088.00 1076.11 828.03 840.42

38 36.00 56.00 214.00 850.00 60.00 78.57 1219.00 23.13 1088.00 1127.84 1199.00 1109.45
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TABLE A1 (Continued)

S.
no.

X1 X2 X3 X4 X5 X6 X7 X8 Y1
Predicted
Y1 Y2

Predicted
Y2

fo
(MPa)

Do

(mm)
D
(mm)

H
(mm)

S'
(mm)

Ab

(mm2)
fh
(MPa)

ρv �
fv (MPa) Pn,1 (kN) Pn,2 (kN)

39 21.20 65.00 250.00 3000.00 50.00 70.80 1315.00 32.18 1092.89 1091.14 1357.01 1356.64

40 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.48 1097.93 1101.25 1081.41 1052.39

41 36.00 56.00 214.00 850.00 90.00 78.57 1219.00 23.13 1098.62 1079.33 1011.89 927.84

42 26.80 90.00 250.00 1000.00 150.00 70.80 1315.00 34.47 1108.00 1123.39 1110.00 1027.85

43 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.48 1109.20 1101.25 1024.40 1052.39

44 25.00 120.00 250.00 1000.00 100.00 70.80 1315.00 57.77 1118.42 1092.30 1208.21 1313.10

45 36.00 56.00 214.00 850.00 60.00 78.57 1219.00 23.13 1119.64 1127.84 1107.67 1109.45

46 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 20.11 1120.06 1125.98 1039.45 1044.29

47 21.20 90.00 250.00 2000.00 100.00 70.80 1315.00 68.94 1121.80 1119.43 1498.20 1498.85

48 26.80 90.00 250.00 1000.00 150.00 70.80 1315.00 34.47 1122.21 1123.39 1027.95 1027.85

49 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 20.30 1123.45 1125.98 1040.37 1039.63

50 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 51.08 1140.00 1145.04 1247.90 1249.04

51 31.80 120.00 250.00 2000.00 200.00 70.80 1315.00 38.98 1146.80 1147.16 1004.77 1006.79

52 36.00 56.00 214.00 850.00 30.00 78.57 1219.00 23.13 1154.00 1283.95 1955.00 1641.06

53 26.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1157.38 1166.70 1117.34 1111.90

54 36.00 30.00 214.00 850.00 90.00 78.57 1219.00 21.98 1157.79 1135.96 1082.48 1028.33

55 21.20 40.00 250.00 2000.00 200.00 70.80 1315.00 61.58 1160.46 1188.86 1437.25 1467.57

56 21.20 65.00 250.00 2000.00 100.00 70.80 1315.00 64.35 1160.74 1163.92 1539.08 1539.31

57 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 31.55 1162.79 1161.70 1151.77 1151.65

58 26.80 90.00 250.00 1000.00 50.00 70.80 1315.00 34.47 1163.39 1205.90 1386.62 1432.05

59 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 31.85 1167.48 1161.70 1153.13 1151.65

60 31.80 120.00 250.00 2000.00 100.00 70.80 1315.00 38.98 1168.57 1168.81 1092.02 1088.60

61 25.00 0.00 250.00 1000.00 100.00 70.80 1315.00 20.11 1169.99 1168.05 1108.40 1109.12

62 25.00 0.00 250.00 1000.00 100.00 70.80 1315.00 20.30 1173.78 1168.05 1109.50 1104.46

63 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 45.97 1176.34 1217.29 1247.95 1326.45

64 37.00 0.00 205.00 800.00 60.00 70.91 1275.00 27.63 1180.23 1181.79 1358.40 1358.28

65 34.00 0.00 215.00 1150.00 40.00 50.29 975.00 8.05 1180.46 1201.60 1154.32 1151.42

66 21.20 40.00 250.00 3000.00 50.00 70.80 1315.00 30.79 1183.25 1179.49 1500.46 1500.98

67 26.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1189.00 1166.70 1102.00 1111.90

68 21.20 0.00 250.00 3000.00 50.00 70.80 1315.00 30.00 1196.09 1200.42 1545.98 1546.54

69 26.80 90.00 250.00 1000.00 50.00 70.80 1315.00 34.47 1197.00 1205.90 1434.00 1432.05

70 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 51.08 1199.24 1145.04 1318.59 1249.04

71 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 30.17 1203.13 1208.22 1195.82 1194.94

72 21.20 0.00 250.00 2000.00 200.00 70.80 1315.00 60.00 1203.42 1199.33 1437.25 1438.39

73 36.00 30.00 214.00 850.00 60.00 78.57 1219.00 21.98 1204.69 1200.11 1234.19 1233.69

74 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 30.45 1207.03 1208.22 1196.12 1194.94

75 37.00 0.00 205.00 800.00 60.00 70.91 1275.00 27.63 1220.00 1181.79 1425.00 1358.28

76 34.00 0.00 215.00 1150.00 40.00 50.29 975.00 8.05 1223.00 1201.60 1147.75 1151.42

77 21.20 40.00 250.00 2000.00 100.00 70.80 1315.00 61.58 1236.13 1235.99 1646.71 1638.10

78 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 42.46 1247.75 1256.04 1319.06 1327.59

79 25.00 0.00 250.00 1000.00 100.00 70.80 1315.00 30.17 1250.05 1244.79 1260.45 1260.24

(Continues)
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TABLE A1 (Continued)

S.
no.

X1 X2 X3 X4 X5 X6 X7 X8 Y1
Predicted
Y1 Y2

Predicted
Y2

fo
(MPa)

Do

(mm)
D
(mm)

H
(mm)

S'
(mm)

Ab

(mm2)
fh
(MPa)

ρv �
fv (MPa) Pn,1 (kN) Pn,2 (kN)

80 21.20 0.00 250.00 2000.00 100.00 70.80 1315.00 60.00 1250.52 1259.40 1657.18 1655.45

81 25.00 0.00 250.00 1000.00 100.00 70.80 1315.00 30.45 1256.61 1244.79 1265.49 1260.24

82 31.80 90.00 250.00 2000.00 200.00 70.80 1315.00 34.47 1264.64 1265.01 1102.49 1099.25

83 25.00 90.00 250.00 1000.00 100.00 70.80 1315.00 45.97 1267.90 1217.29 1406.10 1326.45

84 36.00 56.00 214.00 850.00 30.00 78.57 1219.00 23.13 1285.91 1283.95 1641.72 1641.06

85 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 40.60 1288.20 1297.64 1362.01 1364.70

86 37.00 0.00 205.00 800.00 30.00 70.91 1275.00 27.63 1291.10 1324.54 1939.07 1743.31

87 25.00 60.00 250.00 1000.00 100.00 70.80 1315.00 47.17 1293.23 1297.01 1386.45 1386.50

88 31.80 90.00 250.00 2000.00 100.00 70.80 1315.00 34.47 1294.41 1311.35 1194.20 1201.42

89 37.00 0.00 205.00 800.00 30.00 70.91 1275.00 27.63 1309.00 1324.54 2041.00 1743.31

90 31.80 65.00 250.00 2000.00 200.00 70.80 1315.00 32.18 1325.91 1320.45 1164.11 1163.48

91 31.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1327.24 1321.75 1219.42 1211.28

92 25.00 30.00 250.00 1000.00 100.00 70.80 1315.00 45.11 1331.07 1367.91 1425.18 1448.16

93 25.00 0.00 250.00 1000.00 100.00 70.80 1315.00 40.60 1335.45 1331.87 1426.20 1424.89

94 31.80 65.00 250.00 2000.00 100.00 70.80 1315.00 32.18 1348.52 1362.61 1240.57 1266.96

95 31.80 120.00 250.00 2000.00 100.00 70.80 1315.00 77.97 1381.09 1384.40 1565.15 1566.40

96 31.80 120.00 250.00 2000.00 200.00 70.80 1315.00 77.97 1382.16 1382.39 1562.41 1561.77

97 31.80 65.00 250.00 1000.00 100.00 70.80 1315.00 32.18 1386.17 1362.97 1269.99 1242.16

98 31.80 90.00 250.00 3000.00 50.00 70.80 1315.00 34.47 1396.26 1391.91 1484.92 1485.56

99 31.80 40.00 250.00 2000.00 200.00 70.80 1315.00 30.79 1403.49 1406.02 1252.63 1253.75

100 31.80 40.00 250.00 1000.00 100.00 70.80 1315.00 30.79 1408.00 1454.92 1295.00 1354.15

101 31.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1411.00 1321.75 1304.00 1211.28

102 31.80 0.00 250.00 2000.00 200.00 70.80 1315.00 30.00 1430.91 1427.80 1230.83 1231.28

103 31.80 65.00 250.00 3000.00 50.00 70.80 1315.00 32.18 1431.19 1430.22 1583.27 1582.50

104 31.80 40.00 250.00 2000.00 100.00 70.80 1315.00 30.79 1458.49 1455.46 1389.58 1385.13

105 31.80 0.00 250.00 2000.00 100.00 70.80 1315.00 30.00 1476.97 1490.18 1411.96 1416.46

106 31.80 40.00 250.00 1000.00 100.00 70.80 1315.00 30.79 1491.62 1454.92 1408.81 1354.15

107 36.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1499.01 1492.03 1355.34 1355.94

108 31.80 90.00 250.00 2000.00 200.00 70.80 1315.00 68.94 1499.36 1497.22 1617.56 1616.87

109 31.80 90.00 250.00 2000.00 100.00 70.80 1315.00 68.94 1508.08 1510.21 1700.55 1700.05

110 31.80 0.00 250.00 1000.00 100.00 70.80 1315.00 30.00 1515.66 1505.30 1426.19 1423.74

111 31.80 40.00 250.00 3000.00 50.00 70.80 1315.00 30.79 1534.03 1541.33 1731.73 1733.93

112 31.80 65.00 250.00 2000.00 200.00 70.80 1315.00 64.35 1558.93 1557.35 1639.86 1641.09

113 31.80 65.00 250.00 1000.00 100.00 70.80 1315.00 32.18 1559.00 1362.97 1458.00 1242.16

114 21.20 0.00 305.00 3000.00 80.00 81.50 1328.00 31.31 1562.77 1561.38 1891.11 1890.13

115 31.80 65.00 250.00 2000.00 100.00 70.80 1315.00 64.35 1566.69 1569.13 1745.07 1744.07

116 36.80 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1570.00 1492.03 1424.00 1355.94

117 31.80 0.00 250.00 3000.00 50.00 70.80 1315.00 30.00 1572.35 1563.37 1787.77 1784.92

118 31.80 0.00 250.00 1000.00 100.00 70.80 1315.00 30.00 1588.00 1505.30 1368.00 1423.74

119 31.80 40.00 250.00 2000.00 200.00 70.80 1315.00 61.58 1596.50 1623.73 1726.17 1726.69

120 31.80 0.00 250.00 2000.00 200.00 70.80 1315.00 60.00 1627.13 1634.17 1713.15 1711.77
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TABLE A1 (Continued)

S.
no.

X1 X2 X3 X4 X5 X6 X7 X8 Y1
Predicted
Y1 Y2

Predicted
Y2

fo
(MPa)

Do

(mm)
D
(mm)

H
(mm)

S'
(mm)

Ab

(mm2)
fh
(MPa)

ρv �
fv (MPa) Pn,1 (kN) Pn,2 (kN)

121 31.80 40.00 250.00 2000.00 100.00 70.80 1315.00 61.58 1665.73 1675.22 1886.07 1877.15

122 21.20 0.00 305.00 3000.00 50.00 81.50 1328.00 31.31 1668.66 1671.12 2008.15 2009.26

123 31.80 0.00 250.00 2000.00 100.00 70.80 1315.00 60.00 1713.98 1698.61 1908.63 1908.76

124 44.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1747.59 1753.18 1479.48 1480.72

125 44.00 90.00 250.00 1000.00 100.00 70.80 1315.00 34.47 1880.00 1753.18 1644.00 1480.72

126 35.00 90.00 305.00 1500.00 100.00 70.80 1562.00 39.98 2836.94 2836.75 2591.96 2591.44

127 35.00 90.00 305.00 1500.00 80.00 70.80 1562.00 39.98 2903.61 2904.35 2739.38 2737.76

128 35.00 0.00 305.00 1500.00 100.00 70.80 1562.00 36.50 2968.30 2969.01 2756.99 2756.73

129 35.00 60.00 305.00 1500.00 100.00 70.80 1562.00 37.97 2969.00 2959.76 2748.62 2746.77

130 35.00 30.00 305.00 1500.00 100.00 70.80 1562.00 36.86 3049.41 3015.43 2838.60 2815.71

131 35.00 60.00 305.00 1500.00 80.00 70.80 1562.00 37.97 3058.60 3067.51 2928.08 2932.22

132 35.00 0.00 305.00 1500.00 80.00 70.80 1562.00 36.50 3087.85 3099.52 2989.56 2992.54

133 35.00 30.00 305.00 1500.00 80.00 70.80 1562.00 36.86 3150.74 3144.59 3050.29 3048.43

134 35.00 90.00 305.00 1500.00 50.00 70.80 1562.00 39.98 3194.96 3198.79 3412.98 3414.96

135 35.00 60.00 305.00 1500.00 50.00 70.80 1562.00 37.97 3368.50 3365.56 3723.27 3721.65

136 35.00 0.00 305.00 1500.00 50.00 70.80 1562.00 36.50 3419.71 3411.80 3805.45 3804.28

137 35.00 30.00 305.00 1500.00 50.00 70.80 1562.00 36.86 3470.91 3438.26 3937.56 3838.28

138 70.20 80.00 305.00 1500.00 80.00 81.50 1328.00 33.62 4213.47 4214.78 3466.20 3466.63

139 70.20 80.00 305.00 1500.00 80.00 81.50 1328.00 50.43 4406.67 4402.65 3849.55 3848.74

140 70.20 0.00 305.00 1500.00 80.00 81.50 1328.00 31.31 4476.30 4590.08 3677.32 3829.33

141 70.20 0.00 305.00 3000.00 50.00 81.50 1328.00 31.31 4646.51 4647.75 4222.37 4222.54

142 70.20 0.00 305.00 1500.00 80.00 81.50 1328.00 46.96 4655.34 4687.51 4023.42 3978.78

143 70.20 0.00 305.00 1500.00 80.00 81.50 1328.00 31.31 4709.00 4590.08 3981.89 3829.33

144 70.20 0.00 305.00 1500.00 80.00 81.50 1328.00 46.96 4716.00 4687.51 3933.59 3978.78

Note: The bold values in the Table [A1] are the predicted results.
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