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Abstract

Accurate crop yield forecasting is vital for ensuring food security and making informed deci-

sions. With the increasing population and global warming, addressing food security has

become a priority, so accurate yield forecasting is very important. Artificial Intelligence (AI)

has increased the yield accuracy significantly. The existing Machine Learning (ML) methods

are using statistical measures as regression, correlation and chi square test for predicting

crop yield, all such model’s leads to low accuracy when the number of factors (variables)

such as the weather and soil conditions, the wind, fertilizer quantity, and the seed quality

and climate are increased. The proposed methodology consists of different stages, like

Data Collection, Preprocessing, Feature Extraction with Support Vector Machine (SVM),

correlation with Normalized Google Distance (NGD), feature ranking with rising star. This

study combines Bidirectional Gated Recurrent Unit (Bi-GRU) and Time Series CNN to pre-

dict crop yield and then recommendation for further improvement. The proposed model

showed very good results in all datasets and showed significant improvement compared to

baseline models. The ECP-IEM achieved an accuracy 96.34%, precision 94.56% and recall

95.23% on different datasets. Moreover, the proposed model was also evaluated based on

MAE, MSE, and RMSE, which produced values of 0.191, 0.0674, and 0.238, respectively.

This will help in improving production of crops by giving an early look about the yield of crops

which will than help the farmer in improving the crops yield.

1. Introduction

Seasonal crop yield prediction is a crucial aspect of agricultural planning and management [1].

It involves estimating the amount of crop that will be produced in a specific season, which is

essential for ensuring food security, optimizing resource allocation, and stabilizing market

prices [2]. With accurate predictions, farmers can make informed decisions. For example,

knowing the expected yield allows farmers to plan their planting schedules and select
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appropriate crop varieties, ensuring they maximize productivity and avoid overproduction or

shortages [3]. Additionally, accurate yield forecasts help farmers allocate resources more effi-

ciently, such as water and fertilizers, ensuring they are used where they will have the most sig-

nificant impact [4]. This optimization reduces waste and costs, enhancing overall farm

profitability and sustainability.

Over the past few decades, various initiatives have been launched to combat global hunger

and sustain the growing population. Despite a substantial rise in agricultural productivity over

the last half-century, nearly 800 million individuals still suffer from inadequate food access

and hunger [5]. Consequently, the United Nations’ 2030 Agenda for Sustainable Development

has prioritized the fight against hunger and the enhancement of food security as its foremost

goal [6]. For all those engaged in the production and trading stage of agriculture, predicting

the crop’s potential yield is an important milestone. In the context of global food crises, the

importance of accurate crop yield prediction cannot be overstated. With the world’s popula-

tion continually growing, the demand for food is increasing, putting pressure on agricultural

systems to produce more with fewer resources. Natural disasters, climate change, and geopolit-

ical conflicts further exacerbate food insecurity, making it imperative to have robust systems in

place for predicting crop yields. Accurate yield predictions enable governments and organiza-

tions to plan for potential food shortages, distribute resources effectively, and implement

timely interventions to prevent crises [7].

Crop output forecasting may prove to be a helpful instrument for helping prepare and carry

out tasks with greater knowledge. This makes forecasting crop output a challenging task that

needs to be resolved. Crop yield levels are influenced by a number of variables, including tem-

perature and soil conditions, fertilizer use, and seed variety also establishing the physical char-

acteristics of the organism [8]. It has been possible to estimate agricultural yields using a

variety of crop simulation and yield estimation models. Using the factors mentioned above, AI

can be used to estimate crop yields more accurately. A branch of AI known as ML has recently

been used extensively for crop output prediction due to its capacity to find non-linear rules

and patterns in huge datasets that come from various sources [9].

Traditional methods as depicted in Fig 1, of crop yield improvement have relied heavily on

statistical models and expert knowledge. These methods typically involve the use of historical

yield data, weather conditions, soil characteristics, and other agronomic factors to develop

regression models [10]. While these models can provide useful insights, they often fall short in

capturing the complex and dynamic nature of agricultural systems. Factors such as changing

weather patterns, pest infestations, and technological advancements in farming practices are

challenging to incorporate accurately into traditional models [11]. The limitations of tradi-

tional crop yield prediction methods are significant. Firstly, these methods often lack the abil-

ity to generalize across different regions and crop types, leading to varying degrees of accuracy.

Secondly, traditional models are usually static, meaning they cannot adapt to real-time changes

in environmental conditions [12]. This rigidity makes them less effective in dealing with the

uncertainties and variability inherent in agriculture. Additionally, the reliance on historical

data may not always reflect current and future trends, especially in the face of rapid climate

change [13].

The rise of machine learning (ML) has revolutionized the approach to predicting crop

yields. ML techniques are capable of analyzing extensive datasets, uncovering trends, and gen-

erating predictions with greater precision than conventional approaches [14]. Approaches

such as support vector machines (SVM), random forests, and gradient boosting have been uti-

lized in forecasting crop yields, employing varied datasets including meteorological data, soil

characteristics, and satellite imagery. These methods can learn from past data and adjust to

new information, making them both adaptable and reliable [15]. Moreover, deep learning, a
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branch of machine learning, has significantly improved the performance of crop yield predic-

tion models. Deep learning methods, including convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), can manage complex, high-dimensional data and discern

intricate correlations between variables. For example, CNNs are particularly adept at process-

ing spatial information from satellite images, while RNNs excel at modeling temporal

sequences such as weather trends. The capability of deep learning models to develop hierarchi-

cal data representations renders them potent tools for precise yield forecasting [16].

Although machine learning and deep learning techniques offer numerous benefits, they

also come with certain limitations. A significant challenge is the necessity for extensive, high-

quality datasets to train these models effectively. In many areas, such data can be limited or

unreliable. Furthermore, these models often demand substantial computational power, requir-

ing considerable resources for both training and deployment. Another issue is the potential for

overfitting, where a model may excel with training data but perform poorly on new, unseen

data. Additionally, the opaque nature of many deep learning models can complicate the inter-

pretation of results and understanding of the underlying decision-making process. To address

the limitations of existing methods, this research proposes an deep integrated model for

improving seasonal crop yield prediction. This model integrates multiple advanced techniques

to enhance accuracy and robustness. The key steps of our approach include data collection,

preprocessing, SVM-based feature extraction, NGD-based feature correlation, rising star-

based feature ranking and an deep integrated model composed of Bi-GRU and time series

CNN.

1.1 Research contribution

The key contribution of the proposed work is summarized as follows:

• Provides precise guidance on planting, irrigation, and fertilization schedules to boost crop

health and yield, while promoting efficient resource use to minimize waste and

Fig 1. The work flow of traditional crop yield improving methods.

https://doi.org/10.1371/journal.pone.0316682.g001
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environmental impact. Additionally, it supports farmers’ economic stability by informing

market strategies and investment decisions with accurate yield predictions.

• Introducing advanced feature extraction, correlation, and ranking techniques with a deep

integrated model composed of Bi-GRU and time series CNN, resulting in highly accurate

and robust crop yield predictions that enhance decision-making and resource optimization

for farmers.

• The proposed model was evaluated against baseline approaches, and comparative analysis

indicates that it achieved superior results.

The rest of the paper as organized as follows: Section 2 discusses the current literature

related to the crop yield improvement techniques, section 3 provides the core methodology of

the proposed work, section 4 gives detail about experimental evaluations and results. Section 5

detailed the conclusion and future work direction.

2. Literature review

Numerous researches have been found in the field of agriculture and yield improvement such

as Paudel et al. [17] created a ML framework that combined crop modeling and ML to predict

large-scale crop yield, focusing on accuracy, flexibility, and reusability while avoiding data

leakage. The system utilized data from MCYFS database and adapted well to different crops,

predicting yield for five crops in three countries and comparing favorably to a basic method in

early season predictions, though some crops had higher errors. Future improvements could

involve newer data sources, refined features, and diverse ML algorithms. Qiao et al. [18] intro-

duced KSTAGE, which uses past experience for spatial-temporal interactions, employing a 3D

CNN and KTMA for attention weights. A Spatial Attention Graph Network merges spatial fea-

tures, enhancing county-level yield prediction in China and the CONUS. The approach high-

lights the value of self-attention and graph representation for intricate correlations, with future

plans to integrate external factors like weather and soil conditions for better accuracy.

Liu et al. [19] explored wheat yield prediction in Indo-Gangetic Plains via satellite data and

various methods, favoring ML and DL over linear regression, with SVR outperforming LSTM.

High-resolution data excelled, especially during 2010 extreme weather, while traditional indi-

ces matched in 2018. Enhanced satellite data could enhance predictions and aid forecasting in

data-scarce regions. Meroni et al. [20] explored the use of small data and ML algorithms for

monthly yield prediction during the growing season. They developed an automated ML pro-

cess that effectively selected features and models. In their case study on Algeria, accurate

national yield forecasts were achieved for barley, soft wheat, and durum wheat. ML models

consistently outperformed simple benchmarks, even during poor yield years, providing valu-

able early warning capabilities. While variations in accuracy between models were observed,

suitable model calibration and selection ensured benchmark models outperformed a signifi-

cant portion of tested ML models. It was noted that extensive calibration is necessary to

achieve superior performance over simple benchmarks when working with limited data.

The work of Abbaszadeh et al. [21] introduced a framework using Bayesian Model Averag-

ing (BMA) and Copula functions, integrating outputs from multiple deep neural networks like

3DCNN and ConvLSTM for probabilistic soybean crop yield estimation in U.S. counties. The

approach outperforms individual networks when considering model uncertainties. The frame-

work’s adaptability extends to other model outputs and crops, with future plans to apply it to

maize and corn yield predictions across additional U.S. states. Zhu et al. [22] also introduced a

new DL adaptive crop model (DACM) for precise large-area yield estimation, emphasizing

adaptive learning of spatial crop growth patterns. DACM’s stability analysis and attention
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values demonstrated its ability to learn and adapt to spatial crop development, providing a

valuable approach for accurate and interpretable large-scale yield prediction.

Oikonomidis et al. [23] developed DL models for soybean crop yield prediction, with the

hybrid CNN-DNN model achieving the best performance (RMSE 0.266, R2 0.87). XGBoost

showed the second-best performance and faster runtime. The authors propose investigating

hybrids of XGBoost and DL methods like RNN or LSTM with attention mechanisms for

improved sequential crop yield prediction. They also suggest applying transfer learning using

pre-trained models to optimize resource usage in similar yield prediction tasks. Shahhosseini

et al. [24] combined crop modeling and ML to improve corn yield prediction in the US Corn

Belt. ML models with APSIM variables reduced yield forecast RMSE by 7–20%, emphasizing

the importance of APSIM factors like soil moisture for accurate predictions and suggesting

additional soil water-related variables for enhanced accuracy in the central US Corn Belt.

Huang et al. [25] introduced a dual-stream deep-learning neural network for China’s winter

wheat yield prediction, integrating remote sensing, weather, and soil data. The model outper-

formed traditional ML methods with an R2 of 0.79 and 650.21 kg/ha error. With a 13% error

rate two months before harvest, it reliably forecasted in-season yields. This multi-source

approach offers a valuable tool for large-scale county-level winter wheat prediction. Batool

et al. [26] compared AquaCrop simulation and ML techniques for tea yield prediction in Paki-

stan. XGBoost had MAE 0.123 t/ha, MSE 0.024 t/ha, RMSE 0.154 t/ha. ML outperformed

AquaCrop in yield prediction with less data, offering an AquaCrop-ML blend for enhanced

tea yield forecasting. Further research should consider all model variables and detailed field

data for better outcomes. The comparative analysis of existing literature is given in Table 1.

The review of various methodologies for crop yield prediction underscores the continuous

evolution and refinement of predictive models in agricultural research. While traditional mod-

els, as discussed previously offer a foundational approach, their accuracy is often limited by the

availability and proportionality of the input data, highlighting the necessity for more compre-

hensive datasets that include high-dimensional genotype data, plant traits, and satellite imag-

ery. The proposed model, which integrates advanced feature extraction, correlation, and

ranking techniques with an deep integerated model composed of Bi-GRU and time series

CNN, demonstrates superiority in several aspects. With the integration of these model the pro-

posed model provides a highly accurate and robust framework for crop yield prediction,

addressing the limitations of previous methodologies and paving the way for more reliable

agricultural planning and management.

Table 1. Comparative analysis of existing literature.

Ref. Methodology Dataset Accuracy Limitations

[20] Regression Modal Custom dataset from

multiple countries

RMSE 8% • Limited publicly available information on genotype

[21] hybrid fuzzy neural network and

deep belief network

Indian Meteorological

department,

92% • Incorporating variations in hyperparameter assignments, pest

infestations, and crop damage into the existing framework can help build

a more robust model.

[22] Genetic algorithm (GA)assisted

neuro-evolution approach

The Syngenta Crop

Challenge dataset

RMSE by 4% and

5%, respectively

• Perturbation on the evolution of the neural network can improve

results.

[23] RF,SVM, Gradient Decent, long

short term memory, lasso

regression

Rajasthan Government 96% With 0.035

RMSE

• deep learning models on larger datasets is necessary, and integrating

remote sensing data with district-level statistical data can enhance the

results.

[24] Deep Learning with LSTM Indian agricultural

website

LSTM with 86.3% • The system can be improved by implementing it on more data, hosting

the web application on Google Cloud, and storing data in cloud buckets.

[25] Machine Learning with LSTM Agricultural Statistical

Yearbook,

R2 ranging from

0.77 to 0.87

• The model can be further enhanced by integrating crop models,

incorporating more detailed farming management data.

https://doi.org/10.1371/journal.pone.0316682.t001
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3. Proposed method

The section presented the core methodology of proposed used for this research is presented in

this section. We describe the procedures to forecast the yield of crops. Overall idea is presented

in Fig 2.

3.1 Data collection

Three different dataset that are (ECP-DSI, ECP-DSII and ECP-DSIII) have been used in this

study. The graphical distribution of each dataset has been presented in Fig 3. Where the

ECP-DSI dataset collected by Khaki, Wang, and Archontoulis [27]. The research region

encompasses soybean cultivation across nine states in the United States. This dataset com-

prises meteorological conditions, soil characteristics, and agricultural practices. It spans from

1980 to 2018, detailing average crop yields throughout this period.

The ECP-DSII dataset consists of the 10 most consumed crops yield in the world. Data is

collected from 1990 to 2016. The data is collected from FAO (Food and Agriculture Organiza-

tion) and World Bank. Whereas, the ECP-DSIII includes information about crop yields, har-

vested areas, and production quantities for wheat, maize, rice, and soybeans. Agricultural

output is measured as production per unit of harvested land area. Often, yield information is

Fig 2. The working flow of ECP-IEM.

https://doi.org/10.1371/journal.pone.0316682.g002
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derived by dividing total production by the area harvested. This metric is provided for wheat,

maize, rice, and soybeans, with yields quantified in tons per hectare. The dataset includes pro-

duction information spanning from 2020 to 2024.

3.2 Preliminary pre-processing

Preprocessing of ECP-IEM involves several steps to ensure that the data is of high quality and

suitable for accurate crop yield improvement. Initially, the raw data from various sources,

including weather, soil, and management datasets, undergoes thorough cleaning to address

missing values, outliers, and inconsistencies. Missing values are imputed using interpolation

techniques or statistical methods, while outliers are detected and treated using appropriate sta-

tistical measures. This ensures that the data is complete and reliable.

Following data cleaning, normalization or standardization is applied to scale the features,

ensuring that all data points are on a comparable scale. This step is vital because features mea-

sured on different scales can adversely affect the performance of machine learning models. For

normalization, the min-max normalization formula
X� Xmin

Xmax� Xmin
. Where X represents the original

value, and Xmin and Xmax denote the minimum and maximum values of the feature, respec-

tively. This transformation scales the feature values to a range between 0 and 1, facilitating bet-

ter model performance. Encoding categorical variables is another essential aspect of

preprocessing. Categorical data, such as soil types or crop varieties, is transformed into a

numerical format using techniques like one-hot encoding. This process converts categorical

values into binary vectors, allowing the model to process and learn from these features effec-

tively. Additionally, temporal alignment is performed to synchronize data points from differ-

ent sources, ensuring consistency over time. This involves aligning weather data, soil data, and

yield records to the same temporal scale, which is critical for capturing the temporal depen-

dencies in crop growth.

3.3 Data balancing

After preprocessing, data balancing has been performed to addresses any imbalances in the

dataset, such as an unequal distribution of classes in a classification problem [28]. In this work

Fig 3. The overview of ECP-DSI, ECP-DSII and ECP-DSIII.

https://doi.org/10.1371/journal.pone.0316682.g003
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Adaptive Synthetic Sampling (ADASYN) [29] has been applied that is an effective technique

designed to address class imbalances by generating synthetic samples for the minority class in

a data-driven manner. This approach is particularly useful for our crop yield prediction

model, where the minority class (e.g., years or regions with significantly lower yields) is

underrepresented.

After the preprocessing that scales the feature values to a range between 0 and 1, facilitating

better model performance. Encoding categorical variables is another essential aspect of prepro-

cessing. Categorical data, such as soil types or crop varieties, is transformed into a numerical

format using techniques like one-hot encoding. This process converts categorical values into

binary vectors, allowing the model to process and learn from these features effectively. Addi-

tionally, temporal alignment is performed to synchronize data points from different sources,

ensuring consistency over time. This involves aligning weather data, soil data, and yield rec-

ords to the same temporal scale, which is critical for capturing the temporal dependencies in

crop growth. Dimensionality reduction is also a key component of the preprocessing pipeline.

By using feature selection process which is described in next section has been applied to

remove redundant and irrelevant features, retaining only the most informative variables. This

step reduces the computational complexity of the model and enhances its ability to generalize

and learn meaningful patterns from the data.

Let D ¼ fðxi; yiÞg
N
i¼1Þg

i¼1 i¼1
be the dataset, where xi represents the feature vector (including

weather, soil, and management features), and yi�{0,1} denotes the class label, with 1 being the

minority class (e.g., low yield) and 0 being the majority class (e.g., high yield). Define Nmin and

Nmaj as the number of samples in the minority and majority classes, respectively. To calculate

the imbalance ratio r as depicted in Eq 1:

r ¼
Nmaj

Nmin
ð1Þ

For each minority class sample xi, find its k-nearest neighbors using Euclidean distance

[30] for continuous feature. Let di be the number of majority class samples among these k-

nearest neighbors. Determine the sampling distribution for generating synthetic samples, the

ratio ri for each minority class sample xi could be computed as depicted in Eq 2:

ri ¼
di
k

ð2Þ

The number of synthetic samples Gi to be generated for each minority sample xi is given by:

Gi = ri×G where G is the total number of synthetic samples needed, typically set as Nmaj−Nmin.

For each minority class sample xi, generate Gi synthetic samples. Select a random neighbor xi,
nn from the k-nearest neighbors and interpolate to create a synthetic sample xnew depicted in

Eq 3:

xnew ¼ xi þ d� ðxi;nn � xiÞ ð3Þ

where δ is a random number drawn from the uniform distribution δ*U(0,1).

Integrate the generated synthetic samples with the original dataset to form a balanced train-

ing set. Train machine learning models on this balanced dataset to improve the detection of

heart diseases. Finally, train machine learning models on this balanced dataset to improve

crop yield predictions. The models benefit from the enriched dataset, which now has a more

balanced representation of different yield levels, thereby enhancing their ability to generalize

and make accurate predictions. The improved dataset allows the models to learn from a wider

variety of examples, leading to better performance in predicting crop yields across different
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scenarios and conditions. This approach ultimately contributes to more reliable and robust

crop yield predictions, aiding in better agricultural planning and resource management. The

ECP-IEM process from data input to feature engineering is shown in Fig 4.

3.4 Feature engineering

The feature engineering process ECP-IEM as depicted in Algorithm 1, involves a comprehen-

sive approach to selecting, extracting, and refining the most relevant features from the dataset.

This step is essential for enhancing the model’s predictive accuracy and robustness. By leverag-

ing advanced techniques such as SVM for initial feature selection, NGD for correlation analy-

sis, and the Rising Star algorithm for feature ranking, ECP-IEM ensure that the final set of

features is both highly informative and non-redundant. This systematic approach to feature

engineering allows the model to capture the complex interactions and dependencies within

the data, ultimately leading to more accurate and reliable crop yield predictions.

Fig 4. The ECP-IEM process from data input to feature engineering.

https://doi.org/10.1371/journal.pone.0316682.g004
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Algorithm 1: Feature Engineering Including Feature Extraction, Corre-
lation and Ranking
Input:
• Dataset D ¼ fðxi; yiÞgNi¼1Þg

i¼1i¼1 such that xi and yi 2Class Label
• Parameters for SVM, NGD, and Rising Star algorithm: k (number of
nearest neighbors), α, β.

Output: fi as Selected and ranked features.
1 Train SVM on D and find W that weight vector using Optimization

W  min 1

2
kWk2

þ C
PN

1¼1
maxð0; 1 � yiðw � xi þ bÞÞ

2 For each feature j
3 Do
Importance(j) |Wj|
4 End for
5 Select top m features
6 SelectedFeatures {j|Importance(j) is among the top m features}
7 Initialize correlation matrix C:
8 do
9 Cij  0 for all i,j
10 For each pair of selected feature (xi,xj)
11 Do

NGD xi; xj
� �

 
maxflogðf ðxiÞÞ;logðf ðxjÞÞg� logðf ðxi\xjÞÞ

logðNÞ� minflogðf ðxiÞÞ;logðf ðxjÞÞg

Cij NGD(xi,xj)
12 End for
13 For each feature i
14 Do

Pi  
1

T

PT
t¼1

WeighttðiÞ
Ri Weightrecent(i)
Rising Star Score Si  aPi þ bRi

RankedFeatures sortðfði; SiÞgÞ in descending order of Si
15 End for
16 Return

The complete procedure of feature extraction for ECP-IEM begins with the use of SVM to

identify and select the most relevant features. SVMs are primarily used for classification and

regression tasks, but they can also be utilized for feature selection by determining the features

that contribute most significantly to the decision boundary. In this context, an SVM classifier

is trained on the dataset, and the absolute values of the weights of the linear SVM model are

used as a measure of feature importance. Mathematically, given a trained linear SVM model

w�x+b = 0, where www is the weight vector and b is the bias, the importance of the jth feature

can be expressed as |wj|. Features with higher absolute weight values are considered more

important and are selected for further analysis. This process helps in reducing the dimension-

ality of the dataset, retaining only those features that have a significant impact on the model’s

predictions.

In the context of feature selection, the SVM is trained to classify the crop yield data into dif-

ferent categories based on the available features. The resulting weight vector www represents

the contribution of each feature to the decision boundary. By examining the absolute values of

these weights, we can identify which features have the most influence on the classification out-

come. This method ensures that only the most relevant features are retained for further pro-

cessing, improving the efficiency and performance of the subsequent analysis steps. Following

feature extraction using SVM, the next step involves evaluating the correlation between the

selected features using NGD. NGD is a semantic similarity measure that quantifies the related-

ness of concepts based on their co-occurrence in search engine results. For any two features Ci
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and Cj, NGD is calculated as depicted in Eq 4:

NGD Ci;Cj

� �
¼

maxflogðf ðCiÞÞ; logðf ðCjÞÞg � logðf ðCi \ CjÞÞ

logðNÞ � minflogðf ðCiÞÞ; logðf ðCjÞÞg
ð4Þ

where f(Ci) and f(Cj) are the frequencies of Ci and Cj appearing in search results, f(Ci,Cj) is the

frequency of their co-occurrence, and NNN is the total number of web pages indexed by the

search engine. Lower NGD values indicate higher similarity between features. By calculating

NGD for all pairs of selected features, a correlation matrix is constructed, helping to under-

stand the relationships and dependencies among the features. This step is crucial because it

allows us to identify and potentially eliminate redundant features that do not provide addi-

tional information beyond what is already captured by other features. Fig 5 shows some of the

obtained feature visualization that has been generated based on the working of algorithm 1.

The NGD-based correlation analysis provides a deeper understanding of how the selected

features interact with each other. For instance, if two features have a high semantic similarity

(i.e., a low NGD value), they may convey similar information about the crop yield. In such

cases, retaining both features might be unnecessary, and one of them can be discarded to

reduce redundancy. On the other hand, features with low semantic similarity (i.e., high NGD

values) are likely to provide unique and complementary information, making them valuable

for the model. This correlation analysis ensures that the final set of features is both comprehen-

sive and non-redundant, enhancing the model’s ability to capture diverse aspects of the data.

The final step involves ranking the features using the Rising Star algorithm, which assesses the

significance of features based on their historical performance and recent trends. The Rising

Star algorithm assigns a score to each feature, considering both its past importance and its cur-

rent relevance. The score Si for feature i is calculated as depicted in Eq 5:

Si ¼ a � Pi þ b � Ri ð5Þ

Fig 5. Feature engineering having ranked feature based on rising star score.

https://doi.org/10.1371/journal.pone.0316682.g005
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Where Pi represents the historical performance of the feature, Ri denotes its recent perfor-

mance, and α and β are weighting factors that balance the contribution of historical and recent

performance. The historical performance Pi can be measured by the average weight of the fea-

ture in previous models, while the recent performance Ri can be derived from its weight in the

most recent model. Features with higher scores are ranked higher, indicating their greater

importance in the prediction model.

The Rising Star algorithm integrates both long-term and short-term performance met-

rics to provide a balanced evaluation of each feature’s importance. Historical performance

Pi reflects the feature’s consistent contribution to model accuracy over time, while recent

performance Ri captures the feature’s current relevance based on recent data and model

iterations. The weighting factors α and β can be adjusted to emphasize either historical sta-

bility or recent trends, depending on the specific requirements of the model and the nature

of the data.

By integrating SVM-based feature selection, NGD-based correlation analysis, and Rising

Star-based feature ranking, the procedure ensures that the most relevant and impactful fea-

tures are identified and prioritized for inclusion in the model. This comprehensive approach

enhances the model’s ability to capture meaningful patterns and dependencies, leading to

more accurate and robust crop yield predictions. The combination of these advanced tech-

niques allows the model to effectively handle the complexity and variability of agricultural

data, ultimately contributing to better decision-making and resource management in crop

production. The model of ECP-IEM is shown in Fig 6.

Fig 6. ECP-IEM based crop yield prediction.

https://doi.org/10.1371/journal.pone.0316682.g006
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3.5 Prediction via deep integrated classifier

The final prediction in the proposed model is generated using a deep integrated classifier that

integrates the strengths of Bi-GRU and time series and CNN. This approach leverages different

aspects of the data, capturing temporal, spatial, and enhanced feature representations to pro-

duce a robust and accurate crop yield prediction.

The Bi-GRU model processes sequential data such as time-series weather and soil condi-

tions. Given an input sequence X = [x1,x2,. . .,xT]. where xt represents the feature vector at time

t, the Bi-GRU captures temporal patterns and dependencies. The forward and backward

GRUs process the sequence to generate hidden states  ht
and !ht

, respectively. The final hidden

state hT is obtained by concatenating the forward and backward hidden states depicted in Eqs

(6–7):

ht ¼ BiGRUðxi; ht� 1Þ ð6Þ

hT ¼
 

ht
;
!

ht

� �

ð7Þ

In Eqs (8–11), the BI-GRU calculation is shown by denoting the sigmoid operation, hidden

states & input vectors as ft*,hit and vt respectively. Reset data is denoted by rt, WG reveals the

weight factor, t reveal the time interval.

Ft ¼ ft∗ðWGi∗½hit� 1; vt�Þ ð8Þ

rt ¼ ft∗ðWGi∗½hit� 1; vt�Þ ð9Þ

hit ¼ tanhðWGc∗½rthit� 1; vt�Þ ð10Þ

hit ¼ ð1 � FtÞ:Ct� 1 þ Fthit ð11Þ

This output represents the temporal features extracted from the input sequence.

The CNN model focuses on extracting spatial features from data such as satellite images or

spatial patterns in weather data. The input to the CNN is a matrix I representing the spatial

data. The CNN applies multiple layers of convolutions, pooling, and activation functions to

extract high-level spatial features. Each convolutional layer applies a set of filters to the input

data, detecting various spatial patterns, and pooling layers reduce the dimensionality while

preserving the most important features. The CNN model is described as per Eq (12) which

gets the ft* as input. In Eq (13), plw! weight that is optimally tuned, Bl
w! bias of wth flter

linked to ith layer. The activation value (actlr;t;w ) related to convolutional features Dl
r;t;w is

shown by Eq (13).

Dl
r;t;w ¼ p

lT
w ft

∗ þ Bl
w ð12Þ

actlr;t;w ¼ actðDl
r;t;w Þ ð13Þ

Eq (14) shows Hl
r;t;w calculation. CNN loss PL is revealed by Eq (15), in which, θ signifies
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the term associated with Wl
w and Bl

w.

Hl
r;t;w ¼ poolðactlm;h;w Þ; 8ðm; hÞ 2 nnr;t ð14Þ

PL ¼
1

wn

Xwn

h¼1
l y;HðhÞ; FðhÞ
� �

ð15Þ

The final feature map F captures the spatial information relevant to crop yield.

After receiving results from each model, every model vote for its predicted class label. The

class with the most votes becomes the final prediction. Let us assume that the forecast of every

individual model is labeled as: yCNN and yBi-GRU respectively. The last prediction after voting

will be called yfinal.
Each model votes for the predicted class using Eq 16.

yfinal ¼ arg maxcðS
n
i¼1

1ycnn½i�¼cþS
n
i¼1
¼ cÞ ð16Þ

For example, if two models predict a high yield (class 1) and one model predicts a low yield

(class 0), the final prediction will be a high yield (class 1) because it has the majority of votes.

This approach ensures that the final prediction leverages the strengths of each individual

model, providing a robust and accurate forecast for crop yield. This methodology, integrating

advanced machine learning and deep learning techniques, aligns with your expertise in design-

ing models to improve seasonal crop yield, thus offering a practical and effective solution for

agricultural management.

3.6 Final recommendations

Incorporating the insights derived from the advanced predictive model, farmers and agricul-

tural stakeholders can implement a range of strategic recommendations to enhance crop yield.

These recommendations are designed to optimize various aspects of crop management,

including planting schedules, irrigation practices, fertilization, pest and disease control, crop

variety selection, resource allocation, and real-time monitoring. By leveraging the model’s

accurate predictions and detailed analyses, the following strategies can maximize productivity,

ensure efficient resource use, and mitigate potential risks, ultimately leading to more sustain-

able and profitable agricultural practices.

• Utilize the predictions to determine the best planting times based on weather forecasts and

soil conditions. Adjust planting schedules to ensure that crops are sown at the most favorable

times to maximize germination and early growth.

• Use the model’s insights to implement precise irrigation schedules, ensuring that crops

receive adequate water at critical growth stages. This prevents both water stress and over-

irrigation, which can lead to reduced yields.

• Apply fertilizers based on the predicted nutrient requirements at different stages of crop

growth. This ensures that crops receive the necessary nutrients without over-fertilization,

which can harm the environment.

• Implement proactive pest and disease control measures by leveraging the model’s ability to

predict potential outbreaks. Early intervention can significantly reduce crop damage and

improve yields.

• Use the predictions to choose crop varieties that are best suited to the expected environmen-

tal conditions. Selecting resilient and high-yield varieties can enhance overall productivity.
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• Optimize the allocation of resources such as labor, machinery, and capital based on the pre-

dicted workload and yield. This ensures that resources are used efficiently and effectively.

• Continuously monitor crop conditions using IoT sensors and remote sensing technologies.

Adapt farming practices in real-time based on the latest predictions to address any emerging

issues promptly.

Fig 7 shows the Incorporating insights derived from the advanced predictive model, farm-

ers and agricultural stakeholders can implement a range of strategic recommendations to

enhance crop yield. These recommendations are designed to optimize various aspects of crop

management, including planting schedules, irrigation practices, fertilization, pest and disease

control, crop variety selection, resource allocation, and real-time monitoring. By leveraging

the model’s accurate predictions and detailed analyses, these strategies aim to maximize pro-

ductivity, ensure efficient resource use, and mitigate potential risks, ultimately leading to more

sustainable and profitable agricultural practices.

4. Experimental evaluation

This section provides details of the experiments and their results. The dataset used, the perfor-

mance metrics and baseline approaches are presented.

The dataset was first split into training and testing sets before the application of any data

balancing techniques. To address class imbalance, only the training set was balanced using the

Adaptive Synthetic Sampling (ADASYN) method, while the testing set remained untouched to

serve as an uncontaminated evaluation set. This approach ensures the integrity of the testing

set, allowing for an unbiased assessment of the model’s performance. Additionally, k-fold

cross-validation was employed to enhance the robustness of the model evaluation. Within

Fig 7. Seasonal crop yield improvement based on ECP-IEM Recommendation.

https://doi.org/10.1371/journal.pone.0316682.g007
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each fold, the ADASYN technique was applied exclusively to the training portion, while the

validation fold remained unaltered. This strategy maintains the purity of the validation data,

preventing any information leakage from the training set. By strictly ensuring that no informa-

tion from the testing or validation sets influences the training process, this methodology pro-

vides a more realistic and reliable reflection of the model’s generalization capability in real-

world scenarios.

4.1 Datasets

The datasets utilized in this research are described in Table 2, analyzing and predicting crop

yields within the Corn Belt region of the United States, as well as globally for key crops. The

first dataset includes observed average yield data for corn and soybeans from 1980 to 2018,

spanning 1,176 counties for corn and 1,115 counties for soybeans. These states predominantly

cultivate corn and soybeans. This dataset provides valuable historical yield performance

insights, crucial for understanding trends and variations in crop yields over time. Crop yield

prediction is a significant agricultural challenge influenced by various factors, including

weather conditions (rainfall, temperature), pesticide usage, and historical crop yield data. The

second dataset, sourced from the Food and Agriculture Organization (FAO) and the World

Data Bank, includes comprehensive weather data, pesticide usage, and historical yield infor-

mation. Integrating this data is essential for agricultural risk management and making accurate

future yield predictions.

The third dataset provides data on crop yields, harvested areas, and production quantities

for wheat, maize, rice, and soybeans. This dataset offers a global perspective on crop produc-

tion, measured in tons per hectare, for the four major crops: wheat, maize, rice, and soybeans.

These datasets provide a robust foundation for analyzing crop yields, understanding historical

trends, and developing predictive models. The integration of regional and global data ensures

comprehensive coverage and facilitates the assessment of various factors influencing crop

yields.

4.2 Performance matrices

To evaluate the performance of MDD the following benchmark matrices has been used.

• Accuracy: Accuracy is the ratio of correctly predicted instances to the total instances. It is a

measure of the overall effectiveness of a classification model.

Accuracy ¼
True Positiveþ True Negative

Total Sample
ð17Þ

• Precision: Precision, or Positive Predictive Value, is the measure of correctly identified posi-

tive observations in relation to all observations predicted as positive. It reflects the

Table 2. Dataset description.

Dataset Crops URLs

ECP-DS-I Corn and Soybeans https://widgets.figshare.com/articles/27612663/embed?show_title=1

ECP-DS-II Different Crops https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset

ECP-DS-III wheat, maize, rice, and

soybeans.

https://www.kaggle.com/datasets/thedevastator/the-relationship-between-

crop-production-and-cli

https://doi.org/10.1371/journal.pone.0316682.t002
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proportion of true positive cases among the predicted positive instances, indicating the accu-

racy of positive predictions.

Precision ¼
True Positive

True Positiveþ False Positive
ð18Þ

• Recall: It may also know as Sensitivity or True Positive Rate, is the ratio of correctly pre-

dicted positive observations to the all observations in the actual class.

Recall ¼
True Positive

True Positiveþ False Negative
ð19Þ

• F1 Score: The F1 Score represents the harmonic mean of Precision and Recall, offering a sin-

gle metric that balances the trade-off between these two measures. It is particularly valuable

when considering both false positives and false negatives, providing a comprehensive assess-

ment of a model’s performance.

F1 Score ¼ 2�
Precision� Recall
Precisionþ Recall

ð20Þ

• Mean Absolute Error (MAE): This measure calculates the mean size of errors in a set of pre-

dictions, disregarding their direction. It represents the average of the absolute differences

between predicted values and actual observations in the test sample, giving equal importance

to all individual discrepancies. The formula for MAE is:

MAE ¼
1

n
Sn

i¼1
jyi � ŷij ð21Þ

• Mean Squared Error (MSE): This measure calculates the mean of the squared errors. As the

second moment of the error about the origin, it accounts for both the variance and bias of

the estimator. The formula for MSE is:

MSE ¼
1

n
Sn

i¼1
yi � ŷiÞ

2
ð22Þ

�

• Root Mean Square Error (RMSE): This is a common method for evaluating a model’s pre-

diction error in quantitative data. It involves taking the square root of the mean of the

squared differences between observed and predicted values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

ð23Þ

4.3 Baseline method

To evaluate the performance of the proposed model, the following baseline has been selected

due to its proficiency.

• Baseline Approach 1 [31]: Created a tree-based ensemble learning model to predict crop

suitability and productivity.

• Baseline Approach 2 [32]: Employed LSTM recurrent neural networks and 1DCNN for crop

forecasting.
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• Baseline Approach 3 [33]: Introduced a stacking-based ensemble deep learning technique

called Model Agnostic Meta-Learning (MAML) for classification purposes.

4.4 Results

The proposed model was evaluated on three different datasets (ECP-DS-I, ECP-DS-II, and

ECP-DS-III) to assess its performance. The results demonstrated high accuracy, precision, and

recall across all datasets, indicating the model’s robustness and reliability for crop yield predic-

tion as shown in Fig 8. On ECP-DS-I, the model achieved an accuracy of 95.76%, with a preci-

sion of 94.05% and a recall of 94.98%, highlighting its ability to accurately predict crop yield

with minimal false positives and false negatives. Performance slightly improved on ECP-DS-II,

with the model reaching an accuracy of 96.23%, precision of 94.42%, and recall of 94.12%,

demonstrating consistency across different datasets and underscoring the model’s generaliz-

ability. The highest performance was observed on ECP-DS-III, where the model achieved an

accuracy of 97.22%, a precision of 95.34%, and a recall of 96.01%, showcasing its optimal capa-

bility to predict crop yield accurately. Overall, the proposed model showed very good results

across all datasets, significantly improving compared to baseline models. The high accuracy,

precision, and recall values indicate that the model is well-suited for early crop yield predic-

tion, providing valuable insights for farmers to enhance crop production and ensure food

security.

To design the architectures for CNN and Bi-GRU, we conducted an iterative process

involving hyperparameter tuning and architecture refinement. For the CNN, we tested various

configurations, adjusting the number of convolutional layers, kernel sizes, and pooling opera-

tions to optimize spatial feature extraction from image data. For the Bi-GRU, we explored dif-

ferent numbers of hidden units, time steps, and learning rates to effectively capture temporal

patterns. Experimental comparisons of the individual performances of CNN and Bi-GRU

revealed that the CNN achieved an accuracy of 92.13% and Bi-GRU reached 91.45%. However,

the combined fusion model improved the accuracy to 96.34%. This fusion leverages the

Fig 8. Experimental results in terms of accuracy, precision and recall.

https://doi.org/10.1371/journal.pone.0316682.g008
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strengths of both models, leading to better overall performance, as reflected in improved preci-

sion, recall, and other metrics across all datasets. Fig 9 presents the performance of three data-

sets, ECP-DS-I, ECP-DS-II, and ECP-DS-III, evaluated using Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The results indicate that

for MAE, ECP-DS-I has a relatively high value compared to ECP-DS-II but is lower than

ECP-DS-III, with ECP-DS-II having the lowest MAE among the three datasets.

Regarding MSE, ECP-DS-I shows the lowest value, followed by ECP-DS-II, with ECP-D-

S-III having the highest MSE. For RMSE, ECP-DS-II again performs the best with the lowest

value, while ECP-DS-I has a higher RMSE than ECP-DS-II but lower than ECP-DS-III, which

exhibits the highest RMSE. In summary, ECP-DS-II demonstrates superior performance with

the lowest error metrics in both MAE and RMSE, indicating the most accurate predictions

overall. ECP-DS-I shows the best performance in MSE, while ECP-DS-III consistently records

the highest error metrics across all three measures, suggesting it is the least accurate among the

datasets.

The proposed model demonstrates a significant enhancement in crop yield forecasting

compared to traditional baseline models, as evidenced by improvements in accuracy, preci-

sion, and recall. The accuracy of the proposed model stands at 96.23%, a substantial increase

over the baseline models, which range from 91.34% to 93.22%. This 3.01% to 4.89% boost in

accuracy highlights the proposed model’s superior ability to correctly classify crop yield pre-

dictions. Precision also shows marked improvement, with the proposed model achieving

94.42%, surpassing the baseline models’ precision rates of 89.78% to 91.34%.

This 3.08% to 4.64% increase underscores the model’s enhanced reliability in identifying

true positives and reducing false positives. Similarly, the proposed model’s recall of 94.12%

outperforms the baseline models, which range from 90.23% to 91.89%, representing an

increase of 2.23% to 3.89%. This improvement in recall reflects the model’s ability to capture a

higher proportion of true positives and minimize false negatives. Overall, the proposed mod-

el’s superior performance across all metrics accuracy, precision, and recall demonstrates its

effectiveness in providing more reliable and accurate crop yield forecasts, thereby supporting

better decision-making for farmers and contributing to enhanced food security. The compara-

tive analysis is illustrated in Fig 10.

Fig 9. Performance through MAE, MSE and RMSE.

https://doi.org/10.1371/journal.pone.0316682.g009
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The proposed model significantly outperforms the baseline models in terms of prediction

accuracy, as demonstrated by its performance across Mean Absolute Error (MAE), Mean

Squared Error (MSE), and Root Mean Squared Error (RMSE) as shown in Fig 11. The pro-

posed model achieves an MAE of 0.191, which is lower than the baseline models, whose MAE

values range from 0.199 to 0.314. This reduction indicates that the proposed model provides

more accurate average predictions for crop yield. In terms of MSE, the proposed model reports

the lowest value at 0.0674, surpassing the baseline models that range from 0.071 to 0.172. This

decrease in MSE reflects the model’s superior ability to reduce the squared deviations between

Fig 10. Comparative analysis of proposed model with baseline approaches in terms of accuracy, precision and

recall.

https://doi.org/10.1371/journal.pone.0316682.g010

Fig 11. Comparative analysis of proposed model with baseline approaches in terms of MAE, MSE and RMSE.

https://doi.org/10.1371/journal.pone.0316682.g011
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predicted and actual values. The proposed model also excels in RMSE, with a value of 0.238,

compared to the baseline models’ RMSE values that span from 0.266 to 0.415. The lower

RMSE demonstrates the proposed model’s effectiveness in minimizing overall prediction

errors and deviations. Overall, the proposed model’s consistent improvements in MAE, MSE,

and RMSE highlight its superior accuracy and reliability in crop yield forecasting, crucial for

enhancing agricultural practices and food security.

5. Conclusion and future work

Accurate crop yield forecasting is vital for ensuring food security and making informed deci-

sions. With the increasing population and the impacts of global warming, addressing food

security has become a priority, making precise yield forecasting critically important. AI has

significantly improved yield accuracy. However, existing ML methods often rely on statistical

measures such as regression, correlation, and chi-square tests for predicting crop yield. These

models tend to show low accuracy when the number of influencing factors such as weather,

soil conditions, wind, fertilizer quantity, seed quality, and climate increase. The proposed

methodology enhances crop yield prediction through various stages: Data Collection, Prepro-

cessing, Feature Extraction using SVM, Correlation using NGD, and Feature Ranking with the

Rising Star algorithm. This study integrates Bi-GRU and time series CNN models to predict

crop yield effectively. The proposed model demonstrated superior performance across all data-

sets, significantly improving upon baseline models. The results indicate the model’s robustness

and accuracy in forecasting crop yields, providing farmers with early insights into expected

yields, thus aiding in strategic planning and resource optimization to enhance crop productiv-

ity. Future work should focus on further refining the model by incorporating additional envi-

ronmental and genetic factors, exploring more advanced deep learning architectures, and

integrating real-time data streams for dynamic prediction updates. Additionally, expanding

the model’s applicability to a wider range of crops and geographic regions will enhance its util-

ity and effectiveness in diverse agricultural settings. By continuing to advance this research, we

can contribute to more resilient and sustainable agricultural practices, ultimately supporting

global food security efforts.
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