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Abstract
This study aims to investigate and analyze the dynamics of diarrhea infectious disease
model. For this purpose, a classical diarrhea disease model is converted into the diffu-
sive diarrhea epidemic model by including the diffusion terms in every compartment of
the system. Basic assumptions of the proposed model are described for a vivid under-
standing of the model’s behavior. In addition, the pros and cons of the proposed model
for short and long terms behavior of the diffusive system are presented. The system has
two steady states, namely the disease-free equilibrium and endemic equilibrium points.
The system is analyzed, analytically by ensuring the positivity, boundedness and local,
and global stability at both the steady states. Moreover, the implicit nonstandard finite
difference scheme is designed to extract the numerical solutions of the diffusive epi-
demic model. To ensure the reliability and efficacy of the numerical scheme, the positiv-
ity, consistency and both linear and nonlinear stabilities are presented by establishing
some standard results. Simulated graphs are sketched to study the nonlinear behav-
ior of the disease dynamics. All the graphs depict the positive, bounded and convergent
behavior of the projected numerical scheme. Also, the numerical graphs reflect the role of
the basic reproductive number, R0, in attaining the steady state. The article is closed by
providing productive outcomes of the study.

1 Introduction
Diarrhea is not an epidemic, but it can be a symptom of some diseases. Depending on its
underlying cause, diarrhea may contribute to epidemic breakouts, particularly when infec-
tious organisms, such as parasites, bacteria, or viruses cause it. Symbolically, it is a medical
disorder of the human body characterized by frequent passing of loose, watery stools [1]. Peo-
ple of all ages may be affected by this frequent gastrointestinal issue. Usually, diarrhea has two
stages one is acute and the other is chronic. In the acute stage, diarrhea rests for a few days,
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while in the chronic stage, it persists for several weeks or longer. Diarrhea is frequently a sign
of an underlying illness, but if left untreated, it can also result in electrolyte imbalances and
dehydration. Numerous things, including infections, viral infections, bacterial infections, and
parasite diseases, can also cause diarrhea. In viral infections, common viruses that can cause
diarrhea are norovirus, rotavirus and enteric adenovirus. In bacterial infection, Campylobac-
ter, Salmonella, Escherichia coli and Shigella are among the bacteria that commonly cause
diarrhea, which is typically brought on by contaminated food or drink. For parasitic infec-
tions, Entamoeba histolytica and Giardia lamblia can also be the cause of diarrhea. People
who are lactose intolerant have trouble digesting lactose, a sugar included in milk and other
dairy products, and are susceptible to diarrhea. There may be a lot of complications that a per-
son may face due to diarrhea. The important side effect of this disease, which appears, par-
ticularly in newborn babies, young children and the elderly, is in the form of dehydration
which happens when the human body loses electrolytes and too much liquid. Severe dehydra-
tion could be fatal and needs medical treatment. In this article, diarrhea disease dynamics are
investigated mathematically.

From the earliest times of civilization, diarrheal illnesses have been reported, as demon-
strated by the hieroglyphs found in the Ebers papyrus (3300 BC) and the Hearst papyrus
(3300 BC), representing diarrhea and watery diarrhea separately [2]. All over the world, mor-
tality and morbidity among children of every age group have been affected by diarrheal dis-
ease and malnutrition mostly in children under 5 years old also has been the cause of this
disease. According to the report of the World Health Organization (WHO), Approximately
443,832 children die from diarrheal disease each year. This ratio makes diarrhea disease, the
third leading cause of under 5 years of age children’s death every year [3]. Medical experts
suggest safe drinking water, the use of effective sanitation and hand washing with clean soap,
as the prevention measures. Diarrheal patients should the oral rehydration solution, usually
known as ORS, which is a mixture of sugar, salt and clean water. Furthermore, a 10-to 14-day
additional course of treatment consisting of dispersive zinc pills reduces the duration of diar-
rhea and improves its results. The history of applications of differential equations to model
the biological, chemical reaction, ecological and competition systems goes back to Verhulst,
Malthus, Lotka, and Volterra [4]. It is well-recognized that using differential equations to
model natural phenomena, can be beneficial to analyze the systems understudy, for instance,
it is commonly accepted that partial differential equations are extremely valuable to under-
standing population dynamics, the spread of infectious diseases, interactions between two or
more species, and other biological phenomena [5–8]. Recently, numerous researchers inves-
tigated the systems of differential equations and described the behaviors of their solutions
[9–16]. In [17], Akinola et al. examined immunity and the norovirus infection dynamic trans-
mission model. It was discovered that even slight changes in the basic reproduction number
can significantly impact the asymptomatic spread of norovirus. In the research work of Ard-
kaew and Tongkumchum, the mathematical model of diarrhea disease is studied with the
application in control and prevention [18]. The model demonstrated the pattern formations
of the dynamics of infantile diarrhea diseases together with the rotavirus or enterotoxigenic
Escherichia coli. Olutimo and Williams examined a compartmental model (SITR), in which
authors analyzed the dynamic effects of treatment on the transmission dynamics of diarrhea
disease in the locality [19]. Cherry [20] assessed the management of the bovine viral diarrhea
virus by using a mathematical model that revealed the infection dynamics. Other compara-
ble studies on endemic diseases are constructed, determining the number of confirmed cases,
deaths, and recoveries to manage the disease in the presence of treatment and vaccination
using a similar model [21–23]. Naveed et al. [24] studied an epidemiological delayed model
of diarrhea disease with treatment effects. The artificial delay parameter used in this model is
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defined with a saturated incidence rate. In this article, the authors verified the positivity and
boundedness of the continuous model. The sensitivity of the parameters, as well as, the local
and global stability of the equilibrium points are also proved by the Routh Hurwitz criterion
and Lyapunov function, respectively.

In this study, a mathematical model of diarrhea disease with spatial diffusion is investi-
gated analytically and numerically.

In Section 2, the model with suitable assumptions is described. The results regarding pos-
itivity and boundedness are also developed analytically in Section 3. Global stability of the
disease-free equilibrium and endemic equilibrium points are also verified by using the Lya-
punov function technique in Section 4. Section 5 comprises numerical analysis for the model
under study. In this context, a nonstandard finite difference scheme is applied to the proposed
model. Some structural properties of the numerical technique are proved in this section, for
instance, positivity, consistency, boundedness and nonlinear stability with the help of Gron-
wall’s inequality. Section 6 consists of the simulations of the state variables and a productive
discussion about the graphical behaviors of the variables involved in the model. In Section 7
some concluding remarks are described to understand the achievements of the goal in this
section.

2 Model with its important threshold
Naveed M. et al [24] studied numerically, an epidemic model of diarrhea disease with a delay
factor which is given as follows:

S′(t) = Λ + 𝛼1R(t) – 𝛼2S(t) – (
𝛽1I(t)

1 + 𝛼I(t) +
𝛽2𝛼3T(t)
1 + 𝛼T(t))S(t), (1)

I′(t) = ( 𝛽1I(t)
1 + 𝛼I(t) +

𝛽2𝛼3T(t)
1 + 𝛼T(t))S(t) – (𝛼2 + 𝛼4)I(t), (2)

T′(t) = P𝛼4I(t) – (𝛼2 + 𝛼5)T(t), (3)
R′(t) = (1 – P)𝛼4I(t) + 𝛼5T(t) – (𝛼2 + 𝛼1)R(t), (4)

for t≥ 0.
In the above system, four sub-populations are involved named susceptible S(t), infected

I(t), treated T(t), and recovered R(t). Assuming that all these state variables remain nonneg-
ative at every value of time t. Other nonnegative parameters used in the model are described
in Table 1.

In the current study, the above model is analyzed more generically. To capture the spatial
dynamics, the proposed model is formed by incorporating the diffusion term that changes
the whole scenario of the study. The diffusion term in each compartment represents the
random movement of persons in different neighboring locations that reflects the spatial
spread of the disease along a single spatial dimension. Mathematical analysis of spatio-
temporal models helps us to understand the dynamics of a disease at any time t over the
space x, optimal control, and investigation strategies. The diffusive model is designed as
follows:

St(x, t) =Λ + 𝛼1R(x, t) – 𝛼2S(x, t) –

( 𝛽1I(x, t)
1 + 𝛼I(x, t) +

𝛽2𝛼3T(x, t)
1 + 𝛼T(x, t))S(x, t) + d1Sxx(x, t), (5)
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Table 1. Parameters description.
Notations Description values/Day Sources
Λ Recruitment rate 0.5 [18]
𝛼1 Rate of transmission again from recovered to infected 0.8 [18]
𝛼2 Natural death rate which is same in each compartment 0.5 [18]
𝛽1 Contact rate 1.00093(DFE)

2.00093(DEE)
[18]

𝛽2 Saturation treatment rate 1.0031(DFE)
2.0031(DEE)

[18]

𝛼3 Enhancement factor 0.2 [18]
𝛼 Educated adjustment 0.012 [18]
𝛼4 Rate of transmission from infected to treated 0.7 [18]
P The probability of the infected persons that may be a part of

R(t) or T(t)
0.04 [18]

𝛼5 Transmission rate from treated to recovered 0.9 [18]
N Total population

https://doi.org/10.1371/journal.pone.0323975.t001

It(x, t) = (
𝛽1I(x, t)

1 + 𝛼I(x, t) +
𝛽2𝛼3T(x, t)
1 + 𝛼T(x, t))S(x, t) – (𝛼2 + 𝛼4)I(x, t) +

d2Ixx(x, t), (6)

Tt(x, t) = P𝛼4I(x, t) – (𝛼2 + 𝛼5)T(x, t) + d3Txx(x, t), (7)
Rt(x, t) = (1 – P)𝛼4I + 𝛼5T(x, t) – (𝛼1 + 𝛼2)R(x, t) + d4Rxx(x, t), (8)

for t≥ 0, 𝜏 ≤ t.
In the model (5)-(8), the diffusion reflects the spatial movements of individuals across

the spatial domain. The diffusion coefficients d1,d2,d3 and d4 are associated with the rate
of mobilization of susceptible, infected, treated and recovered respectively. The coefficients
describe the natural random spread and movements of the people that may be due to different
factors, for instance, traveling, migration, interactions of the people in the defined environ-
ment, etc. To involve the diffusion coefficients in the corresponding compartmental equation
of the model understudy, it is important to make some suitable assumptions, which may be as
follows:

(i) The random movement of the people obeys the standard diffusion procedure in which
people move from high-concentration to low-concentration areas, i.e., the movement of
the individuals is from high-density areas to low-density areas.

(ii) All the diffusion coefficients d1,d2,d3 and d4 are considered as constants that reveal
uniformity in the spatial mobilization of the people.

(iii) The diffusion rate corresponding to each compartment is considered different, for
instance, the movement of the infected individuals may be slow as compared to the sus-
ceptible due to the symptoms or some isolation policies implemented by the authorities.

The mathematical study of epidemic models enables us to predict the dynamic behav-
ior of the disease which can help us to suggest control strategies for the disease. The model
understudy can be modified by incorporating various factors, such as airborne, vector-born,
or other transmission diseases with direct contact by rearranging the transmission terms.
By involving the incubation period (exposed) compartment in the current model, the study
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becomes more effective with a significant incubation stage, e.g., COVID-19. The transmis-
sion rates between the compartmental population can be modified in different ways and the
performance of specific pathogen treatment with recovery rates can be included.

2.1 Model assumptions
It is important to make some assumptions that will help to prove some important results
regarding the model. Suppose thatΩ is a bounded and nonnegative subset of the set R+ with
smooth boundary 𝜕Ω. Also,Ω represents its closure and for any T > 0, [0, T] is the temporal
domain. Then we can assume that Σ =Ω × [0,T] be a nonempty set of continuous functions.
The state variables S, I,T,R∈ Σ, sufficiently smooth functions in C2(Σ), are considered to
be the S(x, t), I(x, t), T(x, t), and R(x, t) respectively. Due to the population dynamic model,
the state variables should always be nonnegative, i.e., S, I,T,R≥ 0 in Σ. Also, let the diffusion
coefficients d1,d2,d3,d4 included in the system, be nonnegative.

The nonnegative initial and boundary conditions for the system (5)-(8) are supposed to be

S(x, 0) = S0(x)≥ 0, I(x, 0) = I0(x)≥ 0,T(x, 0) = T0(x)≥ 0,
R(x, 0) = R0(x)≥ 0, for x∈Ω, (9)

with

𝜕S
𝜕𝜚 =

𝜕I
𝜕𝜚 =

𝜕T
𝜕𝜚 =

𝜕R
𝜕𝜚 = 0, for all x∈ 𝜕Ω, for t > 0, (10)

where 𝜚 stands for the outward normal direction and 𝜕S
𝜕𝜚 ,

𝜕I
𝜕𝜚 ,

𝜕T
𝜕𝜚 and 𝜕R

𝜕𝜚 define the outward
flux.

3 About the prescribed model
Before starting the analysis of the SITR model, it is better to recall some important features
and assumptions of the model equations. This discussion can be beneficial for the readers to
understand the dynamics of the disease. The model presented in this article is a SITR model
as defined in the previous section, which incorporates several important traits such as spa-
tial diffusion, saturation treatment rates, enhancement factors, educated adjustment, and the
dynamic interaction between treatment and recovered compartments. These features improve
the ability to understand the transmission dynamics of this disease. In the presence of these
salient features, the proposed model becomes more valuable for both short-term and long-
term predictions. The spatial diffusion included in the model equations is the spread of dis-
ease in different locations. By designing a mathematical model that reflects the spread of dis-
ease between different locations, the model enables the prediction of areas with new cases
of disease and the identification of necessary measures in these areas. The model having a
saturated treatment rate reflects the ability to know how the healthcare system overcomes
the disease by treating a limited number of individuals. The incorporation of two important
quantities, educated adjustments and enhancement factors enable the mathematical model
to describe the effects of the campaigns launched by the local Public Health Departments,
such as vaccination, keeping hands clean, etc. The compartmental models of disease dynamics
depict the compartmental transition of people, i.e., how individuals move from the suscep-
tible compartment to the infected class and infection class to the treated class and treated to
the recovered compartment. The compartmental model shows how people move from being
infected to treated and from treated to recovered, which is essential for estimating the rate
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at which an outbreak may slow down. The steady-state analysis of the SITR epidemic model
predicts the dynamic of the disease, i.e., whether the disease will die out or persist endemic.
The transition of recovered people to the susceptible class again reflects the beginning of
the outbreak of the disease. The incorporation of the reinfection factor in the infectious dis-
ease model makes the model more realistic and can help the Public Health Departments in
long-term planning. The education impact over time included in the model helps to have a
long-term effect on the dynamics of the disease.

On the other hand, there are some difficulties that one can face in analyzing the epidemic
model like the SITR model. The collection of precise real data about parameters, for instance,
saturated treatment rate, awareness factor and enhancement factor is important for short-
term prediction but it is very hard to collect and then estimate them at the beginning of the
outbreak. The present number of susceptible, infected, treated and recovered people have a
key role in predicting a disease (based on the current model). Better prediction depends on
the true initial values of these quantities. Errors can occur due to uncertainty in these values.
Most of the parameters, such as treatment rate, enhancement factor, and awareness remain
constant for the study of the SITR model in Long-term predictions. However, these values can
vary according to the situation due to the changes in health policies, medical treatment, etc.

The present study is limited to demonstrating the dynamics of the disease by incorporating
the diffusion in one dimension. This choice of one-dimensional diffusion in each compart-
ment of the prescribed model allows for a brief and clear interpretation of the findings and
reduces the computational complexities. This assumption just allows us for the numerical and
analytical study. While the real scenario of the dynamics of the disease can be visualized in
the two or three-dimensional space domains. To overcome this challenge, future work could
extend and generalize the model understudy to include diffusion in two or three dimensions
that can provide us with more realistic situations and demonstration of the spatial dynamics
of disease.

After the detailed discussion of the model, the quantitative analysis of the model is pre-
sented in the next subsection.

3.1 Steady states for the system
In the study of dynamical systems, steady states (equilibrium points) play a vital role. The
steady state of a dynamical system is the state at which there is no change over time. Likewise,
in a population model of infectious disease, the rate of change of infected persons becomes
zero over a particular time at the equilibrium points. According to the theory of infectious
diseases, there are always some states at which the disease transmission has stopped and
infected individuals are either recovered or there is no increase or decrease in number. The
stability of the equilibrium indicates the future behavior of the disease and whether and when
the disease will die out. To find the equilibrium point mathematically, each equation of the
system equates to zero and gets a system of algebraic equations. After solving these equations
simultaneously, we get the values of the state variables. These values are called the equilibrium
points for the system under study.

To discuss the equilibria of the system, all the rates of change involved in the equations
keep zero, that is,

Λ + 𝛼1R – 𝛼2S – (
𝛽1I

1 + 𝛼I +
𝛽2𝛼3T
1 + 𝛼T)S = 0,

( 𝛽1I
1 + 𝛼I +

𝛽2𝛼3T
1 + 𝛼T)S – (𝛼2 + 𝛼4)I = 0, (11)
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P𝛼4I – (𝛼2 + 𝛼5)T = 0,
(1 – P)𝛼4I + 𝛼5T – (𝛼2 + 𝛼1)R = 0,

Disease free equilibrium Edf of the model is defined as:

Edf ≡ (S0, I0,T0,R0) = (
Λ
𝜇 , 0, 0, 0, 0). (12)

Also, the endemic equilibrium point

Ee ≡ (S∗, I∗,T∗,R∗), (13)

can be calculated as

A = P𝛼4
𝛼2 + 𝛼5

, B = 𝛼4𝛼2 – 𝛼2P𝛼4 + 𝛼4(𝛼2 + 𝛼1)(𝛼2 + 𝛼5), C = Λ𝛼2
,

with

D = [𝛼1(𝛼2𝛼4 –𝛼2P𝛼4 +𝛼5𝛼4) – (𝛼2 +𝛼4)(𝛼2 +𝛼4)(𝛼2 +𝛼5)
𝛼2(𝛼2 +𝛼1)(𝛼2 +𝛼5) ], S∗ = C + DI∗,

T∗ =AI∗, R∗ = CB,

I∗ =
–(Δ5 –Δ2) +

√
(Δ5 –Δ2)2 – 4(Δ4 –Δ1)(Δ6 –Δ3)

2(Δ4 –Δ1)
,

in which

Δ1 = (𝛼A𝛽1 + 𝛼A𝛼3𝛽2)D, Δ2 = (𝛽1 + 𝛽2𝛼3A)D,
Δ3 = (𝛽1 + 𝛽2𝛼3A + kA𝛽1 + 𝛼A𝛼3𝛽2)C,Δ4 = 𝛼A(𝛼2 + 𝛼4),
Δ5 = (𝛼2 + 𝛼4)(𝛼 + 𝛼A), Δ6 = (𝛼2 + 𝛼4).

The Basic reproductive number R0 is defined as [24]

R0 =
Λ(𝛽1𝛼2 + 𝛽2𝛼5 + P𝛼4𝛽2𝛼3)
𝛼2(𝛼2 + 𝛼5)(𝛼2 + 𝛼4)

. (14)

3.2 Analysis of the model
To obtain the result regarding the positivity of the state variables of the model (5)-(8), the
following lemma helps to verify.

Lemma 3.1. [25] Suppose that Q be a sufficiently smooth function in the function space
F defined by

F = C2,1(Σ × (0,T]) ∩ C(Σ × [0,T]),
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that obeys the differential inequality

Qt – bΔQ≥ y(x, t)Q, x∈ Σ, 0 < t≤ T,Q∈F ,

together with the boundary and initial conditions

Q𝜂 ≥ 0, ∀x∈ 𝜕Σ, 0 < t≤ T,

and also,

Q(x, 0)≥ 0, ∀x∈ Σ,

in which

y(x, t)∈ C(Σ × [0,T]).

Then Q(x, t)≥ 0 on Σ × [0,T]. Also, Q(x,t) > 0 or Q = 0 in Σ × [0,T].
Now, by using the aforementioned lemma 3.1, the following theorem is possible to

establish.
Theorem 3.1. (Non-negativity) Suppose that the initial conditions for the system (5)-(8)

are considered to be positive and all the assumptions of subsection 2.1, hold, then the system
possesses the positive solution.

Proof : Assuming the vector (S, I, T, R) are regarded as the solutions to (5)-(8), where

S, I,T,R∈F = C(Σ × [0,Tmax)) ∩ C2,1(Σ × [0,Tmax)).

Then for any t∗ ∈ (0,Tmax), by taking the equation of (5), we get

St – d1Sxx = –{𝛼2 + (
𝛽1I

1 + 𝛼I +
𝛽2𝛼3T
1 + 𝛼T)}, 0 < t < t∗.

Since the total population is bounded at every point in the space Σ × [0, t∗], it follows that

–{𝛼2 + (
𝛽1I

1 + 𝛼I +
𝛽2𝛼3T
1 + 𝛼T)}

must also be bounded. Consequently, all the conditions outlined in the preceding Lemma 3.1
are met.

So,

S > 0 in Σ × (0, t∗].

On combining the equation (6) with Lemma 3.1, we can exhibit the positivity of the vari-
able I because,

It – d2Ixx(x, t) = –(𝛼2 + 𝛼4)I, , 0 < t < t∗.
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Due to the boundedness of the population at every point of Λ×[0, t∗], the factor –(𝛼2+𝛼4)
is also bounded, so all requirements for Lemma 3.1 are accomplished. So,

I > 0 in Σ × (0, t∗].

Also, the positivity of T can be proved from the equation (7) by using Lemma 3.1 because,

Tt – d3Txx = –(𝛼2 + 𝛼5)T, , 0 < t < t∗,

we have

T > 0 in Σ × (0, t∗].

In the end, from the last equation (8) of the model

Rt = (1 – P) + 𝛼5T – (𝛼2 + 𝛼1)R + d3Rxx, , 0 < t < t∗,

we get

R > 0 in Σ × (0, t∗].

Now, since t∗ ∈ (0,Tmax) is an arbitrary so, it can be concluded that all state variables S, I,
T and R are positive in the whole domain Σ × [0,Tmax). ◻

Theorem 3.2. (Boundedness) Suppose that the vector (S, I, T, R) be the solution of the system
(5)-(8), where S, I,T,R∈ C(Σ × [0,Tmax)) ∩ C2,1(Σ × [0,Tmax)). Then the system (5)-(8) has
uniformly bounded solution on Σ, given that the condition (9)-(10) satisfies.

Proof : By adding equations in (5)-(8), we get

𝜕S
𝜕t +

𝜕I
𝜕t +

𝜕T
𝜕t +

𝜕R
𝜕t – d1

𝜕2S
𝜕x2 – d2

𝜕2I
𝜕x2 – d3

𝜕2T
𝜕x2 – d4

𝜕2R
𝜕x2

=Λ – 𝛼2(S + I + T + R).

Integrating both sides, we have

∫Σ
(𝜕S𝜕t +

𝜕I
𝜕t +

𝜕T
𝜕t +

𝜕R
𝜕t – d1

𝜕2S
𝜕x2 – d2

𝜕2I
𝜕x2 – d3

𝜕2T
𝜕x2 –

d4
𝜕2R
𝜕x2 )dx =∫Σ (Λ – 𝛼2(S + I + T + R))dx. (15)

According to the Green’s formula, we recall

d1 ∫Σ
𝜕2S
𝜕x2 dx = d1 ∫𝜕Σ

𝜕S
𝜕𝜚dx, d2 ∫Σ

𝜕2I
𝜕x2 dx = d2 ∫𝜕Σ

𝜕I
𝜕𝜚dx,

d3 ∫Σ
𝜕2T
𝜕x2 dx = d3 ∫𝜕Σ

𝜕T
𝜕𝜚 dx, d4 ∫Σ

𝜕2R
𝜕x2 dx = d4 ∫𝜕Σ

𝜕R
𝜕𝜚 dx.
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By using the Neumann conditions from (10), it is known

𝜕M
𝜕𝜚 =

𝜕S
𝜕𝜚 =

𝜕L
𝜕𝜚 =

𝜕I
𝜕𝜚 =

𝜕R
𝜕𝜚 = 0, for all x∈ 𝜕Σ, t > 0.

Equation (15) gives

∫Σ
(𝜕S𝜕t +

𝜕I
𝜕t +

𝜕T
𝜕t +

𝜕R
𝜕t )dx = ∫Σ

(Λ – 𝛼2(S + I + T + R))dx,

≤ ∫Σ (Λ – 𝛼2(S + I + T + R))dx,

=Λ|Σ| – 𝛽∫Σ (S + I + T + R)dx. (16)

Letting ∫Σ(S + I + T + R)dx =A(t), equation (16) gives

d(A(t))
dt

≤Λ|Σ| – 𝛼2A(t).

It gives

0≤A(t)≤ Λ
𝛼2

|Σ| +A(0)e–𝛼2t.

So,A(t)≤max{A(0), PΣΣ },
in which

A(0) = ∫Σ
{S(x, 0) + I(x, 0) + T(x, 0) + R(x, 0)}dx,

≤ ∫Σ
∥S(x, 0) + I(x, 0) + T(x, 0) + R(x, 0)∥∞dx,

= ∥S(x, 0) + I(x, 0) + T(x, 0) + R(x, 0)∥∞|Σ|.

This gives us the boundedness ofA(t) byTheorem 3.1 and equation (16), So,

∥S + I + T + R∥
L1(Σ)

= ∫Σ
|S + I + T + R|dx,

= ∫Σ
(S + I + T + R)dx,

≤max{∥S(x, 0) + I(x, 0) + T(x, 0) + R(x, 0)∥
∞
Σ, Λ|Σ|𝛼2

}.

Let 𝜁 =max{∥S(x, 0) + I(x, 0) + T(x, 0) + R(x, 0)∥
∞
Σ, Λ|Σ|

𝛼2
}, then

∫Σ
(S + I + T + R)dx≤ 𝜁.

PLOS One https://doi.org/10.1371/journal.pone.0323975 June 10, 2025 10/ 28

https://doi.org/10.1371/journal.pone.0323975


ID: pone.0323975 — 2025/6/7 — page 11 — #11

PLOS One Mathematical insights into epidemic spread

According to theTheorem 3.1 of [26], there exists a positive number 𝜁∗, such that

∥S + I + T + R∥
L∞(Σ)

≤ 𝜁∗.

So, it can be concluded that S(x, 0), I(x, t), T(x, t), R(x, t) are uniformly bounded on Σ,
hence, bounded. ◻

4 Stability analysis
The stability of a dynamical system plays a significant role in understanding the behavior of
its solution. It describes how the system’s solutions behave near its equilibrium point, i.e., due
to a small perturbation, whether the trajectories of the solution remain close to the equilib-
rium point of the system or show divergence. In the study of epidemiology, the stability of the
infectious disease model, especially, a diffusive model, describes the convergence of its solu-
tion towards the disease-free and equilibrium points over a finite time domain under certain
conditions on the basic reproductive number, R0. Stability analysis of an epidemic model of
infectious disease depicts the spreading behavior of the disease. It helps us identify if the epi-
demic’s spread demonstrates chaotic or unbounded behavior or stabilizes (e.g., approaches an
equilibrium point).

In the study of dynamical systems, stability and boundedness perform a critical role in
guaranteeing the reliability of the approximate solutions, particularly, for disease dynamic
models over finite time intervals (say) [0,T]. The current research also presents the stability
of a numerical scheme over a finite time interval. To demonstrate this, the stability of the pro-
posed NSFD method over a finite time domain t∈ [0,T] is analyzed in this section, where T
is the maximum time required. The NSFD scheme is constructed such that the positivity and
boundedness of the state variables S, I, T and R are preserved within the time interval [0, t]. In
this respect, it is assumed that S(x, t) + I(x, t) + T(x, t) + R(x, t)≤N(x, 0), for all t∈ [0,T].

In the next section global stability of the diffusive model is presented by using the Lya-
punov function for which it is proved that the Lyapunov function is non-increasing.

4.1 Stability of the model
Theorem 4.1. [24] The disease-free equilibrium Edf = (S0, I0,T0,R0) for the model (1)-(4)

(without diffusion) is globally asymptotically stable (GAS), if R0 < 1.

Theorem 4.2. If the basic reproduction number R0 < 1, the disease-free equilibrium
(Edf(S0, I0,T0,R0)) for the system (5)-(8) is globally asymptotically stable (GAS).

Proof : Let us chose a Lyapunov function for the model (1)-(4) defined inTheorem 4 of [24]

V1 = (S – S0 – S0ln
S
S0
) + I + T + R.

Now, consider a Lyapunov function for the model (4)-(8) as following

V1 =∫Σ
V1(g(x, t))dx,
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where

g(x, t) = (S(x, t), I(x, t),T(x, t),R(x, t)).

Then

dV
dt
=∫Σ

gradgV1.
𝜕g
𝜕t dx,

=∫Σ
(1 – S0

S
, 1, 1, 1).(S′ + d1ΔS, I′ + d2ΔI,T +

d3ΔT,R′ + d4ΔR)dx,

=∫Σ
{(1 – S0

S
)S′ + I′ + T′ + R′}dx + d1 ∫Σ

(1 – S0
S
)ΔSdx +

d2 ∫Σ
ΔIdx + d3 ∫ΣΔTdx + d4 ∫ΣΔRdx,

=∫Σ
dV1

dt
dx + d1 ∫Σ

ΔSdx – d1S0 ∫Σ
ΔS
S
dx + d2 ∫Σ

ΔIdx + d3 ∫ΣΔTdx +

d4 ∫Σ
ΔRdx,

=∫Σ
dV1

dt
dx – d1S0 ∫Σ

|ΔS|2
S2

dx – d4S0 ∫Ξ
|ΔS|2
S2

dx,

where Green’s formulas give

d1 ∫Σ
ΔSdx = d1 ∫𝜕 Σ

𝜕S
𝜕𝜚dx,

d2 ∫Σ
ΔIdx = d2 ∫𝜕 Σ

𝜕I
𝜕𝜚dx,

d3 ∫Σ
ΔTdx = d3 ∫𝜕 Σ

𝜕T
𝜕𝜚 dx,

d4 ∫Σ
ΔRdx = d4 ∫𝜕 Σ

𝜕R
𝜕𝜚 dx,

and

∫Σ
ΔS
S
dx =∫Σ

|ΔS|2
S2

dx.
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Also, by the conditions (9)-(10)

𝜕S
𝜕𝜚 =

𝜕I
𝜕𝜚 =

𝜕T
𝜕𝜚 =

𝜕R
𝜕𝜚 = 0, for all x∈ 𝜕Σ, t > 0.

Now, the verification of global stability of the system (1)-(4) implies

dV1

dt
< 0.

Together with all above results, we obtain

dV
dt
< 0,

that guarantees the global stability for the diffusive model (5)-(8). ◻

Theorem 4.3. [24] The endemic equilibrium Ee = (S∗, I∗,T∗,R∗) for the model (1)-(4) (with-
out diffusion) is globally asymptotically stable (GAS), if R0 > 1.

Theorem 4.4. For the reproduction number R0 > 1, the endemic equilibrium Ee =
(S∗, I∗,T∗,R∗) for the model (5)-(8) (with diffusion) is globally asymptotically stable (GAS).

Proof : As a Lyapunov function for the model (1)-(4) in [24],

T1 = (S – S∗ – S∗ln
S
S∗
) + (I – I∗ – I∗ln I

I∗
) + (T – T∗ – T∗ln

T
T∗
) +

(R – R∗ – R∗ln
R
R∗
).

Now, consider a Lyapunov function as given below

T =∫Σ
T1(g(x, t))dx,

where

g(x, t) = (S(x, t), I(x, t),T(x, t),R(x, t)).

Then

dT
dt
=∫Σ

gradgT1.
𝜕g
𝜕t dx,

=∫Σ
(1 – S∗

S
, 1 –

I∗

I
, 1 –

T∗

T
, 1 –

R∗
R
).(S′ + d1ΔS, I′ +

d2ΔI,T′ + d3ΔT,R′ + d5ΔR)dx,
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=∫Σ
{(1 – S∗

S
)S′ + 1 – I∗

I
)I′ + (1 – T∗

T
)T′ +

(1 – R∗
R
)R′}dx + d1 ∫Σ

(1 – S∗

S
)ΔSdx + d2 ∫Σ (1 –

I∗

I
)ΔIdx +

d3 ∫Σ
(1 – T∗

T
)ΔTdx + d4 ∫Σ (1 –

R∗

R
)ΔRdx,

=∫Σ
dT1
dt

dx + d1 ∫Σ
ΔSdx – d1S∗ ∫Σ

ΔS
S
dx + d2 ∫Σ

ΔIdx – d2I∗ ∫Σ
ΔI
I
dx +

d3 ∫Σ
ΔIdx – d3I∗ ∫Σ

ΔT
T

dx + d4 ∫Σ
ΔRdx – d3R∗ ∫Σ

ΔR
R

dx,

=∫Σ
dT1
dt

dx – d1S∗ ∫Σ
|ΔS|2
S2

dx – d2I∗ ∫Σ
|ΔI|2
I2

dx – d3L∗ ∫Σ
|ΔT|2
T2 dx –

d4R∗ ∫Σ
|ΔR|2
R2 dx,

where Green’s formulas give

d1 ∫Σ
ΔSdx = d1 ∫𝜕 Σ

𝜕S
𝜕𝜚dx,

d2 ∫Σ
ΔIdx = d2 ∫𝜕 Σ

𝜕I
𝜕𝜚dx,

d3 ∫Σ
ΔTdx = d3 ∫𝜕 Σ

𝜕T
𝜕𝜚 dx,

d4 ∫Σ
ΔRdx = d4 ∫𝜕 Σ

𝜕R
𝜕𝜚 dx,

and

∫Σ
ΔS
S
dx =∫Σ

|ΔS|2
S2

dx,∫Σ
ΔI
I
dx =∫Σ

|ΔI|2
I2

dx,∫Σ
ΔT
T

dx =∫Σ
|ΔT|2
T2 dx,

∫Σ
ΔR
R

dx =∫Σ
|ΔR|2
R2 dx.

Also, by the condition (9)-(10)

𝜕S
𝜕𝜚 =

𝜕I
𝜕𝜚 =

𝜕T
𝜕𝜚 =

𝜕R
𝜕𝜚 = 0, for all x∈ 𝜕Σ, t > 0.

The guarantee of global stability for the simple model (1)-(4) refers that

dT1
dt
< 0.

Together with all above results, we obtain

dT
dt
< 0,
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which is the fulfillment of the criteria for requirements of the global stability for the diffusive
model (5)-(8). ◻

5 Numerical computations and investigation
Let us suppose that [0, a], [0, b] be the spatial and temporal domain for the model (5)-(8) and
r, s be a pair of natural numbers. Also, suppose that 𝜆 = a

r and 𝜌 =
b
s represent the partition

norm for the partitions of the intervals [0, a] and [0, b] respectively. Moreover, we can define
xi = i𝜆 and tn = n𝜌 for i∈ {1, 2, ⋅ ⋅ ⋅, r} and n∈ {1, 2, ⋅ ⋅ ⋅, s}. suppose that Sni , Ini , Tn

i , and Rn
i be

the approximations corresponding to the exact values S(xi, tn), I(xi, tn), T(xi, tn) and R(xi, tn)
respectively at the mesh point (i𝜆,n𝜌), where i∈ {1, 2, ⋅ ⋅ ⋅, r} and n∈ {1, 2, ⋅ ⋅ ⋅, s}. Next, if, K
represents any of the values S, I, T and R, then, we have

Kn = (Kn
0 ,K

n
1 , ⋅ ⋅ ⋅,Kn

r ), n∈ 0, 1, 2, ⋅ ⋅ ⋅, s.

The discretization of the system (5)-(8) can be made by applying the linear discrete opera-
tors given below [27]

𝛿tKn+1
i =

Kn+1
i – Kn

i

𝜌 , (17)

𝛿xKn+1
i =

Kn+1
i – Kn+1

i–1

𝜆 , (18)

𝛿xxKn+1
i =

Kn+1
i+1 – 2Kn+1

i +Kn+1
i–1

𝜆2 , (19)

where i∈ {0, 1, 2, ⋅ ⋅ ⋅, r} and n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}. The discrete operators defined in Eqs. (17)-
(18) representing the discretizations of the partial derivatives with respect to t and x respec-
tively. While Eq. (19) approximates the double derivative with respect to x. All these approxi-
mations give the values of the time and space derivatives at points (xi, tn) and (xi, tn+1).

After using these operators in the system (5)-(8), we get a discrete system of algebraic
equations.

𝛿tSn+1i =Λ + 𝛼1Rn
i – 𝛼2Sn+1i – ( 𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼3Tn

i
1 + 𝛼Tn

i
)Sn+1i +

d1𝛿xxSn+1i , (20)

𝛿tIn+1i = ( 𝛽1Ini
1 + 𝛼Ini

+ 𝛽2𝛼3Tn
i

1 + 𝛼Tn
i
)Sni – (𝛼2 + 𝛼4)In+1i + d2𝛿xxIn+1i , (21)

𝛿tTn+1
i = P𝛼4Ini – (𝛼2 + 𝛼5)Tn+1

i + d3𝛿xxTn+1
i , (22)

𝛿tRn+1
i = (1 – P)𝛼4Ini + 𝛼5Tn

i – (𝛼1 + 𝛼2)Rn+1
i + d4𝛿xxRn+1

i . (23)

Now, using the Mickens rules for descretization defined in [27] are used on the nonlinear
term and time step variations. Simple calculations for (20)-(23) give
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–𝜀1Sn+1i–1 + {1 + 𝜌𝛼2 + 𝜌(
𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼3Tn

i
1 + 𝛼Tn

i
) + 2𝜀1}Sn+1i –

𝜀1Sn+1i+1 = Sni + 𝜌Λ + 𝛼1𝜌Rn
i , (24)

–𝜀2In+1i–1 + (1 + 𝜌(𝛼2 + 𝛼4) + 2𝜀2)In+1i – 𝜀2In+1i+1 = Ini +

𝜌( 𝛽1Ini
1 + 𝛼Ini

+ 𝛽2𝛼3Tn
i

1 + 𝛼Tn
i
)Sni , (25)

–𝜀3Tn+1
i–1 + {1 + 𝜌(𝛼2 + 𝛼5) + 2𝜀3}Tn+1

i – 𝜀3Tn+1
i+1 = Tn

i + P𝛼4Ini , (26)

–𝜀4Rn+1
i–1 + {1 + 𝜌(𝛼1 + 𝛼2) + 2𝜀4}Rn+1

i – 𝜀4Rn+1
i+1 = Rn

i +

𝜌(1 – P)𝛼4Ini + 𝛼5𝜌Tn
i , (27)

where 𝜀p = 𝜌dp
𝜆2 , p = 1, 2, 3, 4 with i∈ {1, 2, ⋅ ⋅ ⋅, r}, n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

The initial and boundary condition have the discretized form

S0i = S0(xi),
I 0i = I0(xi),
T 0
i = T0(xi),

R0
i = R0(xi), for i∈ {1, 2, ⋅ ⋅ ⋅, r},

and
𝛿Sn1 = 𝛿In1 = 𝛿T n

1 = 𝛿Rn
1 = 0,

𝛿Snr = 𝛿Inr = 𝛿Tn
r = 𝛿Rn

r = 0, for n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

(28)

One of the most important features for a population models is the nonnegativity of the
variables involved in it, as these variables represent the density of the population. In the
numerical study of such models, the positivity property should also be maintained. The
numerical technique that is used to find the approximate solution of the system, should also
preserve the same properties possessed by the continuous model.

5.1 Positivity
For a population dynamical system, the positivity of the state variables plays a vital role. So
it must be preserved after employing the numerical scheme on the model. The following
theorem reflects the positivity property.

Theorem 5.1. Assume that T , U , V andW be the positive real valued functions depending
on x defined in the interval (0, L) then the system (24)-(27), with the supportive data (28), has a
solution ∀ n> 0 and i > 0. Moreover, the solutions are positive.

Proof : It is interesting to note that the left-hand sides of each equation in (24)-(27) are
implicitly related, so, one can deduce it in the vector representation as:
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T Sn+1 = Sni + 𝜆2𝜌(Λ + 𝛼Rn
i ), (29)

UIn+1 = Ini + 𝜌(
𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼2Tn

i
1 + 𝛼Tn

i
)Sni , (30)

VTn+1 = Tn
i + P𝛼4Ini , (31)

WRn+1 = Rn
i + 𝜌(1 – P)𝛼4Ini + 𝛼5𝜌Tn

i , (32)

in which T , U , V andW are defined as (r + 1) × (r + 1)matrices. By using the initial and
boundary conditions (28), we can find the matrices T , U , V andW . Then

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝜒1)n0 𝜒2 0 ⋯ ⋯ ⋯ ⋯ 0
𝜒3 (𝜒1)n1 𝜒4 ⋱ ⋮
0 𝜒3 (𝜒1)n2 𝜒4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝜒3 (𝜒1)nr–2 𝜒4 0
⋮ ⋱ 𝜒3 (𝜒1)nr–1 𝜒4
0 ⋯ ⋯ ⋯ ⋯ 0 𝜒3 (𝜒1)nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝜈1)n0 𝜈2 0 ⋯ ⋯ ⋯ ⋯ 0
𝜈3 (𝜈1)n1 𝜈4 ⋱ ⋮
0 𝜈3 (𝜈1)n2 𝜈4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝜈3 (𝜈1)nr–2 𝜈4 0
⋮ ⋱ 𝜈3 (𝜈1)nr–1 𝜈4
0 ⋯ ⋯ ⋯ ⋯ 0 𝜈3 (𝜈1)nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝜂1)n0 𝜂2 0 ⋯ ⋯ ⋯ ⋯ 0
𝜂3 (𝜂1)n1 𝜂4 ⋱ ⋮
0 𝜂3 (𝜂1)n2 𝜂4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝜂3 (𝜂1)nr–2 𝜂4 0
⋮ ⋱ 𝜂3 (𝜂1)nr–1 𝜂4
0 ⋯ ⋯ ⋯ ⋯ 0 𝜂3 (𝜂1)nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(𝜚1)n0 𝜚2 0 ⋯ ⋯ ⋯ ⋯ 0
𝜚3 (𝜚1)n1 𝜚4 ⋱ ⋮
0 𝜚3 (𝜚1)n2 𝜚4 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 𝜚3 (𝜚1)nr–2 𝜚4 0
⋮ ⋱ 𝜚3 (𝜚1)nr–1 𝜚4
0 ⋯ ⋯ ⋯ ⋯ 0 𝜚3 (𝜚1)nr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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here,

(𝜒1)ni = 1 + 𝛼2 + 𝜌(
𝛽1Ini

1 + 𝛼Ini
) + 2𝜀1,

(𝜈1)ni = 1 + (1 + 𝛼2 + 𝛼4)𝜌 + 2𝜀2,
(𝜂1)ni = 1 + 2𝜀3 + 𝜌(𝛼2 + 𝛼5),
(𝜚1)ni = 1 + 𝜌(𝛼1 + 𝛼2) + 2𝜀4,

𝜒2 = –𝜀1, 𝜈2 = –2𝜀2, 𝜂2 = –2𝜀3, 𝜚2 = –2𝜀4,
𝜒3 = –𝜀1, 𝜈3 = –𝜀2, 𝜂3 = –𝜀3, 𝜚3 = –𝜀4,
𝜒4 = –𝜀1, 𝜈4 = –𝜀2, 𝜂4 = –𝜀3, 𝜚4 = –𝜀4.

The inductive technique id adopted to verify the positivity of the associated discrete sys-
tem of equations (5)-(8). Initial conditions from (9)-(10) give S0, I0, T0 and R0 are positive
also, suppose that Sn, In, Tn, and Rn, for n∈ 0, 1, 2,… , s – 1, are positive component vectors.
The above calculation indicates that T , U , V andW are theM-matrices, so, they are invert-
ible and have positive inverses. Moreover, the expressions occurred on the right hand side of
each of the equations in the system (24)-(27) is positive. Therefore,

Sn+1 = T –1(Sni + 𝜆2𝜌(Λ + 𝛼Rn
i )),

In+1 = U–1(Ini + 𝜌(
𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼2Tn

i
1 + 𝛼Tn

i
)Sni ),

Tk+1 = V–1(Tn
i + P𝛼4Ini ),

Rk+1 = W–1(Rn
i + 𝜌(1 – P)𝛼4Ini + 𝛼5𝜌Tn

i ),

all the state variables are positive quantities for every n = 0, 1, 2, ⋅ ⋅ ⋅, s – 1. Hence, the theory of
mathematical induction grantees the required solutions. ◻

5.2 Consistency
In this subsection, an important structural property of proposed nonstandard finite difference
scheme is analyzed. In this regard, an analytical result is established that verifies the consis-
tency of numerical method [28]. It is important to memorize some definitions that can help
to prove the result.

Definition 5.1. Let R𝜆 = {xi ∈ℝ ∶ i = 1, 2,… , r} be a set of grid points and V𝜆 be the set of
real valued functions defined on V𝜆. Also, let ∥.∥ and ∥.∥∞ be the Euclidean and infinity norms
on V𝜆 respectively.

Next, consider the differential operators E, F,G and H such that

E = St –Λ – 𝛼1R + 𝛼2S + (
𝛽1I

1 + 𝛼I +
𝛽2𝛼3T
1 + 𝛼T)S – d1Sxx, (33)

F = It – (
𝛽1I

1 + 𝛼I –
𝛽2𝛼3T
1 + 𝛼T)S + (𝛼2 + 𝛼4)I – d2Ixx, (34)
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G = Tt – P𝛼4I + (𝛼2 + 𝛼5)T – d3Txx, (35)
H = Rt – (1 – P)𝛼4I – 𝛼5T + (𝛼1 + 𝛼2)R – d4Rxx, (36)

It is important to note that Eni = E(xi, tn), Fni = F(xi, tn), Gn
i =G(xi, tn) and Hn

i =H(xi, tn)
where i∈ {0, 1, 2, ⋅ ⋅ ⋅, r} and n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

For each n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}, we can define En = (Eq0,E
q
1,… ,Eqr), Fn = (Fq0,F

q
1,… ,Fqr),

Gn = (Gq
0,G

q
1,… ,Gq

r), Hn = (Hq
0,H

q
1,… ,Hq

r).
This shows that En, Fn, Gn, Hn ∈V𝜆 and finally, we have E = (En), F = (Fn), G = (Gn) and

H = (Hn), for n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.
Now, in the same way, we can make the assumptions for the discrete system (20)-(23).

𝔈 = 𝛿tSn+1i –Λ – 𝛼1Rn
i + 𝛼2Sn+1i + ( 𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼3Tn

i
1 + 𝛼Tn

i
)Sn+1i –

d1𝛿xxSn+1i , (37)

𝔉 = 𝛿tIn+1i – ( 𝛽1Ini
1 + 𝛼Ini

+ 𝛽2𝛼3Tn
i

1 + 𝛼Tn
i
)Sni + (𝛼2 + 𝛼4)In+1i –

d2𝛿xxIn+1i , (38)

𝔊 = 𝛿tTn+1
i – P𝛼4Ini + (𝛼2 + 𝛼5)Tn+1

i – d3𝛿xxTn+1
i , (39)

ℌ = 𝛿tRn+1
i – (1 – P)𝛼4Ini – 𝛼5Tn

i + (𝛼1 + 𝛼2)Rn+1
i – d4𝛿xxRxx

i . (40)

Theorem 5.2. (Consistency) Assume that S, I, T and R be the functions having continuous
second order partial derivatives with in the domain, then for a constant 𝕂, independent of r and
s such that

max{∥E –𝔈∥∞, ∥F –𝔉∥∞, ∥G –𝔊∥∞, ∥H –ℌ∥∞}≤ s𝕂. (41)

Proof : Since S is continuous and bounded on the domain F and Taylor’s theorem is appli-
cable on S then there exist some nonnegative constant numbers 𝕂S

1,𝕂S
2,𝕂S

3 and 𝕂S
4 with the

property that these numbers are independent of r and s such that S satisfies the following
inequalities:

∣𝜕S(xi, tn+1)𝜕t – 𝛿tSn+1i ∣≤ 𝜌𝕂S
1, (42)

∣R(xi, tn+1) – Rn
i ∣≤ 𝜌𝕂S

2, (43)

∣𝜕
2S(xi, tn+1)

𝜕x2 – 𝛿xxSn+1i ∣≤ 𝜆𝕂S
3. (44)

Now, (42),(43) and (44) can be unite to get

∥E –𝔈∥∞ ≤ (𝜌 + 𝜆)𝕂S. (45)
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The inequality (45) holds if the constant 𝕂S =𝕂S
1+𝜔1𝕂S

2+𝜔2𝕂S
3 is defined. Similarly, we can

make the inequalities ∥F–𝔉∥∞ ≤ (𝜌+𝜆)𝕂I, ∥G–𝔊∥∞ ≤ (𝜌+𝜆)𝕂T, and ∥H–ℌ∥∞ ≤ (𝜌+𝜆)𝕂R,
where the constants 𝕂S, 𝕂I, 𝕂T, and 𝕂R are independent of 𝜌 and lambda. The result of the
current theorem can be drawn if we define a constant 𝕂 =𝕂S ∨ 𝕂I ∨ 𝕂T ∨ 𝕂R which is also
independent of 𝜌 and 𝜆. ◻

Theorem 5.3. (Linear Stability) If the functions S0(x), I0(x),T0(x), and R0(x) are positive
for all x∈ Ω̄ then the discrete system (20)-(23) is stable in Von Neumann sense.

Proof : The proof of the theorem is straight forward. ◻

Before establishing the theorem about nonlinearity of the discrete model (20)-(23), it is
important to recall the Gronwall’s inequality in discrete form.

Lemma 5.1. [29] Suppose that for a nonnegative number 𝜃, (𝜁n)n∈{0,1,2,⋅⋅⋅,s} and
(𝜍n)n∈{0,1,2,⋅⋅⋅,s} be the finite sequences of nonnegative real numbers. Also, let, for a nonnegative
constant number C, the inequality

𝜁j+1 ≤ 𝜍j+1 + 𝜃C
j

∑
n=0

𝜁n, for j∈ {0, 1, 2, ⋅ ⋅ ⋅, s – 1}, (46)

holds. Then 𝜁n ≤ 𝜍nenC𝜃 , ∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.
Before starting the next theorem, we make some assumptions that will help to establish the

result.
Define the functionsℑ = Ini

1+𝛼Ini
and𝔗 = Tni

1+𝛼Tni
with 𝜐∗ni =ℑn

i – ℑ̃n
i and 𝜏∗ni =𝔗n

i – �̃�n
i such

that these functions together with the numerical solutions are uniformly bounded so, let𝔅0

be their common bound at a point (xi, tn), for i∈ {0, 1, 2, ⋅ ⋅ ⋅, r} and n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.
Also, we can define a number C′ = 2𝛼1 + 4𝛼2 + 2𝛼4 + 2𝛼5 + 4𝛽1𝔅0 + 4𝛼3𝛽2𝔅0 + 16

h (d1 + d2 +
d3 + d4) such that 𝜌C′ < 1.

Theorem 5.4. (Nonlinear Stability) Suppose that (S0, I0,T0,R0) and ( ̃S0, ̃I0, ̃T0, ̃R0) be the
set of positive functions representing the initial conditions for the system (5)-(8). Also, let (S, I,
T, R) and ( ̃S, ̃I, T̃, R̃) be the respected sets of bounded solution functions to the system (20)-(23)
with the conditions (28). Define

𝜔k = ∥𝜖k∥ + ∥𝜐k∥ + ∥𝜏k∥ + ∥𝜗k∥, for all k∈ {0, 1, 2, ⋅ ⋅ ⋅s}. (47)

and 𝜍 = (∥𝜖0∥ + ∥𝜐0∥ + ∥𝜏0∥ + ∥𝜗0∥)(1 – 𝜌C′)–1. (48)

Then there exist a nonnegative constant C, depending upon both 𝜌 and 𝜆 such that

𝜔n ≤ 𝜍enC𝜌, for each n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

Proof : The system satisfied by the point ( ̃S0, ̃I0, ̃T0, ̃R0) can be written according to (20)-
(23) is

𝛿t ̃Sn+1i =Λ + 𝛼1R̃n
i – 𝛼2 ̃Sn+1i – ( 𝛽1 ̃Ini

1 + 𝛼 ̃Ini
+ 𝛽2𝛼3T̃n

i

1 + 𝛼T̃n
i
) ̃Sn+1i +

d1𝛿xx ̃Sn+1i , (49)
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𝛿t ̃In+1i = ( 𝛽1 ̃Ini
1 + 𝛼 ̃Ini

+ 𝛽2𝛼3T̃n
i

1 + 𝛼T̃n
i
) ̃Sni – (𝛼2 + 𝛼4) ̃In+1i + d2𝛿xx ̃In+1i , (50)

𝛿tT̃n+1
i = P𝛼4 ̃Ini – (𝛼2 + 𝛼5)T̃n+1

i + d3𝛿xxT̃n+1
i , (51)

𝛿tR̃n+1
i = (1 – P)𝛼4 ̃Ini + 𝛼5T̃n

i – (𝛼1 + 𝛼2)R̃n+1
i + d4𝛿xxR̃n+1

i . (52)

The corresponding discrete condition for the system (49)-(52),

̃S0i = ̃S0(xi), for all i∈ {0, 1, 2, ⋅ ⋅ ⋅, r – 1},
̃I 0i = ̃I0(xi), for all i∈ {0, 1, 2, ⋅ ⋅ ⋅, r – 1},
T̃ 0
i = T̃0(xi), for all i∈ {0, 1, 2, ⋅ ⋅ ⋅, r – 1},

R̃0
i = R̃0(xi), for all i∈ {0, 1, 2, ⋅ ⋅ ⋅, r – 1},

and
𝛿x ̃Sn1 = 𝛿x ̃In1 = 𝛿xT̃ n

1 = 𝛿xR̃n
1 = 0, for all n∈ {0, 1, 2, ⋅ ⋅ ⋅, s},

𝛿x ̃Snr = 𝛿x ̃Inr = 𝛿xT̃n
r = 𝛿xR̃n

r = 0, for all n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

(53)

Now, we can define a 4-tuple (𝜖,𝜐, 𝜏,𝜗) such as

𝜖0i = S0(xi) – ̃S0(xi),
𝜐0i = I0(xi) – ̃I0(xi),
𝜏0i = T0(xi) – T̃0(xi),
𝜗0
i = R0(xi) – R̃0(xi),
for all i∈ {0, 1, 2, ⋅ ⋅ ⋅, r} and n∈ {0, 1, 2, ⋅ ⋅ ⋅, s}.

(54)

It is noticed that the point (𝜖,𝜐, 𝜏,𝜗) also satisfies the difference equations

𝛿t𝜖n+1i = 𝛼1𝜗n
i – 𝛼2𝜖n+1i – ( 𝛽1Ini

1 + 𝛼Ini
+ 𝛽2𝛼3Tn

i
1 + 𝛼Tn

i
)Sn+1i +

( 𝛽1 ̃Ini
1 + 𝛼 ̃Ini

+ 𝛽2𝛼3T̃n
i

1 + 𝛼T̃n
i
) ̃Sn+1i + d1𝛿xx𝜖n+1i , (55)

𝛿t𝜐n+1i = ( 𝛽1Ini
1 + 𝛼Ini

+ 𝛽2𝛼3Tn
i

1 + 𝛼Tn
i
)Sn+1i – ( 𝛽1 ̃Ini

1 + 𝛼 ̃Ini
+ 𝛽2𝛼3T̃n

i

1 + 𝛼T̃n
i
) ̃Sn+1i –

(𝛼2 + 𝛼4)𝜐n+1i + d2𝛿xx𝜐n+1i , (56)

𝛿t𝜏n+1i = P𝛼4𝜐ni – (𝛼2 + 𝛼5)𝜏n+1i + d3𝛿xx𝜏n+1i , (57)

𝛿t𝜗n+1
i = (1 – P)𝛼4𝜐ni + 𝛼5𝜏ni – (𝛼1 + 𝛼2)𝜗n+1

i + d4𝛿xx𝜗n+1
i , (58)
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with the initial and boundary conditions

S0i = S0(xi),
I 0i = I0(xi),
T 0
i = T0(xi),

R0
i = R0(xi), for i∈ {1, 2, ⋅ ⋅ ⋅, r},

and
𝛿Sn1 = 𝛿In1 = 𝛿T n

1 = 𝛿Rn
1 = 0,

𝛿Snr = 𝛿Inr = 𝛿Tn
r = 𝛿Rn

r = 0, for n∈ {1, 2, ⋅ ⋅ ⋅, s}.

(59)

Rearranging the terms of 55 and applying the formulas of discretization, we get

𝜖n+1i – 𝜖ni = 𝜀1(𝜖n+1i+1 – 2𝜖n+1i + 𝜖n+1i–1 ) + 𝜌𝛼1𝜗n
i – 𝜌𝛼2𝜖n+1i –

𝜌𝛽1{ℑn
i S

n+1
i – ℑ̃n

i ̃Sn1i } – 𝜌𝛽2𝛼 + 2{{𝔗n
i S

n+1
i – �̃�n

i ̃Sn1i }, (60)

for each i∈ {1, 2, ⋅ ⋅ ⋅, r} and n∈ {0, 1, 2, ⋅ ⋅ ⋅, s} and 𝜀1 = 𝜌d1
𝜆2 .

Now, by applying the Euclidean norm on both sides and using the properties of the norm,
we have

∥𝜖n+1∥ – ∥𝜖n∥≤ 4𝜀1∥𝜖n+1∥ + 𝜌𝛼1∥𝜗n∥ + 𝜌𝛼2∥𝜖n+1∥ + 𝜌𝛽1∥Sn+1𝜐∗n∥ +
𝜌𝛽1∥𝜖n+1�̃�n∥ + 𝜌𝛼3𝛽2∥Sn+1𝜏∗n∥ + 𝜌𝛽2𝛼3∥𝜖n+1�̃�n∥,

∥𝜖n+1∥ – ∥𝜖n∥≤ 4𝜀1∥𝜖n+1∥ + 𝜌𝛼1∥𝜗n∥ + 𝜌𝛼2∥𝜖n+1∥ + 𝜌𝛽1𝔅0∥𝜐∗n∥ +
𝜌𝛽1𝔅0∥𝜖n+1∥ + 𝜌𝛼3𝛽2𝔅0∥𝜏∗n∥ + 𝜌𝛼3𝛽2𝔅0∥𝜖n+1∥,

∥𝜖n+1∥ – ∥𝜖n∥≤ (4𝜀1 + 𝜌𝛼2 + 𝜌𝛽1𝔅0 + 𝜌𝛼3𝛽2𝔅0)∥𝜖n+1∥ + 𝜌𝛼1∥𝜗n∥ +
𝜌𝛽1𝔅0∥𝜐∗n∥ + 𝜌𝛼3𝛽2𝔅0∥𝜏∗n∥,

for each n∈ {1, 2, ⋅ ⋅ ⋅, s – 1}.
Let

C1 = 4
d1
𝜆2 + 𝛼2 + 𝛽1𝔅0𝛼3𝛽2𝔅0. (61)

Then

∥𝜖n+1∥ – ∥𝜖n∥≤ 𝜌C1∥𝜖n+1∥ + 𝜌𝛼1∥𝜗n∥ + 𝜌𝛽1𝔅0∥𝜐∗n∥ + 𝜌𝛼3𝛽2 +
𝜌𝛽1𝔅0∥𝜏∗n∥,

Now, let k∈ {1, 2, ⋅ ⋅ ⋅, s} and taking summation on both sides for n∈ {0, 1, 2, ⋅ ⋅ ⋅, k}. Also,
using telescopic sum on the left hand side, we get

∥𝜖k+1∥≤ ∥𝜖0∥ + C′1𝜌
k+1
∑
n=0

𝜔n, for all k∈ {1, 2, ⋅ ⋅ ⋅, s – 1}, (62)
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where

C′1 = C1 + 𝛼1 + 𝛽1𝔅0 + 𝛼3𝛽2𝔅0,

= 4d1
𝜆2 + 𝛼2 + 𝛽1𝔅0 + 𝛽2𝔅0 + 𝛼1 + 𝛽1𝔅0 + 𝛼3𝛽2𝔅0,

= 4d1
𝜆2 + 𝛼1 + 𝛼2 + 2𝛽1𝔅0 + 2𝛼3𝛽2𝔅0. (63)

Again, rearranging the terms of 56, 57 and 58 and applying the formulas of discretization,
we have

𝜐n+1i – 𝜐ni = 𝜌𝛽1ℑn
i S

n+1
i – 𝜌𝛽1ℑ̃n

i ̃Sn+1i + 𝜌𝛽2𝛼3𝔗n
i S

n+1
i – 𝜌𝛽2𝛼3T̃n

i ̃Sn+1i –
𝜌(𝛼2 + 𝛼4)𝜐n+1i + 𝜀2(𝜐n+1i+1 – 2𝜐n+1i + 𝜐n+1i–1 ). (64)

𝜏n+1i – 𝜏ni = 𝜌P𝛼4𝜐ni – 𝜌(𝛼2 + 𝛼5)𝜏n+1i + 𝜀3(𝜏n+1i+1 – 2𝜏n+1i + 𝜏n+1i–1 ), (65)

𝜗n+1
i – 𝜗n

i = 𝜌(1 – P)𝛼4𝜐ni + 𝜌𝛼5𝜏ni – 𝜌(𝛼1 + 𝛼2)𝜗n+1
i +

𝜀4(𝜗n+1
i+1 – 2𝜗n+1

i + 𝜗n+1
i–1 ), (66)

where

𝜀2 =
𝜌d2
𝜆2 , 𝜀3 =

𝜌d3
𝜆3 , 𝜀4 =

𝜌d4
𝜆4 . (67)

After applying Euclidean norm on (56), (57) and (58), we get

∥𝜐k+1∥≤ ∥𝜐0∥ + C′2𝜌
k+1
∑
n=0

𝜔n, for all k∈ {1, 2, ⋅ ⋅ ⋅, s – 1}, (68)

∥𝜏k+1∥≤ ∥𝜏0∥ + C′3𝜌
k+1
∑
n=0

𝜔n, for all k∈ {1, 2, ⋅ ⋅ ⋅, s – 1}, (69)

∥𝜗k+1∥≤ ∥𝜗0∥ + C′4𝜌
k+1
∑
n=0

𝜔n, for all k∈ {1, 2, ⋅ ⋅ ⋅, s – 1}, (70)

in which (68), (69) and (68), C′2,C′3 and C′4 are

C′2 =
4d2
𝜆2 + 𝛼2 + 𝛼4 + 2𝛽1𝔅0 + 2𝛼3𝛽2𝔅0, (71)

C′3 =
4d3
𝜆2 + 𝛼2 + 𝛼5 + P𝛼4, (72)

C′4 = 4d4
𝜆2 + 𝛼1 + 𝛼2 + (1 – P)𝛼4 + 𝛼5. (73)

Adding (62), (68), (69) and (70)

∥𝜖k+1∥ + ∥𝜐k+1∥ + ∥𝜏k+1∥ + ∥𝜗k+1∥≤ ∥𝜖0∥ + ∥𝜐0∥ + ∥𝜏0∥ + ∥𝜗0∥ +
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C′1𝜌
k+1
∑
n=0

𝜔n + C′2𝜌
k+1
∑
n=0

𝜔n + C′3𝜌
k+1
∑
n=0

𝜔n + C′3𝜌
k+1
∑
n=0

𝜔n.

This gives

𝜔k+1 ≤ 𝜔0 + 𝜌C′
k+1
∑
n=0

𝜔n,

𝜔k+1 ≤ 𝜔0 + 𝜌C′
k
∑
n=0

𝜔n + 𝜌C′𝜔n+1,

(1 – 𝜌C′)𝜔k+1 ≤ 𝜔0 + 𝜌C′
k
∑
n=0

𝜔n,

𝜔k+1 ≤ 𝜔0

1 – 𝜌C′ +
𝜌C′

1 – 𝜌C′
k
∑
n=0

𝜔n,

It can be written in the form

𝜔k+1 ≤ 𝜍 + C
k
∑
n=0

𝜔n, where 𝜍 = 𝜔0

1 – 𝜌C′ and C = C′

1 – 𝜌C′ . (74)

Also, 𝜔0 = ∥𝜖0∥+ ∥𝜐0∥+ ∥𝜏0∥+ ∥𝜗0∥ and 𝜍n = 𝜍. It is clear from (73) that all the conditions of
Lemma 11 are satisfied, so the conclusion of the theorem is followed from the Lemma 11. ◻

6 Results and discussions
In this section, the simulated graphs of the discretized state variables of the system (24)-(27)
are presented. Each figure comprised of two sub figures (a) and (b) where (a) in each figure,
represent the graphs of disease-free equilibrium and (b) represent the endemic equilibrium
states of the state variables in each figure. The graphs of the state variables at disease free equi-
librium pointy Edf are plotted where the value of R0 < 1 (evaluated by using the values of the
parameters given in Table 1) for each of the graphs. The Figure 1(a) shows the convergence
of the susceptible individuals towards the disease free equilibrium point for various values
of x and t. Similarly, the Figures 2(a), 3(a) and 4(a) reflect the convergence of the implicit
numerical scheme towards the true steady-state, which is zero for every state variable, i.e., for
I(x, t), T(x, t) and R(x, t). Likewise, the behavoiur of the state variables at endemic equilib-
rium point is drawn in the upcoming figures. Stability of the endemic equilibrium state can
be observed by taking those parameters that give R0 > 1, as given in the Table 1. The spatio-
temporal graphs in Figures 1(a)-4(a) reveal the nonlinear behavior and convergence towards
the exact fixed point which is endemic equilibrium point Ee in this case for R0 > 1.

7 Conclusion
The current paper has quantitatively and numerically investigated a nonlinear reaction-
diffusion epidemic model of diarrhea disease. The model is made more realistic as well as
exclusive by incorporating the spatial diffusion. It gives more information about the dynam-
ics of disease across space. By vanishing all the instantaneous rates of changes, equilibrium
points for the model and the basic reproduction number R0 are calculated. The positivity and
boundedness which play a crucial role in analyzing the continuous population model are also
verified by some analytical techniques. Global stability of the steady states of the system with
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Fig 1. (a) Disease-free state, (b) Endemic state representing numerical approximations for the function S(x, t) (susceptible individuals) with k = 10.3.

https://doi.org/10.1371/journal.pone.0323975.g001

Fig 2. (a) Disease-free state, (b) Endemic state representing numerical approximations for the function I(x, t) (infected class) with k = 10.3.

https://doi.org/10.1371/journal.pone.0323975.g002

diffusion is justified with the help of the Lyapunov function. To obtain the approximate solu-
tion of the prescribed model, a nonstandard finite difference method (NSFD) is applied to the
underlying system and it is proved that the NSFD is consistent with the system under study.
For the reliability of the numerical scheme, it is applied to a the proposed system. It is neces-
sary to preserve all the physical features of the continuous model by the numerical scheme.
In this respect, the positivity, boundedness, and nonlinear stability results are developed.
The consistency, stability, and positivity of the nonstandard finite difference scheme are also
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Fig 3. (a) Disease-free state, (b) Endemic state representing numerical approximations for the function T(x, t) (treated class) with k = 10.3.

https://doi.org/10.1371/journal.pone.0323975.g003

Fig 4. (a) Disease-free state, (b) Endemic state, representing numerical approximations for the function R(x, t) (recovered class) with k = 10.3.

https://doi.org/10.1371/journal.pone.0323975.g004

proved for the current system. In the end, numerical simulations are drawn to validate the
theoretical results.
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