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Abstract
The purpose of this paper is deal with the oscillatory behavior of solutions of neutral delay differential equations of fourth-

order in noncanonical form. We use a different techniques which significantly reduce the number of conditions assuring that all
the solutions are oscillates. We provided two examples to demonstrate the power and relevance of our findings.
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1. Introduction

This paper is concerned with the fourth-order nonlinear neutral delay differential equation

D4z(κ) + q(κ)y
α(τ(κ)) = 0, κ > κ0 > 0, (1.1)

where z(κ) = y(κ) +P(κ)y(σ(κ)), and

D0z = z, Djz = bj(κ)(Dj−1z)
′, j = 1, 2, 3, D4z = (D3z)

′.

Let us make the following assumptions.

(L1) bj ∈ C([κ0,∞), R), bj > 0 for j = 1, 2, 3 and holds Ωj(κ0) =
∫∞
κ0

dκ
bj(κ)

<∞;

(L2) P ∈ C([κ0,∞), R) with 0 6 P(κ) 6 P < 1;
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(L3) q ∈ C([κ0,∞), R) is non-negative and does not vanish eventually;
(L4) σ, τ ∈ C1([κ0,∞), R), σ(κ) 6 κ, τ(κ) 6 κ, and limκ→∞ σ(κ) = limκ→∞ τ(κ) =∞;
(L5) α is a ratio of odd positive integers.

Let κ∗ = min{minκ>κ0 σ(κ), minκ>κ0 τ(κ)}. Under a solution of (1.1), we mean a function y ∈ C([κ∗,∞), R)
such that Djz ∈ C1([κ∗,∞), R) for j = 1, 2, 3 and satisfies (1.1) on [κ0,∞). Only we consider the solutions
of (1.1) which satisfy sup{|y(κ)| : T 6 κ <∞} > 0 for any T > κ0, and tacitly assuming that (1.1) possesses
such solutions. “A solution (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise it is said to nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are
oscillatory.”

Fourth-order functional differential equations have been arrived in many modeling of various physical,
biological, engineering and chemical phenomena, see [2, 19, 21, 23] for more details. Further several
applications of fourth-order functional differential equations are described in the recent papers [11, 13].
During the past several years, the researchers studied oscillatory behavior of solutions of various classes
of functional differential equations. See, for example, the monographs [12, 15], the papers [1, 3–10, 12, 14–
18, 20, 22], and the reference therein. From the literature survey, we see that there are numerous outcomes
available in the literature for all the solutions of (1.1) oscillate, when P(κ) ≡ 0, and

Ωj(κ0) =∞, j = 1, 2, 3,
or

Ω3(κ0) <∞, Ω2(κ0) = Ω1(κ0) =∞,
or

Ω3(κ0) =∞, Ω2(κ0) <∞, Ω1(κ0) =∞,
or

Ω3(κ0) <∞, Ω2(κ0) <∞, Ω1(κ0) =∞.

Very recently in [11], the authors studied the oscillatory properties of (1.1) when P(κ) ≡ 0, under condition
(L1).

To the greatest of our knowledge, oscillation of (1.1) is unresolved according to the assumption (L1).
This is due to the fact that to get relation between y(κ) and the corresponding function z(κ) is very difficult
but this is needed to obtain for the oscillation criteria of the neutral type equation (1.1). Therefore, in
order to cover this gap, we obtained some new criteria for the oscillation of all solutions of (1.1). Also we
proposed an innovative approach that will serve as an information source for the less discussed theory
for neutral type non-canonical fourth-order differential equations. Finally, we provide two examples that
shows the significance of the established results via Euler-type neutral differential equations.

2. Oscillation results

For our convenience, we provide the following list of functions to be used in this paper. Let

Ω12(κ) =

∫∞
κ

Ω2(s)

b1(s)
ds, Ω23(κ) =

∫∞
κ

Ω3(s)

b2(s)
ds, Ω123(κ) =

∫∞
κ

Ω23(s)

b1(s)
ds,

for all κ > κ0. We consider an eventually positive solutions of (1.1), since if y satisfies (1.1), then so does
−y.

Lemma 2.1. Suppose that (L1)-(L5) remains true and y is an eventually positive solution of (1.1). Then ∃t1 > t0,
3 z > 0 and satisfies one of the following eight cases:

(I) z > 0, D1z > 0, D2z > 0, D3z > 0, D4z 6 0;
(II) z > 0, D1z > 0, D2z > 0, D3z < 0, D4z 6 0;
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(III) z > 0, D1z > 0, D2z < 0, D3z > 0, D4z 6 0;
(IV) z > 0, D1z > 0, D2z < 0, D3z < 0, D4z 6 0;
(V) z > 0, D1z < 0, D2z > 0, D3z > 0, D4z 6 0;

(VI) z > 0, D1z < 0, D2z > 0, D3z < 0, D4z 6 0;
(VII) z > 0, D1z < 0, D2z < 0, D3z > 0, D4z 6 0;

(VIII) z > 0, D1z < 0, D2z < 0, D3z < 0, D4z 6 0, ∀ t > t1.

The proof of the lemma is quite obvious and so we omit it.
First, we find the relation between the function y(κ) and its relevant function z(κ) when it satisfies any

of the eight possible cases as in Lemma 2.1.

Lemma 2.2. Let z(κ) satisfies cases (I)-(IV) of Lemma 2.1, ∀κ > κ1 > κ0. Then

y(κ) > (1 −P(κ)) z(κ), ∀ κ > κ1. (2.1)

Proof. By the definition of z(κ), we get

y(κ) = z(κ) −P(κ)y(σ(κ)) > z(κ) −P(κ)z(σ(κ)). (2.2)

Since z(κ) is increasing in all cases (I)-(IV) and σ(κ) 6 κ, we attain from (2.2) that

y(κ) > (1 −P(κ)) z(κ), κ > κ1.

This completes the proof.

Lemma 2.3. Assuming z(κ) holds in case (V) of Lemma 2.1. Then

y(κ) >

(
1 −

P(κ)Ω12(σ(κ))

Ω12(κ)

)
z(κ), ∀ κ > κ1 > κ0. (2.3)

Proof. From the monotonicity of D2z, we see that

−D1z(κ) > D1z(∞) −D1z(κ) =

∫∞
κ

1
b2(s)

D2z(s)ds > Ω2(κ)D2z(κ), (2.4)

so, (
−D1z(κ)

Ω2(κ)

) ′
= −

(
Ω2(κ)D2z(κ) +D1z(κ)

Ω2
2(κ)b2(κ)

)
> 0

by (2.4). Therefore
−D1z(κ)

Ω2(κ)
is nondecreasing. (2.5)

Now, using (2.5) we obtain

z(κ) > −

∫∞
κ

Ω2(s)D1z(s)

b1(s)Ω2(s)
ds >

−D1z(κ)

Ω2(κ)
Ω12(κ)

and so (
z(κ)

Ω12(κ)

) ′
=
Ω12(κ)D1z(κ) +Ω2(κ)z(κ)

b1(κ)Ω
2
12(κ)

> 0.

Hence
z(κ)

Ω12(κ)
is nondecreasing. (2.6)
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Using the definition of z(κ) and (2.6),

y(κ) = z(κ) −P(κ)y(σ(κ)) > z(κ) −P(κ)z(σ(κ)) >

(
1 −

P(κ)Ω12(σ(κ))

Ω12(κ)

)
z(κ), for all κ > κ1.

This completes the proof.

Lemma 2.4. Let z(κ) satisfies case (VI) of Lemma 2.1. Then

y(κ) >

(
1 −

P(κ)Ω123(σ(κ))

Ω123(κ)

)
z(κ), for all κ > κ1 > κ0. (2.7)

Proof. From the monotonicity of D3z, we see that

D2z(κ) = D2z(∞) −

∫∞
κ

1
b3(s)

D3z(s)ds > −Ω3(κ)D3z(κ). (2.8)

Hence (
D2z(κ)

Ω3(κ)

) ′
=
Ω3(κ)D3z(κ) +D2z(κ)

b3(κ)Ω
2
3(κ)

> 0,

which shows that D2z(κ)
Ω3(κ)

in nondecreasing. Using this property, we see that

−D1z(κ) >
∫∞
κ

1
b2(s)

D2z(s)ds >
D2z(κ)

Ω3(κ)

∫∞
κ

Ω3(s)

b2(s)
ds =

Ω23(κ)

Ω3(κ)
D2z(κ).

Hence (
−
D1z(κ)

Ω23(κ)

) ′
=

−Ω23(κ)D2z(κ) −Ω3(κ)D1z(κ)

b2(κ)Ω
2
23(κ)

> 0

and so −D1z(κ)
Ω23(κ)

is nondecreasing. Finally, one obtains

z(κ) > −

∫∞
κ

1
b1(s)

D1z(s)ds >
−D1z(κ)

Ω23(κ)

∫∞
κ

Ω23(s)

b1(s)
ds =

−Ω123(κ)

Ω23(κ)
D1z(κ).

Hence (
z(κ)

Ω123(κ)

) ′
=
Ω123(κ)D1z(κ) +Ω23(κ)z(κ)

b1(κ)Ω
2
123(κ)

> 0

and so
z(κ)

Ω123(κ)
is nondecreasing. (2.9)

Now using the definition of z(κ) and (2.9), we get

y(κ) = z(κ) −P(κ)y(σ(κ)) >

(
1 −

P(κ)Ω123(σ(κ))

Ω123(κ)

)
z(κ), κ > κ1.

Hence, the proof is complete.

Lemma 2.5. Let z(κ) satisfies either case (VII) or (VIII) of Lemma 2.1. Then

y(κ) >

(
1 −

P(κ)Ω1(σ(κ))

Ω1(κ)

)
z(κ), for all κ > κ1 > κ0. (2.10)
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Proof. From the monotonic property of D1z, we have

z(κ) > z(κ) − z(∞) = −

∫∞
t

D1z(s)

b1(s)
ds > −Ω1(κ)D1z(κ).

Now (
z(κ)

Ω1(κ)

) ′
=
Ω1(κ)D1z(κ) + z(κ)

b1(κ)Ω
2
1(κ)

> 0,

which gives z(κ)
Ω1(κ)

in nondecreasing. Using this in the definition of z(κ), we find that

y(κ) > z(κ) −P(κ)z(σ(κ)) >

(
1 −

P(κ)Ω1(σ(κ))

Ω1(κ)

)
z(κ)

for all κ > κ1 > κ0. This completes the proof.

Let us define

d(κ) = max
{
P(κ),

P(κ)Ω1(σ(κ))

Ω1(κ)
,
P(κ)Ω12(σ(κ))

Ω12(κ)
,
P(κ)Ω123(σ(κ))

Ω123(κ)

}
and assume that 1 − d(κ) > 0, κ > κ1 > κ0. From (2.1), (2.3), (2.7), and (2.10), we obtain

y(κ) > (1 − d(κ)) z(κ), (2.11)

for all κ > κ1 > κ0.

Lemma 2.6. Let y(κ) be an eventually positive solution of (1.1) and the corresponding function z(κ) satisfies cases
(I)-(VIII) of Lemma 2.1. Then

D4z(κ) + q(κ)(1 − d(τ(κ)))αzα(τ(κ)) 6 0, ∀ κ > κ1 > κ0. (2.12)

Proof. The proof follows from (2.11) and (1.1). To prove our results, let us denote

Q(κ, κ∗) =
∫κ
κ∗

1
b2(s)

∫s
κ∗

1
b3(u)

∫u
κ∗

q(v)(1 −P(τ(v)))αdvduds,

and
Q∗(κ, κ∗) =

∫κ
κ∗

q(s)(1 − d(τ(s)))αΩ123(τ(s))

Ω3(τ(s))
ds, for all κ > κ∗ > κ0.

Lemma 2.7. Suppose that (L1)-(L5) remains true. Let y be an eventually positive solution of (1.1). If

Q(∞, κ0) =∞, (2.13)

then (I)-(IV) of Lemma 2.1 do not hold.

Proof. First note that from (L1) and (2.13), we must have∫∞
κ0

1
b3(s)

∫s
κ0

q(u)(1 − d(τ(u)))αduds =

∫∞
κ0

q(s)(1 − d(τ(s)))αds =∞. (2.14)

Now assume that y(κ) be an eventually positive solution of (1.1) with the corresponding function z(κ)
is positive which satisfies one of the cases (I)-(IV) from Lemma 2.1. Since z(κ) is increasing ∃ a constant
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c > 0 and a κ2 > κ1 > κ0 3 z(τ(κ)) > c, ∀κ > κ2. Using this inequality in (2.12), we obtain

−D4z(κ) > c
αq(κ)(1 − d(τ(κ)))α, κ > κ2. (2.15)

Integrating (2.15) form κ2 to κ, we get

−D3z(κ) +D3z(κ2) > c
α

∫κ
κ2

q(s)(1 − d(τ(s)))αds. (2.16)

Considering z is a part of either case (I) or (III), then from (2.14) and (2.16), we find that

D3z(κ2) > c
α

∫κ
κ2

q(s)(1 − d(τ(s)))αds→∞ as κ→∞, (2.17)

which is a contradiction. For case (II), (2.16) becomes

−D3z(κ) > c
α

∫κ
κ2

q(s)(1 − d(τ(s)))αds,

that is

−(D2z(κ))
′ >

cα

b3(κ)

∫κ
κ2

q(s)(1 − d(τ(s)))αds. (2.18)

Taking integration (2.18) form κ2 to κ, we have

D2z(κ2) −D2z(κ) > c
α

∫κ
κ2

1
b3(s)

∫s
κ2

q(u)(1 − d(τ(u)))αduds, (2.19)

which in view of (2.14) yields

D2z(κ2) > c
α

∫κ
κ2

1
b3(s)

∫s
κ2

q(u)(1 − d(τ(u)))αduds→∞ as κ→∞, (2.20)

which is a contradiction. Finally assume that case (IV) holds. As in the last case we arrive at (2.19), that
is,

−(D1z(κ))
′ >

cα

b2(κ)

∫κ
κ2

1
b3(s)

∫s
κ2

q(u)(1 − d(τ(u)))αduds.

Applying integration from t2 to t in the above inequality, we obtain

D1z(κ2) −D1z(κ) > c
α

∫κ
κ2

1
b2(s)

∫s
κ2

1
b3(u)

∫u
κ2

q(v)(1 − d(τ(v)))αdvduds = cαQ(κ, κ2), (2.21)

which by virtue of (2.13) yields D1z(κ2) > cαQ(κ, κ2) → ∞ as κ → ∞, which is again a contradiction.
This completes the proof.

In the next theorem, we present a condition which shows that every nonoscillatory solution of (1.1)
converges to zero whenever κ→∞.

Theorem 2.8. Assume that (L1)-(L5) hold. If ∫∞
κ0

Q(κ, κ0)

b1(κ)
dκ =∞, (2.22)

then any solution of y of (1.1) is either oscillatory or limκ→∞ y(κ) = 0.

Proof. Let y(κ) be nonoscillatory solution of (1.1). Then ∃κ1 > κ0, 3 y(τ(κ)) > 0 and y(σ(κ)) > 0, ∀κ > κ1.
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Then z(κ) > 0 and by Lemma 2.1, eight possible cases may occur for κ > κ1. Combining (2.22) with (L1)
gives

∫∞
κ0
Q(κ, κ0)dt cannot be bounded, by Lemma 2.7, (I)-(IV) are not possible.

Suppose that one of the cases (V)-(VIII) hold. Given z is decreasing there exists a finite nonnegative
limit limκ→∞ z(κ) = c. Let c > 0, ∃ a κ2 > κ1, 3 z(κ) > c, ∀κ > κ2 and inequality (2.12) holds, which
contradicts (2.17) in cases (V) and (VII), and (2.20) in case (VI). Hence we conclude that, c = 0. Suppose
that case (VIII) remains true, then we get (2.21), i.e., −D1z(κ) > cαQ(κ, κ2) or −z ′(κ) > cα

b1(κ)
Q(κ, κ2).

Integrating the last inequality κ2 to κ, we get

z(κ2) > c
α

∫κ
κ2

Q(s, κ2)

b1(s)
ds,

which contradicts (2.22) as κ → ∞. Thus c = 0, that is, limκ→∞ z(κ) = 0. However y(κ) 6 z(κ) implies
that limκ→∞ y(κ) = 0. This completes the proof of the theorem.

In the sequel, we present a condition for the oscillation of all solutions of (1.1).

Theorem 2.9. Suppose (L1)-(L4) hold and α = 1 and τ is nondecreasing. If

lim
κ→∞ supR(κ, κ1) > 1 (2.23)

for any κ1 > κ0, where R(κ, κ1) = min{Ω1(κ)Q(κ, κ1), Ω3(κ)Q
∗(κ, κ1)}, then (1.1) is oscillatory.

Proof. Let y(κ) be an eventually positive solution of (1.1). Then ∃κ1 > κ0, 3 y(τ(κ)) > 0 and y(σ(κ)) > 0,
∀κ > κ1. Then z(κ) > 0 and by Lemma 2.1, there are eight possible cases may arise for κ > κ1. Initially we
note that, by virtue of (L1), for the validity of (2.23),

Q(∞, κ0) = Q
∗(∞, κ0) =∞ (2.24)

is necessary and from Lemma 2.7, the condition (2.24) ensures that cases (I)-(IV) from Lemma 2.1 are
impossible.

Assume that case (V) holds. From the proof of Lemma 2.3, we arrive at (2.6). Since z(κ)
Ω12(κ)

is nonde-
creasing, there exist constant c > 0 and a κ2 > κ1 such that z(κ) > c Ω12(κ), κ > κ2. Using this property
in (2.12), we see that

−D4z(κ) > c q(κ)(1 − d(τ(κ)))Ω12(τ(κ)), κ > κ2.

Taking integration from κ2 to κ, in the last inequality, we get

D3z(κ2) > D3z(κ) + c

∫κ
κ2

q(s)(1 − d(τ(s)))Ω12(τ(s))ds. (2.25)

Taking (L1) and (2.24) into account, easily we get

∞ = Q∗(∞, κ0) =

∫∞
κ0

q(s)(1 − d(τ(s)))Ω123(τ(s))

Ω3(τ(s))
ds 6

∫∞
κ0

q(s)(1 − d(τ(s)))Ω12(τ(s))ds. (2.26)

Substituting (2.26) in (2.25), we obtain a contradiction as κ→∞.
Suppose case (VI) holds. From the proof of the Lemma 2.4, we have

z(κ) >
Ω123(κ)

Ω3(κ)
D2z(κ), κ > κ1. (2.27)

Using (2.27) in (2.12) we obtain

−D4z(κ) >
q(κ)(1 − d(τ(κ)))Ω123(κ)

Ω3(κ)
D2z(τ(κ)).
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Applying integration from κ1 to κ in the above inequality and using the decreasing property of D2z(κ),
we have

−D3z(κ) >
∫κ
κ1

q(s)(1 − d(τ(s)))Ω123(τ(s))

Ω3(τ(s))
D2z(τ(s))ds

> D2z(τ(κ))

∫κ
κ1

q(s)(1 − d(τ(s)))Ω123(τ(s))

Ω3(τ(s))
ds > D2z(κ)Q

∗(κ, κ1).
(2.28)

Using (2.8) in (2.28), we obtain

−D3z(κ) > −Ω3(κ)Q
∗(κ, κ1)D3z(κ).

First divide by −D3z in the last inequality, then taking lim sup of the resulting inequality on both sides,
we obtain a contradiction with (2.23).

Once again assume case (VII) holds. Integrating (2.12) from t1 to t and using the property that z(κ)
Ω1(κ)

is nondecreasing, we have

D3z(κ1) > D3z(κ) +

∫κ
κ1

q(s)(1 − d(τ(s)))z(τ(s))ds >
z(κ1)

Ω1(κ1)

∫κ
κ1

q(s)(1 − d(τ(s)))Ω1(s)ds. (2.29)

On the other side, using (L1) and (2.26), it is easy to see that for any constant K > 0,

∞ =

∫∞
κ1

q(s)(1 − d(τ(s)))Ω12(s)ds 6 K
∫∞
κ1

q(s)(1 − d(τ(s)))Ω1(s)ds.

From this in view of (2.29), we get a contradiction.

Finally assume case (VIII) holds. Integrating (2.12) from κ1 to κ, we get

−D3z(κ) >
∫κ
κ1

q(s)(1 − d(τ(s)))z(τ(s))ds > z(τ(κ))
∫κ
κ1

q(s)(1 − d(τ(s)))ds.

Dividing the last inequality by b3(κ) and then taking integration from κ1 to κ, one obtains

−D2z(κ) >
∫κ
κ1

z(τ(s))

b3(s)

∫s
κ1

q(u)(1 − d(τ(u)))du > z(τ(κ))
∫κ
κ1

1
b3(s)

∫s
κ1

q(u)(1 − d(τ(u)))duds.

Similarly, we have

−D1z(κ) > z(τ(κ))
∫s
κ1

1
b2(s)

∫s
κ1

1
b3(u)

∫u
κ1

q(v)(1 − d(τ(v)))dvduds

= z(τ(κ))Q(κ, κ1) > z(κ)Q(κ, κ1) > −Ω1(κ)Q(κ, κ1)D1z(κ),

that is
1 > Ω1(κ)Q(κ, κ1),

which contradicts (2.23). This completes the proof.

Theorem 2.10. Suppose (L1)-(L4) holds and α = 1 with τ is nondecreasing. If

lim
κ→∞ inf

∫κ
z(κ)

M(s, t1)ds >
1
e

(2.30)
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for any κ1 > κ0, where

M(κ, κ1) = min
{
Q(κ, κ1)

b1(κ)
,
Q∗(κ, κ1)

b3(κ)

}
then (1.1) is oscillatory.

Proof. Let y(κ) be an eventually positive solution of (1.1). Then ∃κ1 > κ0, 3 y(σ(κ)) > 0 and y(τ(κ)) > 0,
∀κ > κ1. Then z(κ) > 0 and eight possible cases may occur for κ > κ1 in Lemma 2.1. Initially we note that,
for the validity of (2.30), ∫∞

κ0

M(κ, κ1)dt =∞
is necessary and which in view of (L1) implies (2.24) satisfies. Form Lemma 2.7, it is evident that (I)-(IV)
of Lemma 2.1 are not attainable. Now let us think about the possible cases (V)-(VIII) separately.

Since the proof of the cases (V) and (VII) are same in Theorem 2.9 and so omitted. Next, assume case
(VI) holds. By Theorem 2.9 (case (VI)), we arrive at (2.28), that is

−D3z(κ) > D2z(τ(κ))

∫κ
κ1

q(s)(1 − d(τ(s)))Ω123(τ(s))

Ω3(τ(s))
ds,

that is,

x ′(κ) +
Q∗(κ, κ1)

b3z(κ)
z(τ(κ)) 6 0, (2.31)

where we let x(κ) = D2z(κ) > 0. In view of (2.30),

lim
κ→∞ inf

∫κ
τ(κ)

Q∗(κ, κ1)

b3z(κ)
ds >

1
e

,

however, by [15, Theorem 2.1.1], the above inequality guarantees that (2.31) does not possess a positive
solution, which contradicts our assumption.

Finally, we assume case (VIII) holds. Proceeding as in the proof of Theorem 2.9 case (VIII), we arrive
at −D1z(κ) > z(τ(κ))Q(κ, κ1) or z ′(κ) + Q(κ,κ1)

b1(κ)
z(τ(κ)) 6 0, same as case (VII), which is a contradiction.

This completes the proof.

3. Examples

Two examples are presented in this section to highlight the significance of our findings.

Example 3.1. Consider the equation(
κ2
(
κ2 (κ2z ′(κ)

) ′) ′) ′
+ q0κ

2y3(λκ) = 0, κ > 1, (3.1)

where z(κ) = y(κ) + Py(µκ), q0 > 0, µ ∈ (0, 1), λ(0, 1), and P < λ3. A simple calculation shows that
Ω1(κ) = Ω2(κ) = Ω3(κ) =

1
κ , Ω12(κ) =

1
2κ2 , Ω23(κ) =

1
2κ2 , and Ω123(κ) =

1
6κ3 . With d(κ) = P

λ3 , we see that

condition Q(κ, 1) = q0
6

(
1 − P

λ3

)3
κ. By Theorem 2.8, the condition (2.22) is satisfied. Thus we conclude that

any nonoscillatory solution of (3.1) converges to zero whenever κ→∞.

Example 3.2. Consider the equation(
κ2

(
κ2
(
κ2
(
y(κ) +

1
16
y
(κ

3

)) ′) ′) ′) ′
+ q0κ

2y
(κ

2

)
= 0, κ > 1, (3.2)
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where q0 > 0. Here b1(κ) = b2(κ) = b3(κ) = κ2, P(κ) = 1
16 , q(s) = q0κ

2, τ(κ) = κ
2 , and σ(κ) = κ

3 . A
simple calculation shows that Ω1(κ) = Ω2(κ) = Ω3(κ) = 1

κ , Ω12(κ) = Ω23(κ) = 1
2κ2 , and Ω123(κ) = 1

6κ3 .
Further d(κ) = 1

2 and 1 − d(τ(κ)) = 1
2 > 0. The condition (2.23) is clearly satisfied if q0 > 12. So Theorem

2.9 implies that (3.2) is oscillatory if q0 > 12. The same conclusion follows from Theorem 2.10 since the
condition (2.30) is satisfied for q0 > 6.36886. Hence Theorem 2.10 provides a stronger result than Theorem
2.10. In fact Theorem 2.10 is more efficient and depends on the delay arguments.

4. Conclusion

In this paper, we provide two new criteria for the oscillation of all solutions of (1.1). Also we presented
two examples to demonstrate the significance of our findings and none of the results reported in the
literature yield this conclusion.

A further extension of this article could be to use this results to study a class of systems of higher-order
neutral differential equations as well as fractional-order equations.
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