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Abstract
This study introduces and explores a groundbreaking single objective Heat Transfer Search (HTS) algorithm and
decomposition-oriented Multi-Objective Heat Transfer Search (MOHTS/D) algorithm, specifically devised to address intri-
cate issues in designing brushless direct current wheel motors in real-world scenarios. Drawing upon the principles established
in the recently conceptualized thermodynamics laws grounded Heat Transfer Search algorithm, it harmonizes the conduc-
tion, convection and radiation stages to maintain a stable equilibrium between local intensification and global diversification
during the search process. The aim is to pinpoint Pareto optimal solutions while verifying their encompassing characteristics
through the methodical application of uniform weight vector sorting and Euclidean distance tactics within the conceived
posteriori technique. To sidestep challenges such as local optimum confinement, heightened computational intricacy and reli-
ability deficiencies, a decomposition-oriented strategy is embraced. The efficacy of the HTS and MOHTS/D algorithms has
been scrutinized by subjecting it to rigorous analysis across Brushless Direct Current Motors (BLDC). Findings emphasize
the formidable potential of HTS and MOHTS/D as a resilient optimization tool when measured against other recognized
optimizers in the sphere of tangible, significant brushless direct current wheel motor design challenges. Notably, HTS and
MOHTS/D demonstrates superior prowess in identifying optimal solutions across various Pareto fronts, surpassing other
notable algorithms in this domain.
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1 Introduction

Multi-objective (MO) design optimization challenges
markedly diverge from single-objective issues, given that
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MOscenarios entail the concurrent optimization of numerous
distinct objectives. Furthermore, whereas single-objective
problems tend to have a singular optimal solution, typi-
cally referred to as the global maximum or minimum, MO
design predicaments offer a spectrum of potential solutions.
These are predominantly classified as Pareto-optimal or non-
dominated solutions, standing out as superior options within
the specified search domainwhen all objectives are optimized
in tandem [1]. However, these solutions might be less advan-
tageous when considering one or more specific objectives,
thereby categorizing the other available solutions as domi-
nated. Due to the intrinsic non-dominance characteristic of
the Pareto group in MO scenarios, each solution maintains a
level of adequacy. Consequently, designers have the flexibil-
ity to select varying solutions based on their individual design
needs or environmental factors. Therefore, understanding the
diverse range of Pareto-optimal solutions becomes a crucial
aspect in addressing MO optimization dilemmas [2].

Traditional approaches to tackling the complex, multi-
modal and multi-constrained MO optimization dilemmas
often falter and require a significant amount of computa-
tional resources. This downfall is primarily attributed to the
conventional strategy these methods employ, which involves
condensing multiple objectives into a singular focus through
the utilization of weighted factor averages and highlighting
a single Pareto-optimal solution at a time [3]. Optimization
forms a cornerstone in the realm of engineering design. Con-
sequently, amidst a plethora of real-world intricate issues
with varied frameworks,metaheuristics (MHs) have emerged
as a highly regarded instrument for optimization tasks.
Owing to their simplicity, adaptability, absence of deriva-
tion constraints and capacity to evade local optimums, MHs
have garnered immense attention, fostering the creation of
celebrated techniques for multi-objective design dilemmas,
such as MO Genetic Algorithm (GA) [4], MO Simulated
Annealing (SA) [5] and others, including MO Differential
Evolution (DE) [6] Though the solutions yielded by MHs
aren’t always optimal, they are achieved within a reason-
able timeframe, with the distinctive ability to approach the
Pareto front in a singular attempt being a standout feature
of these MHs [7]. MO Particle Swarm Optimization (PSO)
[8], alongside renowned algorithms like NSGA-II [3], MO
Ant colony [9]. MOSOS algorithm [10] and SPEA2 [11]
are used to find out optimality set of problems. However,
aligning with the well-known ’No Free Lunch’ theorem [12],
it is acknowledged that no MH can address every problem
both effectively and efficiently. An MH might prove benefi-
cial for one specific design challenge, yet may falter when
applied to another. In essence, no singular MH can guar-
antee the optimal solution across all problem domains. For
instance, Hertz and De Werra [13] emphasized the superi-
ority of the Tabu Search (TS) over SA in graph coloring
issues, while Kuik and others [14] observed the reverse in

lot-sizing problems. Conversely, Lee and Kim [15] noted
comparable efficiency levels between TS and SA in project
scheduling scenarios. Yang [16] further highlighted the lack
of a universally accepted methodology to compare the effi-
cacy of various MHs, making the quest for evolving potent
MHs an ongoing research area [17, 18]. Remarkably, Mernik
and colleagues [19] identified several misunderstandings in
comparing MHs and Crepinsek et al. [20] warned about the
inherent challenges in facilitating a substantial comparison
between different MHs.

One of the notable drawbacks of several MHs, including
GAs and SA, is their tendency to converge at a slow pace,
resulting in increased computational expenses. Furthermore,
there exists a risk of these algorithms becoming entrapped in
a local optimum, a phenomenon observed in strategies like
PSO, TS, ABC and ACO. To navigate past these hurdles,
there has been a significant surge in the development of inno-
vative, combined, enhanced and advanced MHs, focusing on
amalgamating their favorable features [21]. A few standout
examples in this category areMOhybridGA[22],MOhybrid
NSGA-II [23], MO hybrid PSO [24], MO enhanced ACO
[25], combined MO cuckoo search [26] and MO hybridized
PVS [27], among others. Within the context of MHs, main-
taining a fluid equilibrium between global diversification
and local intensification is vital. Essentially, diversification is
linked to the exploration of the search space, whereas inten-
sification is centered on leveraging accumulated knowledge
from previous searches. It is imperative to strike a balance
between these two aspects; diversification facilitates the rapid
pinpointing of regionswithin the search space that potentially
harbor high-quality solutions, while intensification tends to
concentrate efforts in areas previously explored or those lack-
ing in premium solutions, minimizing time wastage [28, 29].
Presently, the focus shifts towards the discovery of evenmore
efficacious strategies, propelling a noticeable increase in the
creation of new hybridized MHs. Despite the deployment
of numerous hybrid MHs over recent decades by different
scholars to tackle engineering design optimization issues—-
favoring a blend of global and local search approaches—the
sector remains somewhat underexplored and demands fur-
ther attention.

The recently devised Heat Transfer Search (HTS) algo-
rithm [30] draws its inspiration from the natural tendency
of systems to attain a state of thermal equilibrium, adhering
to the principles of heat transfer and thermodynamics. This
population-based optimization strategy has been extensively
utilized in the analysis of a plethora of unimodal,multimodal,
composite and hybrid functions, in addition to being applied
to a wide array of real-world benchmarks. Due to attributes
such as its simplicity, user-friendliness, limited tuningparam-
eters and superior rate of divergence, theHTShasmanaged to
eclipse other prevalent algorithms including PSO, GA, DE,
ABC and TLBO, noted in various studies.
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The efficacy of the HTS has been substantiated in
various domains, including truss structure optimization
[31], non-linear economic dispatch configuration [32], the
design and refinement of heat exchangers [33], the fine-
tuning of machining process parameters [34], combined
heat and power economic dispatch dilemmas [35] and eco-
nomic power generation planning [36]. Certain researchers
have ventured to enhance its functionality, proposing iter-
ations like the sub-population-based HTS modification for
structural optimization [37], a discrete form of HTS to
tackle the traveling salesman problem [38], concurrent
HTS [39], dynamic optimization problem-solving quadratic
interpolation-based HTS [40] and an upgraded version to
address unconstrained design matters [41].

Recognizing the pivotal role of MO optimization in tack-
ling real-world design complexities, several studies have
embarked on examining the versatility of HTS in this realm.
For instance, Savsani et al. [42] explored an innovative MO
variant of HTS, named MOHTS, to unravel dynamic half
car passive ride optimization challenges, registering supe-
riority over the renowned NSGA-II algorithm, particularly
regarding the diversity and quality of non-dominated Pareto
fronts. Additionally, Tawhid and Savsani [43] scrutinized
the ε-constraint MOHTS technique in optimizing various
engineering designs, highlighting its augmented effective-
ness relative to MOGA, MOPSO, MODE, NSGA-II, PAES
and MOWCA. In a separate study, Raja et al. [44] applied
MOHTS to fine-tune parameters in a conflicting objectives-
oriented plate heat exchanger design task, documenting a
considerable reduction in the heat transfer coefficient by
nearly 93%, corroborating well with experimental findings.
Tejani et al. [45] introduced a MOHTS methodology for
structural optimization issues, demonstrating its superiority
overMOAS,MOACSandMOSOS techniques. Furthermore,
to augmentMOHTS’s capabilities, variations includingmod-
ified MOHTS [46] and advanced MOHTS [47] have been
documented in scholarly articles.

While the algorithm rooted in stochastic parameters offers
a range of benefits, it also exhibits significant gaps in its
construction [12]. Notably, a high propensity for explo-
rationwithin these algorithms often curtails their exploitation
capacity and vice versa. This necessitates a harmonious bal-
ance between global diversification and local intensification
to foster optimal outcomes [27]. Despite HTS showcas-
ing efficacy in tackling intricate engineering optimization
challenges, it tends to gravitate towards local optimums,
a downside that cannot be overlooked [37, 38]. A notable
limitation is its performance during the iterative phase of
population size selection, wherein both small and large pop-
ulation sizes can sporadically produce superior responses.
Nevertheless, alterations to the core HTS algorithm have
illustrated rapid convergence velocities, enhanced accuracy

and heightened robustness [42–47]. Given its recent incep-
tion, the HTS remains somewhat unexplored, beckoning
further research to fully elucidate its potential in the optimiza-
tion domain. Additionally, the nascent stage of HTS sparks
curiosity for uncovering amendments that could bolster its
efficacy and operational performance.

Responding to these challenges and opportunities, this
research endeavors to craft and scrutinize a pioneering opti-
mizer labeled as the decomposition-based multi-objective
heat transfer search (MOHTS/D) algorithm, setting its sights
on addressing a variety of tangible structural optimization
predicaments. The decomposition-centric approach, noted
for its adaptability and relevance in real-world MO design
scenarios, has garnered the interest of a growing number of
researchers [48, 49]. Consequently, this investigation seeks
to amalgamate the merits of decomposition strategies with
HTS, aspiring to formulate a resilient global optimization
method adept at balancing local intensification and global
diversification during the search process.

The research gap can be defined as the area where exist-
ing methodologies or algorithms fall short in addressing
specific challenges in the design and optimization of brush-
less direct current (BLDC) wheel motors. Despite significant
advancements in optimization algorithms for engineering
applications, there remains a lack of algorithms that effec-
tively balance the trade-off between global diversification
and local intensification, particularly in complex, multi-
objective optimization problems like BLDC motor design
[50–53]. Previous methods may not fully capture the intrica-
cies of thermodynamic principles in motor design or may
suffer from slow convergence rates and susceptibility to
local optima. The motivation behind this study stems from
the urgent need to improve the efficiency and reduce the
mass of BLDC motors, crucial for a wide range of appli-
cations, from electric vehicles to industrial machinery. The
hunt for more sustainable and efficient electrical machines
justifies the necessity for innovative optimization strategies
that can address the multi-faceted objectives involved in
motor design. This study is motivated by the potential to
significantly enhance motor performance through a novel
algorithm that leverages thermodynamics-based principles
for optimization, filling a critical gap in existing engineering
optimization practices.

The contributions of the forthcoming study are delineated
as follows:

• Introduction and exploration of an innovative
decomposition-based MO global optimization algo-
rithm, leveraging evenly generated weight vectors sorting
coupled with the Euclidean distance methodology.

• Aligningwith the foundational principles of the HTS algo-
rithm, the newly conceivedMOHTS/D algorithm employs
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phases of conduction, convection and radiation to foster a
synergy between search intensification and diversification.

• Subjecting the MOHTS/D algorithm to testing through
practical applications, such as the design challenges asso-
ciated with brushless direct current wheel motors.

• Engaging in a qualitative and quantitative comparison
of the MOHTS/D algorithm against four contempo-
rary, leading-edge metaheuristic approaches. The derived
results have promising applications in the development
of more efficient and lighter electric vehicles, signifi-
cantly contributing to the reduction of energy consumption
and greenhouse gas emissions. In industrial applications,
optimized BLDC motors can lead to substantial energy
savings and operational efficiency, especially in automated
machinery and robotics. In renewable energy systems,
such as wind turbines or solar trackers, the application of
these optimization results can enhance the reliability and
performance of the systems, further promoting the adop-
tion of sustainable energy sources.

The structure of the upcoming document is organized as
follows: Sect. 2 is problem formulation. Section 3 delineates
the underlying principles of the basic HTS algorithm with
the proposed decomposition-orientedMOHTS approach and
its operational dynamics; Sect. 4 is fuzzy decision making
approach that is outlines the mathematical models pertinent
to the considered MO design optimization, followed by an
exhaustive discussion and analysis of the results derived from
all test instances in Sect. 5; Finally, Sect. 6 encapsulates the
principal conclusions drawn from the study, supported by
performance metrics and derived Pareto fronts, along with
insights into future prospects.

2 Problem formulation

The primary objective of BLDC motor [54] is to heighten
efficiency by fine-tuning the following critical factors: peak
current Imax , aggregate mass Mtot , ambient temperature Ta ,
interior diameter Dint and external diameter Dext . The aggre-
gate mass Mtot is identified as a criterion for reduction,
forming the crux of a multi-faceted optimization challenge
pertaining to a BLDCmotor with several objectives. To facil-
itate the flawless integration of the motor into a wheel rim
without inducing demagnetization in the magnet, adherence
to specific parameters is imperative. The external diameter
must be confined to under 340 mm, concurrently, the peak
current Imax should align with 125 A and the aggregate mass
Mtot must not surpass 15 kg.

Furthermore, due to mechanical requisites, the interior
diameter Dint needs to be greater than 76 mm, align-
ing with five times the full load current. This requirement

originates from the assorted mechanical limitations inher-
ent to the motor’s architecture. Consequently, the BLDC
motor’s developmental phase demands optimization across
five design variables: Be, Ds , Bd , Bcs and ζ . In parallel,
the adherence to six inequality constraints is mandatory,
encompassing the rotor’s length proportion to a single stator
component (Rrs), the magnetic length of the motor (Lm),
the air-gap (e), input voltage (Vdc), the number of pole
pairings (P) and the mean magnetic induction present in
the rotor’s yoke (Bcr). Adhering to these standards guaran-
tees the motor’s optimal operation, striking a harmonious
equilibrium between performance attributes and physical
limitations.

The guiding equation utilized to steer the optimization
trajectory is delineated in Eq. (1). This formula acts as the
fundamental mathematical blueprint, aiding in maneuver-
ing the intricate interactions between the aforementioned
parameters and limitations throughout the engineering and
optimization stages. This complex endeavor is central to
fabricating a BLDC motor that is both proficient and aptly
tailored for its intended application.

Maximize → f1(η)
Minimize → f2(Mtot )

Mtot ≤ 15Kg, Dext ≤ 340mm
Dint ≥ 76mm, Imax ≥ 125A

Ta ≤ 120◦C , discr(Ds , Bd , Be, ζ ) ≥ 0
150mm ≤ Ds ≤ 330mm, 0.5T ≤ Be ≤ 0.76T
2A/mm2 ≤ ζ ≤ 5A/mm2, 0.9T ≤ Bd ≤ 1.8T

0.6T ≤ Bcs ≤ 1.6T

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Motor efficiency, denoted as η, is a measure of the effec-
tiveness with which an electric motor converts electrical
energy into mechanical energy. Specifically, it is defined
as the ratio of mechanical power output to the electrical
power input. This efficiency metric is crucial in the design of
brushless DC (BLDC) motors as it directly impacts energy
consumption and overall performance. In our optimization
framework, motor efficiency is evaluated based on sev-
eral design variables that influence both the numerator and
denominator of the efficiency formula. These are magnetic
flux density in the stator (Be), the electric current density (ζ )
and the dimensions of the motor, which affect the resistance
and inductance, hence impacting the overall power losses.
The optimization seeks to enhance η by minimizing these
losses while maximizing the mechanical output.

• Be(Magnetic Flux Density in Stator) This variable repre-
sents the magnetic flux density in the stator of the motor. It
is crucial for determining the electromagnetic torque and
thus directly impacts the motor’s efficiency. The optimiza-
tion seeks to maintain Be within a specific range to ensure
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optimal magnetic properties while avoiding saturation of
the motor components.

• Ds(Stator Outer Diameter) Ds is the outer diameter of the
stator. This dimension is critical as it affects the overall
size of the motor and its compatibility with the wheel rim.
Proper sizing of Ds is essential for mechanical stability
and tomaintain the required air-gap between the stator and
rotor.

• Bd(Magnetic Flux Density in Rotor) Similar to Be, Bd

pertains to the magnetic flux density, but in the rotor. Opti-
mizing Bd influences the motor’s output power and heat
dissipation characteristics. It is adjusted to enhance per-
formance while preventing demagnetization of the rotor
magnets.

• Bcs(BackCore Saturation) Bcs refers to the saturation level
of the back core of the stator. Managing this variable helps
in optimizing the magnetic circuit of the motor, crucial for
minimizing energy losses and enhancing efficiency.

• ζ (Current Density) ζ is the current density within the
motor windings. It is a pivotal factor in determining the
thermal and electrical loading conditions of the motor. By
optimizing ζ , the motor can achieve higher efficiency and
reliability by balancing the thermal rise against perfor-
mance criteria.

It is evident from Eq. (1) that two objectives are high-
lighted: minimizing the overall mass (f2 (Mtot )) and maxi-
mizing the motor efficiency (f1(η)), with the restriction that
Mtot=15 kg.

3 Heat transfer search

3.1 Classical HTS algorithm

The foundational concept behind the Heat Transfer Search
(HTS) algorithm stems from the thermodynamic principle of
achieving thermal equilibrium between a system and its envi-
ronment [30].Within the realm of thermodynamics, a system
is perpetually driven to attain a state of energy balancewith its
surroundings, especially when the molecules are situated in
a state of elevated or diminished energy. To facilitate this sta-
bility, three primary heat transfer mechanisms are employed,
namely, conduction, convection and radiation. The algorithm
has been devised to ensure equal likelihood for the operation
of these three thermal transfer phases. Additionally, to fos-
ter a symbiotic relationship between local intensification and
global diversification, the algorithm’s search procedure has
been adapted. Specifically, throughout the initial stages (the
first half of the process), all three heat transfer phases col-
laboratively facilitate global diversification within the search
space, which transitions into a focus on local intensification

during the latter stages, as triggered by a predetermined num-
ber of generations.

In amanner akin to other optimization techniques inspired
by natural phenomena, the HTS initiates its search journey
through the stochastic generation of a population, consist-
ing of ’n’ members and ’m’ design variables, representative
of molecules at diverse temperature states. The objective fit-
ness values bear resemblance to molecular energy tiers, with
the optimal solution portraying the surrounding environment.
Operating on the principles of conduction, convection and
radiation during each iteration (Iter � 1, 2, 3…, Itermax),
following the initial population setup, there is a continual
adaptation of the population. The HTS adopts a greedy selec-
tion strategy,wherein a solution that surpasses its predecessor
is retained for the subsequent iteration. Conversely, subpar
solutions are supplanted by the most proficient solutions and
in cases where duplicate solutions emerge, they are substi-
tuted with newly generated random solutions. The HTS’s
three heat transfer phases are—

3.1.1 Conduction phase

This stage is orchestrated by the Fourier’s principle of ther-
mal conduction, which posits that molecules possessing
greater energy will impart heat to those at a lower energy
tier, aspiring to reach a state of equilibrium. Through the
tangible interactions among the molecules within the system
and its environs, heat transfer through conduction becomes a
feasible occurrence. During this stage, population alterations
are directed by Eqs. 2 and 3, as delineated below:

(2)

Snewp, i �
{
Soldq , i

(
1 − R12

)
, i f f (Sp) > f (Sq )

Soldp, i

(
1 − R12

)
, i f f (Sp) < f (Sq )

;

i f I ter ≤ I termax/Fcond

(3)

Snewp, i �
{
Soldq , i (1 − ri ) , i f f (Sp) > f (Sq )

Soldp, i (1 − ri ) , i f f (Sp) < f (Sq )
;

i f I ter > I termax/Fcond

In this context, p and q signify random solutionswith p ��
q and can assume any value within the range of porq ∈ (1,2,
. . . ., n);i denotes a random variable index, falling within the
scope of i ∈ (1,2, . . . ., m) both R1, restricted to the interval
R1 ∈ [0, 0.3333] and ri , confined within ri ∈ [0,1], serve as
the probability value and a random number pertaining to the
conduction phase, respectively. The conduction coefficient,
Fcond , is allocated a value of 2 for the initial half of the
entire generation span [37, 41, 42]. In this segment, the two
functions are analyzed in contrast and the less viable solution
undergoes substitution as perEq. 2,whereasEq. 3 governs the
replacement process in the search’s subsequent half, fostering
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a blend of local intensification and global diversification in
the algorithm, aiding in pinpointing the optimal solution.

3.1.2 Convection phase

Transitioning to the next phase, which is regulated by the
principles of convective heat transfer (or Newton’s cooling
law), the molecules within the system, having an average
temperature denoted by Smean , engage with the surrounding
elements, characterized by a temperature of Ssurr , in a quest
to achieve thermal equilibrium. The latter entity is recog-
nized as the superior solution in this context. Updates to the
solutions follow a distinct pattern, as noted below:

Snewp, i � Soldp, i + R2 × [Ssurr − Smean × abs(R − ri )]

i f I ter ≤ I termax/Fconv (4)

Snewp, i � Soldp, i + R2 × [Ssurr − Smean × round(1 + ri )]

i f I ter > I termax/Fconv (5)

It is vital to highlight that each design variable undergoes
transformations throughout this phase, alignedwith the alter-
ations to solution Sp . The value ofR2 lies between [0.6666, 1]
and the convective factor, Fconv , is established at 10 [45–47].
Both Eqs. 4 and 5 play a pivotal role in administering both
local intensification and global diversification strategies.

3.1.3 Thermal radiation phase

The final stage embraces the radiation mode as the corner-
stone heat transfer mechanism, seeking to rectify the thermal
disparities between the systemand its surroundings. It is note-
worthy that exchanges can transpire either internally among
system molecules or externally between system molecules
and those in the surrounding environment. Following the
directives of Eqs. 6 and 7, the solutions undergo the nec-
essary updates, as illustrated below:

Snewp, i �
⎧
⎨

⎩

Soldp, i (1 − R3) + R
(
Soldq , i

)
, i f f (Sp) > f (Sq )

Soldp, i (1 + R3) − R
(
Soldq , i

)
, i f f (Sp) < f (Sq )

;

i f I ter ≤ I termax/Frad

(6)

(7)

Snewp, i �
⎧
⎨

⎩

Soldp, i (1 − ri ) + ri
(
Soldq , i

)
, i f f (Sp) > f (Sq )

Soldp, i (1 + ri ) − ri
(
Soldq , i

)
, i f f (Sp) < f (Sq )

;

i f I ter > I termax/Frad

The probability variable R3 finds its place in the range
[0.3333, 0.6666] and F_rad, the radiation coefficient, main-
tains a fixed position at 2 [37, 42, 45–47]. An encompassing

visualization of the operational facets of all three phases of
the HTS is encapsulated in Fig. 1.

3.2 MOHTS/D algorithm

The decomposition-centric multi-objective optimization
algorithm was pioneered by Zhang and Li in 2007 [55].
This paper presents an innovative version of this algorithm,
integrated with HTS, termed Multi-Objective Heat Transfer
Search based on Decomposition (MOHTS/D), specifically
crafted to address structural optimization challenges. The
MOHTS/D technique dissects Multi-Objective Problems
(MOPs) into a series of scalar optimization sub-tasks. These
sub-tasks employ decomposition methods, optimizing them
concurrently using the HTS approach.

In this structure, the MOHTS/D fragmentizes the Pareto
Front (PF) approximation into multiple scalar optimization
sub-tasks, utilizing an array of evenly distributed weight
vectors λm � (λm1 , λm2 )

T to dissect the MOPs. Within the
context of BLDC design optimization, N is perceived with
each weight vector embodying a dual-dimensional aspect for
the pair of objectives, denoted as λm � (λm1 , λm2 )

T Here, m
ranges from 1 to N with each m corresponding to a specific
sub-task. The sum λm1 +λm2 � 1 ensures that eachweight vec-
tor is properly normalized. The superscript ’m’ denotes the
index of a sub-task or component within the decomposition
framework of theMOHTS/D algorithm. Specifically, it iden-
tifies individual scalar optimization tasks derived from the
original multi-objective problem (MOP). It is hypothesized
that z∗ � (z∗1, z∗2)

T represents the vector housing theminimal
objective values, serving as a reference point. The compo-
nents of this vector are derived as z∗1 � min{ f1(x)|x ∈ �}
and z∗2 � min{ f2(x)|x ∈ �}. Subsequent to the division of
theMOP into N sub-issues, the objective function of them-th
sub-issue is expressed as:

gte(x |λm , z∗) � max{λm1 | f1(x) − z∗1|
λm2 | f2(x) − z∗2|

} (8)

It is plausible that z* may not be determined in advance.
As the search progresses, the algorithm employs the min-
imum values discovered for f1(x) and f2(x) thus far to
replace z∗1 and z∗2, respectively, in the subproblem objectives.
MOHTS/D orchestrates a synchronous minimization of all
N objective functions (for N sub-tasks) in a single execution,
with each sub-task being optimized through insights pri-
marily gleaned from neighboring sub-tasks. The MOHTS/D
ensures an equitable distribution of computational efforts
across all sub-tasks.

Throughout the search, MOHTS/D adopts the
Tchebycheff method to sustain:
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Fig. 1 Flowchart of the MOHTS/D algorithm

• A compilation of N vectors x1, x2, . . . ., xN , with each
vector in this particular issue encompassing 100 elements.

• Function values documented as FV 1, FV 2, . . . ., FV N

where FVm � { f1(xm), f2(xm)} for m � 1,2, . . . ., N .
• z∗ � (z∗1, z∗2)

T , with z∗1 and z∗2 representing the lowest
values ascertained so far for evaluating f1(x) and f2(x).

• znad � (znad1 , znad2 )
T
where znad1 and znad2 are the peak

values identified to date while assessing functions f1(x)
and f2(x).

The general framework of MOHTS/D is presented
in Algorithm 1.
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Algorithm 1 MOHTS/D Multi-objective Optimization
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The flowchart of the MOHTS/D algorithm is presented in
Fig. 1.

4 Fuzzy decisionmaking based optimal
solution section

To ascertain the most appropriate and optimum solution
from the obtained Pareto-optimal set, this research adopts
a fuzzy-based compromise solution methodology [56]. This
approach seeks a solution that delivers the highest level
of satisfaction for every objective, drawn from the pool of
potential Pareto-optimal outcomes and is guided by fuzzy
membership functions. Given the potential vagueness that
decision-makers might encounter, each optimization query
pertaining to the jth solution is characterized by a mem-
bership function denoted as μ

j
i . It is hypothesized that

μ
j
i represents a monotonic function, structured as detailed

below:

μ
j
i �

⎧
⎪⎪⎨

⎪⎪⎩

1, i f f j
i f j

min
f jmax− f ji
f jmax− f jmin

, i f f j
min f

j
i f j

max

0, i f f j
i f j

max

(9)

Constructing the normalized membership function at
every non-dominated solution follows the subsequent
methodology:

μi �
∑Nobj

j�1μi j
∑M

i�1
∑Nobj

j�1μi j

(10)

Here, M symbolizes the quantity of non-dominated solu-
tions, Nobj stands for the count of objective functions and

f j
max and f j

min are representative of the maximum and mini-
mum values of the pertinent objective function, respectively.
A solution is considered to be the superior compromise when
it exhibits a high μi value.

5 Results and discussion

5.1 MOHTS/D algorithm results for brushless motor
wheel design problem

Upon evaluating various test scenarios, this study embarked
on the optimization of the BLDC motor structure utiliz-
ing four distinct multi-objective algorithms, including the
newly introduced MOHTS/D technique. Given the presence
of six specific constraints in the BLDC wheel motor design
task, the new strategy operates synergistically with a con-
straint handling framework. This study employs a fuzzy

membership method in tandem with the proposed algorithm
to pinpoint BC results. Following the acquisition of Pareto
solutions and identifying the BCwithin the spectrum of non-
dominated solutions—a process fluidly adapting during the
selection phase—it serves to formulate BC determinations
concerning trade-off attributes. This segment deliberates on
the results stemming from the application of the recom-
mended algorithm, along with alternative chosen algorithms,
in addressing the BLDC wheel motor design dilemma. A
few of the algorithms being contemplated for implementa-
tion encompass HTS, ALO [57], IMO [58] and SCA [59].
To date, these algorithms have not been scrutinized in the
context of BLDC wheel motor challenges. Prompt action
is taken to deploy all selected algorithms to surmount this
design hurdle, optimizing variables such as minimizing the
motor’s aggregate mass or amplifying its performance effi-
ciency. As documented in Table 1, each of the objective
functions and control parameters has been subjected to a
ten-cycle analysis through the corresponding algorithms. The
decision regarding the supreme control parameters is influ-
enced by numerous trial operations and scholarly article
analyses. Each of the triumphant algorithms adeptly navi-
gated through complex engineering impediments. In a bid
to broaden the analysis of the algorithm’s effectiveness, the
BLDC motor blueprint elucidated in Sect. 2 is incorporated.
As noted earlier, every algorithm is executed tenfold for each
pair of designated issues.

5.1.1 Case 1: Maximize efficiency of BLDCmotor

In this analysis, the objective is to fine-tune the BLDC
motor’s design variables in line with the criteria of objective
function 1, as delineated in Eq. (1). The algorithms cho-
sen for this task, namely HTS, ALO, SCA and IMO, are
directly engaged with objective function 1. The outcome of
design variables from all 10 distinct evaluations is shown
in Table 1. The highlighted figures in each table represent
the optimal outcomes from the 10 analyses. According to
Table 1, the pinnacle of motor efficiency was recorded by
the HTS, ALO, SCA and IMO algorithms, registering fig-
ures of 95.329, 95.285, 95.083 and 95.300% respectively.
The analysis reveals that HTS has the highest efficiency at
95.329%, with ALO, SCA and IMO showing lower effi-
ciencies by 0.046, 0.258 and 0.030% respectively. These
differences highlight the superior performance of HTS in
maximizing efficiency shown in box plot Fig. 2.

5.1.2 Case 2: Minimize mass of BLDCmotor

In a parallel analysis, the design variables of theBLDCmotor
are scrutinized with the guidelines of objective function 2,
outlined in Eq. (2). Similar to the prior analysis, chosen algo-
rithms likeHTS,ALO, IMOandSCAare put towork directly
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Table 1 Analysis of
Single-Objective Optimization
(Focusing on Maximizing
Efficiency) in BLDC Wheel
Motor Design

Control Variables HTS ALO SCA IMO

Bd (T) 1.800 1.789 1.800 1.797

Be(T) 0.654 0.651 0.674 0.649

Bcs(T) 1.012 1.215 0.767 1.013

Ds(mm) 0.202 0.205 0.204 0.203

ζ (A/mm2) 2,016,111.418 2,000,000.000 2,569,922.823 2,029,918.503

Efficiency in % (η) 95.329 95.285 95.083 95.300

Fig. 2 Box plot for efficiency
maximization using HTS, ALO,
SCA and IMO algorithms

Table 2 Examination of
Single-Objective Optimization
(Aiming at Minimizing Total
Mass) in BLDC Wheel Motor
Design

Control Variables HTS ALO SCA IMO

Bd (T) 1.800 1.800 1.800 1.800

Be(T) 0.652 0.649 0.649 0.659

Bcs(T) 1.600 1.599 1.600 1.585

Ds(mm) 0.189 0.193 0.198 0.188

ζ (A/mm2) 3,796,706.388 3,990,871.332 3,766,580.349 3,741,009.529

Total mass in Kg (Mtot ) 10.5689 10.5836 11.1067 10.6051

on objective function 2. The culmination of optimized design
variables from ten separate runs are recorded in Table 2,
with the prominent figures in each table signalling the best
outcomes from the ten evaluations. As noted in Table 2,
HTS managed to obtain the least motor mass, amounting to
10.5689 kg. Following closely were the figures from ALO,
IMO and SCA, which reported masses of 10.5836, 11.1067
and 10.6051 kg, respectively. The analysis reveals that HTS
has the lowest total mass at 10.5689 kg, with ALO, SCA
and IMO showing higher total masses by 0.0147, 0.5378
and 0.0362 kg respectively. These differences highlight the

superior performance of HTS in minimizing the total mass.
Specifically,ALO totalmass is approximately 0.139%higher
than HTS, SCA total mass is approximately 5.089% higher
than HTS and IMO total mass is approximately 0.343%
higher than HTS. This demonstrates that HTS consistently
outperforms the other algorithms in achieving the objective of
minimizing the total mass in the BLDC wheel motor design.
The graphical representation of the convergence trajectory
for all chosen algorithms can be observed in Fig. 3. This
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Fig. 3 Convergence curve and Box plot for efficiency maxmimization using HTS, ALO, SCA and IMO algorithms

Table 3 Comparative Analysis of
Multi-Objective Optimization
(Focusing on Maximizing
Efficiency and Minimizing Total
Mass) based on best compromise
solution in BLDC Wheel Motor
Design

Control Variables MOHTS/D MOTEO MOEO MOTLBO

Bd (T) 1.732 1.773 1.683 1.785

Be(T) 0.657 0.683 0.654 0.664

Bcs(T) 1.206 1.103 1.029 1.058

Ds(mm) 0.197 0.197 0.200 0.195

ζ (A/mm2) 2,304,832.384 2,400,568.859 2,239,507.957 2,285,050.596

Total mass in Kg (Mtot ) 13.877 13.972 14.573 13.930

Efficiency in % (η) 95.08 95.08 95.19 95.12

figure accentuates that the HTS algorithm reaches the min-
imal mass considerably faster compared to the ALO, IMO
and SCA algorithms.

5.1.3 Case 3: Pareto optimization for maximize efficiency
andminimize mass of BLDCmotor

This segment encapsulates a discussion on the simulated
analysis of the innovative MOHTS/D algorithm and draws a
comparisonwith other contenders likeMOTEO [60],MOEO
[61] and MOTLBO [62]. Adhering to identical parameters
as the single-objective optimization problem (comprising 30
archive size, 100 uppermost iterations and a populace of 30
individuals), the multi-objective optimization issue is exe-
cuted tenfold. Table 3 demonstrates the outcomes from the
most viable compromise, accompanied by the more prag-
matic options. Additionally, Table 3 delineates the objective
function values, encapsulating aspects like motor efficiency,
motor mass and a balanced compromise between the two,
coupledwith the five design/optimization variables—Be , Ds ,
Bd , Bcs and ζ , which were fine-tuned using all four algo-
rithms. The Mass analysis Table 3 reveals that MOHTS/D

has the lowest total mass at 13.877 kg, with MOTEO,
MOEO and MOTLBO showing higher total masses by
0.095, 0.696 and 0.053 kg respectively. These differences
highlight the superior performance of MOHTS/D in mini-
mizing the total mass. Specifically, MOTEO total mass is
approximately 0.684% higher than MOHTS/D, MOEO’s
total mass is approximately 5.015% higher than MOHTS/D
and MOTLBO total mass is approximately 0.383% higher
than MOHTS/D. This demonstrates that MOHTS/D con-
sistently outperforms the other algorithms in achieving the
objective of minimizing the total mass in the BLDC wheel
motor design. The efficiency analysis in Table 3 reveals that
MOHTS/D achieves an efficiency of 95.08%, with MOTEO,
MOEO and MOTLBO showing slightly higher efficiencies
by 0.00, 0.11 and 0.04% respectively. These differences
highlight the superior balance of MOHTS/D in optimizing
both efficiency and total mass. Specifically, MOEO effi-
ciency is approximately 0.116% higher than MOHTS/D and
MOTLBO efficiency is approximately 0.042% higher than
MOHTS/D. This demonstrates that MOHTS/D consistently
provides a well-rounded optimization solution, effectively
balancing the objectives of overall efficiency and total mass
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Fig. 4 Pareto optimal front
obtained by MOHTS/D
algorithm

Fig. 5 Pareto optimal front
obtained by MOTEO algorithm

in the BLDC wheel motor design. Figures 4, 5, 6 and 7 dis-
play the Pareto fronts for all the algorithms under scrutiny. To
attain the apex of comparative Pareto solutions, as depicted
in Fig. 8, it is imperative to fine-tune the decision vari-
ables. The recommended algorithm embodies a fixed penalty
scheme, representing a proficient approach to maneuvering
constraints. Preliminary observations denote that the newly
proposed algorithm is on a trajectory of consistent progress,

aiming to elevate both efficiency and motor mass metrics.
These revelations substantiate the superior performance of
the MOHTS/D algorithm over the rival options considered.
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Fig. 6 Pareto optimal front
obtained by MOEO algorithm

Fig. 7 Pareto optimal front
obtained by MOTLBO algorithm

6 Conclusion

In this work, the enhancement of the brushless DC (BLDC)
wheel motor design, focusing primarily on optimizing either
the machine’s efficiency or minimizing its overall mass is
studied. Through an analytical framework informed by prior
scholarly research, we employed a variety of single objec-
tive optimization strategies, including ALO, IMO and SCA.

HTS stands out with the highest efficiency of 95.329%, sig-
nificantly surpassing its competitors such as ALO, SCA and
IMO by marginal but consistent percentages. Additionally,
HTS proves to be the most effective in minimizing total
mass, achieving a weight of 10.5689 kg, which is con-
siderably lower than that of the other tested algorithms.
This dual advantage highlights HTS capability in enhanc-
ing operational efficiency while reducing structural load.

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 8 Comparative Pareto front
obtained by MOHTS/D, MOEO,
MOTEO and MOTLBO
algorithms

Furthermore, our exploration into multi-objective optimiza-
tion, particularly with the MOHTS/D variant, has shown
promising results in addressing the dual challenges of mass
reduction and efficiency enhancement. MOHTS/D show-
cases its strength in achieving a well-balanced optimization
between efficiency and mass reduction in the advanced mod-
els. It not only attains the lowest total mass at 13.877 kg
when compared to MOTEO, MOEO and MOTLBO, but it
also maintains competitive efficiency rates, narrowly trail-
ing behindMOEO in terms of performance percentages. The
results emphasizeMOHTS/D exceptional ability to optimize
key parameters effectively, providing a robust solution for
engineering applications that demand precision in both effi-
ciency and weight management. These findings affirm the
critical role of algorithm selection in motor design, impact-
ing both the efficiency and the physical attributes of the
final product. The distinguished performance of HTS and
MOHTS/D in our tests highlights their potential as preferred
algorithms for future developments in motor technology,
ensuring optimal performance and sustainability in design
processes.

One limitation of this study is the reliance on the pro-
posed MOHTS/D algorithm’s performance under specific
conditions and scenarios applied to BLDC motor design.
The algorithm’s generalizability to other types of motors
or optimization problems in different domains may require
further investigation. Additionally, while the decomposition-
oriented approach offers substantial improvements, com-
putational complexity and scalability to very large-scale
problems might pose challenges. The effectiveness of the
algorithm in real-world applications beyond the theoretical

and controlled environments also warrants further explo-
ration. Looking ahead, further research in this domain could
potentially focus on integrating artificial intelligence and
machine learning techniques to enhance the optimization
process further.
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