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ARTICLE INFO ABSTRACT

Keywords: Steel-fiber-reinforced concrete (SFRC) has replaced traditional concrete in the construction sector, improving
SFRC fracture resistance and post-cracking performance. However, extreme temperatures degrade concrete’s material
Elevated temperature characteristics including stiffness and strength. The construction industry increasingly embraces machine

Machine learning
Compressive strength
Predictive model

learning (ML) to estimate concrete properties and optimize cost and time accurately. This study employs inde-
pendent ML methods, gene expression programming (GEP), multi-expression programming (MEP), XGBoost, and
Bayesian estimation model (BES) to predict SFRC compressive strength (CS) at high temperatures. 307 experi-
mental data points from published studies were utilized to develop the models. The models were trained using 70
% of the dataset, with 15 % for validation and 15 % for testing. Iterative hyperparameter adjustment and trial-
and-error refining achieved optimum predictions. All the models were evaluated using correlation (R) values for
training, validation, and testing datasets. MEP showed slightly lower R-values of 0.923, 0.904, and 0.949 than
GEP, which performed consistently with 0.963, 0.967, and 0.961. XGBoost had the greatest training R-value of
0.997 but dropped in validation (0.918) and testing (0.896). BES model exhibited commendable performance
with scores of 0.986, 0.944, and 0.897. GEP and XGBoost exhibited great accuracy, with GEP sustaining constant
accuracy across all datasets, highlighting its potency in predicting CS. Interpreting model predictions using
SHapley Additive exPlanation (SHAP) highlighted temperature over heating rate. CS improved significantly as
the steel fiber volume fraction (Vf) reached 1.5 %, plateauing thereafter. The proposed models are valid and
accurate, providing designers and builders with a practical and adaptable method for estimating strength in SFRC
structural applications, particularly under high-temperature conditions.

Abbreviation’s list: ANN, Artificial neural network; CS, Compressive strength; DT, Decision tree; ETs, Expression trees; GEP, Gene expression programming; GP,
Genetic programming; LIME, Local interpretable model-agnostic explanations; MLR, Multi-variable linear Regression; ML, Machine learning; MAE, Mean absolute
error; MEP, Multi expression programming; OF, Objective function; p, Performance index; R, Correlation coefficient; RF, Random forest; RMSE, Root mean square
error; RRMSE, Relative root means square error; SHAP, SHapley Additive exPlanations.
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1. Introduction

Concrete is a fundamental and extensively employed construction
material, playing a pivotal role in shaping the performance of buildings
and infrastructure. However, concrete structures frequently face expo-
sure to diverse and challenging environmental conditions, adversely
influencing their structural stability [1]. These buildings are prone to
fire hazards due to their reliance on electrical and gas appliances. For
instance, high temperature adversely affects conventional concrete’s
performance due to its ingredients. Because of frequent fire-related di-
sasters, it has been observed that fire poses significant hazards to the
durability and stability of structures. Fire hazards are regarded as a
potential threat to the safety of people and structures. Thus, the char-
acteristics of concrete under high temperatures have captured the in-
terest of researchers [2].

High temperature adversely affects the performance of conventional
concrete due to its ingredients. Similarly, conventional concrete has
shallow strain capacity and tensile strength. Therefore, various fibers
can be used to enhance its load-carrying capacity. These fibers include
steel [3], carbon [4], glass, polypropylene [5], synthetic fibers [6],
recycled plastic [7], and basalt [8]. Incorporating short, discontinuous,
and randomly dispersed fibers into conventional concrete [9-11] has
emerged as a practical approach to improve the performance of concrete
structures by mitigating shrinkage cracks and preventing micro-cracks
during the transportation or installation of concrete members.
Fiber-reinforced concrete is characterized by the integration of fibers
into a cementitious matrix, forming a robust composite material. Pre-
vious research has established that integrating steel fibers (SF) into
concrete results in enhancements to its strength properties [12-19].
Steel fiber-reinforced concrete (SFRC) exhibited remarkably improved
strength compared to conventional concrete [20]. However, the
complexity involved in determining the mechanical properties, partic-
ularly the widespread adoption of steel-fiber-reinforced concrete (SFRC)
in structural engineering, is constrained primarily by challenges related
to its compressive strength (CS). Therefore, various experimental in-
vestigations were conducted to assess the compressive strength (CS) of
SFRC. Ahmad et al. [21] experimentally examined whether the surface
temperature of concrete, when elevated to 100 °C, could increase heat
transmission within the concrete. The primary factors affecting concrete
failure in a fire are the heating rate, temperature, and the quality of
structural components. Concrete’s structural integrity and dependability
hang predominantly on its compressive strength (CS). Consequently,
numerous experimental inquiries have been conducted to examine the
influence of temperature on CS. According to Technical Note 1681 by
the National Institute of Standards and Technology (NIST), raising the
temperature has an adverse impact on the CS of concrete [22]. Previous
investigations have highlighted that the accumulation of pore vapor
pressure within concrete and thermal stresses are the key factors
contributing to explosive spalling and the degradation of strength. These
factors substantially reduce the concrete strength when it is exposed to
fire [23-27]. Therefore, fibers are added to concrete to mitigate the
negative impacts of elevated temperature on concrete strength.

Steel fibers are predominantly employed as composite materials
among various fiber types because of their thermal stability at elevated
temperatures compared to other fibers [28]. SF in concrete can mitigate
the impact of high temperatures during a fire by limiting the establish-
ment of pore water pressure in the concrete. Additionally, SF helps
bridge cracks within the concrete, facilitating better heat distribution
and preventing concrete spalling [29-31]. In a post-fire scenario,
including steel fibers significantly enhances the residual mechanical
properties of concrete [32]. Residual compressive strength (CS) is
important not only for structural fire protection design but also for
structural repair. A study indicates a marginal increase in the residual CS
of steel fiber-reinforced concrete (SFRC) between room temperature and
400 °C, attributed to accelerated cement hydration. However, a notable
decline in residual CS occurs between 400 °C and 800 °C, with complete
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compromise beyond 800 °C [33]. The introduction of 1 % steel fibers by
volume demonstrates the potential to enhance the residual CS of SFRC in
the temperature range of 105-1200 °C [34]. However, it’s reported that
the rate of residual CS reduction in SFRC surpasses that of traditional
concrete, possibly due to the distinct expansion properties of the con-
crete matrix and steel fibers [35]. The CS of SFRC is critical and a direct
indicator of the overall mechanical performance. According to Lau and
Anson [34], high-performance steel fiber reinforced concrete with 1 %
steel fiber content, does not degrade at 1200 °C. Steel fiber enhances
concrete’s mechanical and thermal resistance. High temperatures
damaged High-Performance Concrete (HPC) and Normal Strength
Concrete (NSC), although HPC shows higher residual compressive,
flexural, and modulus of elasticity. At 600 °C, HPC mixes lost more
compressive strength than NSC at 400 °C. At high temperatures, HPC
with more significant saturation percentages loses strength and has
larger pores in the concrete body. Steel fibers slightly raise Poisson’s
ratio over the same mix without fibers. Poisson’s ratio becomes zero at
1000 °C as exposure temperature increases. He also linked heated con-
crete’s final color to its greatest temperature. In forensic fire tempera-
ture assessments for aggregate types, permanent charred colors may aid.
Concrete changes color as temperature increases; knowing which colors
correspond to which temperatures helps calculate fire temperature.
Thus, color may indicate a concrete element’s mechanical strength and
maximum temperature following a fire. Studying the heating rate effect
on concrete. Li et al. [36] found that at temperatures ranging from 500
to 800 °C, concrete’s linear expanding rate (LER) consistently rises with
rising temperature. Conversely, the heating rate influences the thermal
expansion coefficient (TEC), resulting in higher LER and TEC values. ’
The magnitude of the heating rate had a more significant influence on
concrete distortion at high temperatures (500-800 °C) compared to
lower temperatures (100-400 °C). Extended exposure to high temper-
atures (continuous temperature time) significantly influenced the
deformation of the concrete, with more prolonged exposure resulting in
higher LER and TEC values.

Numerous experiments have been conducted to evaluate how
elevated temperatures impact the performance (especially CS) of SFRC.
These studies have revealed that the performance of SFRC deteriorates
due to chemical and physical alterations during the heating process
[35]. Therefore, it is imperative to investigate the mechanical behavior
of SFRC at elevated temperatures to provide valuable support for the
endeavors of design and civil engineering professionals. However, col-
lecting data and conducting experimental studies on FRC structures pose
challenges because of the time-intensive nature of setting up and
implementing tests and the extra expenses associated with labor and
materials. Furthermore, evaluating concrete properties under elevated
temperatures was discouraged due to the potential fire-related risks for
operators and nearby structures.

Similarly, the limitations of numerical modeling stem from the
model’s formulation, computational processes, the nonlinear and sto-
chastic nature of concrete, and the interpretation of results. Moreover,
performing both experimental studies and numerical simulations on the
strength of concrete at elevated temperatures demands significant time
and resources. Therefore, a viable solution lies in adopting data-driven
methodologies, such as machine learning (ML), to scrutinize the influ-
ence of elevated temperatures on the strength of SFRC.

In recent decades, the development of computing algorithms has
accelerated the emergence of ML as a valuable approach for modeling
and estimating concrete behavior. ML has earned acknowledgment as an
effective method in numerous research fields, including composite
structures [37] and concrete structures [38], due to its accurate esti-
mations for desired mechanical properties [39,40]. ML algorithms can
identify concealed patterns within large, intricate datasets [41]. ML
algorithms can establish correlations between design input parameters,
allowing for the prediction of target values based on previously con-
ducted experimental tests. This enables intelligent product design by
leveraging training approaches to make accurate predictions. Several
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Fig. 1. GEP algorithm flowchart.

research studies have employed ML methods to forecast various me-
chanical characteristics of cement-based materials [42-44]. The Stan-
dard American (ACI 216) and European Codes (EN 1994-1-2) have
overestimated the compressive strength of concrete subjected to fire
with recycled PET Chips or steel fibers within 200 °C to 400 °C. For
instance, Huang et al. [45] conducted an extensive investigation to
predict the compressive strength (CS) of SFRCs by integrating the firefly
algorithm with the support vector regression technique (SVM). Sun et al.
[46] utilized a combination of the random forest (RF) method and the
beetle antennae search (BAS) algorithm to assess the impact of incor-
porating waste steel slag in concrete on the CS. Ashrafuddin et al. [47]
applied the metaheuristic-based multivariate adaptive regression splines
(MARS) to capture insights on natural zeolitic concrete (NZC’s) post-fire
behavior and matched experimental data which reveals the climatic,
environmental, and economic benefits of natural pozzolans. Mem-
arzadeh et al. [48] employed GEP with 149 datasets to forecast the
elastic modulus of recycled aggregate concrete-filled steel tubes at
comparatively higher temperatures under axial load. Almustafa and
Nehdi [49] applied an innovative generative adversarial network
approach to forecasting the structural behavior of SFRC beams under
blast loading conditions originating from a remote source. Concerning
the influence of temperature on predicting the strength properties of
SFRC. Chen et al. [50] employed the convolutional neural network
technique to estimate the CS of fiber-reinforced concrete. After exposure
to 600 °C, the specimens showed a higher compressive strength reduc-
tion rate than other temperatures, with some specimens having the
lowest and highest strength reduction of 60.9 % and 82 %, respectively,
relative to room temperature. For the temperatures after 600 °C, certain
specimens exhibited the lowest and highest strength drop rates of 60.9 %
and 82 %, respectively, compared to room temperature [44]. Namat-
zadeh and Shahmansouri [44] obtained the optimal value of design
parameters using the response surface method with the development of
a closed-form equation to forecast compressive strength via the GEP

method. These studies highlighted the potential of various ML tech-
niques in accurately estimating the properties of SFRC materials under
different scenarios and temperatures.

However, limited research studies on ML are available to assess the
compressive strength (CS) of SFRC at elevated temperatures. Chen et al.
[50] used a conventional neural network to analyze the influence of
elevated temperatures on the compressive strength (CS) of SFRC. The
reduction in compressive strength (CS) of SFRC is impacted by both the
heating rate and elevated temperature [51]. Literature reviews have
revealed a lack of research on evaluating the compressive strength (CS)
of SFRC under elevated temperatures. Torkan et al. [52] utilized various
ML algorithms to predict the CS of SFRC under elevated temperature
conditions, determining that a stacked ML method yielded the highest
accuracy, achieving an R? value of 0.92 [52]. Likewise, another
researcher [53] employed ML algorithms, utilizing ANFIS and ANN, to
predict the CS of SFRC under elevated temperatures. However, none of
the previously published studies formulated an empirical equation based
on machine learning algorithms. To address this research gap, the cur-
rent study aims to formulate an empirical equation for the compressive
strength (CS) of SFRC utilizing ML algorithms like GEP and MEP. The
primary objectives of this research include (a) the formulation of a
highly accurate and reliable predictive model for CS of SFRC that takes
into account both heating rate and elevated temperature, (b) formu-
lating an empirical expression for the CS of SFRC using ML, and (c)
performing SHAP analysis from both local and global perspective to
explore the impact of various input factors on the compressive strength
(CS) of SFRC.

2. Background of employed ML methods
2.1. Gene expression programming (GEP)

Koza [54] introduced genetic programming (GP) as a method based
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on Darwin’s theory of natural selection. GP is derived from genetic al-
gorithms (GA) and employs similar operators with minor distinctions.
GP and GA utilize crossover and mutation as standard operators [55].
However, the critical distinction is that GP produces a mathematical
program on a given set of records, whereas GA focuses on solving a
mathematical model. Ferreira [55] made advancements to GP by
introducing gene expression programming (GEP), which produces an
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expression tree (ET) or mathematical expression based on given inputs.
GEP comprises five components: terminal condition, function set, con-
trol parameters, terminal set, and fitness function. These elements
combine to create ETs or mathematical programs of various shapes and
sizes [56].

The main distinction between GEP and GP is in the representation of
the mathematical model. GEP utilizes strings characters of fixed length,
while GP employs character strings with variable length. GEP offers
several advantages, one of which is the ease of generating genetic di-
versity at the chromosome level, attributed to the inherent genetic
mechanisms of this approach. Furthermore, GEP is regarded as a multi-
genic method, enabling the evolution of more intricate and nonlinear
programs that encompass multiple subprograms [56]. Fig. 1 illustrates
the GEP method’s process, which commences by randomly designing
chromosomes with a consistent length for each evolving equation or
individual. The expression tree of a chromosome is depicted in Fig. 2.
Subsequently, the chromosomes undergo expression, and the accuracy
of each individual is assessed. Based on their precision, the equations are
identified, and a reproduction process is carried out. This iteration
continues until the most suitable expression is obtained. Different op-
erations, including mutation and crossover, are utilized to modify the
population and support the evolution of equations as shown in Fig. 3
[56].

2.2. Multi-expression programming (MEP)

Oltean and Dumitrescu [57] proposed a unique variant of genetic
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Fig. 3. GEP (ETs) employ LISP language for both (a) mutation and (b) crossover.
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Fig. 5. Architecture of the MEP algorithm.

programming known as multi-expression programming (MEP). MEP
utilizes linear chromosomes to develop mathematical programs and has
the capability to encode multiple equations within an individual chro-
mosome. In contrast to other branches of GP, The MEP approach di-
verges from traditional genetic programming by not storing a single

mathematical program per chromosome. Instead, fitness values assigned
to individuals are leveraged to identify the most suitable encoded so-
lution. To achieve the optimal mathematical expression for the depen-
dent attribute using the given inputs, the MEP initiates by producing an
initial population of individuals without any predefined function.
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Table 1
Database statistical summary.
Statistics Input variables Output
T (°C) HR L(mm) Vg D (um) CS
“c/ (%) (MPa)
mm)
Median 450 3.33 25 1 220 46.8
Mean 451.83 5.06 26.62 1.05 400.58 68.92
Mode 20 5 13 0 200 20
Standard 336.67 6.55 17.20 0.91 287.19 59.17
Deviation
Range 1180 30 54 5 1470 218.5
Kurtosis -1.09 8.32 0.62 0.54 1.88 -0.36
Sample 113,348.4 42.86 295.86 0.82 82,476.07 3501.07
Variance
Skewness 0.17 2.84 0.80 0.89 1.31 0.91
Maximum 1200 30 60 5 1500 220
Minimum 20 0 6 0 30 1.5

Subsequently, The MEP algorithm employs a binary tournament process
to select two parents from the population. These chosen parents undergo
recombination using an unaltered crossover probability, producing two
offspring. The offspring then experience mutation. In the current pop-
ulation, the worst-performing individual is replaced with the best
offspring obtained. Fig. 4 illustrates the MEP technique, showcasing
these steps. Additionally, the architecture of the MEP algorithm is
depicted in Fig. 5.

2.3. XGBoost

XGBoost, which stands for eXtreme Gradient Boosting [58], is a type
of Gradient Boosting Machine (GBM) used mainly for regression and
classification in predictive modeling. GBM models have consistently
demonstrated better performance compared to many other machine
learning algorithms on various datasets [59]. XGBoost works as an
ensemble method, where each new model is created to correct the
mistakes of the previous ones, and they are combined to generate the
final prediction. It is generally faster than other ensemble classifiers,
such as AdaBoost. XGBoost'’s effectiveness has made it widely used and
popular in data science challenges, especially among Kaggle competitors
and industry professionals [60]. Moreover, XGBoost is a parallelizable
algorithm, meaning it can take advantage of multi-core processors. This
capability enables it to handle and train on very large datasets
efficiently.

2.4. Bayesian estimation model

Bayesian machine learning is a specialized area of machine learning
that integrates Bayesian inference principles with computational models
to enhance predictions and decision-making [61]. Rooted in the
Bayesian framework, this approach models uncertainty by updating
prior beliefs based on new data. Unlike conventional machine learning
techniques that often provide point estimates, Bayesian machine
learning uses probability distributions over model parameters and pre-
dictions, offering a more detailed understanding of uncertainty [62]. Itis
applicable across various areas such as classification, regression, clus-
tering, and reinforcement learning [63]. Bayesian methods excel in
managing uncertainty, allowing flexible modeling, and incorporating
prior knowledge, but they face challenges like computational
complexity and scalability. Future advancements in Bayesian machine
learning aim to develop more scalable algorithms, enhance computa-
tional efficiency, integrate Bayesian methods with deep learning, and
improve interpretability.
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3. Methodology
3.1. Data collection

A comprehensive dataset was gathered from published experimental
studies, including various input parameters affecting SFRC performance.
The dataset consisted of 307 experimental analyses of SFRC extracted
from 44 studies. These experimental tests involved the measurements of
heating rate and temperature in SFRC [24,33,64-99]. The input vari-
ables include fiber diameter (D), fiber length (L), volume fraction (Vg),
heating rate (HR), and temperature (T). The response parameter is the
CS of SFRC. The primary objective of this study is to develop machine
learning-based models capable of accurately predicting the compressive
strength (CS) of SFRC under high-temperature conditions. The datasets
utilized in this research comprise abundant data on SFRC, typically with
hooked ends, exposed to high-temperature conditions. By thoroughly
examining published studies, it was identified that various additional
variables influence the performance of SFRC. However, for the specific
focus of this study on the impact of high temperatures on predicting the
CS of SFRC, test data that did not consider heating rate and temperature
factors were excluded from the dataset.

Preprocessing of the data was done with a nominal filter. The
imputation method was used for missing values. Though overall, no
missing values were found, the data was processed via a series of
cleaners. The replacement of numbers was given the preference of order
by closest percentile subgroup 84th percentile, median, and mean. Both
Regression and multiple imputations were used as cleaning agents. The
outlier detection followed both ML techniques, such as anomaly detec-
tion algorithms and statistical methods, including IQR and Z-score
techniques. The Z-score normalization was preferred over the min-max
method, which had limited variability to cover the standardized data for
improved accuracy of ML models. It is to be mentioned that the
convergence rate of almost all the applied models, mainly GEP, was
superior to the same model when applied to rough data.

Table 1 gives a descriptive statistical analysis of the acquired dataset.
The temperatures range from 20 °C to 1200 °C, while fiber dosage
ranges from 0 to 5 %. In addition, the CS of SFRC ranges from 1.5 to 220
MPa. It is reported that the skewness and kurtosis of a reliable dataset
must be in the ranges of +3 and +10, respectively [100]. The parame-
ters in the acquired dataset have the skewness and kurtosis values in the
recommended ranges. Before further analysis, examining the correla-
tions between these numerical parameters is essential. Pearson’s cor-
relation coefficient (r), ranging from -1 to 1, is commonly employed to
measure the linear correlation between two parameters [101]. It is
crucial to address the issue of multi-collinearity, which arises when
there are high correlations between predictor variables [102]. Fig. 5
depicts the r determined for all possible combinations of parameters.
The analysis reveals no evidence of multi-collinearity, as all correlation
coefficients, whether positive or negative, are below 0.80. To ensure
unbiased model assessment, the datasets were randomly divided into
validation, training, and testing sets, with 70 % allocated for training, 15
% for validation, and 15 % for testing purposes. In addition, the distri-
bution of the selected explanatory variables and output property is
provided in Fig. 7.

3.2. Model development

This research utilized two modeling algorithms, GEP, MEP, XGBoost,
and Bayesian estimation method (BES) models to predict the CS of SFRC.
The models were developed by initializing the algorithms, applying
genetic operators, and iteratively refining the predictions until
convergence.

3.2.1. GEP model
This study employed the GEP approach to formulate a mathematical
expression for predicting the CS of SFRC. As stated in prior research
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Table 2

GEP model hyperparameter settings.
Parameter Setting
General
Linking function Multiplication
Genes 4
Chromosomes 250

Head size 10

Set of functions * /, +, -, Exp, Inv, Ln, 3Rt, x%, x>, x*

Numerical constants

Lower bound -10
Upper bound 10

Data type Floating-point
Constant per gene 10
Genetic operators

Random cloning 0.00102
Permutation 0.00546
Inversion rate 0.00546
Mutation 0.00138
RIS transportation rate 0.00546
IS transportation rat 0.00546
Recombination rate 0.00277
Dc mutation 0.00206
Gene transportation rate 0.00277
RNC mutation 0.00206

Table 3
MEP model hyperparameter settings.

Parameter Optimized value

No. of subpopulations 50

Tournament size 2
Subpopulation size 250
Code length 50

Crossover probability 0.9
Functions probability 0.5
Variables probability 0.5
Mutation probability 0.01

Functions +, -, *, /, Power, Exp, Sqrt, Tan, Sin, Cos, ASin, ATan, ACos
Table 4
Hyperparameters tuning (skopt-BayesSearchCV) for XGBoost
model.
Parameter Space/Value
n_estimators (50, 1000)
learning_rate (0.001, 0.2, 'uniform’)
max_depth (3, 26)
min_child_weight 1,3)
Subsample (0.5, 1.0, 'uniform’)

colsample_bytree (0.5, 1.0, "uniform”)

Table 5

Hyperparameters tuning (Bayesian Optimization).
Parameter Space/Value
"objective" reg: squared error
"max_depth" int(max_depth)
"gamma" gamma
"colsample_bytree" colsample_bytree
"learning_rate" 0.01
"n_estimators" 1000
"min_child_weight" 1
"subsample" 0.2
"max_depth" (3, 26)
"gamma" (0,5)
"colsample_bytree" (0.3,0.9)

[103,104]1, determining the optimal parameters for the GEP model im-
plies a procedure of trial and error. Multiple trials were conducted in this
study to identify the best hyperparameters for the GEP model tailored to
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the specific problem. The GEP algorithm was initiated by creating a
random population with specific parameters, including linking func-
tions, gene count, chromosome count, genetic operators, and head size.
The dataset was initially loaded into the GeneXpro Tools 5.0 interface,
designating attributes as predictors and targets. Subsequently, the
dataset was split into 70 % for training, 15 % for validation, and 15 % for
testing. The K-fold method was preferred over the Leave one out (LOO)
method for cross-validation and data splitting with folds out of which 9
were for training and 3 for validation. This will ensure that variance is
compensated, and overfitting issues are addressed. Table 2 illustrates the
problem’s initialization with assigned values to input parameters, such
as a gene count of 4, a chromosome count of 200, and a head size of 10.
Linking operators were assigned to different genes based on relevant
information from the literature. The model reached its optimal state
through iterative experimentation by achieving higher correlation co-
efficient (R) values and lower errors, such as mean absolute error (fitness
function).

3.2.2. MEP model

Several MEP hyperparameters need to be specified before the
modeling process to ensure the establishment of a robust and versatile
model. These relevant parameters are selected based on suggestions
from the literature and through a continuous iterative process. The
population size inherently determines the number of programs to be
generated. While utilizing a larger population size in the model may
result in more precise outcomes, it could also extend the convergence
time. This trade-off highlights the need to balance computational re-
sources with the desired precision in the model’s performance. The MEP
process begins with the initialization of expressions and functions.
Subsequently, the population of chromosomes is randomly expanded
through connecting functions by binary selection. As the population of
chromosomes reaches a certain threshold, offspring are generated and
assessed using an assessment function. The MEP evolution proceeds
through a series of steps: initiating with a random population of chro-
mosomes, selecting two parents through a binary tournament, executing
recombination with a predetermined crossover frequency, producing
two offspring by combining the selected parents, mutating the offspring,
and replacing the least fit individuals in the population with the newly
generated ones. This iterative process continues until convergence is
achieved. The cyclical nature of these steps ensures the refinement of the
MEP algorithm until it reaches a state of convergence, optimizing its
performance in predicting the compressive strength of SFRC. Table 3
summarizes the variables employed in the study, with all the values
calculated through multiple trials using various combinations. The MEP
technique was implemented in MEPX (Version. 2023.4.3.0)

3.2.3. XGBoost model
Table 4 displays the hyperparameters tuning for the Extreme
Gradient Boosting (XGBoost) model.

3.2.4. Bayesian estimations model
In Table 5, the hyperparameters tuning for the Bayesian Estimations
Model (BES) are provided.

3.3. Performance evaluation metrics

The effectiveness of the proposed GEP and MEP techniques in pre-
dicting the compressive strength of SFRC was evaluated using several
standard statistical measures: RRMSE, MAE, RMSE, R, and RSE. Addi-
tionally, the performance index (p) was also calculated. These perfor-
mance metrics are reparented in Eqgs. (1)-(7) were utilized to assess the
accuracy of the models [105].

i, (el — mi)*

n

RMSE = €8]
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Table 6
External validation metrics.
S.No Expression Conditions Suggested by
1 f— Xiaei x mi) 0.85 <k < 1.15 [108]
= &= s
ei
2 K= Son o (ei x mi) 0.85 <k <1.15
B mi?
3 _— S (mi— e;)2 R%x~1 [109]
Py (mi— mg)*
Where, e, =k x m;
2 _ 4 T (ei— m;)z R =1
' Sha(ei— ep)’
Where, m; =k x ¢
Rn =R2x (1 —,/|R® —RZ)) Rm> 0.5
4 R? — R? m<0.1 [110]
m = R2
* o lei —mi
MAE — Zl:]‘ - | (2)
" (mi— ei)?
RSE = 721;1( — Z 3)
> i (€—ei)
o _ . R
q(el— <ct>e<ot>1)(mi— mi
R (e < ) ) @
VEh(ei— <ct>e<ot>i)PYL, (mi - mi)®
n . a2
RRMSE = ! oy [2iza (61— mi) (5)
| <ct>e<ot>| n
RRMSE
P= TR (6)
nr —n n
OBF = (Tv> *pr + 2(#) * Py (@]

where "ei" represents the actual output value for the ith sample, "mi"
indicates the predicted output value. The averages of all experimental
and forecasted output values are denoted as "&i" and "m i" respectively.
The variable "n" stands for the total sample number, "V" represents the
number of validations, and "T" denotes the training dataset.

The R-value is a standard measure to evaluate the correlation be-
tween the model’s predicted values and the experimental outputs. A
strong correlation is typically inferred when R exceeds 0.8. The lower
RMSE and MAE values, closer to zero, signify minimal prediction error.
In summary, a higher R-value and smaller values of RRMSE, RMSE,
MAE, and RSE suggest a well-developed model. The "p" ranges from 0 to
infinity, and a value approaching zero signifies optimal model accuracy
[106].

Excessive training of data points can lead to overfitting in various
machine learning methods, resulting in lower training errors but higher
validation and testing errors. The objective function (OBF) is utilized to
select the best estimation model that mitigates overfitting to overcome
this issue. The OBF, expressed as Eq. (7), is minimized, aiming for a
lower OBF value (close to 0), indicating a higher predictive model
performance [107]. The OBF considers the influence of RRMSE, R, and
the relative percentage of dataset records. This study examined various
combinations of fitting attributes, and the model with the lowest OBF
was selected as the optimal one. Furthermore, the validity of the
developed machine learning models is appraised using evaluation
criteria recommended in the literature, as outlined in Table 6.

3.3.1. SHapley Additive exPlanations (SHAP)
The SHAP method is a model-agnostic approach to explaining indi-
vidual predictions generated by ML models [111]. SHAP analysis is a
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powerful method used in ML to explain and interpret model predictions.
Developed from cooperative game theory, SHAP assigns a value to each
attribute in a prediction, showing its contribution to the model’s output.
By clearly understanding how individual features influence predictions,
SHAP helps users gain insights into model behavior and identify which
factors are most influential. Unlike other interpretation methods, SHAP
considers the interactions between features, offering a more compre-
hensive view of model decision-making. By assigning an importance
value to each feature based on conditional expectations, SHAP values
are derived. These values are then visualized to illustrate the contribu-
tion of each feature relative to a base value, typically representing the
average of the examinations. Islam et al. [112] effectively explained the
effect of crucial physical parameters like curing age, cement, and water
on the strength of High-Performance Concrete (HPC), giving a reliable
idea of explaining physical feature dependence on target from experi-
mental data. Kashem et al. [113] examined the feasibility of using
artificial intelligence (AI) and the SHAP algorithm to assess the work-
ability of concrete in construction. The study focused on the significant
impact of water content, coarse particles, and fine aggregates on the
flow properties of concrete. Tipu et al. [114] propose a novel method
combining reclaimed coarse sand with Newton’s Boosted Back-
propagation Neural Network (NB-BPNN) model to predict accurately
concrete’s compressive strength. The technique achieves an impressive
R2 score of 0.95. Additionally, SHAP analysis highlighted the significant
influence of crucial ingredients such as GGBS, Binding agent, Cement,
Water/Binder proportions, and Superplasticizer. Many other researchers
have evaluated many physical feature interpretations from SHAP,
yielding valuable hints in practical decision-making.

Notably, while the SHAP approach considers all attributes and their
order, it can be computationally intensive for larger models. However,
its ability to uncover the inner workings of complex ML models makes
SHAP a valuable tool for both model developers and end-users seeking to
understand and trust the decisions made by ML/AI models.

4. Results and discussion
4.1. GEP formulation

To forecast the CS of SFRC, typical ETs were developed for the GEP
algorithm, as depicted in Fig. 8. ETs of the GEP model present various
components, including constants, functions, operators, and variables
[115]. These ETs incorporated fundamental mathematical operators,
such as addition, subtraction, multiplication, division, 3Rt, %3, log, and
x2. Once the GEP model was developed, the ETs were decoded to obtain
an easy and simplified mathematical expression representing the CS
regarding the input parameters. By utilizing the hyper-parameter con-
figurations specific to the GEP model, the transformation of ETs into
simplified mathematical expressions is obtained using the Karva nota-
tion or K-expression [107], as given in Eq. (8. This simplified equation,
derived from the GEP model, effectively estimates the CS of SFRC sub-
jected to elevated temperatures.

CS=A x B x CxD ®
where,

A =(13.38 x (D+664.07 x L)) )
B=(1.89/L) (10)
C= (log(D —13.83 + HR*xVF*)) 11
D=(1/(18.74+T+D+(T/L)-L)) (12)

4.2. Developed models performance

This section thoroughly analyzes the developed ML models to
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Table 7
Performance summary of the models.
Model GEP MEP
Training Validation Testing Training Validation Testing
MAE 10.409 11.104 10.235 15.021 17.651 13.706
RRMSE 0.238 0.213 0.214 0.339 0.375 0.250
RMSE 16.141 15.999 14.521 22.983 28.136 16.929
RSE 0.073 0.065 0.079 0.148 0.202 0.107
P 0.121 0.108 0.109 0.176 0.197 0.128
R 0.963 0.967 0.961 0.923 0.904 0.949
OBF 0.1291 0.1306
Model XGBoost BES
Training Validation Testing Training Validation Testing
MAE 2.198 12.027 10.815 4.645 4.307 8.484
RRMSE 5.128 23.927 24.687 11.769 9.347 24.128
RMSE 3.479 17.975 16.728 8.135 7.022 16.349
RSE 0.003 0.082 0.104 0.018 0.013 0.100
P 2.568 12.477 13.024 5.927 4.807 12.722
R 0.997 0.918 0.896 0.986 0.944 0.897
OBF 0.114 0.0941
4.2.3. Statistical indicator evaluation
Table 8 L Several metrics were employed to evaluate the efficacy of the
External validation of the models. . . .
developed models comprehensively. The summarized statistical evalu-
Conditions 0.85<k 085<K R’>1 R'x~1 Rm> m< ation in Table 7 includes accuracy metrics (R) and error metrics like
<115 <115 0.5 o1 MAE, RMSE, RRMSE, RSE, OBF, and p. The GEP model exhibited higher
GEP 0.9711 0.9982 0.9734  0.9999  0.8149  0.0272 R-values of 0.963 for training, 0.967 for validation, and 0.961 for
MEP 0.9313 1.0046 09327 0.9996  0.6914  0.0718 testing, accompanied by MAE values of 10.409 for training, 11.104 for
XGBoost 0.9695 1.0068 09311 0.9233  0.8647  0.0275 validation, and 10.235 for testing. Furthermore, the GEP model’s per-
BES 0.9989 0.9853 0.9580 0.9549  0.9167  0.0034 > : 8 ’ P

validate their capability to forecast the CS of SFRC accurately under
elevated temperatures. Therefore, regression slope analysis, error anal-
ysis, and statistical indicator evaluation were conducted.

4.2.1. Regression slope analysis

The regression line slopes are reliable indicators of the model’s ac-
curacy and predictive capabilities. Fig. 9 illustrates the regression plots
comparing the estimated outcomes of the generated models (GEP and
MEP) with the corresponding experimental records. Generally, a
regression slope above 0.8 indicates a strong correlation between
experimental and model output. The GEP model demonstrated a
regression slope of 0.92 for training, 0.91 for validation, and 0.93 for
testing, respectively. This significantly surpasses the 0.8 threshold,
underscoring the robustness of the GEP model in estimating the CS of
SFRC exposed to higher temperatures. Similarly, the MEP model
exhibited a slope of 0.86 for training, 0.77 for validation, and 0.97
during the testing phase. XGBoost and BES models also performed well
during training, demonstrating slopes of 0.98 and 0.96, respectively.
However, a drop in their regression slopes was observed, with values of
0.893 and 0.890 for validation, and 0.86 and 0.89 for testing. Notably,
the fitting lines of training, validation, and testing in the GEP model
closely align with the ideal fitting line, while those of the MEP model
deviate from the ideal fitting line.

4.2.2. Error analysis

The error assessment of the developed models is presented in Figs. 10
and 11. Notably, the GEP model predictions closely align with the
experimental values in the training, validation, and testing stages, as
shown in Fig. 10(a). On the contrary, the MEP model deviates from the
trend of experimental values, as shown in Fig. 10(b). The error histo-
grams of the developed models are provided in Fig. 11. The GEP model
showed 86.06 % of the prediction records within the error range of +20
MPa. Likewise, the MEP model exhibited 73.05 % prediction records
within the error range of +20 MPa. Additionally, for the XGBoost model,
93.15 % of the predictions, and for the BES model, 94.78 % of the
predictions fall within the error range of +20.

formance index (p) for both sets remained below 0.20, underscoring the
robust efficacy in predicting the output. Similarly, the MEP model
showed R-values of 0.923 for training 0.904 for validation, and 0.949 for
testing. The MAE values of the MEP model were 15.021 for training,
17.651 for validation, and 13.706 during testing. Moreover, both the
XGBoost and the BES models performed well during training, achieving
R-values of 0.997 and 0.986, respectively. However, while XGBoost saw
a decline in validation (0.918) and testing (0.896), the BES model
maintained relatively stable performance with values of 0.944 in vali-
dation and 0.897 in testing. GEP consistently demonstrated strong ac-
curacy across all datasets, further emphasizing its reliable performance
in predicting CS. The OBF values of both models are below 0.20,
demonstrating that the issue of model overfitting is satisfied. Moreover,
the overall statistical indicators are illustrated in Fig. 12, showing that
the GEP model in training exhibits the highest value for R and the lowest
values for other error indicators. The statistical analysis demonstrated a
close agreement between the actual and model values for both the
developed ML models. However, GEP outperformed all the other ML
models, displaying the highest R and minimal errors, thus establishing
itself as a reliable predictor of the CS of SFRC under elevated
temperatures.

The developed ML models also satisfied external validation. The
generated GEP model underwent various external statistical validation
checks, as detailed in

Table 8, to evaluate their accuracy and reliability. One criterion used
for external validation involved ensuring that the regression line slopes
(k or k’) closely approached one, as suggested in prior research [108,
116,117]. Another criterion, the confirming indicator (Rm), introduced
by Roy [115], was employed to gauge a model’s predictability. This
demonstrates that the requirement for Rm to exceed 0.5 has been ful-
filled, as shown in Table 5. This establishes that the models meet the
criteria for external validation, attesting to their realism and negating
any notion of being a mere correlation between output and input vari-
ables. Consequently, the developed models, particularly the GEP model,
have the potential to provide precise and accurate predictions for the
compressive strength of SFRC exposed to elevated temperatures.
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4.3. Comparison of the developed model

This section compares the efficacy and performance of the developed
models. For instance, the GEP model outperformed the MEP model,
showing a 10.5 % higher R-value in training, 5.5 % higher in validation,
and 1.25 % higher in testing. Although the XGBoost model exhibited a
3.41 % higher R-value in training and a 78.88 % lower MAE value than
the GEP model, its R-value dropped by 5.067 % in validation and 6.76 %
in testing compared to GEP. The BES model followed a similar trend,
demonstrating superior performance during the training phase with a
2.33 % higher R-value, but its performance declined in the validation
and testing phases.

To conduct a more in-depth comparative analysis of the models’
performance, Fig. 13 presents a Taylor diagram. Developed by Karl E.
Taylor [118], this diagram serves as a visual tool for evaluating the
accuracy of prediction models, illustrating which model is the most
robust and closest to the original data. Multiple models are plotted in a
single diagram, enabling a relative assessment of their accuracy con-
cerning the benchmark (actual data) [118,119]. Additionally, the
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diagram offers a comprehensive way to compare multiple models in
terms of their correlation, variance, and RMSE relative to the reference
data. Notably, the GEP model closely aligns with the reference symbol in
validation, training, and testing, indicating its exceptional predictive
precision.

4.3.1. Developed models comparison with multiple linear regression (MLR)
MLR is a statistical method that estimates an outcome variable based
on multiple explanatory factors [120]. This study employs the MLR
technique on the experimental datasets to assess its performance
compared to the developed ML models. The MLR model was utilized to
examine the correlation between the inputs and the target variable,
allowing for a comparative evaluation of its predictive capabilities
alongside the developed ML models. The mathematical expression
developed for the MLR technique in this study is given by Eq. (13

CSMLR = 91.5842 + (0.2116 x L) + (— 0.0473 x D)
+ (21.1519 x V) + (—0.1011 x T)+ (2.819 x HR)
13)
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Fig. 8. Expression trees of the GEP algorithm.

MLR possesses a notable advantage in quantifying the impact of each
variable [121]. However, MLR models are constrained to capturing
linear relationships exclusively, necessitating the explicit inclusion of
each variation or relationship as an input variable. This constraint limits
the model’s ability to generalize well, often oversimplifying the
complexity of real-world scenarios. Fig. 14 compares the experimental
and predicted values of the GEP, MEP, XGBoost, BES, and MLR models
for predicting the CS of SFRC under elevated temperatures. In the vali-
dation set, the GEP model demonstrates markedly superior performance
compared to the MLR model, showcasing a significantly higher R value
(15.1 % increase) and markedly reduced values of RMSE (53.3 %
decrease) and MAE (63.7 % decrease). Similarly, the MEP exhibits
slightly higher R (8.3 % increase) and lower RMSE values (28.6 %
decrease) than the MLR model during validation, albeit with a notable
42.6 % decrease in MAE. These outcomes underscore the limitations of
the MLR model in precisely estimating the CS of SFRC under elevated
temperatures.

4.3.2. Comparison of developed models and traditional design practice
Applying machine learning (ML) to forecast the strength of steel

11
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fiber-reinforced concrete provides notable benefits compared to con-
ventional design methods. In the construction industry, design accord-
ing to fire rating codes follows specific local and international standards
that rely entirely on material type, not mixture properties. Purkiss [32]
developed the first experimental table, the foundation for all these
standards. His study presented the tabulated results of experiments on
high-temperature concrete reinforced with steel fibers. Purkiss tested
the specimens without fibers, samples with 0.75 % plain or looped fi-
bers, and samples with 1.5 % plain fibers specimens to evaluate their
residual compressive strength, flexural strength, dynamic modulus, and
ultrasonic pulse velocity. The temperature range for the tests was
300-800 °C. It disclosed how temperature affected the material prop-
erties of SFRC, such as the amount of mix fibers, the change in residual
stress, the loss of stiffness and tensile strength, the dynamic elastic
modulus, and the ultrasonic pulse wave velocity of the affected material.
However, the study contains numerous flaws. Firstly, the focus was
solely on reducing material stiffness, neglecting other important prop-
erties such as material composition, fiber diameter, and type. The ML
model differs from traditional methods by considering a more compre-
hensive range of material compositions and temperature conditions.
This allows for more precise predictions based on data relevant to the
environment. This leads to improved accuracy and reliability in
assessing the structural integrity during fire exposure, ultimately
assisting in creating safer and more resilient infrastructure designs. This
developed ML surpasses the temperature limits (800 °C by Perkess) to
1200 °C and can also be extrapolated above. Furthermore, the reduction
in strength in Perkess’s study did not have any physical interpretation of
numerical tabulated data, whereas this study yielded a proficient
physical explanation of different parameters via SHAP analysis. The ML
model provides a clear and comprehensible understanding of the impact
of various material properties and high-temperature conditions on the
strength of concrete through SHAP analysis. This enables more accurate
identification of crucial parameters that influence fire resistance,
providing valuable insights that conventional empirical approaches may
fail to consider.

4.4. Model interpretability

4.4.1. SHAP global interpretation

In Fig. 15, the SHAP feature importance plot offers insights into the
importance of different variables in predicting the desired output.
Notably, it is evident that temperature has the highest importance in
estimating the CS of SFRC exposed to high temperatures. Furthermore,
when we focus on the characteristics associated with the fibers, it be-
comes evident that the diameter of the fibers (D) holds substantial
importance in forecasting the CS of SFRC. This variable stands out with a
notably higher contribution level compared to other fiber-related factors
such as Vf and L. It can be confirmed from the resemblance to the
diameter of steel in RC members where strength is reported more for
high diameter than lower diameter. For the same reason, often heavily
loaded RC members with greater depth utilize higher-diameter steel,
ensuring durability demands. The heating rate contributes less to esti-
mating the CS, as shown in Fig. 15. The low contribution of HR can also
be noticed in Fig. 6. However, the temperatures exhibit a prominent
mean SHAP value, surpassing the significance of the heating rate. This is
evident from catastrophic events where consistent extreme tempera-
tures resulted in concrete functional failure in comparatively less time.
This indicates that temperature exerts a more substantial influence on
the CS of SFRC than the heating rate.

Fig. 16 shows a SHAP summary plot that serves as a valuable tool for
understanding how changes in input features impact the output, either
positively or adversely. The ordinate plot organizes the variables in the
rank of significance from highest to lowest, while the abscissa symbol-
izes specific SHAP values. The shade of the marks of the plot shows their
extent, with blue dots indicative of smaller magnitudes and red dots
demonstrating larger ones. Each mark in the plot relates to a sample in
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Fig. 10. Experimental vs. predicted

the database. Remarkably, temperature emerges as a predominant factor
influencing the strength of SFRC. An increase in temperature leads to a
reduced CS and vice versa.

Similarly, a larger diameter negatively impacts the CS, as indicated

values trend of the developed models.

by the red marks (high intensity) on the left side of the x-axis. In
contrast, a higher dosage of fiber positively impacts the CS of SFRC
subjected to elevated temperatures. Interestingly, the heating rate ex-
hibits comparatively less influence on CS, implying that the concrete

12
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Fig. 12. Spider plot showing the statistical indicators of the models.

base temperature plays a more substantial role in predicting the target
associated with the heating rate, which further opens an exciting topic to
work on the durability and thermal stability of concrete concerning heat
content and thermal absorption.

4.4.2. SHAP local interpretation

Global SHAP explanations show the importance of parameters and
their effects on the output. However, to optimize input values, SHAP
local interpretations are required. Fig. 17 SHAP feature interaction plots
illustrate how features interact and impact the output. For instance, it
shows that a temperature increase up to 300 °C does not lead to strength
loss, but going beyond 300 °C significantly reduces compressive
strength, as shown in Fig. 17(a). In previous studies, Tai et al. [78] found
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that SFRC exposed to temperatures between 200 °C and 300 °C exhibited
no strength loss. However, a substantial, gradual loss in CS was observed
once the temperature exceeded 400 °C [78].

Additionally, an observable enhancement in CS was noted as steel
fibers’ volume fraction (Vf) increased up to 1.5 %. Beyond this
threshold, further V¢ increments did not lead to increased CS, as shown
in Fig. 17(b), aligning with findings from Ren et al. [122] reported that
when Vg surpasses 1.5 %, the cement matrix is unable to fully encap-
sulate both the aggregate and steel fibers, resulting in reduced bonding
between them. While different lengths of steel fibers have been tested in
concrete, those falling within the range of 25 to 60 mm have shown a
significant positive impact on compressive strength, as seen in Fig. 17
(c). Including steel fibers (SF) in the concrete mixture altered the
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Fig. 14. MLR model comparison with ML models.

collapse mechanism from splitting to pullout, enhancing the bond
strength for specimens that originally experienced splitting failure
[123]. Similarly, fiber diameter values below 400 um have been found to
enhance compressive strength, whereas larger diameters have a detri-
mental effect, as indicated in Fig. 17(d). The heating rate’s influence on
strength is comparatively lower than that of the actual temperature, as
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illustrated in Fig. 17(e). This pattern is also reflected in Fig. 6, where a
substantial negative correlation (-0.65) is observed between tempera-
ture and compressive strength, while the heating rate exhibits a less
significant positive correlation (0.32). This underscores that the precise
temperature of the test specimen holds greater importance in deter-
mining the CS, dominating the impact of the heating rate.
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Furthermore, Fig. 18 presents two instances of local interpretation,
which are specific predictions highlighted using the SHAP force dia-
gram. In this diagram, the bolded value signifies the model’s prediction
at a particular point in the machine learning prediction process. The
width of each feature’s representation in the SHAP force plot directly
corresponds to its impact on the output, with wider sections indicating
stronger influences. The force diagram emphasizes that each variable
possesses distinct impacts and interactions that collectively determine
the outcomes at any given moment. For instance, in Fig. 18(a), it can be
observed that at specific conditions, such as a temperature of 20 °C, a
volume fraction of 2, and a fiber diameter of 200 mm, these variables
exert a positive influence on the CS and result in enhanced CS of 155.53
MPa. Conversely, in Fig. 18(b), a scenario involving a temperature value
of 750 °C results in a significantly adverse impact on compressive
strength, ultimately leading to a reduced CS of (24.34 MPa). The SHAP
force diagram provides valuable insights into how various parameter
combinations affect the predicted outcomes in a specific condition.

In conclusion, SHAP provides broad and complex insights into spe-
cific cases with a comprehensive understanding of the model. SHAP
analysis elucidated the internal functioning of the machine learning
model, reducing the need for input from users. Consequently, it facili-
tates decision-making, even for those without technical proficiency. The
local explanations effectively elucidate the reasoning behind forecasts.
Furthermore, the SHAP interpretation aligns closely with the feature
relationships identified during the data processing phase, as demon-
strated in Fig. 6. Notably, volume fraction exhibits the highest positive
correlation, registering at +0.49, while both temperature and fiber
diameter display the most significant negative correlations, measuring
-0.65 and -0.48, respectively, with CS. This interpretation affirms the
validity of the decision-making processes employed in the GEP and MEP
models, reinforcing their consistency with experimental observations.

Moreover, the SHAP interpretation goes beyond the correlation
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matrix’s scope by determining each variable’s interaction across the
entire range. This depth of insight is a notable advantage over the cor-
relation relationship plot, which offers a more limited perspective.
Consequently, SHAP analysis provides a more comprehensive and
nuanced understanding of the intricate relationships between the fea-
tures and the response variable. As a result, SHAP analysis stands out as
a reliable and powerful tool for unraveling the inner workings of ma-
chine learning models and elucidating the mechanisms behind their
predictive outcomes.

4.5. Limitations of study and future work recommendations

The present work utilizes standalone machine learning techniques to
forecast the compressive strength (CS) of SFRC. Future study has the
potential to enhance forecasting accuracy by using hybrid machine-
learning models. Support Vector Regression (SVR) optimization may
be integrated with algorithms like the Grey Wolf Optimizer (GWO),
Firefly Algorithm (FA), and Particle Swarm Optimizer (PSO) to enhance
prediction optimization. By wusing this hybrid machine learning
approach, it is possible to enhance the accuracy of SFRC CS predictions.
In addition, although this study used the SHAP strategy to comprehend
the models, future studies might acquire more insights by exploring
other model-agnostic techniques such as LIME, Individual Conditional
Expectations (ICE), and Partial Dependence Plot (PDP). Besides, doing a
comparative examination of the outcomes obtained from various
methodologies might enhance our understanding of model clarity
alongside the insights gained via SHAP analysis. It is crucial to
acknowledge the constraints of the investigation. The data source is
derived from the existing literature, which presents variations in the
experimental configurations among different research. It is recom-
mended that future studies give more importance to conducting
controlled experimental testing to enhance the resilience and
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strength of SFRC. For a dataset with many variables and data records, it
will not be feasible to apply independent and ensemble ML Models.
Conventional ML models are unable to reach in-depth into the large

dependability of models. Collect data coming from a solitary and
dependable source inside the same environment. This strategic approach
provides a more secure foundation for predicting the compressive
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dataset by connecting the PCAs of input variables with output variables.
With synthetic data, the trends will be of more lengthy strings. There-
fore, this study recommends Physics Informed Neural Networks (PINNs)
to apply physics-based modeling equations, thereby creating deep data
models with more real-time physical representation and prediction.

5. Conclusion

The present study utilized two distinct ML approaches, GEP and
MEP, to predict the compressive strength of SFRC under elevated tem-
peratures. A dataset comprising 307 samples from 44 published exper-
imental trials was employed for training and validating the machine
learning models, with 70 % dedicated to training and 30 % to validation.
SHAP was employed to provide insights into the model predictions
locally and globally. The following highlights key findings from the
study:

1. The GEP model exhibited outstanding predictive accuracy, with R-
values of 0.963, 0.967, and 0.961 for training, validation, and
testing, respectively, highlighting its reliable performance in pre-
dicting SFRC strength under elevated temperatures. On the other
hand, the MEP model displayed moderate accuracy, achieving R-
values of 0.923, 0.904, and 0.949 across the same phases. Although
both the XGBoost and BES models performed strongly during
training, their accuracy decreased during the validation and testing
stages.

2. Empirical formulation has been developed based on GEP to estimate
the strength of SFRC exposed to high temperatures, offering a
simplified mathematical equation for adequate estimation of
compressive strength.

3. This study considered temperature and heating rate as input factors.
The SHAP analysis indicated that temperature significantly impacted
the CS of SFRC. On the other hand, it was revealed that the heating
rate had a negligible influence on the strength. Furthermore,
increasing the fiber dosage up to 1.5 % results in a substantial gain in
compressive strength, but no further improvement is found beyond
this threshold.

The study utilized a dataset of 307 samples for ML model develop-
ment, suggesting that a more extensive dataset could improve model
robustness. While the focus was on individual models, future explora-
tion of hybrid models (XGBoost-SVR, RF-SVR, neural network-SVR, and
XGBoost-CNN) is recommended for predicting SFRC characteristics at
high temperatures. Additionally, alternative model interpretation tech-
niques, such as LIME, PDP, and ICE, could be considered in future
studies. Further research opportunities include developing ML-based
models for predicting the strength characteristics of hybrid fiber-
reinforced concrete at high temperatures.
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