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Audio forensics plays a major role in the investigation and analysis of audio recordings for legal and 
security purposes. The advent of audio fake attacks using speech combined with scene-manipulated 
audio represents a sophisticated challenge in fake audio detection. Fake audio detection, a critical 
technology in modern digital security, addresses the growing threat of manipulated audio content 
across various applications, including media, legal evidence, and cybersecurity. This research proposes 
a novel transfer learning approach for fake audio detection. We utilized a benchmark dataset, 
SceneFake, that contains 12,668 audio signal files for both real and fake scenes. We propose a novel 
transfer learning method, which initially extracts mel-frequency cepstral coefficients (MFCC) and then 
class prediction probability value features. The newly generated transfer features set by the proposed 
MfC-RF (MFCC-Random Forest) are utilized for further experiments. Results expressed that using the 
MfC-RF features random forest method outperformed existing state-of-the-art methods with a high-
performance measure accuracy of 0.98. We have tuned hyperparameters of applied machine learning 
approaches, and cross-validation is applied to validate performance results. In addition, the complexity 
of the computation is measured. The proposed research aims to enhance the accuracy measure, 
and efficiency of identifying manipulated audio content, thereby contributing to the integrity and 
reliability of digital communications.

Audio is a field within forensic science focused on the collection, examination, and assessment of audio 
recordings, which can serve as evidence in legal proceedings1. This field encompasses a variety of techniques, 
such as enhancing audio quality, identifying the source of a recording, detecting edits or alterations, and 
authenticating the integrity of an audio file. An audio fake attack2 using speech with scene-manipulated audio 
represents a sophisticated challenge in the realm of fake audio detection. In such an attack, adversaries generate 
fake audio samples by manipulating scenes or contexts within the audio data, thereby creating a convincing 
yet deceptive narrative. This type of attack can involve altering the background sounds, speaker identity, or the 
speech content itself to mislead listeners and detection systems3.

Fake audio detection, a critical technology in modern digital security, addresses the growing threat posed 
by manipulated audio content across various applications4. In the context of acoustic scenes, which encompass 
diverse acoustic environments, the ability to detect fake audio is paramount. Acoustic scenes play a vital role 
in intelligent wearable devices, context-aware services, and robotics navigation systems, all of which rely on 
accurate acoustic scene classification and recognition to interpret user situations. Misuse of these systems with 
manipulated audio can lead to significant harm5, such as misinformation, privacy breaches, and incorrect 
navigational guidance. For instance, an intelligent wearable device that relies on audio cues to provide real-time 
assistance could be misled by fake audio, compromising user safety. Similarly, context-aware services that offer 
personalized experiences based on acoustic scenes could deliver inappropriate responses if they process fake 
audio inputs. In robotics, navigation systems that depend on authentic acoustic signals for situational awareness 
could be directed incorrectly, posing operational risks6.

1Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Al-Ahliyya Amman 
University, Amman 19328, Jordan. 2Department of Computer Science/SST, University of Management and 
Technology, Lahore 54770, Pakistan. 3Department of Information Systems, College of Computer and Information 
Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia. 4Department 
of Software Engineering, University Of Lahore, Lahore 54000, Pakistan. 5Computer Systems Program-Electrical 
Engineering Department, Faculty of Engineering-Shoubra, Benha University, Cairo, Egypt. 6Faculty of Computers, 
Misr International University, Cairo, Egypt. 7Jadara Research Center, Jadara University, Irbid 21110, Jordan. email: 
asalluhaidan@pnu.edu.sa; ali.raza.scholarly@gmail.com

OPEN

Scientific Reports |         (2025) 15:8066 1| https://doi.org/10.1038/s41598-025-93032-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-93032-2&domain=pdf&date_stamp=2025-3-7


Speech signal analysis involves examining the characteristics and properties of spoken language captured in 
audio signals7. This analysis can include a variety of techniques to process and interpret acoustic features, such 
as frequency, amplitude, and temporal patterns, which are essential for understanding and processing human 
speech. Advanced methods in speech signal analysis often employ machine learning and artificial intelligence to 
enhance accuracy and efficiency8,9. One crucial application of speech signal analysis is fake audio detection, which 
aims to identify and differentiate between authentic and manipulated or synthetic audio recordings. Machine 
learning has significantly advanced the detection of fake audio, leveraging features such as MFCCs10. MFCCs 
are a widely used method for representing the short-term power spectrum of an audio signal. They effectively 
capture the key features of sound, making them ideal for differentiating between authentic and fabricated 
audio. This approach enhances the robustness and reliability of audio authentication systems, contributing to 
combating misinformation and ensuring the integrity of audio content.

This research presents an innovative transfer learning approach for preventing audio fake attacks. The acoustic 
signal dataset is utilized for model building, and MFCC features are extracted. Several advanced machine and 
deep neural networks are evaluated during the experimental comparisons. The proposed research aims to 
enhance the accuracy, measure, and efficiency of identifying manipulated audio content, thereby contributing to 
the integrity and reliability of digital communications.

The conceptual alignment between the proposed transfer feature approach and the parallel absolute-
relative features11 focuses on leveraging additional information beyond standard feature extraction to improve 
classification. The parallel absolute-relative features construct a “relative feature” by computing relationships 
between utterances, emphasizing where a feature stands in relation to others rather than the absolute feature 
itself. This is beneficial in phonotactic language recognition, where relational comparisons enhance classification. 
In contrast, our transfer feature approach focuses on enhancing feature representation through transfer learning. 
Instead of relying on inter-feature relationships, we initially extract MFCC features, then class prediction 
probabilities, and finally transform these into a new feature set using MFCC-Random Forest (MfC-RF). This 
aims to capture both spectral characteristics and probabilistic class distribution.

The significant research contributions are followed as:

•	 We propose a novel transfer learning method, MfC-RF, which generates Class prediction probability features 
from MFCC signal features. Results show that the proposed approach helps to achieve high performance.

•	 We have built one deep neural network and four machine learning methods in comparison. We have tuned 
hyperparameters of each approach, and cross-validation is applied to validate performance results. In addi-
tion, the complexity of the computation is measured, and a state-of-the-art comparison is performed.

The remaining manuscript is formatted as “Literature review” section performed a comparative analysis with 
state-of-the-art approaches. Section “Proposed methodology” described the novel proposed methodology. 
Section “Results and discussions” evaluates the performance scores of applied methods. The research findings 
are summed up in “Conclusion and future work” section.

Literature review
Automatic speaker verification frameworks are vulnerable to spoofing attacks, especially those involving replay 
and Deep-Fake audio. To enhance discrimination, a study12 uses the ASVspoof 2021 dataset to evaluate spoofing 
detection methods. The proposed framework combines deep learning and Mel-spectrogram features, employs 
a self-attention mechanism, and uses ResNet for final classification. The hybrid feature approach improves 
spoofing detection by 74.60% and 60.05%, respectively. Future research should explore more complex neural 
network architectures and feature fusion for improved system security. The hybrid feature framework with a self-
attention mechanism significantly enhances spoofing detection, offering a promising direction for improving 
ASV system security against sophisticated spoofing attacks.

The AVA-CL model, a multi-modal approach to deepfake detection, uses audio-visual inconsistencies to 
accurately identify and distinguish fake content13. The model uses feature fusion and contrastive learning to 
match audio and visual features, capturing intrinsic correlations and inconsistencies. It outperforms many state-
of-the-art methods but faces limitations like facial flickering in fake videos. Future work will focus on forgery 
localization and improving interpretability to address existing limitations and improve detection accuracy. The 
AVA-CL model represents a promising multi-modality approach to deepfake detection, leveraging audio-visual 
inconsistencies to accurately identify and distinguish fake content.

This article14 presents a method for identifying deepfake audio, aiming at synthetic speech data generated 
by Text-to-Speech (TTS) algorithms. The Vocal Emotion Analysis (VEA) Network was trained on a dataset 
containing emotional expressions, and a supervised classifier was used to distinguish between real and synthetic 
speech tracks. The system demonstrated high effectiveness in detecting deepfake audio, confirming emotional 
content as a strong discriminative feature. Further research is needed to integrate additional semantic features 
and improve performance in diverse auditory environments. This research offers a novel and effective approach 
to deepfake audio detection, advancing the field by highlighting the significance of emotional content in 
distinguishing synthetic speech, thereby enhancing the integrity of digital communications.

The study15 evaluates the effectiveness of physical and perceptual acoustic features in detecting Deepfake 
audio, a threat to daily life. Using datasets from the ASVSpoof Challenge and ADD Challenge, the researchers 
used statistical analysis to examine the distribution differences of 16 features between real and synthesized audio. 
The results showed that PLP and CQCC features significantly improved detection, but most features performed 
poorly in Track 2, indicating the need for further refinement. Future work will involve validating the statistical 
characteristics analysis across different spoofing datasets and integrating distinctive feature characteristics into 
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detection classifier structures. This study highlights the potential of perceptual features in enhancing Deepfake 
audio detection and sets the stage for future advancements in the field.

This research16 focuses on detecting and interpreting vocoder fingerprints in fake audio using datasets from 
eight state-of-the-art vocoders. Using t-SNE visualization, the study identified LFCC features as effective for 
vocoder fingerprint detection, with ResNet being the best-performing model. Future research should address 
limitations and enhance detection methods and interpretations to establish benchmarks and encourage 
innovative methods in fake audio detection.

The research17 focuses on detecting deepfakes by identifying audio-visual inconsistencies using a multi-modal 
approach. It uses a benchmark called DefakeAVMiT and uses Temporal-Spatial Encoder values (TSE) for feature 
embedding and Multi-Modal Joint-Decoder values (MMD) for fusing audio-visual information. The proposed 
method includes AVoiD-DF for joint audio-visual learning, Temporal-Spatial Encoder for inconsistencies, and 
Multi-Modal Joint-Decoder for multi-modal interaction. Experimental results show the method outperforms 
existing techniques. Future work will focus on developing a universal approach and improving interpretability 
for better detection of multi-modal deepfakes. The AVoiD-DF method presents a promising solution for multi-
modal deepfake detection, encouraging further advancements and improved interpretability in the field.

The study18 explores the use of occlusion-based data augmentation techniques to improve voice forgery 
detection models. Data from the ASVspoof2017 and ASVspoof2019 competitions were used to assess the impact 
of these techniques on fake audio detection. The LCNN model was trained using these techniques, with Cutmix 
showing the best results. The study found that the effectiveness of these techniques varies depending on the 
dataset and conditions, suggesting no single technique is universally superior. Future work should focus on 
identifying suitable augmentation techniques for different datasets and improving their generalizability.

The study19 investigates the impact of acoustic scenes and sound events on sound event detection and 
acoustic scene classification using multitask learning (MTL) techniques. The TUT Acoustic Scenes data of the 
year 2016/2017 and TUT Sound Events data of the year 2016/2017 datasets are used to evaluate the effectiveness 
of the proposed methods. Domain adversarial training and fake-label-based methods are used to assess the 
impact of cross-information on SED and ASC. The results show that while MTL methods incorporate mutual 
information, single-task-based methods perform better. The research suggests that future work should focus on 
improving MTL methods to better capture and utilize the implicit mutual benefits between acoustic scenes and 
sound events.

The study20 investigates stereo faking audio, a technique where mono audio is converted to stereo to enhance 
perceived quality. Three stereo audio datasets were used for evaluations. MFCC was analyzed to distinguish 
between real and fake stereo audio. An identification algorithm based on 80-dimensional MFCC features and a 
Support Vector Method (SVM) was proposed. The algorithm effectively detected stereo-faking audio, showing 
potential for further advancements in audio forensics.

The research21 proposes a dataset called SceneFake, which focuses on scene-fake audio detection. It includes 
manipulated audio generated by tampering with real utterances using speech enhancement technologies. 
The study analyzes fake attacks with numerous technologies and signal-to-noise ratios to evaluate detection 
effectiveness. Benchmark results show that models trained on the ASVspoof of the year 2019 dataset do not 
reliably detect scene fake utterances. While they perform well on the SceneFake training set values and seen 
testing set values, their performance on unseen data is poor. The study acknowledges limitations in current 
work and suggests further research to improve detection methods and explore additional speech enhancement 
technologies.

The study22 focuses on improving acoustic event detection (AED) by incorporating scene conditioning 
through a multitasking network that performs acoustic scene classification (ASC). The proposed method uses 
predicted scenes from ASC as additional features for AED and introduces a fake-scene-conditioned loss to 
improve training efficiency. Experimental results show a 23% increase in the F1 score and a 56% decrease in 
false alarm rate for scenes without events. The study suggests further refinement for broader applicability and 
efficiency, with future research focusing on addressing any unidentified limitations and exploring additional 
applications.

The study23 focuses on detecting fake audio, specifically low-quality and partially fake ones, using mismatched 
data for training. Unsupervised pretraining models were used to analyze and detect these audios, demonstrating 
their effectiveness in this domain. The results showed an EER of 32.80% for low-quality data fake audio detection 
and 4.80% for partially fake audio detection, with the latter ranking first in the competition. However, the study 
does not address potential limitations across different scenarios or datasets. Future research should explore 
improving detection methods and examining the generalizability of the approach.

Proposed methodology
In this proposed study, we utilized a benchmark dataset named SceneFake, containing real and fake audio 
signals. Figure 1 represents the steps of the proposed methodology. During our method’s steps, we applied basic 
preprocessing steps on the signal dataset. The MFCC features are then extracted from the preprocessed dataset. 
Subsequently, we applied the novel proposed transfer learning feature engineering approach. The newly generated 
rich-level features are then split into training (80%) and testing (20%) portions. We built several machine and 
deep neural learning models on the training dataset and evaluated their performance measures using the testing 
data. Additionally, we tuned the hyperparameters of the applied models. Finally, the hyperparameter-tuned 
model was utilized to detect fake audio.

Scene fake and real audio signals
This research utilized a benchmark dataset named SceneFake21 for conducting the research experiments. The 
dataset contains 12,668 audio signal files for both real and fake scenes. The manipulated fake audio in the 
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dataset is generated by tampering values with the acoustic scene of a real utterance using speech enhancement 
technologies. We have built several classifiers on this dataset and evaluated the results.

Audio preprocessing
We applied initial preprocessing steps to the dataset, which included selecting only audio files with the .wav 
extension and discarding the rest. The bar chart in Fig. 2 expressed the distribution of the dataset, with 6,334 
files labelled as real and 6,334 files labelled as fake. We then encoded the target class using LabelEncoder, 
transforming the labels such that fake is encoded as 1 and real as 0.

Figure 2.  The target class distribution results.

 

Figure 1.  The architectural workflow of the proposed methodology for detecting fake audio.
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MFCC feature extraction
In our research, we applied a signal features extraction approach to the dataset using the MFCC feature extraction 
approach. We utilized the librosa module to load and extract features from the audio signals. Specifically, we 
extracted 13 MFCC features for each audio signal, which are then used for further research experiments. The 
sample frequency-time domain graph of MFCC features is illustrated in Fig. 3.

Figure 3.  The plotted curves represent MFCC dimensions 1–12.
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Novel transfer feature generation
The novel proposed transfer feature generation approach MfC-RF is analyzed in this section. The workflow 
architecture of feature generation is illustrated in Fig. 4. The following steps are performed during the transfer 
learning mechanism:

	1.	� Step-1: Initially, the benchmark SceneFake data contains audio signal files for both real and fake scenes and 
is prepared for input.

	2.	� Step-2: The signal dataset is then input to the Librosa module for MFCC features extraction.
	3.	� Step-3: The extracted MFCC features with dimension (12668 rows × 13 columns) are then formed and input 

into a random forest model.
	4.	� Step-4: Then the class prediction probability features with dimension (12668 rows × 2 columns) are gener-

ated by the random forest model from MFCC features.
	5.	� Step-5: Finally, the transfer features are used to build the applied machine learning methods.

This proposed approach helps to achieve high-performance results for detecting the scene’s fake audio.

Class prediction probability features overview

•	 Let n be the total number of samples in the dataset.
•	 Let X = {x1, x2, . . . , xn} represent the feature set, where xi ∈ Rd (each sample has d features).
•	 Let Y = {y1, y2, . . . , yn} represent the corresponding class labels, where yi ∈ {1, 2, . . . , C} for C classes.

The Random Forest model F  is an ensemble of T decision trees:

	 F = {T1, T2, . . . , TT },

where each Tt is a decision tree.
For a given sample x: 

	1.	� Each decision tree Tt produces a probability distribution over the classes: 

	 Pt(x) = {Pt(y = c | x) | c ∈ {1, 2, . . . , C}},

 where Pt(y = c | x) is the fraction of samples in the leaf node of Tt that belong to class c.

	2.	� The final probability for class c is the average of the probabilities across all trees: 

	
P (y = c | x) = 1

T

T∑
t=1

Pt(y = c | x).

	3.	� This ensures that the predicted probabilities are normalized: 

Figure 4.  The novel transfer feature generation mechanism.
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C∑
c=1

P (y = c | x) = 1.

In this research, for the first time, we have extracted high-level class prediction probability features derived 
from the MFCC features. These novel features capture richer and more discriminative information about class 
likelihoods, effectively leveraging the strengths of MFCC while incorporating probabilistic insights from the 
classification model. This enhanced representation improves the model’s ability to differentiate between classes, 
leading to better overall performance.

Artificial intelligence approaches used for detection
This section explores artificial intelligence (AI) approaches24–28 for scene fake audio detection using audio 
acoustic signal data. Leveraging advanced AI techniques, we aim to identify and distinguish between real and 
manipulated audio scenes. By employing various machine learning algorithms and deep learning classifiers, 
we analyze the acoustic signals to detect anomalies indicative of fake audio. Our approach utilizes transfer 
learning features extracted from the audio data to train classifiers. The results demonstrate the potential of AI in 
enhancing the accuracy and reliability of detecting scene-manipulated fake audio.

•	 Random Forest (RF): method for scene fake audio detection involves creating an ensemble of decision trees, 
each trained on numerous subsets of the audio acoustic signal data. Each tree in the forest independently 
classifies the audio as real or fake based on extracted features, such as MFCCs. The final prediction is obtained 
by aggregating the individual tree outputs through majority voting, enhancing the robustness and accuracy 
of the detection model.

•	 K-Neighbors Classifier (KNC): method for scene fake audio detection utilizes the k-nearest neighbors algo-
rithm to classify audio acoustic signal data. This approach involves calculating the distance between a given 
audio sample and all other samples in the dataset. The method then identifies the ’k’ closest samples (neigh-
bors) and assigns the most common class among these neighbors to the given audio sample, effectively distin-
guishing between real and fake audio scenes based on their acoustic characteristics.

•	 Logistic Regression (LR): method for scene fake audio detection involves modelling the probability of an audio 
signal being fake or real. It utilizes the logistic function to map the linear combination of extracted audio 
features, such as MFCCs, into a probability value between 0 and 1. The model is trained on labelled audio 
acoustic signal data, optimizing the weights of the features to minimize the classification error, allowing for 
the effective detection of fake audio scenes.

•	 Gaussian Naive Bayes (GNB): method for scene fake audio detection operates on the principle of Bayes’ the-
orem, assuming independence among features29,30. Each audio acoustic signal’s feature is modelled using a 
Gaussian (normal) distribution. The method calculates the probability of an audio signal belonging to either 
the real or fake class based on the extracted features and classifies the signal by selecting the class with the 
highest posterior probability.

•	 Long Short Term Memory (LSTM): networks are employed for scene fake audio detection by analyzing se-
quential audio acoustic signal data. The mathematical workings of LSTM involve the use of gates (input, 
forget, and output) to manage the flow of information and maintain long-term dependencies within the data. 
By learning patterns and temporal relationships in the acoustic signals, LSTM models effectively distinguish 
between real and manipulated audio scenes, enhancing detection accuracy.

Hyperparameter tuning
The tuning parameters of applied classification models and neural network approaches are described in Table 1. 
The best-fit parameters of applied models are determined through recursive testing, training mechanisms, and 
k-fold cross-validation splits. The analysis shows that models improve performance accuracy for fake audio 
detection.

Results and discussions
This section offers a thorough analysis of the evaluation metrics, experimental setup, and the outcomes achieved 
using the proposed approach. In this study, we evaluated several machine and deep neural network learning 
models for detecting deep fake audio using a dataset of authentic and synthesized speech samples. The models 
are assessed based on key metrics such as accuracy, precision, recall, and F1 score.

Method Hyperparameters tuning

RF max_depth value=300, criterion value=“gini”, n_estimators value=300, splitter value=“best”

LR penalty value=‘l2’, to value=1e-4, max_iter value=100, solver=‘lbfgs’

KNC weights value=‘uniform’, n_neighbors value=2, leaf_size value=30, metric value=‘minkowski’

GNB var_smoothing value =1e-09

LSTM activation= ’sigmoid’, optimizer=’adam’, loss value=’binary_crossentropy’, metrics value=[’accuracy’]

Table 1.  Parameters tuning analysis of applied classification models and neural network models for fake audio 
analysis.
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Experimental setup
The experimental setup for detecting deep fake audio utilized a dataset of authentic and synthesized speech 
samples. The equipment included a high-performance computing cloud of Google Colab Jupyter Notebook, 
specifically with 90 GB of disk space and 13 GB RAM. The frameworks employed are TensorFlow and Python 
programming language. For signal data pre-processing, we leveraged the LibROSA library.

Evaluation measures
Evaluation metrics play a crucial role in assessing the performance of machine learning models. We have 
concentrated on several important assessment criteria in this study to determine how well our proposed model 
works:

•	 Accuracy: gauges how well the model predicts things generally. It determines the proportion of accurately 
identified samples to all samples. When evaluating something, accuracy alone isn’t always enough, particu-
larly when working with datasets that are imbalanced or when different kinds of errors have varied outcomes; 

	
Accuracy = T P value + T Nvalue

T P value + F P value + T Nvalue + F Nvalue
� (1)

•	 Precision measures how well the model can distinguish the true positive samples from the anticipated posi-
tives. The proportion of actual positives to the sum of both false positives and true positives is calculated. The 
accuracy of positive forecasts is the main emphasis of precision; 

	
P = T P

T P + F P
� (2)

•	 Recall: also known as sensitivity or the true positive rate, evaluates the model’s ability to correctly identify 
positive samples from all actual positives. It is calculated by dividing the number of true positives by the sum 
of true positives and false negatives. The completeness of good predictions is the subject of recall; 

	
R = T P

T P + F N
� (3)

•	 F1 Score: is the harmonic mean of precision and recall. It is particularly useful in scenarios with imbalanced 
class distributions or when it is important to equally prioritize both types of errors, as it provides a single 
metric that balances precision and recall. The F1 score is a number between 0 and 1, where 1 represents good 
performance. 

	
F 1 = 2 × P × R

P + R
� (4)

Performance analysis with MFCC features
Table 2 presents the performance measures (accuracy, precision, recall, and F1 score) of various classifiers on a 
voice signal dataset. RF achieved an accuracy of 92%, with precision, recall, and F1 scores of approximately 0.93, 
0.91, and 0.92, respectively, indicating robust performance across metrics. KNC showed an accuracy of 90%, 
with precision, recall, and F1 scores around 0.88, 0.92, and 0.90, respectively, demonstrating good recall but 
slightly lower precision and F1 score. LR and GNB both yielded an accuracy of 79%. LR had precision, recall, and 
F1 scores of approximately 0.82, 0.74, and 0.78, respectively, while GNB showed precision, recall, and F1 scores 
around 0.86, 0.71, and 0.78, highlighting higher precision for GNB but lower recall compared to LR. The deep 
learning model LSTM also shows moderate performance scores, as shown in Fig. 5. In summary, the RF method 

Method Accuracy Target class Precision Recall F1

 RF 0.92
Real 0.93 0.91 0.92

Fake 0.91 0.93 0.92

KNC 0.90
Real 0.88 0.92 0.90

Fake 0.92 0.87 0.87

LR 0.79
Real 0.82 0.74 0.78

Fake 0.76 0.83 0.80

GNB 0.79
Real 0.86 0.71 0.78

Fake 0.75 0.88 0.81

LSTM 0.94
Real 0.95 0.94 0.94

Fake 0.94 0.95 0.94

Table 2.  Classification accuracies using 13-D MFCC features for 5 different classifiers.

 

Scientific Reports |         (2025) 15:8066 8| https://doi.org/10.1038/s41598-025-93032-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


performed the best across these classifiers in terms of accuracy and balanced performance in precision and 
recall, making it a strong candidate for the classification of fake and real audio signals. In addition, the confusion 
matrix-based validation is illustrated in Fig. 6.

Performance analysis with novel transfer features
After the performance analysis with simple MFCC features, we applied a transfer learning approach for further 
performance enhancement in real and fake scene audio detection. Table  3 summarizes the classification 
performance metrics of the applied classifiers on a voice signal dataset. The analysis reveals that RF achieved 
the highest accuracy of 98%, with precision, recall, and F1 scores of 0.99, 0.96, and 0.98, respectively, indicating 
strong overall performance. KNC follows with an accuracy of 96%, showing a good balance between precision 
(0.95), recall (0.97), and F1 score (0.96). LR and GNB both achieved an accuracy of 97%. Logistic Regression 
showed perfect precision (1.00), while GNB had slightly lower precision (0.95). However, both classifiers had 
identical recall (0.97) and F1 scores (0.97). In summary, the RF method performed the best overall across these 

Figure 6.  The confusion matrix validations analysis.

 

Figure 5.  During the training of the LSTM model, the time series is analyzed.
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metrics, demonstrating high accuracy and balanced precision and recall, making it potentially suitable for the 
classification of real and fake audio signals.

Kfold validations analysis
The K-fold cross-validation results demonstrate in Table 4 that the RF classifier outperformed the other methods, 
achieving the highest accuracy of 98% with a standard deviation of ±0.0026, indicating both high performance 
and stability. The KNC algorithm followed with an accuracy of 96% and a lower standard deviation of ±0.0046, 
reflecting consistent results. LR and GNB had lower accuracies of 97% and 97%, respectively, with higher 
standard deviations, suggesting that these models are less robust in comparison. The overall analysis highlights 
the effectiveness and reliability of RF in this context.

Complexity computational analysis
The computational complexity analysis reveals significant differences in runtime among the methods in Table 5. 
The RF classifier, while offering the highest accuracy, has a moderate runtime at approximately 0.13 seconds, 
reflecting its complexity due to multiple decision trees and the ensemble method. KNC is much faster, with 
a runtime of just 0.033 seconds, attributed to its straightforward distance-based approach. LR takes 0.182 
seconds, balancing between complexity and speed, while GNB is the fastest at just 0.01 seconds due to its simple 
probabilistic model. This trade-off between accuracy and computation time is crucial when selecting models for 
real-time applications.

Comparative analysis of state-of-the-art approaches
The state-of-the-art approaches comparison is analyzed in Table  6. Recent studies have demonstrated the 
efficacy of various deep learning architectures in achieving high accuracy levels. For instance, Hochare et al.31 
utilized Temporal Convolutional Networks and achieved an accuracy of 92%, while Camacho et al.32 applied 
CNNs and reported an accuracy of 88.9%. Another study by authors in 202333 employed CNNs and reached an 
impressive 94% accuracy. In contrast, the proposed approach, leveraging Transfer Learning with the Novel MfC-
RF technique, surpasses these results with a notable 98% accuracy. This comparison underscores the potential 
of transfer learning techniques to enhance performance beyond traditional CNN architectures, suggesting 
incorporating advanced methods for fake audio detection.

Methods Runtime computation (s)

RF 0.1349797248840332

KNC 0.03293132781982422

LR 0.1820213794708252

GNB 0.010112762451171875

Table 5.  Comparative computations performance analysis for 4 different classifiers.

 

Method K fold Accuracy Standard deviation (+/−)
RF 10 0.9803 0.0026

KNC 10 0.9653 0.0046

LR 10 0.9795 0.0048

GNB 10 0.9792 0.0030

Table 4.  Performance validation and analysis of the proposed method using the K-fold cross-validation 
technique.  Significant values are in bold. 

 

Method Accuracy Target class Precision Recall F1

KNC 0.96
Real 0.95 0.97 0.96

Fake 0.97 0.95 0.96

LR 0.97
Real 1.00 0.95 0.97

Fake 0.95 1.00 0.97

GNB 0.97
Real 1.00 0.95 0.97

Fake 0.95 1.00 0.97

RF 0.98
Real 0.99 0.96 0.98

Fake 0.96 0.99 0.98

Table 3.  Classification accuracies using novel transfer features for 4 different classifiers. Significant values are 
in bold.
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Discussions and limitations
This Study introduces a new transfer learning technique, MfC-RF, for audio fake detection that is applied on 
Scene Fake dataset. Using the probabilities of class prediction and MFCC features, our technique succeeded in 
achieving an accuracy of classification as high as 0.98. We fine-tuned the hyperparameters and cross-validation 
to ensure the robustness of our results. Moreover, computational complexity analysis proved our approach to be 
effective for practical applications.

Unlike previous studies, which have mainly relied on traditional deep learning models or handcrafted feature 
extraction methods, our method improves feature representation using transfer learning, which further enhances 
performance and generalization. Unlike existing methods, which usually suffer from high computational costs 
or limited adaptability, MfC-RF balances accuracy and efficiency well, making it a practical solution for fake 
audio detection. Our work advances the art by providing a better, more computationally efficient method to find 
manipulated audio content. In doing so, with reduced complexity compared to achieving classification accuracy, 
developing reliable and scalable AI-driven audio authentication will be significantly accelerated.

Future research directions may include studying further into integrating other feature extraction techniques 
as well as other deep learning models with a goal of improving the performance further. Increasing the size 
of the database for more diverse manipulation techniques in audio as well as more representative real-world 
situations would improve the adaptability and robustness of the proposed model. Real-time implementation 
and evaluation of this proposed method in forensics and security appears quite promising as a future research 
direction.

Conclusion and future work
This study introduced a novel transfer learning approach for fake audio detection. We utilized a benchmark 
dataset, SceneFake, that contains 12,668 audio signal files for both real and fake scenes. We propose a novel 
transfer learning method, which initially extracts MFCC and then class prediction probability features. The 
newly generated transfer features set by the proposed MfC-RF are utilized for further experiments. Results 
expressed that using the MfC-RF features random forest method surpasses state-of-the-art methods with a high-
performance accuracy of 0.98. We have tuned hyperparameters of applied machine learning approaches, and 
cross-validation is applied to validate performance results. In addition, the complexity of the computation is 
measured. The proposed research aims to enhance the accuracy and efficiency of identifying manipulated audio 
content, thereby contributing to the integrity and reliability of digital communications.

Future directions
In future work, we will develop a framework-based graphical interface for real-time detection of fake audio 
detection. The proposed model will be deployed in the backend of the application.

Data availability
All data generated or analysed during this study is available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​m​​o​h​a​m​m​e​​d​a​b​
d​e​l​​d​a​​y​e​m​/​s​c​e​n​e​f​a​k​e.
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