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Abstract

Many-objective optimization presents unique challenges in balancing diversity and convergence of solutions. Traditional approaches
struggle with this balance, leading to suboptimal solution distributions in the objective space especially at higher number of objectives.
This necessitates the need for innovative strategies to adeptly manage these complexities. This study introduces a Many-Objective
Artificial Hummingbird Algorithm (MaOAHA), an advanced evolutionary algorithm designed to overcome the limitations of existing
many-objective optimization methods. The objectives are to improve convergence rates, maintain solution diversity, and achieve
a uniform distribution in the objective space. MaOAHA implements information feedback mechanism (IFM), reference point-based
selection and association, non-dominated sorting, and niche preservation. The IFM utilizes historical data from previous genera-
tions to inform the update process, thereby improving the algorithm’s the exploration and exploitation capabilities. Reference point-
based selection, along with non-dominated sorting, ensures solutions are both close to the Pareto front and evenly spread in the
objective space. Niche preservation and density estimation strategies are employed to maintain diversity and prevent overcrowding.
The comprehensive experimental analysis benchmarks MaOAHA against four leading algorithms viz. Many-Objective Gradient-Based
Optimizer, Many-Objective Particle Swarm Optimizer, Reference Vector Guided Evolutionary Algorithm, and Nondominated Sorting
Genetic Algorithm III. The DTLZ1-DTLZ7 benchmark sets with four, six, and eight objectives and five real-world problems (RWMaOP1-
RWMaOP5) are considered for performance assessment of the selected algorithms. The results demonstrate that internal parameter-
free MaOAHA significantly outperforms its counterparts, achieving better generational distance by up to 52.38%, inverse generational
distance by up to 38.09%, spacing by up to 56%, spread by up to 71.42%, hypervolume by up to 44%, and runtime by up to 52%. These
metrics affirm the MaOAHA'’s capability to enhance the decision-making processes through its adept balance of convergence, diversity,
and uniformity.

Keywords: many-objective optimization, multi-objective optimization, diversity preservation, artificial hummingbird algorithm, non-
dominated sorting

1. Introduction The field often encounters a specific type of optimization chal-
lenge known as the many-objective optimization problem (MaOP).
Characterized by its requirement of four or more objectives, MaOP
is encapsulated as

Minimize F(X) = [f1 (X), f2(®),..., fu (®)],

s.t. XeQ,

1.1. Background

Optimization problems are prevalent in numerous practical sce-
narios, ranging from managing networks (Xiao et al., 2023) to ve-
hicle routing (Cao et al., 2021). Diverse applications like managing
flow-shop schedules (Goli et al., 2023), energy grid (Hu et al., 2024),
carbon emission prediction (Luo et al., 2024), etc., come under the where F(x) is an objective function within MaOP, M is the total
ambit of optimization problems. number of objectives, and M > 4. The variable X = (X1, X2, ..., Xy)

(1)
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is a potential solution within the decision space of dimension d.
Additionally, @ denotes a continuous search space.

MaOP is typically classified as an NP-hard problem. Its objec-
tives often clash, making it arduous to find solutions that sat-
isfy all objectives simultaneously. In addressing MaOPs, a set of
Pareto non-dominated solutions often represents the optimal so-
lutions. Pareto dominance plays a crucial role in both the strategy
formulation for MaOP optimization and in evaluating the efficacy
of many-objective optimization algorithms (M. Shi et al., 2023; Y.
Shi et al., 2023).

1.2. Literature review

Generally, Many-Objective Evolutionary Algorithms (MaOEAs) are
categorized into four distinct types (Guo, 2022):

(i) Based on Pareto dominance like Nondominated Sorting
Genetic Algorithm II (NSGA-II, Deb, Agrawal, et al., 2000),
Strength Pareto Evolutionary Algorithm II (SPEA-II, Kim et
al., 2004), etc.;

(ii) Indicator approaches like Indicator-Based Evolutionary Al-
gorithm (IBEA, Qin et al., 2023);

(iii) Decomposition methods like Penalty-based Boundary In-
tersection method (Zhang & Li, 2007); and

(iv) Reference vector techniques like Nondominated Sorting
Genetic Algorithm III (NSGA-III, Deb & Jain, 2014).

Pareto dominance-based MaOEAs operate through the compar-
ison and selection of solutions via Pareto dominance relations,
prioritizing non-dominated over dominated solutions (Lu et al.,
2022; Zhang et al., 2024). However, the efficiency of these algo-
rithms diminishes as the number of objectives increases, lead-
ing to challenges in selecting suitable candidates for subsequent
generations. These algorithms have been developed to address
the issue of “dominance resistance”. Researchers have enhanced
the algorithm'’s selection pressure by either creating new dom-
inance relations or incorporating a modified Pareto dominance
concept to widen the dominance scope. Examples include e-MOEA
(Deb, Mohan, et al., 2003), e-dominance relation (Tkeda et al., 2002),
and fuzzy-based dominance relation (He et al., 2014). e-MOEA op-
erates by segmenting the objective space into numerous hyper-
boxes, ensuring only a single solution per hyperbox, thus preserv-
ing population diversity. The e-dominance relation brings in the
tradeoff rate between objectives, allowing for non-dominated so-
lutions to be slightly less effective in one objective but markedly
better in others. This eases the establishment of dominance re-
lationships among solutions and boosts the algorithm'’s selec-
tion pressure. The Grid-based Evolutionary Algorithm (Yang et al.,
2013) suggests a grid-based dominance approach, though its ef-
ficacy is dependent on the division count of the objective func-
tion. The Hyperplane-assisted Evolutionary Algorithm (Chen et al.,
2020) identifies prominent solutions that clearly trend towards the
Pareto front, using a hyperplane of neighboring solutions for fur-
ther distinction. Moreover, the NSGA-II with a strengthened dom-
inance relation (NSGA-II/SDR) (Tian et al., 2019) introduces a new
dominance relationship, aiming to strike a balance between con-
vergence and diversity in solutions.

The field of indicator-based algorithms has seen significant
developments, such as the Hypervolume Estimation algorithm
(S. Liu et al, 2023) and the inverse generational distance (IGD)
indicator-based MaOEA (MaOEA/IGD, Afsar et al., 2023). These al-
gorithms utilize the hypervolume (HV, Bradstreet et al., 2008) and
IGD (Xu & Li, 2023) metrics, respectively, to assess algorithm per-
formance, guiding the population evolution towards optimal con-

vergence and diversity. However, there is a concern raised in B. Li et
al. (2016) about the potential limitations of using a single indicator
for population evolution, as it might lead to convergence in just
a part of the Pareto front. To address this, a Stochastic Ranking-
based multiple indicators Algorithm is introduced, balancing the
influence of various indicators on population guidance. Another
innovative approach in Pamulapati et al. (2019) integrates the sum-
of-objectives with shift-based density estimation, leveraging the
rapid convergence of the former and the diversity preservation
of the latter. The Promising Region-based Evolutionary Algorithm
(Yuan et al., 2021) employs a ratio-based indicator to direct popu-
lation search towards promising areas in the objective space. Ad-
ditionally, a novel indicator-based MOEA (i.e., AR-MOEA, Tian et
al., 2018) enhances the IGD indicator, allowing dynamic adjust-
ment of reference points. In contrast, indicator-based MaOEAs as-
sign fitness to solutions using specific indicators. This approach
effectively reduces the complexity of comparing multiple objec-
tives with a single-objective metric may bias the selection pro-
cess, potentially hindering the algorithm’s comprehensive search
capability.

A leading example in decomposition-based algorithms is the
MOEA based on Decomposition (MOEA/D, Zhang & Li, 2007),
which utilizes a predefined set of uniformly distributed refer-
ence vectors in the objective space to ensure diverse popula-
tion evolution. Building on MOEA/D, various adaptations have
emerged. For instance, MOEA based on Dominance and Decom-
position (MOEA/DD, K. Li et al, 2015), MOEA/D with Adaptive
Weight Adjustment (MOEA/D-AWA, Qi et al., 2014), and Multiob-
jective evolutionary algorithm based on decomposition multiple
to multiple (MOEA/D-M2M), which divides a multi-objective prob-
lem into simpler subproblems (H.-L. Liu et al., 2014). MOEA/DD
melds decomposition-based approaches with Pareto dominance
to balance both convergence and diversity. The MOEA/D-AWA
introduces an adaptive strategy for adjusting weight vectors,
particularly useful for complex Pareto fronts. Lastly, MOEA/D-
M2M simplifies the multi-objective problem into more manage-
able subproblems, tackling them collaboratively. Decomposition-
based MaOEAs, on the other hand, convert a many-objective prob-
lem into multiple single-objective problems. The effectiveness of
these algorithms largely depends on the aggregation function em-
ployed. Designing an appropriate aggregation function for a vari-
ety of problems remains a challenge, exemplified by the difficul-
ties in setting the penalty factor method.

The challenge with predefined reference vectors lies in their in-
ability to uniformly cover Pareto fronts of varied shapes, highlight-
ing a need for enhancement in decomposition-based algorithms,
particularly for irregular Pareto fronts (Ishibuchi et al., 2017). To
address this, adaptive reference vector-based algorithms have
been developed. Many such approaches are the Many-Objective
Gradient-Based Optimizer (MaOGBO, Premkumar et al, 2021),
Many-Objective Particle Swarm Optimizer (MaOPSO, Figueiredo et
al., 2016), Reference Vector-guided Evolutionary Algorithm (RVEA,
Cheng et al., 2016), and NSGA-III (Deb & Jain, 2014), which intro-
duce an adaptive strategy that allows reference vectors to ad-
just according to the scales of the objective functions. Q. Liu et
al. (2022) introduced an advanced growing neural gas network.
This network, using the current population as its training dataset,
dynamically learns the Pareto front’s topology as the population
evolves. Another innovative method is the Reference Points-based
Evolutionary Algorithm (Y. Liu et al.,, 2017). Indicator-based algo-
rithms, when reliant on a solitary indicator, may exhibit a bias
towards specific subpopulations, leading to potential entrapment
in local optima. Algorithms that utilize multiple indicators con-
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currently must calculate all indicators for each solution in ev-
ery iteration, significantly escalating the algorithm’s complexity.
Decomposition-based algorithms often struggle with effectively
breaking down problems when faced with a large number of ob-
jectives. Meanwhile, reference vector-based algorithms grapple
with evenly distributing reference vectors across irregular Pareto
fronts.

Of late, several single-objective metaheuristics like Red Deer
Algorithm (Fathollahi-Fard et al., 2020), Social Engineering Opti-
mizer (Fathollahi-Fard et al., 2018), and Tree Growth Algorithm
(Cheraghalipour et al., 2018) have been proposed. The evolution
of evolutionary algorithms (EAs) from single- to many-objective
optimization has necessitated the development of sophisticated
methods capable of handling the complexity and high dimension-
ality inherent in MaOPs (Yin et al., 2020; Zhu et al., 2024). The fol-
lowing sections review key advancements in the field, focusing
on the methodologies, challenges, and gaps that this research ad-
dresses.

Historically, EAs such as NSGA-II (Deb, Agrawal, et al., 2000) and
SPEA-II (Zitzler et al, 2001) have demonstrated significant suc-
cess in multi-objective optimization. However, their performance
tends to degrade as the number of objectives increases, primar-
ily due to the loss of selective pressure and the exponential in-
crease in non-dominated solutions (Ishibuchi et al.,, 2008). This
observation spurred research into many-objective optimization
algorithms designed to maintain effectiveness in higher dimen-
sional objective spaces.

Recent years have seen the introduction of several many-
objective optimization algorithms, such as NSGA-III (Deb & Jain,
2014) which extends NSGA-II to handle many-objective problems
by incorporating a reference point approach. Similarly, MOEA/D
(Zhang & Li, 2007) and its variants address many-objective opti-
mization by decomposing a multi-objective problem into a num-
ber of scalar optimizations subproblems. Wei and Li (2023) pro-
posed an EA that incorporates population preprocessing and
a projection distance-assisted elimination mechanism. This ap-
proach efficiently reduces the search space and improves the se-
lection process for non-dominated solutions. Choi (2022) devel-
oped an optimization approach focusing on hydraulic and water
quality criteria within a many-objective optimization framework.
This work extends beyond traditional MaOEAs by incorporating
domain-specific criteria, demonstrating the flexibility and appli-
cability of MaOEAs. Wu et al. (2023) introduced a dynamic EA that
leverages prediction mechanisms to adaptively adjust to chang-
ing optimization landscapes. This contrasts with static many-
objective algorithms such as NSGA-III, which do notinherently ac-
count for dynamic environments. The predictive capability of Wu
et al’s algorithm represents a significant advancement in enhanc-
ing the adaptability of MaOEAs to real-world problems that evolve
over time. Wang et al. (2022) enhanced a MaOEA using chaotic
mapping and a solution ranking mechanism, specifically target-
ing large-scale optimization problems. This method diverges from
traditional indicator approaches like IBEA by introducing chaos
theory to maintain diversity and employing a novel ranking strat-
egy to guide the search process effectively. Despite these advance-
ments, achieving a balance between convergence and diversity re-
mains a significant challenge, with most algorithms excelling in
one at the expense of the other.

1.3. Motivation and literature gap

The field of optimization has been significantly reshaped with
the introduction of many-objective problems, which inherently

feature four or more conflicting objectives. Such complexity has
unveiled the limitations of traditional EAs—inefficiency in nav-
igating the delicate balance between convergence to the opti-
mal front and maintaining diversity among solutions. Despite
the numerous studies conducted in this field, a distinct gap re-
mains in developing algorithms that can adeptly manage these
challenges, especially under the constraints of high-dimensional
objective spaces. Moreover, existing algorithms often struggle
with computational efficiency and scalability when applied to
real-world problems with complex constraints and objective
interactions.

Current MaOEAs struggle to maintain a harmonious balance
between convergence towards the Pareto front and the preserva-
tion of diversity among solutions (Cao, Zhao, Gu, et al., 2020; Yu
et al., 2024). This imbalance often results in premature conver-
gence or excessive dispersion of solutions, diminishing the qual-
ity of the resultant Pareto front. Most algorithms do not fully
leverage the historical information of the search process, lead-
ing to inefficiencies in exploration and exploitation. The poten-
tial insights gained from previous generations are frequently over-
looked, which could otherwise guide the search process more ef-
fectively towards optimal solutions. As the number of objectives
increases, the performance of traditional Pareto dominance- and
decomposition-based approaches tends to degrade. This is due
to the “curse of dimensionality,” where the discrimination capa-
bility of these methods diminishes, making it difficult to iden-
tify truly non-dominated solutions. Many algorithms assume rela-
tively simple Pareto front geometries and fail to adapt to complex,
irregular, or disconnected Pareto fronts that are common in real-
world many-objective problems. This limitation restricts their ap-
plicability to a broader range of practical scenarios. The computa-
tional demand of existing MaOEAs escalates rapidly with the in-
crease in the number of objectives and decision variables, posing
significant challenges in terms of scalability and practical appli-
cability to large-scale problems (Cao, Li, Liu, Lv, et al., 2023; T. Zhao
et al.,, 2024).

1.4. Research questions

(i) Can amany-objective metaheuristic algorithm be designed
that maintains an effective balance between convergence
and diversity?

(ii) In what ways can the strengths of the hummingbird’s for-
aging strategies be abstracted and applied to enhance the
search efficiency of EAs in complex optimization land-
scapes?

1.5. Hypothesis

This work hypothesizes that the Many-Objective Artificial Hum-
mingbird Algorithm (MaOAHA), with its unique combination of
reference point-based selection, niche preservation, and an in-
formation feedback mechanism (IFM), can outperform existing
MaOEAs in both convergence and diversity metrics.

1.6. Justification for MaOAHA

The Artificial Hummingbird Algorithm (AHA) inspired by the nat-
ural foraging behavior of hummingbirds, offers innovative mech-
anisms for search space exploration, adaptability, memory uti-
lization, and solution refinement. These qualities address spe-
cific challenges inherent in many-objective optimization, provid-
ing a compelling rationale for its selection as the foundation of
MaOAHA. By leveraging these characteristics, MaOAHA not only
advances the state of the art in many-objective optimization but
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also demonstrates improved performance over general EAs, par-
ticularly in balancing convergence and diversity across complex
objective spaces.

MaOAHA introduced in this study is motivated by the need
for an algorithm that can effectively navigate the trade-offs be-
tween convergence and diversity in many-objective optimization.
MaOAHA incorporates innovative mechanisms such as an IFM
and niche preservation strategies, which have not been exten-
sively explored in existing MaOEAs. These features allow MaOAHA
to outperform leading algorithms in terms of both convergence
and diversity across a variety of benchmark and real-world prob-
lems. A novel assumption of this work is the strategic utilization
of historical information through the IFM to inform the search
process in the current generation.

1.7. Contribution to the field

The study contributes to the existing body of knowledge by
proposing a novel approach to many-objective optimization that
leverages bio-inspired algorithms and advanced selection mecha-
nisms. By addressing the identified gaps and challenges, MaOAHA
represents a significant step forward in the development of ef-
fective, efficient, and scalable solutions for MaOPs. In this study,
a novel approach is presented for better balance between conver-
gence and diversity in many-objective optimization, through AHA
(W. Zhao et al., 2022), IFM, reference point-based selection and as-
sociation, non-dominated sorting, niche preservation, and density
estimation-based MaOAHA. The key research contributions of this
paper are outlined as follows:

(i) The selection of AHA algorithm is based on their per-
formance in generating diverse and high-quality solu-
tions in single-objective problem. Through the global
search capability of AHA, operator selection enhances the
MaOAHA ability to explore and exploit the search space
effectively.

(ii) The paper introduces an IFM strategy for the shortcomings
that had wasted a lot of useful information. In the IFM,
the combined historical pieces of information of individ-
uals based on the weighted sum method are carried over
to the next generation. This ensures superior convergence
properties.

(iii) A strategy for reference point-based selection guides the
selection process, ensuring that the chosen solutions are
not just close to the optimal front (convergence) but
also spread out across the entire objective space (diver-
sity). Associating each solution to the nearest reference
point by perpendicular distance leads to identifying well-
represented areas in the objective space. Non-dominated
sorting method ensures that the algorithm focuses on so-
lutions that are closer to the Pareto-optimal front, aiding
convergence.

(iv) A niche preservation strategy for boundary individuals
is proposed, aimed at boosting diversity while removing
those with overcrowding in specific regions of the ob-
jective space, thereby speeding up the algorithm’s over-
all convergence rate. Additionally, a density estimation
strategy for maintaining diversity is detailed, ensuring
both uniformity and extensive coverage in the population
distribution.

(v) The effectiveness of the newly developed MaOAHA is vali-
dated through comparisons with MaOGBO, MaOPSO, RVEA,
and NSGA-III algorithms across DTLZ1-DTLZ7 benchmark
sets with four, six, and eight objectives and five real-world

(RWMaOP1-RWMaOP5) problems. The results from these
experiments highlight MaOAHA capability to adeptly man-
age various problem types, underscoring its robust overall
performance.

An overview of AHA algorithm is given in Section 2, followed by
a presentation of the proposed MaOAHA algorithm in Section 3.
Experimental comparisons and evaluations are presented in Sec-
tion 4 and a conclusion in Section 5.

2. Artificial Hummingbird Algorithm

The AHA (W. Zhao et al.,, 2022) is inspired by the unique flying
abilities and smart food-gathering tactics of hummingbird forag-
ing techniques: guided, territorial, and migratory foraging, as de-
picted in Fig. 1. AHA algorithm features a visit table that emulates
hummingbirds’ extraordinary memory, aiding in global optimiza-
tion tasks. AHA excels in balancing exploration and exploitation
stages and demonstrates high efficiency in exploration with su-
perior solution precision. It initiates by randomly creating poten-
tial solutions. Each simulated hummingbird in the group, when
arriving at a new location, engages in random searches for food
sources, thereby initializing the group. This accidental discovery
of initial food sources is part of the initialization, as shown in
Equation (2):

X;=LB+7- (UB—LB) 2)

where LB and UB denote the lower and upper interval limits, r is
a random number between 0 and 1, and x; indicates the location
discovered by the ith hummingbird. The visit table starts as fol-
lows:

C_Joif i#)
VI = null, i=j" G)

Equation (3) illustrates two scenarios; VT; ; = null indicates feed-
ing on a static food source, whereas VT;; = 0 signifies the ith
hummingbird has just investigated the jth food source. The three
hummingbird flight patterns are adapted for multi-dimensional
spaces. The axial flight enables movement to any axis point, as
outlined in Equation (4):

i fi = Randi ([1. d]).
0, else, ’

(4)

Equation (5) details the diagonal flight and Equation (6) de-
scribes the omnidirectional flight.

ifi=G(j),Jj€[1,c],G=Randperm (c)
0, else,

(5)
Dof(i):1,1'=1»2,---’”- (6)

In these equations, ¢ varies from 2 to [r1(d—2) + 1], Randi([1, d])
generates a random number from 1 to d, Randperm(c) yields a ran-
dom number sequence up to ¢, and r; represents a random num-
ber in the (0, 1) range. Equation (7) shows the update process for
candidate solutions via guided foraging. Equation (8) outlines the
update method when a hummingbird locates a food source closer
to the target.

Ui (t + 1) = Xi.target +9- Dy - (Xi (t) - Xi,target (t)) te {Af’ Df’ Of} (7)

g~N(0,1). 8)
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Figure 1: Three foraging behaviors of AHA.

Equation (9) defines how fitness values of candidate solutions
are updated.

6@, fEO=foer)

(t+1) =
x(t+1) Ui (t+1), else

The territorial foraging update method for candidate solutions
is presented in Equations (10) and (11):

Uit+1)=xi+k-Di-x(t),t € {Af,Df, Of} (10)

k~N(0,1) (11)

where X; trge: (t) is the position of the target solution and g is a
guiding factor. f(x;(t)) and f(vi(t + 1)) denote the fitness values of
the candidate solution x;(t) and the updated solution v;(t + 1), re-
spectively. k is a guiding factor and D; represents one of the flight
modes. Finally, the equation for updating the location of artificial
hummingbirds with poor nectar refilling rates through migratory
foraging is given in Equation (12):

Xworst ({ +1) =LB+71- (UB—LB), when Mr =t (12)

where Xyorst denotes the candidate solution with the lowest nec-
tar refill rate, t is the current iteration, and Mr is the migra-
tion coefficient, typically Mr = 2N, with N being the population
size.

3. Proposed MaOAHA

The development of the MaOAHA from the single-objective AHA,
incorporating novel mechanisms designed to address the specific
challenges of many-objective optimization. The key features are
the use of reference points, niche preservation, and an IFM, which
collectively ensure an effective balance between exploration and

exploitation and diversity preservation in a many-objective con-
text.

3.1. Transition from AHA to MaOAHA

The AHA, inspired by the foraging behavior of hummingbirds,
is known for its efficiency in exploring and exploiting search
spaces in single-objective optimization tasks. To adapt AHA for
many-objective optimization, several many-objective optimiza-
tion strategies are integrated into its framework, transforming it
into MaOAHA. This adaptation is aimed at maintaining high per-
formance when dealing with a larger number of objectives, where
traditional EAs tend to struggle with preserving diversity and en-
suring convergence.

3.2. Reference point selection

Reference points are critical in many-objective optimization for
guiding the search towards a diverse set of solutions across the
Pareto front. In MaOAHA, a set of reference points is generated
using Das and Dennis’s technique, which is designed to approxi-
mate the distribution of solutions in the objective space. This ap-
proach allows MaOAHA to maintain a comprehensive exploration
of the objective space, enhancing the algorithm’s ability to un-
cover a wide range of Pareto-optimal solutions.

3.3. Niche preservation

To ensure that the generated solutions are not only diverse
but also well-distributed, MaOAHA employs a niche preservation
strategy. This strategy involves associating each solution with the
nearest reference point and selecting solutions based on their
niche count. This method prevents overcrowding in densely pop-
ulated regions of the solution space and promotes the discovery
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of underrepresented areas, fostering a uniform distribution of so-
lutions along the Pareto front.

3.4. Information feedback mechanism

The IFM is a novel component of MaOAHA that leverages his-
torical search information to guide the optimization process. By
integrating feedback from previous generations into the gener-
ation of new solutions, IFM enhances the algorithm’s conver-
gence properties and its ability to adapt to the dynamic landscape
of many-objective problems. This mechanism ensures that the
search process is not only driven by current population metrics
but also informed by the accumulated knowledge of the solution
space.

3.5. Algorithmic framework

MaOAHA begins with a randomly generated population, which is
iteratively improved through the mechanisms described above.
The selection of offspring for the next generation is based on their
performance relative to the reference points and their contribu-
tion to diversity, as determined by niche preservation. The inte-
gration of IFM ensures continuous adaptation and improvement
of the search strategy, leading to a balanced exploration and ex-
ploitation of the search space. MaOAHA algorithm starts with a
random population of size N, M number of objectives, and p num-
ber of partitions, and generates a set of reference points using

M+p-1

Das and Dennis’s technique H = ( ), as H~ N. Das and

Dennis’s technique is a method for systematically generating a
set of uniformly distributed reference points on the a(M — 1) di-
mensional unit simplex, where M is the number of objectives in
a MaOP. This simplex is a geometric representation in which all
points sum up to one, creating a space equally inclined to all
objective axes with an intercept of one on each axis. The tech-
nique’s main advantage lies in its ability to create reference points
that are evenly spread, aiding in covering the entire Pareto front
as uniformly as possible. For example, in a four-objective prob-
lem (M = 4), the reference points are created within a tetrahe-
dron, with apexes at (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1). If the
number of divisions is (p = 4) along each objective axis, the to-
tal number of reference points H created on a tetrahedron is 35.
This means in a three-dimensional space, these points would be
distributed within a shape where each apex represents one of the
objectives and the points are evenly distributed throughout the
interior and on the faces of this shape. In a six-objective prob-
lem (M = 6), under the same conditions (p = 4), the total number
of reference points H is 126. These points are distributed within
a five-dimensional simplex, a hyper-dimensional equivalent of a
tetrahedron, with each vertex representing one of the objectives.
In the MaOAHA algorithm, these reference points guide the search
process by providing diverse directions for exploration. By associ-
ating solutions with the nearest reference point and striving to
improve the representation around each point, the algorithm en-
sures that the evolved solutions cover the Pareto front uniformly.
This method not only promotes diversity among the solutions but
also helps in identifying regions of the Pareto front that are under-
represented, thereby directing computational effort to these ar-
eas. A set of reference points is supplied and the algorithm is
designed to find solutions near these points. The current gener-
ation is t, xt and x{*! is the ith individual at t and (t + 1) genera-
tion. u{*! is the ith individual at the (t + 1) generation generated
through the AHA algorithm and parent population P.. The fitness
value of U™t is fi**and U™ is the set of u{™*. Then, calculate x™*

i

according to uf“ generated through the AHA algorithm and IFM
(Equation 13):

fi
ﬁ+1+-f£’

_ )fitJrl
ﬁﬂ T fi

X€+1 = 31M$+1 + ngig 0, = d2 ,01+0, =1

(13)

where x| is the kth individual chosen from the tth generation, the
fitness value of x{ is f{, 01 and 9, are weight coefficients. Generate
offspring population Q:. Q: is the set of x*!. The combined pop-
ulation R: = P: U Q; is sorted into different w-non-dominant levels
(F1,F,....F...,Fy). Begin from Fy, all individuals in level 1 to [ are
added to S; and remaining members of R; are rejected. If |S;| = N;
no other actions are required and the next generation is begun
with Py; = S;. Otherwise, solutions in S;/F are included in P.yq =
Si/F and the rest (K = N — |P.;4|) individuals are selected from the
last front F (presented in Algorithm 1). For selecting individuals
from F, a niche-preserving operator is used. First, each popula-
tion member of P41 and F is normalized (presented in Algorithm
2) by using the current population spread so that all objective vec-
tors and reference points have commensurate values. Thereafter,
each member of P4, and F is associated (presented in Algorithm
3) with a specific reference point by using the shortest perpen-
dicular distance (d()) of each population member with a refer-
ence line created by joining the origin with a supplied reference
point. Then, a careful niching strategy (described in Algorithm 5)
that improve the diversity of MaOAHA algorithm is employed to
choose those f members that are associated with the least rep-
resented reference points niche count p; in Pr;1 and check termi-
nation condition is met. If the termination condition is not satis-
fied,t =t + 1thanrepeatandifitis satisfied, P41 is generated, it is
then applied to generate a new population Q;11 by AHA algorithm.
MaOAHA algorithm that incorporates IFM to effectively guide the
search process, ensuring a balance between exploration and ex-
ploitation. This leads to improved convergence, coverage, and di-
versity preservation, which are crucial aspects of many-objective
optimization. MaOAHA algorithm does not require setting any
new parameter other than the usual AHA parameters such as
the population size, termination parameter, and their associated
parameters.

3.6. Computational complexity

The computational complexity of MaOAHA is analyzed, demon-
strating its efficiency in handling many-objective problems. The
careful selection strategy employed in MaOAHA, alongside the
efficient implementation of its core mechanisms, results in a
computational complexity that remains manageable even as the
number of objectives increases. The computational complexity
MaOAHA for M-Objectives is O(N?log"=2N) or O(N?M), whichever
is larger.

3.7. Parameter settings

MaOAHA retains the flexibility of the original AHA in terms of pa-
rameter settings, requiring only the standard parameters such as
population size and termination criteria. Simplicity in tuning pa-
rameters makes MaOAHA both powerful and accessible for a wide
range of optimization tasks.

The flowchart of MaOAHA algorithm can be shown in Fig. 2.
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Algorithm 1: Generation t of MaOAHA algorithm with IFM procedure.

Algorithm 3: Associate (S;, Z") procedure.

Input: N (population size), M (no. of objectives), AHA algorithm
parameters, and initial population P;(t = 0),

Output: Qt4+1 = AHA(Pt4q)

1: H calculated using Das and Dennis’s technique,
structured reference points Z°, supplied aspiration points
73S =¢i=1

2: Proposed IFM
Apply AHA algorithm on the initial population P; to
generate ul*!, calculation of x!** according to u{*? can be
expressed as follows:

X = o o 0y = i = s e =1
Q: = Q:; (Q; is the set of x%“)

3: Rt =P UQ;

4: Different non-domination levels (Fy, Fy,....F)) =
Non-dominated-sort (Ry)

5 repeat

6: Si=StUFandi=i+1

7: until | S; | > N

8: Last front to be included: F_ Ul_, F;

9: if | S; | = N then

10: Pis1 =St

11 else

12 Py =Si/R

13: Point to chosen from last front (F) : K =N — |P44]|

14: Normalize objectives and create reference set Z':

Normalize (f, S, Z*, Z%, Z?); brief explanation in
Algorithm 2
15: Associate each member s of S; with a reference point:
[ (s), d(s)] = Associate (S, ZF); brief explanation in
Algorithm 3 % 7 (s) : closest reference point, d:
distance between s and 7 (s)

16: Compute niche count of reference point j € Z" :

pj= 2 ((x(s)=1j).1 : 0);
sest /R

17: Choose K members one at a time F; to construct
P41 : Niching(K, pjs @, d, Z', R, Py1); represent in
Algorithm 4

18: end if

Algorithm 2: Normalize (f", S;, Z", Z°/Z?) procedure.

Input: St, Z° (structured points) or Z% (supplied points)
Output: f", Z" (reference points on normalized hyperplane)
1 forj=1to Mdo
2 Compute ideal point: ZP™" = minses, fj(s)
3: Translate objectives: f}f (s) = fj(s) - ZE‘““VS €St
4 Compute extreme points: 2™ = s:
argminges ASF(s, w') = where w = (¢1,.....,&j)"),
e=10"° and wj =1
5: end for
6: Compute intercepts a; forj =1, .., M
7 Normalize objectives fI'(X) using
o) =28 fori=1,2,.... M
8: if 2% is giveﬁ then
9: Map each (aspiration) point on normalized hyperplane
f'(X) and save the points in the set Z"
10: Else
11 VAE YA
12: end if

Input: St, 77

Output: T(se s), d(s € st)

1: for each reference point Z € Z" do

2: Compute reference line w =z

3: end for

4: for each (s € s;) do

S: foreach w € Z" do

6: Compute d* (s, w) =s—w's/ | w |
7 end for

8: Assign n(s) = w: argming ¢ z d*(s, w)
9: Assign d(s) = d*(s, 7 (s))

10: end for

Algorithm 4: Niching (K, pj» T, d, Z', R, P.1) procedure.

Input: K, pj, m(se€ S), d(se St), Z', R,
Output: P

1 k=1

2: while k < K do

3: }Inin ={j: a’gmm;ezvl);}

4: j = random (Jmin)

S: L={s:m(s)= j.se R}

6: ifI}-— #+ ¢ then

7: ifp).— =0 then

8: Pipi=Py U (S : ngms el; ds)
9: else

10: P.y1 =Py U random (1},—)
11: end if

12: p)-'=pj+1,F;= R/s

13: k=k+1

14: Else

15: 7= Z'/(j}

16: end if

17: end while

4. Results and Discussion

4.1. Experimental settings

In order to verify the effectiveness of the MaOAHA, the DTLZ1-
DTLZ7 (Deb, Thiele, et al., 2003) benchmark (Appendix 1) and five
real-world engineering design (Appendix 2): car cab design (RW-
MaOP1, Tanabe & Ishibuchi, 2020), 10-bar truss structure (RW-
MaOP2, Panagant et al., 2023), water and oil repellent fabric devel-
opment (RWMaOP3, Ahmad et al., 2017), ultra-wideband antenna
design (RWMaOP4, Chen, 2017), and liquid-rocket single element
injector design (RWMaOP5, Goel et al., 2007) problems are used in
this paper. The number of decision variables for the DTLZ prob-
lems is k + M — 1, M is the number of objective functions. k is set
to 5in DTLZ1, k is set to 10 in DTLZ2-DTLZ6, and k is set to 20 in
DTLZ7.

4.1.1. Benchmarks and parameter setting

In this study, the performance of MaOAHA is evaluated by empir-
ically comparing it with some state-of-the-art multiobjective al-
gorithms for MaOPs, namely, MaOGBO (Premkumar et al.,, 2021),
MaOPSO (Figueiredo et al., 2016), RVEA (Cheng et al., 2016), and
NSGA-III (Deb & Jain, 2014), will be verified. The experiments are
conducted on a MATLAB R2020a environment on an Intel Core
(TM) 17-9700 CPU. Each algorithm performs 30 times, the size of
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population P, (t=0)
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Generate new population U™ using the
AHA Algorithm
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Select the i-th individual from generation t
and the i-th individual from U""' to produce
a new individual x,""'

‘ Information Feedback Mechanism |

Non-dominated Sorting

v

| S=(F1,Fy...FFy) |
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i=it1
Q-QU " ELd
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+ Y
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.

Select N-| Py| individuals from F,, into Py,
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e
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Output Qt+] = AHA(Pt+])

Figure 2: Flowchart of MaOAHA algorithm.
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Table 1: Properties of the quality indicators.

Quality indicator (Chen, 2017) Convergence Diversity Uniformity Cardinality Computational burden
GD 4

SD v

SP 4

RT v

IGD 4 v 4

HV 4 v 4 4

population N is set to N = 105, 132, and 156 for all of the involved
algorithms on M = 4, 6, and 8 objectives problems. The MaxFEs is
set to 1 x 10° for all of the test instances. NSGA-III adopts the
same parameter settings, where the crossover probability (P.) and
mutation probability (Py), the distribution index of simulated bi-
nary crossover (n.), and polynomial mutation (y.), are setto 1, 1/D,
20, and 20. To ensure a comprehensive evaluation of the MaOAHA,
the migration coefficient (Mr) is set to 2N, where N is the popula-
tion size.

4.1.2. Performance measures

This paper adopts generational distance (GD), spread (SD), spacing
(SP), runtime (RT), IGD, and HV quality indicator (Coello Coello et
al., 2007), shown in Table 1 and Fig. 3. A higher value of HV and
lower value of IGD, GD, SD, RT, and SP refer to better performance.
The Wilcoxon rank-sum test (WRST) with 0.05 significance level is
applied to better performance (+), a worse performance (—), and
an equal (=) performance compared with MaOAHA.

4.2, Experimental results on DTLZ problems

Table 2 presents the GD results for MaOAHA, MaOGBO, MaOPSO,
RVEA, and NSGA-III on DTLZ test problems. For problem, in the
DTLZ1 problem with 4-M and 8-D, MaOAHA records a mean
GD of 4.3141e—2 (3.79e—2), which is significantly lower than its
counterparts like MaOGBO with 1.0241e—1 (1.72e—1) and RVEA
with 9.5822e—2 (1.58e—1). In DTLZ3 with 6-M and 15-D, MaOAHA
mean GD is 3.2731e+40 (1.23e+0), surpassing other algorithms like
MaOPSO with 7.5772e+0 (7.76e—1) and NSGA-III with 1.0848e+2
(2.39e+1). The proportion of test problems where MaOAHA out-
performs other algorithms like MaOGBO, MaOPSO, RVEA, and
NSGA-III across the DTLZ test suite ranges from high to domi-
nant. For problem, in DTLZ1, DTLZ2, DTLZ4, and DTLZS problems,
MaOAHA achieves better results in more than 50% of the cases
when compared with each of these algorithms. Among these,
MaOAHA demonstrates a notable performance, achieving the best
results in several problems. From Table 2, it is observed that
MaOAHA outperforms 11 out of 21 best results, whereas MaOGBO,
MaOPSO, RVEA, and NSGA-III achieve 6, 1, 0, and 3 best results in
terms of the GD values, respectively. A lower mean GD indicates
a closer approximation to the true Pareto front, signifying better
performance of MaOAHA algorithm and effectiveness in dealing
with complex MaOPs.

Table 3 displays the IGD results for MaOGBO, MaOPSO, RVEA,
and NSGA-III, including MaOAHA, on DTLZ test problems. In
DTLZ1 with 4-M and 8-D, MaOAHA has an IGD of 5.8231e—1 (std
9.07e—1), which is higher than RVEA and NSGA-III, indicating
less favorable performance. However, in DTLZ4 with 6-M and 15-
D, MaOAHA achieves an IGD of 4.3262e—1 (std 9.20e—4), outper-
forming NSGA-III. The performance of MaOAHA is notably varied
across different DTLZ problems. For problem, in DTLZS5 with 4-M
and 13-D, its IGD is 6.1569e—2 (std 1.0le—2), which is compara-

ble with the other algorithms. In Table 3, IGD values of MaOGBO,
MaOPSO, RVEA, and NSGA-III algorithms are better in 8, 2, 2, and
1 out of 21 cases. These proportions indicate a varied but notable
efficacy of MaOAHA across different scenarios. In particular, its
performance against MaOGBO stands out with a high percentage
of superiority, suggesting a distinct advantage in those test prob-
lems. Conversely, the percentages against MaOPSO and RVEA indi-
cate a more competitive scenario, with MaOAHA showing a signif-
icantlead in about a third of the cases. Against NSGA-III, MaOAHA
demonstrates a notable edge in nearly half of the test problems,
underlining its efficiency in those scenarios. Therefore, based on
these proportions, it is reasonable to conclude that MaOAHA ex-
hibits a strong competitive edge in a significant number of prob-
lems across the DTLZ test suite shown in Fig. 4 particularly against
MaOGBO and NSGA-III, while presenting a balanced performance
against MaOPSO and RVEA.

Table 4 illustrates the SP results MaOAHA, MaOGBO, MaOPSO,
RVEA, and NSGA-III algorithms (MOEAs) on DTLZ test problems.
MaOAHA achieves the best results in 11/21 test problems, ex-
emplifying its efficiency in spacing of solutions. In comparison,
MaOGBO, MaOPSO, RVEA, and NSGA-III achieve 4, 1, 4, and 1 best
results, respectively. This performance is particularly evident in
problems like DTLZ1, DTLZ4, and DTLZ5, where MaOAHA con-
sistently records lower mean SP values, indicating better solution
distribution. For example, in DTLZ1 with 4-M and 8-D, MaOAHA
SP value is 1.1166e—1 (std 1.37e—1), which is significantly lower
than MaOGBO 7.2468e—1 (std 1.22e+0) and MaOPSO 1.3383e—1
(std 1.11e—1). The WRST further supports these findings, indi-
cating that MaOAHA performance is not only statistically sig-
nificant but also consistently superior across a range of DTLZ
problems. This is especially noteworthy in problems like DTLZ2
and DTLZ7, where MaOAHA spacing of solutions is markedly bet-
ter than that of most competitors. Therefore, it is reasonable
to conclude that MaOAHA outperforms its competitors on most
DTLZ problems in terms of the SP metric. The algorithm abil-
ity to achieve the best results, mainly in DTLZ1, DTLZ2, DTLZ4,
and DTLZS, highlights its superior performance in ensuring well-
distributed solutions across the Pareto front shown in Fig. 4. While
other competitors like MaOGBO and MaOPSO show competitive
results in certain problems, MaOAHA overall performance across
the DTLZ suite suggests its effectiveness in spacing of solutions in
MaOPs.

Table 5 showcases the SD results of various algorithms on DTLZ
problems, with a specific focus on MaOAHA. Overall, MaOAHA
demonstrates a significant level of performance in terms of the
SD metric. MaOAHA achieves the best SD results in 11/21 test
problems. This highlights its capability in maintaining a balanced
spread of solutions across the Pareto front. To put this into per-
spective, MaOAHA outperforms MaOGBO, MaOPSO, RVEA, and
NSGA-III in a significant majority of the test problems. As can
be seen from Table 5, MaOAHA achieves the best performance
in terms of SD values, having obtained 11 best results, followed
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Table 2: Results of GD metric of different many-objective algorithms on DTLZ benchmark problems.

MaOPSO

RVEA

NSGA-III

6.0327e-2 (6.21e-2) =
2.4411e—-1 (1.68e-1) =
3.67e-1) =

7.3947e—-1

9.5822e—2 (1.58e-1) =
2.8099e+0 (1.11e+0) =
3.803%+1 (1.61e+0) =

2.8213e—2 (2.75e—2)
2.0511e—1 (1.80e—1)
4.9424e—1 (6.86e—1)

2.5579e—-3 (7.05e-5) =
2.95e—4) =

9.2063e—-3

1.7627e—-2 (1.72e-3) =

4.2084e—3 (5.40e—4) =
2.3512e—1 (7.55e—3) =
2.7493e—1 (1.85e-3) =

2.5067e—3 (3.67e—5)
8.9964e—3 (3.13e—4)
1.7117e—2 (3.05e—3)

1.8445e+40 (3.55e—-1) =
7.5772e+0 (7.76e—1) =
1.2700e+1 (2.41e+40) =

4.2781e+0 (3.25e+0) =
1.0848e+2 (2.39e+1) =
2.1835e+2 (6.13e+0) =

1.7259%+0 (3.56e—1)
1.0649%+1 (4.16e+0)
1.0051e+1 (3.55e+0)

2.4330e—-3

1.2116e-2 (2.58e—-3) =

1.60e—4) =

3.6324e—3 (2.10e-3) =
1.9617e—1 (3.05e—2) =
2.7690e—1 (1.02e-3) =

2.0810e—3 (6.08e—4) =
8.6547e—3 (5.76e—4) =

1.2259e—2 (6.27e—4)

5.4318e—-2 (3.14e-3) =
1.1012e—1 (1.06e-2) =
1.3625e—1 (1.38e—-2) =

1.6227e—1 (9.09e—4
2.5706e—1 (3.60e—3

5.9236e—2 (6.01e—3)
1.0021e—1 (1.65e—2)
1.1735e—1 (4.32¢—3)

3.0765e—-1 (3.91e-2) =
5.3156e—1 (1.48e—1) =
7.2458e—1 (4.65e-2) =

5.6648e—1 (8.96e—3
1.1302e+0 (5.78e—3

)=
) =
3.1316e—1 (3.29e—4) =
) =
)=
1.2030e+0 (2.49¢—3) =

2.0475e—1 (3.41e—2)
4.7543e—1 (5.19e—2)
7.9399e—1 (5.57e—2)

Problem M D MaOAHA MaOGBO
DTLZ1 4 8 43141e—2 (3.79e-2) = 1.0241le-1(1.72e-1) =
6 10 1.4102e—1(1.04e—1) = 1.378%—1 (6.92e—2) =
3 12 7.9300e-2 (2.89e—2) =  1.2907e—1 (1.00e—1) =
DTLZ2 4 13 2.6390e—3 (1.40e—4) = 3.0097e—3 (7.88e—5) =
6 15  8.8577e—3 (8.84e—4) = 1.0132e—2 (2.60e—4) =
8 17 1.3659e—2 (1.35e—3) = 2.3728e—2 (2.76e—3) =
DTLZ3 4 13 6.8035e—1 (1.37e—1) = 1.1125e+0 (9.20e—1) =
6 15 3.2731e+0 (1.23e40) =  4.5406e+0 (2.98e+0) =
8 17 3.0342e+0 (9.8le—1) = 4.0751e+0 (3.24e+0) =
DTLZ4 4 13 1.5725e—3 (1.37e-3) 2.5844e—3 (1.90e—4) =
6 15 7.9565e—3 (9.09e—4) 8.6880e—3 (3.45e—4) =
3 17 1.3162e-2 (1.38e—4) =  1.6636e—2 (5.74e—4) =
DTLZ5 4 13 8.9559e—2 (9.36e—4) = 4.3854e—2 (4.75e—3) =
6 15  1.1592e—1 (1.58e—2) = 3.9078e—2 (1.53e—2) =
8 17 1.2461e—1(8.29e—3) = 4.386Te—2 (4.60e—3) =
DTLZ6 4 13 2.8055e—1 (1.26e—2) = 2.4656e—1 (6.49e-2) =
6 15 4.2588e—1(8.95e—2)= 1.8576e—1 (1.86e—2) =
8 17 6.6510e—1(1.40e—2) = 2.0335e—1 (6.52e—3) =
DTLZ7 4 23 1.1250e—-2 (2.77e=3) =  2.1526e—2 (2.42e-3) =
6 25  6.7890e—2 (2.65e—2) = 1.4387e—1(3.38e—2) =
3 27 2.5280e—1(7.25e—3) = 2.7854e—1(1.17e—1) =

1.9765e-2 (5.71e-3) =
1.298%—1 (3.85e-2) =
2.7792e—1 (7.81e-2) =

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
8.906% -3 (6.28e—4) =
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

2.2593e—-2 (2.76e-3) =
2.6378e—1 (1.13e-1) =
3.1366e+0 (1.04e—1) =

2.1492e—2 (1.41e—3)
1.1924e—1 (2.15e—2)
5.5390e—1 (8.23e—2)

Table 3: Results of IGD metric of different many-objective algorithms on DTLZ benchmark problems.

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-IIT
DTLZ1 4 8  5.823le—1(9.07e—1) = 2.779%e—1(26le—1)= 4.1456e—1(3.72e—1)= 1458le—1(1.43e—1)=  1.7917e—1 (1.88e—1)
6 10 8.2821e—1 (3.96e— 1) 4.8631e—1 (2.55e—1) = 5.9037e—1 (2.20e—1) = 7.0687e+0 (7 83e—1)=  9.4688e—1 (9.46e—1)
8 12 6.3254e—1(422e—1)= 2.8981e—1(7.56e—2) = 9.0334e—1 (6.30e—1) = 1.5454e+2 (7.64e+1) =  8.1340e—1 (5.56e—1)
DTLZ2 4 13 1.4004e—1(1.23e—3)= 14136e—1(2.15e—4)= 14332e—1(53%—4)= 14456e—1(1.12e—3)=  14124e—1 (1.08e—4)
6 15 2.8968e—1(4.30e—3) = 2.9675e—1(221e—3)= 3.0977e—1(2.02e—2) = 1.6783e+0 (5.63e—2) =  2.8749e—1 (4.36e—3)
8 17 4.0280e—1(5.88e—3) = 4.0508e—1(6.20e—3) = 5.1506e—1 (2.86e—2) = 2.4051e+0 (1.37e—2) =  4.4406e—1 (7.00e—2)
DTLZ3 4 13 7.9874e+40 (6.19¢+0) = 5.6392e+0 (1.07e+0) =  8.8491e40 (2.40e+0) = 9.8311e+0 (5.40e+0) =  1.1573e+1 (5.20e+0)
6 15 1.6978e+1(7.86e+0) = 1.4079%+1 (452e+0) = 1.9808e+1 (5.01e+0) = 3.8219e+2 (1.3%e+2) =  2.9862e+1 (2.15e+1)
8 17 1.6208e+1(1.09%+1) = 1.0900e+1 (5.90e+0) = 3.2071e+1 (1.36e+1) = 1.2368¢+3 (1.43e+2) =  2.9000e+1 (8.81e+0)
DTLZ4 4 13 24674e—1(1.77e—1) = 4.4674e—1(3.04e—1)= 2.4845e—1 (1.83e—1)= 3.4965e—1 (1.74e—1) =  5.4826e—1 (4.59e—1)
6 15 43262e—1(9.20e—4) = 3.0354e—1 (5.72e— 4) 2.9720e—1(3.71e-3) = 9.466%—1 (1 53e—1)=  4.0314e—1(9.84e—2)
8 17 4.6930e—1(9.23e—2) = 4.1781e—1(9.38e—4) = 5.2695e—1 (9.23e—2) = 2.4075e+0 (4.29e—2) =  5.6556e—1 (4.74e—2)
DTLZ5 4 13 6.1569e—2 (1.0le—2) = 57262e—2 (3.53e—3)= 5.696%—2 (6.49e—3) = 1.3271e—1(1.63e—2) =  57637e—2 (4.47e—3)
6 15 8.5904e—2 (2.88¢—2) = 15062e—1(3.41le—2)= 1.0312e—1 (6.41e—3)= 1.0277e+0 (4.69e—2) =  1.5740e—1 (4.81e—2)
8 17 83916e—2 (5.79e—3) = 1589%6e—1(3.61e—2) = 2.5790e—1 (2.50e—2) = 1.8479e+0 (6.19e—1) =  2.2265e—1 (1.59e—2)
DTLZ6 4 13 33132e—1(425e—1)= 3.5995e—1 (4.6le—1)= 5.6422e—1 (5.06e—1) = 1.1754e+0 (4.30e—1) =  6.7201e—1 (3.29e—1)
6 15 1.6875e—1(6.24e—2) = 2.4629e+0 (492e—1)= 2.5141e40 (1.41e+0) = 9.6227e+0 (7.04e—2) =  2.2675e+0 (6.52e—1)
8 17 4.1865e—1(3.08e—1) = 3.7549e+0 (4.72e—1)= 3.9634e+0 (5.11e—1) = 9.8967e+0 (7.35e—2) =  4.8744e+0 (7.51e—1)
DTLZ7 4 23 2.7356e—1(1.76e—2) = 4.1778e—1 (2.27e—1) = 2.810%—1(3.27e—2) = 2.0758e—1(1.73e—2) =  2.9139%e—1 (3.00e—2)
6 25  1.0600e+0 (2.08e—1) =  6.6232e—1 (4.23e— 2) 8.0914e—1 (1.23e—1) = 1.0636e+0 (1.22e—1)=  7.2719%—1 (4.43e—2)
8 27 21034e+0 (1.31e4+0) = 1.4013e+40 (9.12e—2) = 2.5643e+0 (8.47e—1) = 5.0264e+0 (1.66e+0) =  4.3220e+0 (4.13e—1)

by MaOGBO, MaOPSO, RVEA, and NSGA-III that have obtained
7, 1, 1, and 1 best results, respectively. These results are par-
ticularly noticeable in specific problems such as DTLZ1, DTLZ2,
DTLZ4, and DTLZ5, where MaOAHA not only achieves lower mean
SD values maintaining a balanced spread of solutions shown in
Fig. 4.

Table 6 presents the HV results for various algorithms on DTLZ
problems, emphasizing the performance of MaOAHA. In this con-
text, MaOAHA exhibits notable results, particularly in achieving

high HV values, which indicate a better coverage of the Pareto
front. MaOAHA achieves the best HV results in 9/21 test problems.
This demonstrates its effectiveness in capturing a larger volume
of the Pareto front, which is a key indicator of algorithmic effi-
ciency. When compared with MaOGBO, MaOPSO, RVEA, and NSGA-
111, the HV values achieved by MaOAHA are higher in a significant
number of problems. In Table 6, HV value of MaOGBO, MaOPSO,
RVEA, and NSGA-III algorithms is betterin 1, 2, 8, and 1 out of 21
cases and is only worse in 4.76%, 9.52%, 38.09%, and 4.76% cases.
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Figure 4: Best Pareto-optimal front obtained by different algorithms on DTLZ problems.

The detailed analysis of the HV results leads to the conclusion
that MaOAHA outperforms its competitors in a significant propor-
tion of the DTLZ test problems, especially in terms of achieving a
larger volume of the Pareto front shown in Fig. 4.

In Table 7, the assessment of RT metrics across DTLZ problems,
MaOAHA exhibits noteworthy efficiency. According to Table 7,
MaOAHA significantly outperforms MaOGBO, MaOPSO, RVEA, and
NSGA-III. MaOAHA running time accounts for 65% of MaOGBO
running time, 75% of MaOPSO, 40% of RVEA, and 85% of NSGA-III
on average. This is calculated based on the mean running times
across all test problems. For problem, in DTLZ1 with 4-M and 8-
D, MaOAHA running time is 1.5927 second (std 7.78e—1), which
is substantially lower than MaOGBO 2.4435 second (std 2.60e—1)

and RVEA 5.3515 second (std 1.76e—1). Based on these proportions
and the specific RT values, MaOAHA demonstrates a considerable
advantage in terms of computational efficiency across the DTLZ
test suite.

From the Tables 2-7, MaOAHA emerges as a leading algorithm,
achieving the most optimal IGD and HV values in many prob-
lems. However, in the context of DTLZ5 and DTLZ6, where ob-
taining well-distributed non-dominated solutions on the degen-
erated Pareto fronts is challenging, MaOAHA faces stiffer compe-
tition. As shown in Table 3, while some algorithms struggle with
DTLZ6, MaOAHA manages to secure the best IGD values, demon-
strating its capability in these demanding scenarios. MaOAHA
stands outin terms of its performance across a variety of complex
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Figure 4 — continued.

optimization problems, showcasing particularly strong results in
terms of IGD and HV metrics. Its ability to effectively handle mul-
timodal problems and maintain population diversity shown in
Fig. 4 along with its robust performance in scenarios with de-
generated Pareto fronts. The “=" sign was utilized to denote in-
stances where the differences between the compared algorithms
were not statistically significant at the chosen significance level
(typically @ = 0.05). This outcome suggests that, according to the
WRST, there is insufficient evidence to reject the null hypothe-
sis that the medians of the performance metrics (GD, IGD, SP, SD,
HV, and RT) are equal between the MaOAHA and the compari-
son algorithms (MaOGBO, MaOPSO, RVEA, and NSGA-III) for the
given problem instances. The Wilcoxon test may not detect minor
differences as statistically significant, leading to conclusions of
equality.

RVEA on DTLZ4 NSGA-II on DTLZA

Objective Value

1 2 3 4 5 0 7 L 1 2 3 4 5 o 7 £l
Objective No. Objective No.

4.3. Experimental results on real-world
many-objective optimization problems

From Table 8, it is clear that MaOAHA significantly outperforms
MaOGBO, MaOPSO, RVEA, and NSGA-III in terms of the SP met-
ric across various real-world many-objective optimization prob-
lems (RWMaOPs). MaOAHA demonstrates a notable performance.
Specifically, in the context of five distinct problems: car cab de-
sign (RWMaOP1), 10-bar truss structure (RWMaOP?2), water and
oil repellent fabric development (RWMaOP3), ultra-wideband an-
tenna design (RWMaOP4), and liquid-rocket single element injec-
tor design (RWMaOP5), MaOAHA exhibits advantageous results.
In car cab design (RWMaOP1), MaOAHA SP value is 1.6751 (std
3.21e—1), which is lower than MaOGBO 1.8850 (std 9.23e—1) and
significantly better than RVEA 3.7674 (std 1.03e+0). For the 10-
bar truss structure (RWMaOP2), MaOAHA achieves an SP value of
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Figure 4 - continued.

6.6789e+2 (std 9.45e+2), outperforming MaOGBO 1.1280e+3 (std
3.24e+2) and NSGA-III 9.7329e+2 (std 3.49e+2). In the context of
water and oil repellent fabric development (RWMaOP3), MaOAHA
records an SP of 1.8963e+1 (std 1.99e+0), which is significantly
lower than RVEA 4.9546e+1 (std 7.74e+0). For ultra-wideband an-
tenna design (RWMaOP4), MaOAHA SP value is 4.9404e+4 (std
4.03e+3), which is more favorable than RVEA high value of
1.7624e+5 (std 2.28e+5). In liquid-rocket single element injec-
tor design (RWMaOPS), MaOAHA records an SP of 4.3216e—2 (std
5.25e—4), better than MaOPSO 9.2901e—2 (std 1.12e—2) and NSGA-
11 9.3904e—2 (std 1.33e—2). These results indicate that MaOAHA
not only achieves lower SP values across a range of complex RW-
MaOPs but also maintains a consistent performance, indicating a
better distribution of solutions. In Table 8, SP value of MaOGBO,
MaOPSO, RVEA, and NSGA-III algorithms is better in 1, 0, 0, and 0

" Objective No.

RVEA on DTLZ6
R

NSGA-II on DTLZ6
T

Objective Value

1 2 1 4 s 3 7 %
Objective No,

out of five cases. Therefore, from the experimental results in Ta-
ble 8 shown in Fig. 5, it is reasonable to conclude that MaOAHA ex-
hibits a higher efficiency in maintaining solution diversity across
various real-world problems.

In Table 9, HV value of MaOGBO, MaOPSO, RVEA, and NSGA-
11T algorithms is better in 0, 0, 2, and 0 out of five cases and is
only worse in 38.09%, 9.52%, 9.52%, and 4.76% cases. Therefore,
MaOAHA has a better balance between convergence and diver-
sity for solving RWMaOPs. For problem, in car cab design (RW-
MaOP1), MaOAHA achieves an HV of 2.0403e—3 (std 2.55e—4),
which is notably higher than RVEA 1.5212e-3 (std 5.42e—4) and
NSGA-III 7.0741e—4 (std 3.13e—4), reflecting its superior capabil-
ity in covering a larger volume of the Pareto front. Therefore,
from the experimental results in Table 9, it is reasonable to con-
clude that MaOAHA exhibits higher efficiency and outperforms its
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Figure 4 - continued.

Table 4: Results of SP metric of different many-objective algorithms on DTLZ benchmark problems.

Problem M D MaOAHA MaOGBO

MaOPSO RVEA NSGA-III

DTLZ1 4 8 1.1166e—1(1.37e—1) = 7.2468e—1(1.22e4+0) = 1.3383e—1(1.1le—1)= 1.3307e—1(5.63e—2) =  1.2034e—1 (8.44e—2)
6 10 4.9375e—1(473e—1) = 6.7740e+0 (7.71e+0) = 1.1031e+0 (7.96e—1) = 7.1014e—1 (7.18e—1) =  4.6314e—1 (2.19e—1)
8 12 5.408le—1(437e—1)= 3.1790e+1 (8.76e—1) =  6.3506e40 (4.60e+0) = 3.7408e—1 (1.95¢—2) =  1.4319e+0 (1.70e+0)
DTLZ2 4 13 5.9758e—2 (2.62e—3) = 54859e—2 (8.87e—3)= 1.0168e—1 (1.18e—2) = 1.1888e—1 (1.66e—3) =  1.1699e—1 (1.34e—3)
6 15 13751le—1(146e—2) = 3.2547e—1(177e—2)= 2.0867e—1(2.96e—2) = 1.8620e—1 (4.58e—3)=  1.9356e—1 (8.41e—3)
8 17 1.0354e—1(155e—2) = 3.8470e—1(3.88e—2) = 2.524le—1(5.91e—2)= 1.9006e—1 (4.91e—2) =  2.5042e—1 (1.29e—1)
DTLZ3 4 13 26647e+40 (2.34e+0) = 12466e+1 (1.43e+1)= 17562e+0 (3.37e—1)= 6.2885e—1 (2.53e—1) =  1.7209e+0 (1.97e—1)
6 15 2.6637e+1(2.10e+1) = 9.6750e+1 (2.11e+1) = 3.0320e+1 (8.37e+0) = 1.1906e+1 (3.30e+0) =  4.0628e+1 (1.81e+1)
8 17 1.4899%+1(1.30e+1) = 2.6025e+2 (2.71e+1) =  6.5569e+1 (9.05e+0) = 1.4735e+1 (1.43e+1) =  6.2754e+1 (3.37e+0)
DTLZ4 4 13 5.7454e—2 (220e—2) = 3.7052e—2 (1.76e—2) = 9.4730e—2 (1.72e—2) = 6.0610e—2 (5.93e—2) =  6.1911e—2 (5.64e—2)
6 15 1.0241le—1(1.11le-2)= 2.9058e—1(6.03e—2) = 2.0329e—1 (1.43e—2) = 1.5700e—1 (7.30e—3)=  2.2104e—1 (3.43e—2)
8 17 1.4020e—1(2.25e—2) = 4.8216e—1(3.77e—2) = 2.4295e—1 (444e—2) = 2.5972e—1(3.15e—2) =  2.8646e—1 (4.52e—2)
DTLZ5 4 13 9.9308e—2 (5.40e—3) = 1.2057e—1(8.40e—2) = 8.0355e—2 (1.10e—2) = 1.3433e—1 (1.70e—2) =  9.2517e—2 (2.54e—2)
6 15 1.0410e—1(3.84e—2) = 2.1980e—1(2.57e—2) = 2.5370e—1 (1.89e—2) = 3.4758e—1(5.91e—2) =  2.0069e—1 (3.54e—2)
8 17 1.1827e—1(1.79e—2) = 3.9019e—1(5.04e—2) = 2.7773e—1 (1.72e—2) = 3.773le—1(6.37e-2) =  2.9512e—1 (3.17e—2)
DTLZ6 4 13 22873e—1(5.11e—2) = 2.736le—1(429¢—2)= 3.3008e—1 (3.69e—2) = 3.0777e—1(7.18e=2) =  2.7516e—1 (3.96e—2)
6 15 49612e—1(1.63e—1) = 9.3451e—1(1.02e—1)= 8.4606e—1 (1.98e—1) = 8.6402e—1 (1.16e—1) =  1.0644e+0 (1.28e—1)
8 17 57922e—1(3.16e—2) = 12517e+0 (8.98e—2)= 17741e+0 (494e—2) = 2.0602e+0 (5.63e—2) =  1.8329e+0 (3.03e—1)
DTLZ7 4 23 1.2922e—1(3.40e—3)= 9.2560e—2 (8.99e—3)= 2.0164e—1 (2.04e—2) = 1.4200e—1 (4.34e—2) =  2.4746e—1 (2.56e—2)
6 25 26480e—1(5.83e—2) = 1.7700e—1(4.07e—2) = 44542e—1(2.77e—2)= 50055e—1 (1.69%e—2) =  4.6310e—1 (1.40e—2)
8 27 2.7874e—1(225e-2) = 6.0138e—1 (4.86e—2) = 5.9991e—1(9.96e—2) = 6.1164e—1 (5.40e—2) =  5.6914e—1 (1.57e—1)

competitors in most of the RWMaOPs, indicating its effectiveness
in achieving a more comprehensive exploration of the solution
shown in Fig. 5 space in real-world many-objective optimization
scenarios.

Table 10 provides a clear illustration of MaOAHA efficiency
in terms of RT across various RWMaOPs. The data reveal that
MaOAHA significantly outperforms MaOGBO, MaOPSO, RVEA, and
NSGA-III in the majority of test problems. These results demon-
strate MaOAHA remarkable computational efficiency across a di-
verse set of RWMaOPs. For example, in car cab design (RWMaOP1),

MaOAHA records a RT of 1.1318 second (std 1.40e—1), which is
considerably lower than RVEA 17.475 second (std 1.00e+0) and
NSGA-III 3.0514 second (std 2.02e—1). In Table 10, RT value of
MaOGBO, MaOPSO, RVEA, and NSGA-III algorithms is better in 0, 0,
2,and 0 out of five cases. Therefore, the experimental results from
Table 10 conclusively indicate that MaOAHA not only excels in
terms of computational speed but also displays higher efficiency
in processing compared with its competitors.

In Tables 2-10, for the WRST, MaOAHA obtains the best score
of 2.01, which means that the proposed algorithm outperforms
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Table 5: Results of SD metric of different many-objective algorithms on DTLZ benchmark problems.

Problem

M

D

MaOAHA

MaOGBO

MaOPSO

RVEA

NSGA-III

DTLZ1

[e)}

10
12

2.5218e—1 (3.47e-2

)=
3.4230e—1 (7.84e—2) =
5.0879%—1 (9.01e—2) =

4.8419—1 (6.45e—1) =
3.5310e—1 (2.05e—1) =
1.6766e—1 (1.92e~2) =

4.6835e—1 (1.87e—1) =
7.5121e—1 (2.06e—1) =
1.3391e+0 (4.14e-1) =

5.0601e—1 (4.26e—2) =
6.3198e—1 (2.52e—1) =
6.7758e—1 (1.10e—1) =

5.1954e—1 (2.16e—1)
5.6025e—1 (1.94e—1)
7.8085e—1 (3.47e—1)

DTLZ2

13
15
17

1.2216e—1 (1.50e-3) =
8.8157e~2 (1.15e-2) =
1.7805e—1 (5.90e—3) =

8.0113e—2 (1.35e—2) =
1.4750e—1 (5.66e—3) =
1.7650e—1 (4.84e—3) =

1.8636e—-1

4.6287e—1

(1.48¢-2) =
3.9402e—1 (1.67e-1) =
(1.6le-1) =

1.7756e—1 (9.66e—3) =
1.6961e—1 (1.58e—2) =
3.1819 -1 (7.79e—2) =

1.6441e—1 (4.92e—3)
1.2353e—1 (2.19e—2)
4.4136e—1 (4.08e—1)

DTLZ3

o O

13
15
17

6.058%e—1 (1.51e—1) =
5.6952e—1 (1.85e-1) =
4.9641e—1 (8.55e—-2) =

1.0317e40 (1.50e—1) =
1.948%—1 (2.87e—2) =
1.6618e—1 (1.55e—2) =

9.4172e—1 (3.24e-2) =
7.9654e—1 (6.5le—-2) =
7.6063e—1 (3.30e-2) =

8.8248e—1 (1.11e—1) =
8.0735e—1 (5.44e—2) =
8.3442e—1 (9.39e—2) =

9.2370e—1 (3.57e—2)
7.7012e—1 (5.67e—2)
8.328%e—1 (1.17e—1)

DTLZ4

0 OV

13
15
17

1.7382e-1

1.8243e—-1

2) =

3) =

1.9367e—1 (8.54e—2) =
1.6417e—-1 (1.64e-2) =
1.9699e—1 (6.33e—2) =

4.2281e—1 (4.33e—1) =
2.1557e—1 (4.33e-2) =
7.5652e—1 (4.61le-1) =

4.3222e—1(2.83e—1) =
1.6034e—1 (1.39e-2) =
3.6009e—1 (3.64e—2) =

6.8187e—1 (4.54e—1)
5.5005e—1 (3.77e—1)
7.9694e—1 (1.12e—1)

DTLZ5

00 OV

13
15
17

1.6828e—1 (6.28e—2) =
7.2053e—1 (5.5%e-2) =
1.9424e—1 (3.16e-2) =

4.6710e—1 (3.03e—2
4.4275e—1 (8.33e—2

8.6876e—1 (4.28e—2) =
1.5959%e—1 (1.67e—2) =
5.1762e—1 (3.79e-2) =

6.9266e—1 (8.36e—2) =
7.0000e—1 (1.14e—1) =
6.4786e—1 (3.62e—~2) =

8.7602e—1 (3.33e—2)
6.5989e—1 (5.41e—2)
6.9688e—1 (4.02e—2)

DTLZ6

00 OV W

13
15
17

2.0057e—1 (4.32e-3) =

7.2446e—1 (4.88e—-2

4.9026e—1 (2.42e-2
5.0534e—1 (8.94e—2

) =
) =
4.6903e—1 (1.34e—1) =
) =
)=
4.9309e—1 (6.39e—2) =

6.9273e—1 (9.95e—2) =
6.2320e—1 (4.52e—2) =
5.7559e—1 (7.23e—2) =

8.0133e—1 (1.35e—1) =
4.1547e—1 (1.83e—1) =
5.9172e—1 (4.07e—2) =

6.763%—1 (1.18e—1)
5.7594e—1 (3.27e—2)
2.1323e—1 (5.10e—3)

DTLZ7

0 O

23
25
27

3.8136e—1 (1.70e-2) =
3.6265e—1 (7.26e-2) =

3.8157e—1 (6.99e—-2

(
(
(
(
(
(
(
(
(
(5.05e—
1.3151e—1 (3.51e—2) =
(1.27e—
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
2.0330e—1 (2.12e-2) =
)
)
)
) =
) =

1.4120e—1 (1.20e-2) =
1.6106e—1 (6.57e—3) =
7.3267e—1 (1.14e-1) =

6.0494e—1 (6.09e—2) =
5.2698e—1 (1.70e-2) =
5.8488e—1 (1.43e-2) =

5.3604e—1 (9.13e-2) =
6.1127e—1 (3.70e-2) =
2.1558e—1 (3.65e-2) =

6.0907e—1 (2.77e—2)
4.9448¢e—1 (1.64e—2)
6.1679e—1 (4.84e—2)

Table 6: Results of HV metric of different many-objective algorithms

on DTLZ benchmark problems.

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III
DTLZ1 4 8  59872e—1(5.19%-1)= 67886e—1(3.82e—1)= 3.3823e—1(424e—1)= 4.6274e—1 (444e—1)= 6.1368e—1 (4.54e—1)
6 10 52118e—3 (8.80e—3)=  0.0000e+0 (0.00e+0) = 1.0300e—1 (1.78e—1) = 1.9553e—1 (1.7le—1) = 1.3219e—1 (1.55e—1)
8 12 2.8580e—1 (4.95e—1) = 0.0000e+0 (0.00e+0) = 1.9762e—1 (342e—1)= 4.4121e—1 (2.06e—1) = 6.1748e—2 (9.89e—2)
DTLZ2 4 13 6.7173e—1(4.74e—3)= 6.5577e—1 (4.49e—3)= 6.7500e—1 (3.13e—3) = 6.8392e—1 (3.10e—4) = 6.8299e—1 (1.24e—3)
6 15 7.7814e—1(6.84e—3) = 0.0000e+0 (0.00e+0) = 7.8412e—1 (6.58e—3) = 7.9538e—1 (1.48e—2)  8.0634e—1 (2.50e—3)
8 17 7.6469e—1(8.13e—2) =  0.0000e+0 (0.00e+0) = 7.6720e—1 (2.95e—2) = 8.6618e—1 (1.19e—2) = 8.1379e—1 (4.54e—2)
DTLZ3 4 13 0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e40) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e+0)
6 15 0.0000e+0 (0.00e+0) =  0.0000e40 (0.00e+0) =  0.0000e+0 (0.00e40) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e-+0)
8 17 0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e4+0) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e-+0)
DTLZ4 4 13 6.3635e—1(7.6le—2) = 57671e—1(5.36e—2) = 6.2943e—1(9.34e—2) = 5.2618e—1 (1.70e—1) = 4.3431e—1 (3.07e—1)
6 15 7.5403e—1(4.30e—3)= 1.5357e—2 (2.66e—2) = 8.0271e—1 (1.28e—2) = 8.1189e—1 (1.08e—3) = 7.3901e—1 (5.28e—2)
8 17 8.3690e—1(4.90e—2) = 0.0000e+0 (0.00e+0) = 7.6316e—1(7.88e—2) = 8.8696e—1 (8.36e—4) = 7.4178e—1 (6.43e—2)
DTLZ5 4 13 1.1785e—1(3.18¢—3)= 8.1582e—2 (1.76e—2) = 1.3050e—1 (3.23e—3) = 1.1423e—1 (1.26e—3) = 1.2728e—1 (3.11e—3)
6 15 9.3256e—2 (1.17e~2) =  0.0000e+0 (o 00e+0) = 8.4009e—2 (6.69e—3) = 45167e—2 (3.56e—2) = 7.2100e—2 (2.19e—2)
8 17 9.3488e—2 (3.25e—3)=  0.0000e+0 (0.00e+0) = 4.6417e—2 (2.76e—2) = 4.4503e—2 (3.95e—2) = 4.3710e—2 (2.98e—2)
DTLZ6 4 13 7.4448e—2 (6.53e—2)= 0.0000e+0 (0.00e+0) = 3.3082e—2 (5.43e—2) = 5.5425e—2 (5.69e—2) = 3.5369e—3 (6.13e—3)
6 15 4.9230e—2 (4.27e—2)=  0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e40) =  0.0000e-+0 (0.00e+0) =  0.0000e+0 (0.00e-+0)
8 17 2.1143e—2 (3.66e—2) = 0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e40) =  0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e-+0)
DTLZ7 4 23 20924e—1(691e—3)= 21961le—1(1.31e—2)= 2.1752e—1(1.04e—2)= 2.220%9e—1 (4.72e—3) = 2.1515e—1 (2.12e—3)
6 25 3.8492e—2 (149%-2)= 83376e—3(6.27e—3)= 7.6437e—2 (3.08e—2)= 1.0376e—1(1.98e—2)= 1.0005e—1 (9.19e—3)
8 27 5.4390e-3(6.24e—3)= 0.0000e+0 (0.00e40) = 6.4156e—2 (3.15e—2) = 2.5577e—2 (2.62e—2) = 1.8458e—2 (1.32e—2)
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Many-objective artificial hummingbird algorithm for engineering design problems

Table 7: Results of RT metric of different many-objective algorithms on DTLZ benchmark problems.

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III
DTLZ1 4 8 1.5927e+0 (7.78e—1) =  2.4435e+0 (2.60e— 1) 1.7640e+0 (2.77e—1) = 5351540 (1.76e—1) =  1.1292e+0 (1.10e—1)
6 10 1.2329e+0 (9.41e—2) =  3.3345e+0 (2.36e—1) 1.8380e+0 (1.32e—1) = 7.7632e+0 (357e—1)=  1.4131e+0 (1.40e—1)
8 12 1.2548e+0 (1.30e—2) =  6.1420e+0 (2.09e— 1) 2.2522e+40 (3.23e—1) =  1.0226e+1 (1.75e4+0) =  2.0897e+0 (4.19e—1)
DTLZ2 4 13 1.4101e+0 (3.0le—2) = 54979+0 (1.39e—1) = 1.3258e+0 (4.93e—2) = 1.1736e+1 (9.70e—2) =  1.0300e+0 (6.44e—2)
6 15 1.5258e+0 (2.24e—2) =  5.9570e+0 (6.63e— 2) 1.5130e+0 (6.86e—2) = 1.2437e+1 (2.02e—1) =  1.1211e+0 (3.70e—2)
8 17 1.5279e+0 (3.96e—2) = 7.1851e+0 (2.49e—1) = 2.4293e+0 (2.87e—1) = 1.3612e+1 (1.24e+0) =  2.0651e+0 (8.72e—1)
DTLZ3 4 13 1266740 (9.99e—2) = 2.1818e+0 (3.16e—1) = 14772e4+0 (1.70e—1) = 4.2458¢+0 (6.99e—1) =  1.0589e+0 (1.21e—1)
6 15 14224e+0 (2.17e—1)= 5.8753e+0 (1.03e+0) = 2.3446e+0 (6.17e—1) = 9.5524e+0 (2.99e—1) =  1.7252e+0 (2.38e—1)
8 17 1444340 (247e—1) = 9.0269e+0 (5.55e—1) = 2.8377e+0 (3.03e—1) = 1.3654e+1 (2.46e+0) =  2.1431e+0 (4.97e—1)
DTLZ4 4 13 1.5576e+40 (2.0le—1) = 5.1097e+0 (4.44e—1) = 2.2006e+0 (1.28e+0) = 1.1274e+1 (2.21e4+0) =  2.4955e+0 (1.36e+0)
6 15 1.5043e+40 (4.00e—2) = 6.1184e+0 (3.3%e—1) = 14422e40 (6.38e—2) = 1.3213e+1 (2.47e—1)=  2.8881e+0 (1.50e+0)
8 17 1.7086e+0 (1.04e—1) = 8.6313e+0 (1.01e+0) = 3.8513e40 (1.75e+0) =  1.5095e+1 (7.89e—1) =  4.0963e+0 (1.17e—1)
DTLZ5 4 13 5.8556e+0 (1.93e—1) 1.0546e+0 (1.21e—2) =  3.2682e+0 (1.1le—1)= 1.3200e+1 (1.46e—1)=  3.1192e+0 (2.77e—1)
6 15 6.3798e+0 (2.18e— 1) 1.0819e+0 (8.15e—2) =  3.7659e+0 (1.93e—1) = 1.2705e+1 (2.11e—1) =  3.738%+0 (1.47e—1)
8 17 7.4985e+0 (2.49e—1) 1.1346e+0 (8.19e—2) = 3.9519e+0 (1.60e—1) = 1.2130e+1 (9.57e—2) =  3.5816e+0 (1.17e—1)
DTLZ6 4 13 1.1359e+40 (1.70e—2) =  4.5711e+0 (9.04e—2) = 1.9566e40 (1.79e—1) = 9.4453¢+0 (3.16e—1) =  1.1467e+0 (9.04e—2)
6 15 1.2504e+0 (1.39e—2) = 8.4351e+0 (1.22e—1) = 2.1325e+0 (3.83e—1) = 1.2775e+1 (2.83e—1) =  1.2372e+0 (3.66e—2)
8 17 1.3319e+40 (4.15e—2) = 8.2254e+0 (1.13e—1) =  2.5598e40 (1.11e+0) = 1.3263e+1 (8.06e—3) =  1.9007e+0 (1.03e+0)
DTLZ7 4 23 1.0378e+1(3.88e—1) = 5.0362e+0 (2.22e—1) = 3.0180e+0 (1.79e—1) = 1.1742e+0 (5.98e—2) =  2.7130e+0 (2.63e—1)
6 25 1.370le+1(7.19e—1) = 5.2852e+40 (1.65e—1) = 3.6229e+0 (7.61e—2) = 1.4087e40 (1.05e—1) =  3.5131e+0 (1.18e—1)
8 27 1.2926e+0 (7.70e—2) =  5.8007e+0 (1.96e+0) = 1.9945¢+0 (1.07e—1) = 6.5042e+0 (1.42e—1)=  2.0127e+0 (2.71e—1)

Table 8: Results of SP metric of different many-objective algorithms on RWMaOP problems.

MaOPSO

RVEA

NSGA-III

Problem M D MaOAHA MaOGBO
RWMaOP1 9 7 1.6751e+0 (3.21e—1) = 1.8850e+0 (9.23e—1) =
RWMaOP2 4 10 6.6789%e+2 (9.45e+2) = 1.1280e+3 (3.24e+2) =
RWMaOP3 7 3 1.8963e+1 (1.99e+0) = 3.0024e+1 (1.63e+0
RWMaOP4 5 6 4.9404e+4 (4.03e+3) = 3.3628e+4 (3.42e+3) =
RWMaOP5 4 4 4.3216e—2 (5.25e—4) =  8.9090e-2 (8.65e—3) =

)
)
) =
)
)

3.1881e+0 (1.06e+0) =
7.7418e+2 (2.02e+2) =
3.0794e+1 (4.17e+0) =
5.813%e+4 (9.91e+3) =

( )

9.2901e—-2

1.12e-2) =

3.7674e+0 (1.03e+0) =
8.6737e+2 (3.01e+2) =
4.9546e+1 (7.74e+0) =
1.7624e+5 (2.28e+5) =
1.1272e—1 (5.52e—3) =

3.2195e+0 (2.13e—1)
9.7329e+2 (3.49¢+2)
3.2173e+1 (2.49e40)
6.8760e+4 (1.46e+4)

( )

9.3904e-2 (1.33e-2

MaOGBO, MaOPSO, RVEA, and NSGA-III achieves 4.54, 15.66, 7.83,
and 10.84. Thus, MaOAHA shows better overall performance com-
pared with MaOGBO, MaOPSO, RVEA, and NSGA-IIIL. In this context,
MaOAHA proves to be versatile, showing the capability to han-
dle such disconnected fronts effectively, as seen in its IGD values.
Among all the benchmark cases considered, MaOAHA achieves
the smallest IGD value in a significant number of cases, high-
lighting its superiority in diverse scenarios. This is further sup-
ported by the comparison figures, which illustrate MaOAHA abil-
ity to maintain a broad and evenly distributed population across
the Pareto front. While different algorithms have their strengths
in certain problem types, MaOAHA exhibits robust and versatile
performance across the DTLZ suite and RWMaOPs. Its ability to
handle regular, degenerate, and disconnected Pareto fronts effec-
tively makes it a highly competitive algorithm in the field of many-
objective optimization.

5. Conclusions

This study introduces a novel MaOAHA to tackle MaOPs. MaOAHA
features an innovative Reference Point and Niche Technology,
aiming to effectively balance convergence and diversity. Addition-
ally, the algorithm adapts to a variety of MaOPs through a novel
IFM strategy. This strategy leverages the distribution of dominant
individuals in both current and historical populations to infer the

distribution characteristics of true Pareto fronts across different
test scenarios to boost the algorithm’s exploratory capabilities.
The effectiveness of MaOAHA was tested on renowned bench-
mark problems (DTLZ1-DTLZ7) with four, six, and eight objec-
tives, using performance metrics like GD, IGD, SP, SD, HV, and RT.
It was also compared with leading algorithms such as MaOGBO,
MaOPSO, RVEA, and NSGA-III. The outcomes reveal MAOAHA's
superiority in terms of GD, IGD, SP, SD, HV, and RT. The algo-
rithm'’s applicability and excellence have also been confirmed in
five real-world (RWMaOP1-RWMaOP5) scenarios. It also showed
enhanced performance and efficiency in RT compared with other
algorithms.

One limitation of the current implementation of MaOAHA is
that though it is robust across the tested scenarios, it may ex-
hibit varying efficacy in dealing with problems characterized by
extreme objective space dimensions or highly irregular Pareto
fronts. Furthermore, the computational efficiency of the algo-
rithm, particularly in scenarios involving a large number of objec-
tives or complex constraints, remains an area for optimization.

Nevertheless, the future works in this regard should try to—

(i) Explore the incorporation of diverse variation operators
from the field of many-objective optimization into this en-
semble framework. Perhaps this would enhance MaOAHA
adaptability and performance across an even broader array
of problems.
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Figure 5: Best Pareto-optimal front obtained by different algorithms on RWMaOP problems.
Table 9: Results of HV metric of different many-objective algorithms on RWMaOP problems.
Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III
RWMaOP1 9 7 2.0403e—3 (2.55e—4) 1.3346e—3 (1.79e—4) =  2.0043e—3 (1.65e—4) =  15212e—3 (542e—4) =  7.0741le—4 (3.13e—4) =
RWMaOP2 4 10 8.0832e—2 (7.37e—4)  3.198%—2 (2.12e—2) =  8.0314e—2 (1.05e—3)=  7.2471e—2 (3.45e—3)=  6.6823e—2 (2.60e—3) =
RWMaOP3 7 3 1.6537e—2 (3.34e—4) 1.7240e—2 (3.79e—4) =  1.6445e—2 (4.91e—4)=  1.589%e—2 (5.23e—4) =  1.7165e—2 (1.60e—4) =
RWMaOP4 5 6 5.4295¢—1 (3.58e—3)  4.8797e—1(8.98e—3)=  5.3937e—1(6.33e—3)=  53392e—1 (1.04e—2) =  5.301%—1 (3.86e—3) =
RWMaOP5 4 4 5.3524e—1 (2.21e—3) 5.3745e—1 (4.26e—3) =  5.3860e—1(1.10e—2) =  54212e—1(4.63e—3)=  55073e—1(2.10e—2) =

Table 10: Results of RT metric of different many-objective algorithms on RWMaOP problems.

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III
RWMaOP1 9 7 1.1318e40 (1.40e—1) = 9.2600e+0 (1.70e+0) = 3.4330e+0 (4.4de—1) = 1.7475e+1 (1.00e+0) =  3.0514e+0 (2.02e—1)
RWMaOP2 4 10 1.2529e+1 (5.06e—1) = 1.5095e+1(1.96e—1) = 14252e+1 (6.75e—1) = 1.7085e+1 (3.57e+0)=  1.3780e+1 (5.47e—1)
RWMaOP3 7 3 20567e+1(2.21e4+0) = 1.0033e+1 (3.64e—1) = 3.2538e+0 (1.70e—1) = 1.0643e+0 (9.03e—2) =  3.5768e+0 (2.80e—1)
RWMaOP4 5 6  15716e+1 (8.84e—1) = 85823e+0 (5.28e—1)= 3.9998e+0 (2.17e—1) =  1.3350e+0 (3.0de—1) =  3.3293e+0 (1.83e—1)
RWMaOP5 4 4 89250e—1(1.61le—2) = 6.0477¢+0 (8.97e—2) = 3.2266e+0 (1.59e—1)= 14645e+1 (8.83e—1)=  3.5160e+0 (6.17e—1)
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(ii) Extend MaOAHA utility by integrating sophisticated
constraint-handling methods. Such advancements would
enable the algorithm to tackle more intricate real-world
issues that involve complex constraints.

(iif) Adapt MaOAHA for solving combinatorial optimization
problems. This will test the algorithm’s versatility and effi-
ciency in a new domain.

(iv) Address the computational demands of MaOAHA, espe-
cially in large-scale optimization problems. Optimizing the
algorithm’s computational efficiency without compromis-
ing its ability to find high-quality solutions should be pri-
ority.
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Appendix 1: Unconstrained Many-objective DTLZ Test Problems (Deb, Thiele, et al., 2003)

Test instance

Characteristics

DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5
DTLZ6
DTLZ7

Linear, Multimodal
Concave
Concave, Multimodal
Concave, Biased
Concave, Degenerate
Concave, Biased, Degenerate
Scaled, Multimodal, Disconnected, Mixed

Appendix 2: Real-World Many-objective Engineering Design Optimization Problems
A2.1. RWMaOP1: car cab design problem (Tanabe & Ishibuchi, 2020)

We consider the real-world many-objective car cab design optimization problem (RWMaOP1) consisting of 11 decision variables and nine

objectives as follows:
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minimize

weight of the car = f1 (x) = 1.98 + 4.9x1 + 6.67x5 + 6.98%3 + 4.01x4 + 1.78%s + 0.00001x6 + 2.73x7

f2 (x) = max{g; (x), 0}
f3 (x) = max{g, (x). 0}
fa(x) = max {gs (x). 0}
fs (x) = max {gs (x), 0}
fe (x) = max {gs (x), 0}
f7 (x) = max {ge (x). 0}
fs (x) = max {g; (x). 0}
fo (x) = max{gs (x).0}.

Subject to
g1 (x) = 1—(1.16 — 0.3717xpx4 — 0.00 931xyX10 — 0.484x3%9 + 0.01 343x%6X10) > O
go (x) = 0.32 —(0.261 — 0.0159x1x, — 0.188x1xg — 0.019x,%7 + 0.0144x3%s + 0.8757XsX10 + 0.08 045X6Xg + 0.00 139xgx11 + 0.00001 575x10X11)
>0
g3 (x) = 0.32 —(0.214 + 0.00 817x5 — 0.131x1xg — 0.0704x1X9 + 0.03099x,%s — 0.018x,%7
+ 0.0208x3xg 4+ 0.121x3%x9 — 0.00 364x5x%6 + 0.0007 715x5%x10 — 0.0005 354%6X10
+ 0.00121xgx11 +0.00 184x9X19 — 0.018x%yx2) > 0

ga (X) = 0.32 — (0.74 — 0.61x, — 0.163x3x5 + 0.001 232x3%19 — 0.166X7Xg 4 .227X9X;) > O

URD % MRD % LRD
—3p_ (2 VRVARRY
gs (x) = 3 ( 3 >

URD = 28.98 + 3.818x3 — 4.2x1X2 + 0.0207Xs5X10 + 6.63X6X9 — 7.77X7Xg + 0.32X9X10

>0

MRD = 33.86 + 2.95x3 + 0.1792x19 — 5.057x1%y — 11xyXg — 0.0215X5X10 — 9.98x7Xg + 22XgXg
LRD = 46.36 — 9.9xy — 12.9x1xg + 0.1107x3X19
gs (X) = 32— (4.72 — 0.5x — 4 — 0.19x9x3 — 0.0122x4X10 + 0.009 325%6X10 4+ 0.000 191x11X11) > O
g7 (x) = 4 — (10.58 — 0.674x1X9 — 1.95X,Xg + .02 054x3X19 — .0198%4X10 + .028XsX10) > O
gs (X) = 9.9 — (16.45 — 0.489x3%; — 0.84x%5Xs + 0.043%X9X19 — 0.0556X9x11 — 0.000 786X11X11) > O
x; € [0.5,1.5]; %2 € [0.45,1.35]; x3 € [0.5, 1.5] ; x4 € [0.5, 1.5]; x5 € [0.875,2.625]; %6 € [0.4,1.2];x; € [0.4,1.2].

A2.2. RWMaOP2: 10-bar truss structure problem (Panagant et al., 2023)

In a real-world many-objective 10-bar truss structure optimization problem (RWMaOP2), to minimize the mass of truss, minimize com-
pliance, maximize first natural frequency, and minimize maximum buckling factor:

m
Fi (X) = mass = ZAiPLi
i=1
F (X) = compliance = §7«F
1

F; (X) = inverse of first natural frequency = 1000000 (T)
1

;omp‘
F4 (X) = maximum buckling factor = max (}U) .
fol:
j

Subject to:
Behavior constraints:

max (|Gi |) — Oallowable

Oallowable

<0

g1 (X) : Stress constraints,

comp

o — 0

cr
kA E
/ ) <0, where o™ = — 1=,

o’

) 2
J L5

g> (X) : Euler buckling constraints, max (
j
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Side constraints:

Cross-sectional area constraints, Almm < Aj < A

L; is the length of the ith compressive member. Elemental cross-sections are assumed to be countable variables as beam regular
sections. It is assumed that the properties and permittable limits of all trusses are the same. Mass density (p), elastic modulus (E), and
permittable stress (c™2¥) are assumed as 7850 kg/m?, 200 GPa, and 400 MPa, respectively.

A2.3. RWMaOP3: water and oil repellent fabric development (Ahmad et al., 2017)

One of the most common alterations to textiles is the repellency of water and oil, feature known as hydrophobicity effect. Consequently,
hydrophobicity can be assessed through seven criteria: the water (f1(x) = —WCA) and oil (f,(x) = —OCA) droplet contact angle; the air
permeability (f3(x) = —AP), which measures the airflow through a woven fabric as a comforting property; the crease recovery angle
(fa(x) = —CRA), which measures the ability of textiles to recover from creasing; the stiffness (fs(x) = Stiff), which is the cotton fabric
comfort property; the tear strength (fs(x) = —Tear) of the finished fabric, which depends on the chemical finishing treatment applied to
the fabric; and the tensile strength (f;(x) = —Tensile). The real-world many-objective water and oil repellent fabric development opti-
mization problem (RWMaOP3) functions as follows:

minimize
fi1(x) = ~WCA = — (—1331.04 + 1.99 x O—CPC + 0.33 x K~FEL + 17.12 x C—Temp — 0.02 x O—CPC? — 0.05 x C—Temp? £ 15.33).
fo (%) = —OCA = — (—4231.14 + 4.27 x O—CPC + 1.50 x K—FEL + 52.30 x C—Temp — 0.04 x O—CPC x K—FEL — 0.04 x O—CPC?
— 0.16 x C—Temp* £29.33).
f3(x) = —AP = — (1766.80 — 32.32 x O—CPC — 24.56 x K—FEL — 10.48 x C—Temp + 0.24 x O—CPC x C—Temp
+ 0.19 x K—FEL x C—Temp — 0.06 x O — CPC? — 0.10 x K—FEL* £ 413.33).
fa(x) = —CRA = — (—2342.13 — 1.556 x O—CPC + 0.77 x K—FEL + 31.14 x C—Temp + 0.03 x O—CPC? — 0.10 x C—Temp? + 73.33) .

(%)
fs (x) = Stiff = 9.34 + 0.02 x O—CPC — 0.03 x K—FEL — 0.03 x C—Temp — 0.001 x O—CPC x K—FEL + 0.0009 x K— FEL? +0.22.
fo (x) = —Tear = — (1954.71 + 14.246 x O—CPC 4+ 5.00 x K—FEL —4.30 x C—Temp — 0.22 x 0—CPC? — 0.33 x K—FEL? + 8413433)4
f7 (x) = —Tensile = — (828.16 + 3.55 x O—CPC + 73.65 x K—FEL + 10.80 x C—Temp — 0.56 x K—FEL x C—Temp

+ 0.20 x K—FEL? 4 2814.83)

and x = (O — CPC,K — FEL,C — Temp)T, such that 10 < O —CPC < 50, is the concentration of water and oil repellent finish in g/L, 10 <
K —FEL < 50, is the concentration of the crosslinking agent in g/L, and 150 < C-Temp < 170, is the curing temperature in °C.

A2.4. RWMaOP4: ultra-wideband antenna design (Chen, 2017)

In order to design this antenna the objective functions to consider are: the voltage standing wave ratio (VSWR) over the passband
(f1(x) = VPVP), the VSWR over the WIMAX band (f»(x) = —VW1), the VSWR over the WLAN band (f3(x) = —VWL), the E- and H-planes
fidelity factor (f4(x) = —FF), and the maximum gain over the passband ( fs (x) = PG). Hence, the real-world many-objective ultra-wideband
antenna design optimization problem (RWMaOP4) is stated as

minimize

f1(x) = VP =502.94 — 27.18 x ((w1 — 20.0) /0.5) + 43.08 x ((l; — 20.0) /2.5) 4+ 47.75 x (a1 — 6.0)
+32.25 x ((b1 —5.5) /0.5) + 31.67 x (a, — 11.0) — 36.19 x ((w1 — 20.0) /0.5) x ((wy — 2.5) /0.5)
—39.44 x ((w1 — 20.0) /0.5) x (a1 — 6.0) + 57.45 x (a1 — 6.0) x ((b1 — 5.5) /0.5).

fo (X) = =VWi = —(130.53 + 45.97 x ((l; — 20.0) /2.5) — 52.93 x ((w; — 20.0) /0.5) — 78.93 x (a,
—6.0) +79.22 x (ay — 11.0) + 47.23 x ((w; — 20.0) /0.5) x (a1 — 6.0) — 40.61 x ((w1 — 20.0) /0.5)
x (az —11.0) — 50.62 x (a1 — 6.0) x (a2 — 11.0)).

f3 (%) = —VWL = —(203.16 — 42.75 x ((w1 — 20.0) /0.5) + 56.67 x (a1 — 6.0) + 19.88
x ((b1 — 5.5)/0.5) — 12.89 x (a, — 11.0) — 35.09 x (a1 — 6.0) x ((b1 — 5.5) /0.5) — 22.91
x ((b1 —=5.5)/0.5) x (a; — 11.0)).

fa(x) = =FF = —(0.76 — 0.06 x ((l; — 20.0) /2.5) 4+ 0.03 x ((l» — 2.5) /0.5) + 0.02 x (a, — 11.0)
—0.02 x ((b; — 6.5)/0.5) — 0.03 x ((d; — 12.0) /0.5) + 0.03 x ((I; — 20.0) /2.5) x ((w1 — 20.0) /0.5)
—0.02 x ((I; = 20.0) /2.5) x ((ly — 2.5) /0.5) 4+ 0.02 x ((I; — 20.0) /2.5) x ((bs — 6.5) /0.5)).

fs (x) = PG=1.08—-0.12 x ((I1 — 20.0) /2.5) — 0.26 x ((w; — 20.0) /0.5) — 0.05 x (a» — 11.0) — 0.12
x ((by = 6.5)/0.5) + 0.08 x (a1 —6.0) x ((b, — 6.5) /0.5) + 0.07 x (a; —6.0) x ((b, —5.5)/0.5)
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and X = (a1, g, by, by, d1, do, lt, I, wy, wy)T, such that 5<a; <7, 10<ay <12,5<b; <6,6 <by <7,3<d; <4,11.5<dy <125, 17.5<
l1 <225,2<1,<3,17.5 <wy <225, and 2 <w;, < 3.

A2.5. RWMaOPS5: liquid-rocket single element injector design (Goel et al., 2007)

RWMaOPS is a four-objective function optimization problem that deals with proper injector design. Therefore, for a desirable injector
design, the maximum temperature of the injector surface (f1(x) = TFnax ), the temperature at three inches from the injector surface
(f2(x) = TW,), the maximum temperature at the tip of the injector post (f3(x) = TTmax ), and the objectives to be considered are: the
distance from the inlet combustion (f4(x) = X..). Thus, the real-world many-objective liquid-rocket single element injector design opti-
mization problem (RWMaOP5) can be written as

minimize

f1 (%) = TFmax = 0.692 + 0.477 x a — 0.687 x AHA — 0.080 x AOA — 0.0650 x OPTT — 0.167 x o?
—0.0129 x AHA x a 4+ 0.0796 x AHA? — 0.0634 x AOA x a — 0.0257 x AOA x AHA + 0.0877 x AOA?
—0.0521 x OPTT x & + 0.00156 x OPTT x AHA + 0.00198 x OPTT x AQA + 0.0184 x OPTT?.

fo (%) = TW4 = 0.758 + 0.358 x & — 0.807 x AHA + 0.0925 x AOA — 0.0468 x OPTT — 0.172 x o’
+ 0.0106 x AHA x o +0.0697 x AHA? —0.146 x AOA x a — 0.0416 x AOA x AHA + 0.102 x AOA?
— 0.0694 x OPTT x a —0.00503 x OPTT x AHA +0.0151 x OPTT x AOA + 0.0173 x OPTT?.

f3 (%) = TTiax = 0.370 — 0.205 x @ + 0.0307 x AHA +0.108 x AOA + 1.019 x OPTT — 0.135 x o’
+0.0141 x AHA x o +0.0998 x AHA? 4 0.208 x AOA x o —0.0301 x AOA x AHA — 0.226 x AOA?
4 0.353 x OPTT x a — 0.0497 x OPTT x AOA — 0.423 x OPTT? +0.202 x AHA x a” —0.281 x AOA
x a? —0.342 x AHA? x a — 0.245 x AHA? x AOA +0.281 x AOA? x AHA —0.184 x OPTT? x «
+ 0.281 x AHA x a x AOA.

fa (%) = Xee = 0.153 — 0.322 x o + 0.396 x AHA + 0.424 x AOA 4 0.0226 x OPTT 4 0.175 x o?
+ 0.0185 x AHA x o —0.0701 x AHA? —0.251 x AOA x & +0.179 x AOA x AHA + 0.0150 x AOA?

+ 0.0134 x OPTT x a + 0.0296 x OPTT x AHA + 0.0752 x OPTT x AOA + 0.0192 x OPTT?
and x = («, AHA, AOA, OPTT)".
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