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Abstract 

Many-objecti v e optimization pr esents unique challenges in balancing di v ersity and conv ergence of solutions. Traditional appr oaches 
struggle with this balance, leading to suboptimal solution distributions in the objecti v e space especiall y at higher n umber of objecti v es. 
This necessitates the need for innov ati v e str ate gies to ade ptl y mana ge these complexities. This study intr oduces a Many-Objecti v e 
Artificial Hummingbird Algorithm (MaOAHA), an advanced evolutionary algorithm designed to overcome the limitations of existing 
many-objecti v e optimization methods. The objecti v es ar e to impr ov e conv ergence rates, maintain solution di v ersity, and achiev e 
a uniform distribution in the objecti v e space. MaOAHA implements information feedback mechanism (IFM), r efer ence point-based 

selection and association, non-dominated sorting, and niche pr eserv ation. The IFM utilizes historical data fr om pr evious genera- 
tions to inform the update pr ocess, ther eby impr oving the algorithm’s the e xploration and e xploitation capa bilities. Refer ence point- 
based selection, along with non-dominated sorting, ensures solutions are both close to the Pareto front and evenly spread in the 
objecti v e space . Nic he pr eserv ation and density estimation str ate gies are employ ed to maintain di v ersity and pr ev ent ov ercr owding. 
The compr ehensi v e experimental anal ysis benchmarks MaOAHA a gainst four leading algorithms viz. Many-Objecti v e Gradient-Based 

Optimizer, Many-Objecti v e Particle Swarm Optimizer, Reference Vector Guided Evolutionary Algorithm, and Nondominated Sorting 
Genetic Algorithm III. The DTLZ1–DTLZ7 benchmark sets with four, six, and eight objecti v es and fiv e r eal-world pr ob lems (RWMaOP1–
RWMaOP5) are considered for performance assessment of the selected algorithms. The results demonstrate that internal parameter- 
fr ee MaOAHA significantl y outperforms its counterparts, achieving better generational distance by up to 52.38%, inverse generational 
distance by up to 38.09%, spacing by up to 56%, spread by up to 71.42%, hypervolume by up to 44%, and runtime by up to 52%. These 
metrics affirm the MaOAHA’s capability to enhance the decision-making processes through its adept balance of convergence, diversity, 
and uniformity. 

Ke yw ords: many-objecti v e optimization, m ulti-objecti v e optimization, di v ersity pr eserv ation, artificial hummingbird algorithm, non- 
dominated sorting 
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. Introduction 

.1. Background 

ptimization problems are prevalent in numerous practical sce-
arios, r anging fr om mana ging networks (Xiao et al., 2023 ) to v e-
icle routing (Cao et al., 2021 ). Diverse applications like managing
ow-shop schedules (Goli et al., 2023 ), energy grid (Hu et al., 2024 ),
arbon emission prediction (Luo et al., 2024 ), etc., come under the
mbit of optimization problems. 
n  
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The field often encounters a specific type of optimization chal-
enge known as the man y-objectiv e optimization pr oblem (MaOP).
haracterized by its requirement of four or more objectives, MaOP

s encapsulated as 

Minimize F ( � x ) = [ f 1 ( � x ) , f 2 ( � x ) , . . . , f M 

( � x ) ] , 
s . t . � x ∈ �, 

(1)

here F ( � x ) is an objective function within MaOP, M is the total
 umber of objecti ves, and M ≥ 4 . The variable � x = ( x 1 , x 2 , . . . , x n )
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is a potential solution within the decision space of dimension d.
Additionally, � denotes a continuous search space. 

MaOP is typically classified as an NP-hard problem. Its objec- 
tives often clash, making it arduous to find solutions that sat- 
isfy all objectives simultaneously. In addressing MaOPs, a set of 
P ar eto non-dominated solutions often r epr esents the optimal so- 
lutions. P ar eto dominance plays a crucial role in both the strategy 
formulation for MaOP optimization and in e v aluating the efficacy 
of man y-objectiv e optimization algorithms (M. Shi et al., 2023 ; Y.
Shi et al., 2023 ). 

1.2. Liter a ture re vie w 

Gener all y, Man y-Objectiv e Evolutionary Algorithms (MaOEAs) are 
categorized into four distinct types (Guo, 2022 ): 

(i) Based on P ar eto dominance like Nondominated Sorting 
Genetic Algorithm II (NSGA-II, Deb, Agrawal, et al., 2000 ),
Str ength P ar eto Evolutionary Algorithm II (SPEA-II, Kim et 
al., 2004 ), etc.; 

(ii) Indicator a ppr oac hes like Indicator-Based Evolutionary Al- 
gorithm (IBEA, Qin et al., 2023 ); 

(iii) Decomposition methods like Penalty-based Boundary In- 
tersection method (Zhang & Li, 2007 ); and 

(iv) Refer ence v ector tec hniques like Nondominated Sorting 
Genetic Algorithm III (NSGA-III, Deb & Jain, 2014 ). 

P ar eto dominance-based MaOEAs operate through the compar- 
ison and selection of solutions via P ar eto dominance relations,
prioritizing non-dominated over dominated solutions (Lu et al., 
2022 ; Zhang et al., 2024 ). Ho w e v er, the efficiency of these algo- 
rithms diminishes as the number of objectives increases, lead- 
ing to challenges in selecting suitable candidates for subsequent 
generations . T hese algorithms have been developed to address 
the issue of “dominance r esistance”. Researc hers hav e enhanced 

the algorithm’s selection pr essur e by either cr eating ne w dom- 
inance relations or incorporating a modified P ar eto dominance 
concept to widen the dominance scope. Examples include ε-MOEA 

(Deb , Mohan, et al. , 2003 ), ε-dominance relation (Ikeda et al., 2002 ),
and fuzzy-based dominance relation (He et al., 2014 ). ε-MOEA op- 
erates by segmenting the objective space into numerous hyper- 
boxes, ensuring only a single solution per hyperbox, thus preserv- 
ing population diversity. The ε-dominance relation brings in the 
tr adeoff r ate between objectiv es, allowing for non-dominated so- 
lutions to be slightly less effective in one objective but markedly 
better in others . T his eases the establishment of dominance re- 
lationships among solutions and boosts the algorithm’s selec- 
tion pr essur e . T he Grid-based Evolutionary Algorithm (Yang et al.,
2013 ) suggests a grid-based dominance a ppr oac h, though its ef- 
ficacy is dependent on the division count of the objective func- 
tion. The Hyperplane-assisted Evolutionary Algorithm (Chen et al., 
2020 ) identifies prominent solutions that clearly trend to w ar ds the 
P ar eto fr ont, using a hyper plane of neighboring solutions for fur- 
ther distinction. Mor eov er, the NSGA-II with a str engthened dom- 
inance relation (NSGA-II/SDR) (Tian et al., 2019 ) introduces a new 

dominance relationship, aiming to strike a balance between con- 
v er gence and diversity in solutions. 

The field of indicator-based algorithms has seen significant 
de v elopments, suc h as the Hypervolume Estimation algorithm 

(S. Liu et al., 2023 ) and the inv erse gener ational distance (IGD) 
indicator-based MaOEA (MaOEA/IGD, Afsar et al., 2023 ). These al- 
gorithms utilize the hypervolume (HV, Br adstr eet et al., 2008 ) and 

IGD (Xu & Li, 2023 ) metrics, r espectiv el y, to assess algorithm per- 
formance, guiding the population evolution towards optimal con- 
 er gence and diversity. Ho w ever, there is a concern raised in B. Li et
l. ( 2016 ) about the potential limitations of using a single indicator
or population evolution, as it might lead to conv er gence in just
 part of the P ar eto fr ont. To addr ess this, a Stochastic Ranking-
ased multiple indicators Algorithm is introduced, balancing the 

nfluence of various indicators on population guidance. Another 
nnov ativ e a ppr oac h in P am ula pati et al. ( 2019 ) integr ates the sum-
f-objectives with shift-based density estimation, le v er a ging the
 a pid conv er gence of the former and the div ersity pr eserv ation
f the latter. The Promising Region-based Evolutionary Algorithm 

Yuan et al., 2021 ) employs a ratio-based indicator to direct popu-
ation search towards promising areas in the objective space. Ad-
itionall y, a nov el indicator-based MOEA (i.e., AR-MOEA, Tian et
l., 2018 ) enhances the IGD indicator, allowing dynamic adjust-
ent of r efer ence points. In contrast, indicator-based MaOEAs as-

ign fitness to solutions using specific indicators . T his a ppr oac h
ffectiv el y r educes the complexity of comparing m ultiple objec-
ives with a single-objective metric may bias the selection pro-
ess, potentially hindering the algorithm’s compr ehensiv e searc h
apability. 

A leading example in decomposition-based algorithms is the 
OEA based on Decomposition (MOEA/D, Zhang & Li, 2007 ),
hich utilizes a predefined set of uniformly distributed refer- 

nce vectors in the objective space to ensure diverse popula-
ion evolution. Building on MOEA/D, various adaptations have 
merged. For instance, MOEA based on Dominance and Decom- 
osition (MOEA/DD, K. Li et al., 2015 ), MOEA/D with Ada ptiv e
eight Adjustment (MOEA/D-A W A, Qi et al., 2014 ), and Multiob-

ectiv e e volutionary algorithm based on decomposition m ultiple
o m ultiple (MOEA/D-M2M), whic h divides a m ulti-objectiv e pr ob-
em into simpler subproblems (H.-L. Liu et al., 2014 ). MOEA/DD

elds decomposition-based a ppr oac hes with P ar eto dominance
o balance both conv er gence and diversity. The MOEA/D-A W A
ntr oduces an ada ptiv e str ategy for adjusting weight vectors,
articularly useful for complex Pareto fronts. Lastly, MOEA/D- 
2M simplifies the m ulti-objectiv e pr oblem into mor e mana ge-

ble subpr oblems, tac kling them collabor ativ el y. Decomposition-
ased MaOEAs, on the other hand, convert a many-objective prob-
em into m ultiple single-objectiv e pr oblems . T he effectiveness of
hese algorithms lar gel y depends on the a ggr egation function em-
lo y ed. Designing an a ppr opriate a ggr egation function for a vari-
ty of problems remains a challenge, exemplified by the difficul-
ies in setting the penalty factor method. 

The challenge with predefined reference vectors lies in their in-
bility to uniforml y cov er P ar eto fr onts of v aried sha pes, highlight-
ng a need for enhancement in decomposition-based algorithms,
articularly for irregular Pareto fronts (Ishibuchi et al., 2017 ). To
ddr ess this, ada ptiv e r efer ence v ector-based algorithms hav e
een de v eloped. Man y suc h a ppr oac hes ar e the Man y-Objectiv e
radient-Based Optimizer (MaOGBO, Premkumar et al., 2021 ),
an y-Objectiv e P article Swarm Optimizer (MaOPSO, Figueir edo et

l., 2016 ), Reference Vector-guided Evolutionary Algorithm (RVEA,
heng et al., 2016 ), and NSGA-III (Deb & Jain, 2014 ), which intro-
uce an ada ptiv e str ategy that allows r efer ence v ectors to ad-

ust according to the scales of the objective functions. Q. Liu et
l. ( 2022 ) introduced an advanced growing neural gas network.
his network, using the current population as its training dataset,
ynamically learns the Pareto front’s topology as the population 

 volv es . Another inno v ativ e method is the Refer ence Points-based
volutionary Algorithm (Y. Liu et al., 2017 ). Indicator-based algo- 
ithms, when reliant on a solitary indicator, may exhibit a bias
o w ar ds specific subpopulations, leading to potential entr a pment
n local optima. Algorithms that utilize multiple indicators con- 
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urr entl y m ust calculate all indicators for each solution in ev-
ry iter ation, significantl y escalating the algorithm’s complexity.
ecomposition-based algorithms often struggle with effectiv el y
r eaking down pr oblems when faced with a lar ge number of ob-

ectives . Meanwhile , reference vector-based algorithms grapple
ith e v enl y distributing r efer ence v ectors acr oss irr egular P ar eto

ronts. 
Of late, se v er al single-objectiv e metaheuristics like Red Deer

lgorithm (F athollahi-F ard et al. , 2020 ), Social Engineering Opti-
izer (F athollahi-F ard et al ., 2018 ), and Tr ee Gr owth Algorithm

Cher a ghalipour et al., 2018 ) have been proposed. The evolution
f evolutionary algorithms (EAs) from single- to man y-objectiv e
ptimization has necessitated the de v elopment of sophisticated
ethods capable of handling the complexity and high dimension-

lity inherent in MaOPs (Yin et al., 2020 ; Zhu et al., 2024 ). The fol-
owing sections r e vie w k e y ad vancements in the field, focusing
n the methodologies , challenges , and gaps that this research ad-
resses. 

Historicall y, EAs suc h as NSGA-II (Deb, Agr awal, et al., 2000 ) and
PEA-II (Zitzler et al., 2001 ) have demonstrated significant suc-
ess in m ulti-objectiv e optimization. Ho w e v er, their performance
ends to degrade as the number of objectiv es incr eases, primar-
ly due to the loss of selective pressure and the exponential in-
rease in non-dominated solutions (Ishibuchi et al., 2008 ). This
bserv ation spurr ed r esearc h into man y-objectiv e optimization
lgorithms designed to maintain effectiveness in higher dimen-
ional objective spaces. 

Recent years have seen the introduction of several many-
bjective optimization algorithms, such as NSGA-III (Deb & Jain,
014 ) which extends NSGA-II to handle man y-objectiv e pr oblems
y incor por ating a r efer ence point a ppr oac h. Similarl y, MOEA/D
Zhang & Li, 2007 ) and its v ariants addr ess man y-objectiv e opti-

ization by decomposing a m ulti-objectiv e pr oblem into a num-
er of scalar optimizations subproblems. Wei and Li ( 2023 ) pro-
osed an EA that incor por ates population pr epr ocessing and
 projection distance-assisted elimination mechanism. This ap-
r oac h efficientl y r educes the searc h space and impr ov es the se-

ection process for non-dominated solutions. Choi ( 2022 ) devel-
ped an optimization a ppr oac h focusing on hydraulic and water
uality criteria within a man y-objectiv e optimization fr ame work.
his work extends beyond traditional MaOEAs by incor por ating
omain-specific criteria, demonstrating the flexibility and appli-
ability of MaOEAs. Wu et al. ( 2023 ) introduced a dynamic EA that
e v er a ges pr ediction mec hanisms to ada ptiv el y adjust to c hang-
ng optimization landscapes . T his contr asts with static man y-
bjectiv e algorithms suc h as NSGA-III, whic h do not inher entl y ac-
ount for dynamic en vironments . T he pr edictiv e ca pability of Wu
t al.’s algorithm r epr esents a significant advancement in enhanc-
ng the adaptability of MaOEAs to real-world problems that evolve
 ver time . Wang et al. ( 2022 ) enhanced a MaOEA using chaotic
apping and a solution ranking mechanism, specifically target-

ng large-scale optimization problems . T his method diverges from
raditional indicator approaches like IBEA by introducing chaos
heory to maintain diversity and employing a novel ranking strat-
gy to guide the search process effectively. Despite these advance-
ents, ac hie ving a balance between conv er gence and div ersity r e-
ains a significant challenge, with most algorithms excelling in

ne at the expense of the other. 

.3. Motiv a tion and liter a ture gap 

he field of optimization has been significantl y r esha ped with
he introduction of many-objective problems, which inherently
eature four or more conflicting objectives. Such complexity has
nveiled the limitations of traditional EAs—inefficiency in nav-

gating the delicate balance between conv er gence to the opti-
al front and maintaining diversity among solutions. Despite

he numerous studies conducted in this field, a distinct gap re-
ains in de v eloping algorithms that can adeptl y mana ge these

 hallenges, especiall y under the constraints of high-dimensional
bjectiv e spaces. Mor eov er, existing algorithms often struggle
ith computational efficiency and scalability when applied to
 eal-world pr oblems with complex constr aints and objectiv e
nteractions. 

Current MaOEAs struggle to maintain a harmonious balance
etween conv er gence towards the P ar eto fr ont and the pr eserv a-
ion of diversity among solutions (Cao , Zhao , Gu, et al. , 2020 ; Yu
t al., 2024 ). This imbalance often results in pr ematur e conv er-
ence or excessive dispersion of solutions, diminishing the qual-
ty of the resultant Pareto front. Most algorithms do not fully
e v er a ge the historical information of the searc h pr ocess, lead-
ng to inefficiencies in exploration and exploitation. The poten-
ial insights gained fr om pr e vious gener ations ar e fr equentl y ov er-
ooked, which could otherwise guide the search process more ef-
ectiv el y to w ar ds optimal solutions. As the n umber of objecti ves
ncreases, the performance of traditional Pareto dominance- and
ecomposition-based a ppr oac hes tends to degr ade . T his is due
o the “curse of dimensionality,” where the discrimination capa-
ility of these methods diminishes, making it difficult to iden-
ify truly non-dominated solutions. Many algorithms assume rela-
iv el y simple P ar eto fr ont geometries and fail to ada pt to complex,
rr egular, or disconnected P ar eto fr onts that ar e common in real-
orld man y-objectiv e pr oblems . T his limitation r estricts their a p-
licability to a broader range of practical scenarios . T he computa-
ional demand of existing MaOEAs escalates r a pidl y with the in-
rease in the number of objectives and decision variables, posing
ignificant challenges in terms of scalability and practical appli-
ability to large-scale problems (Cao, Li, Liu, Lv, et al., 2023 ; T. Zhao
t al., 2024 ). 

.4. Research questions 

(i) Can a man y-objectiv e metaheuristic algorithm be designed
that maintains an effective balance between conv er gence
and diversity? 

(ii) In what ways can the strengths of the hummingbird’s for-
a ging str ategies be abstr acted and a pplied to enhance the
sear ch efficienc y of EAs in complex optimization land-
scapes? 

.5. Hypothesis 

his work hypothesizes that the Man y-Objectiv e Artificial Hum-
ingbird Algorithm (MaOAHA), with its unique combination of

 efer ence point-based selection, niche preservation, and an in-
ormation feedback mechanism (IFM), can outperform existing
aOEAs in both conv er gence and diversity metrics. 

.6. J ustifica tion for MaOAHA 

he Artificial Hummingbird Algorithm (AHA) inspired by the nat-
r al for a ging beha vior of hummingbirds , offers inno v ativ e mec h-
nisms for search space exploration, adaptability, memory uti-
ization, and solution refinement. These qualities address spe-
ific c hallenges inher ent in man y-objectiv e optimization, pr ovid-
ng a compelling rationale for its selection as the foundation of

aOAHA. By le v er a ging these c har acteristics, MaOAHA not onl y
dvances the state of the art in many-objective optimization but
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also demonstr ates impr ov ed performance ov er gener al EAs, par- 
ticularly in balancing convergence and diversity across complex 
objective spaces. 

MaOAHA introduced in this study is motivated by the need 

for an algorithm that can effectiv el y navigate the tr ade-offs be- 
tween conv er gence and div ersity in man y-objectiv e optimization.
MaOAHA incor por ates innov ativ e mec hanisms suc h as an IFM 

and nic he pr eserv ation str ategies, whic h hav e not been exten- 
siv el y explor ed in existing MaOEAs . T hese features allow MaOAHA 

to outperform leading algorithms in terms of both conv er gence 
and div ersity acr oss a v ariety of benc hmark and r eal-world pr ob- 
lems . A no vel assumption of this work is the strategic utilization 

of historical information through the IFM to inform the search 

process in the current generation. 

1.7. Contribution to the field 

The study contributes to the existing body of knowledge by 
pr oposing a nov el a ppr oac h to man y-objectiv e optimization that 
le v er a ges bio-inspir ed algorithms and adv anced selection mec ha- 
nisms. By addressing the identified gaps and challenges, MaOAHA 

r epr esents a significant step forw ar d in the de v elopment of ef- 
fective, efficient, and scalable solutions for MaOPs. In this study,
a novel approach is presented for better balance between conver- 
gence and diversity in many-objective optimization, through AHA 

(W. Zhao et al., 2022 ), IFM, r efer ence point-based selection and as- 
sociation, non-dominated sorting, niche preservation, and density 
estimation-based MaOAHA. The k e y r esearc h contributions of this 
pa per ar e outlined as follows: 

(i) The selection of AHA algorithm is based on their per- 
formance in gener ating div erse and high-quality solu- 
tions in single-objective problem. Through the global 
searc h ca pability of AHA, oper ator selection enhances the 
MaOAHA ability to explore and exploit the search space 
effectiv el y. 

(ii) The paper introduces an IFM strategy for the shortcomings 
that had wasted a lot of useful information. In the IFM,
the combined historical pieces of information of individ- 
uals based on the weighted sum method are carried over 
to the next generation. This ensures superior convergence 
properties. 

(iii) A str ategy for r efer ence point-based selection guides the 
selection process, ensuring that the chosen solutions are 
not just close to the optimal fr ont (conv er gence) but 
also spread out across the entire objective space (diver- 
sity). Associating each solution to the nearest reference 
point by perpendicular distance leads to identifying well- 
r epr esented ar eas in the objectiv e space. Non-dominated 

sorting method ensures that the algorithm focuses on so- 
lutions that are closer to the Pareto-optimal front, aiding 
conv er gence. 

(iv) A nic he pr eserv ation str ategy for boundary individuals 
is proposed, aimed at boosting diversity while removing 
those with ov ercr owding in specific regions of the ob- 
jectiv e space, ther eby speeding up the algorithm’s over- 
all conv er gence r ate. Additionall y, a density estimation 

strategy for maintaining diversity is detailed, ensuring 
both uniformity and extensive coverage in the population 

distribution. 
(v) The effectiveness of the newly developed MaOAHA is vali- 

dated through comparisons with MaOGBO , MaOPSO , RVEA,
and NSGA-III algorithms across DTLZ1–DTLZ7 benchmark 
sets with four, six, and eight objectives and fiv e r eal-world 
(R WMaOP1–R WMaOP5) problems . T he results from these
experiments highlight MaOAHA capability to adeptly man- 
a ge v arious pr oblem types, underscoring its r obust ov er all
performance. 

An ov ervie w of AHA algorithm is giv en in Section 2 , follo w ed b y
 presentation of the proposed MaOAHA algorithm in Section 3 .
xperimental comparisons and e v aluations ar e pr esented in Sec-
ion 4 and a conclusion in Section 5 . 

. Artificial Hummingbird Algorithm 

he AHA (W. Zhao et al., 2022 ) is inspired by the unique flying
bilities and smart food-gathering tactics of hummingbird for a g-
ng techniques: guided, territorial, and migr atory for a ging, as de-
icted in Fig. 1 . AHA algorithm features a visit table that emulates
ummingbir ds’ extraor dinary memory, aiding in global optimiza- 
ion tasks. AHA excels in balancing exploration and exploitation 

tages and demonstrates high efficiency in exploration with su- 
erior solution precision. It initiates by randomly creating poten- 
ial solutions. Each simulated hummingbird in the group, when 

rriving at a new location, engages in random searches for food
our ces, thereb y initializing the group. This accidental discovery
f initial food sources is part of the initialization, as shown in
quation ( 2 ): 

x i = LB + r · ( UB − LB ) (2) 

here LB and UB denote the lo w er and upper interval limits, r is
 random number between 0 and 1, and x i indicates the location
iscov er ed by the i th hummingbird. The visit table starts as fol-

ows: 

V T i, j = 

{ 

0 , i f i � = j 
null , i = j 

. (3) 

quation ( 3 ) illustrates two scenarios; V T i, j = null indicates feed-
ng on a static food source, whereas V T i, j = 0 signifies the i th
ummingbird has just investigated the jth food source . T he three
ummingbird flight patterns ar e ada pted for m ulti-dimensional
paces . T he axial flight enables movement to any axis point, as
utlined in Equation ( 4 ): 

D Af 
( i ) = 

{ 

1 , i f i = Randi ( [ 1 , d ] ) , 
0 , else , 

. (4) 

Equation ( 5 ) details the diagonal flight and Equation ( 6 ) de-
cribes the omnidirectional flight. 

D Df 
( i ) = 

{ 

1 , i f i = G ( j ) , j ∈ [ 1 , c ] , G = Randperm ( c ) 
0 , else , 

(5) 

D Of 
( i ) = 1 , i = 1 , 2 , . . . , n. (6) 

In these equations, c v aries fr om 2 to [ r 1 ( d−2 ) + 1 ], Randi ( [ 1 , d ] )
enerates a random number from 1 to d , Rand perm (c ) yields a ran-
om number sequence up to c, and r 1 r epr esents a random num-
er in the (0, 1) range. Equation ( 7 ) shows the update process for
andidate solutions via guided for a ging. Equation ( 8 ) outlines the
pdate method when a hummingbird locates a food source closer
o the target. 

v i ( t + 1 ) = x i, target + g · D t ·
(
x i ( t ) − x i, target ( t ) 

)
, t ∈ 

{
A f, D f, O f 

}
(7) 

g ∼ N ( 0 , 1 ) . (8) 
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Figur e 1: T hr ee for a ging behaviors of AHA. 
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Equation ( 9 ) defines how fitness values of candidate solutions
re updated. 

x i ( t + 1 ) = 

{ 

x i ( t ) , f ( x i ( t ) ) ≤ f ( v i ( t + 1 ) ) 
v i ( t + 1 ) , else 

. (9) 

The territorial for a ging update method for candidate solutions
s presented in Equations ( 10 ) and ( 11 ): 

v i ( t + 1 ) = x i + k · D t · x i ( t ) , t ∈ 

{
A f, D f, O f 

}
(10) 

k ∼ N ( 0 , 1 ) (11) 

here x i, target (t) is the position of the target solution and g is a
uiding factor. f ( x i (t) ) and f ( v i ( t + 1 ) ) denote the fitness values of
he candidate solution x i (t) and the updated solution v i ( t + 1 ) , re-
pectiv el y. k is a guiding factor and D t r epr esents one of the flight
odes. Finally, the equation for updating the location of artificial

ummingbirds with poor nectar refilling rates through migratory
or a ging is given in Equation ( 12 ): 

x worst ( t + 1 ) = LB + r · ( UB − LB ) , when Mr = t (12) 

here x worst denotes the candidate solution with the lo w est nec-
ar r efill r ate, t is the curr ent iter ation, and Mr is the migra-
ion coefficient, typically Mr = 2 N , with N being the population
ize. 

. Proposed MaOAHA 

he de v elopment of the MaOAHA fr om the single-objectiv e AHA,
ncor por ating nov el mec hanisms designed to addr ess the specific
hallenges of many-objective optimization. The k e y features are
he use of r efer ence points, nic he pr eserv ation, and an IFM, whic h
ollectiv el y ensur e an effectiv e balance between explor ation and
xploitation and diversity preservation in a many-objective con-
ext. 

.1. Transition from AHA to MaOAHA 

he AHA, inspired by the foraging behavior of hummingbirds,
s known for its efficiency in exploring and exploiting search
paces in single-objective optimization tasks. To adapt AHA for
an y-objectiv e optimization, se v er al man y-objectiv e optimiza-

ion strategies are integrated into its framework, transforming it
nto MaOAHA. This adaptation is aimed at maintaining high per-
ormance when dealing with a larger number of objectiv es, wher e
raditional EAs tend to struggle with preserving diversity and en-
uring conv er gence. 

.2. Reference point selection 

eference points are critical in many-objective optimization for
uiding the search towards a diverse set of solutions across the
 ar eto fr ont. In MaOAHA, a set of r efer ence points is gener ated
sing Das and Dennis’s tec hnique, whic h is designed to a ppr oxi-
ate the distribution of solutions in the objective space . T his ap-

r oac h allows MaOAHA to maintain a compr ehensiv e explor ation
f the objective space, enhancing the algorithm’s ability to un-
over a wide range of Pareto-optimal solutions. 

.3. Niche preserv a tion 

o ensure that the generated solutions are not only diverse
ut also w ell-distributed, MaOAHA emplo ys a niche preservation
tr ategy. This str ategy involv es associating each solution with the
ear est r efer ence point and selecting solutions based on their
iche count. This method prevents over cro wding in densely pop-
lated regions of the solution space and promotes the discovery
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of underr epr esented ar eas, fostering a uniform distribution of so- 
lutions along the P ar eto fr ont. 

3.4. Information feedback mechanism 

The IFM is a novel component of MaOAHA that leverages his- 
torical search information to guide the optimization process. By 
integr ating feedbac k fr om pr e vious gener ations into the gener- 
ation of new solutions, IFM enhances the algorithm’s conver- 
gence properties and its ability to adapt to the dynamic landscape 
of man y-objectiv e pr oblems . T his mec hanism ensur es that the 
searc h pr ocess is not onl y driv en by curr ent population metrics 
but also informed by the accumulated knowledge of the solution 

space. 

3.5. Algorithmic fr ame w ork 

MaOAHA begins with a r andoml y gener ated population, whic h is 
iter ativ el y impr ov ed thr ough the mec hanisms described abov e.
The selection of offspring for the next generation is based on their 
performance r elativ e to the r efer ence points and their contribu- 
tion to diversity, as determined by niche preservation. The inte- 
gration of IFM ensures continuous adaptation and improvement 
of the searc h str ategy, leading to a balanced exploration and ex- 
ploitation of the search space. MaOAHA algorithm starts with a 
random population of size N, M number of objectives, and p num- 
ber of partitions, and generates a set of reference points using 

Das and Dennis’s technique H = ( 
M + p − 1 

p 
) , as H ≈ N. Das and 

Dennis’s technique is a method for systematically generating a 
set of uniformly distributed reference points on the a ( M − 1 ) di- 
mensional unit simplex, where M is the number of objectives in 

a MaOP. This simplex is a geometric r epr esentation in whic h all 
points sum up to one, creating a space equally inclined to all 
objective axes with an intercept of one on each axis . T he tech- 
nique’s main adv anta ge lies in its ability to create reference points 
that are evenly spread, aiding in covering the entire Pareto front 
as uniformly as possible. For example, in a four-objective prob- 
lem ( M = 4 ) , the r efer ence points ar e cr eated within a tetr ahe- 
dr on, with a pexes at (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1). If the 
n umber of di visions is ( p = 4 ) along eac h objectiv e axis, the to- 
tal number of r efer ence points H created on a tetrahedron is 35.
This means in a three-dimensional space, these points would be 
distributed within a shape where each apex represents one of the 
objectives and the points are evenly distributed throughout the 
interior and on the faces of this shape. In a six-objective prob- 
lem ( M = 6 ) , under the same conditions ( p = 4 ) , the total number 
of r efer ence points H is 126. These points are distributed within 

a five-dimensional simplex, a hyper-dimensional equivalent of a 
tetr ahedr on, with eac h v ertex r epr esenting one of the objectiv es.
In the MaOAHA algorithm, these r efer ence points guide the search 

pr ocess by pr oviding div erse dir ections for explor ation. By associ- 
ating solutions with the nearest reference point and striving to 
impr ov e the r epr esentation ar ound eac h point, the algorithm en- 
sures that the evolved solutions cover the Pareto front uniformly.
This method not only promotes diversity among the solutions but 
also helps in identifying regions of the P ar eto fr ont that ar e under- 
r epr esented, ther eby dir ecting computational effort to these ar- 
eas. A set of r efer ence points is supplied and the algorithm is 
designed to find solutions near these points . T he current gener- 
ation is t, x t i and x t+1 

i is the i th individual at t and ( t + 1 ) genera- 
tion. u t+1 

i is the i th individual at the ( t + 1 ) generation generated 

through the AHA algorithm and parent population P t . The fitness 
value of u t+1 

i is f t+1 
i and U 

t+1 is the set of u t+1 
i . Then, calculate x t+1 

i 
ccording to u t+1 
i gener ated thr ough the AHA algorithm and IFM

Equation 13 ): 

x t+1 
i = ∂ 1 u t+1 

i + ∂ 2 x t k ; ∂ 1 = 

f t k 
f t+1 
i + f t k 

, ∂ 2 = 

f t+1 
i 

f t+1 
i + f t k 

, ∂ 1 + ∂ 2 = 1 

(13) 

here x t k is the k th individual chosen from the tth generation, the
tness value of x t k is f t k , ∂ 1 and ∂ 2 are weight coefficients. Generate
ffspring population Q t . Q t is the set of x t+1 

i . The combined pop-
lation R t = P t ∪ Q t is sorted into different w -non-dominant levels
 F 1 , F 2 , . . . , F l . . . , F w ) . Begin from F 1 , all individuals in le v el 1 to l are
dded to S t and remaining members of R t are rejected. If | S t | = N;
o other actions are required and the next generation is begun
ith P t+1 = S t . Otherwise, solutions in S t / F l are included in P t+1 =
 t / F l and the rest ( K = N − | P t+1 | ) individuals are selected from the
ast front F l (presented in Algorithm 1). For selecting individuals
r om F l , a nic he-pr eserving oper ator is used. First, eac h popula-
ion member of P t+1 and F l is normalized (presented in Algorithm 

) by using the current population spread so that all objective vec-
ors and r efer ence points have commensurate values . T hereafter,
ach member of P t+1 and F l is associated (presented in Algorithm 

) with a specific r efer ence point by using the shortest perpen-
icular distance ( d( )) of each population member with a refer-
nce line created by joining the origin with a supplied r efer ence
oint. Then, a car eful nic hing str ategy (described in Algorithm 5)
hat impr ov e the div ersity of MaOAHA algorithm is emplo y ed to
hoose those F l members that are associated with the least rep-
 esented r efer ence points nic he count ρi in P t+1 and c hec k termi-
ation condition is met. If the termination condition is not satis-
ed, t = t + 1 than repeat and if it is satisfied, P t+1 is generated, it is
hen applied to generate a new population Q t+1 by AHA algorithm.
aOAHA algorithm that incor por ates IFM to effectiv el y guide the

earc h pr ocess, ensuring a balance between explor ation and ex-
loitation. This leads to impr ov ed conv er gence, cov er a ge, and di-
 ersity pr eserv ation, whic h ar e crucial aspects of man y-objectiv e
ptimization. MaOAHA algorithm does not r equir e setting an y
e w par ameter other than the usual AHA parameters such as
he population size, termination parameter, and their associated 

arameters. 

.6. Computational complexity 

he computational complexity of MaOAHA is analyzed, demon- 
trating its efficiency in handling many-objective problems . T he
ar eful selection str ategy emplo y ed in MaOAHA, alongside the
fficient implementation of its core mechanisms, results in a 
omputational complexity that remains manageable even as the 
umber of objectives increases . T he computational complexity 
aOAHA for M -Objectives is O ( N 

2 lo g M −2 N ) or O ( N 

2 M ) , whic he v er
s larger. 

.7. Parameter settings 

aOAHA retains the flexibility of the original AHA in terms of pa-
 ameter settings, r equiring onl y the standard par ameters suc h as
opulation size and termination criteria. Simplicity in tuning pa- 
ameters makes MaOAHA both po w erful and accessible for a wide
ange of optimization tasks. 

The flowchart of MaOAHA algorithm can be shown in Fig. 2 . 
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Algorithm 1: Gener a tion t of MaOAHA algorithm with IFM procedure. 

Input: N (population size), M (no. of objectives), AHA algorithm 

parameters, and initial population P t ( t = 0) , 
Output: Q t + 1 = AHA( P t + 1 ) 
1: H calculated using Das and Dennis’s technique, 

structur ed r efer ence points Z s , supplied aspir ation points 
Z a , S t = φ, i = 1 

2: Proposed IFM 

Apply AHA algorithm on the initial population P t to 
generate u t+1 

i , calculation of x t+1 
i according to u t+1 

i can be 
expressed as follows: 

x t+1 
i = ∂ 1 u t+1 

i + ∂ 2 x t k ; ∂ 1 = 

f t k 
f t+1 
i + f t k 

, ∂ 2 = 

f t+1 
i 

f t+1 
i + f t k 

, ∂ 1 + ∂ 2 = 1 

Q t = Q t ; ( Q t is the set of x t+1 
i ) 

3: R t = P t U Q t 

4: Different non-domination levels ( F 1 , F 2 , …, F l ) = 

Non-dominated-sort ( R t ) 
5: repeat 
6: S t = S t U F i and i = i + 1 
7: until | S t | ≥ N 

8: Last front to be included: F l = ∪ l i =1 F i 
9: if | S t | = N then 
10: P t + 1 = S t 
11: else 
12: P t + 1 = S t / F l 
13: Point to chosen from last front ( F l ) : K = N − | P t+1 | 
14: Normalize objectives and create reference set Z r : 

Normalize ( f n , S t , Z r , Z s , Z a ); brief explanation in 
Algorithm 2 

15: Associate each member s of S t with a reference point: 
[ π ( s ) , d ( s ) ] = Associate ( S t , Z r ) ; brief explanation in 

Algorithm 3 % π (s ) : closest reference point , d : 
distance between s and π (s ) 

16: Compute niche count of reference point j ∈ Z r : 
ρ j = 

∑ 

s ∈ s t / F l 
( ( π( s ) = j ) , 1 : 0 ) ; 

17: Choose K members one at a time F l to construct 
P t+1 : Niching( K, ρ j , π, d, Z r , F l , P t+1 ) ; represent in 
Algorithm 4 

18: end if 

Algorithm 2: Normalize ( f n , S t , Z r , Z s / Z a ) procedure . 

Input: S t , Z s (structured points) or Z a (supplied points) 
Output: f n , Z r (r efer ence points on normalized hyper plane) 
1: for j = 1 to M do 
2: Compute ideal point: Z min 

j = mi n s ∈ s t f j (s ) 

3: Tr anslate objectiv es: f ′ j (s ) = f j (s ) − Z min 
j ∀ s ∈ S t 

4: Compute extreme points: Z j, max = s : 
arg min s ∈ s t ASF ( s, w 

j ) = where w 

j = ( ε 1 , . . . .., ε j ) T ) , 
ε = 10 −6 , and w 

j 
j = 1 

5: end for 
6: Compute intercepts a j for j = 1, .., M 

7: Normalize objectives f n i (X) using 

f n i (X) = 

f ′ i (X) 
a i −Z min 

i 
, fori = 1 , 2 , . . . ., M 

8: if Z a is given then 
9: Ma p eac h (aspir ation) point on normalized hyper plane 

f n i (X) and save the points in the set Z r 

10: Else 
11: Z r = Z s 

12: end if 

Algorithm 3: Associate ( S t , Z r ) procedure . 

Input: S t , Z r 

Output: π ( s ∈ s t ) , d( s ∈ s t ) 
1: for each reference point Z ∈ Z r do 
2: Compute r efer ence line w = z 
3: end for 
4: for each ( s ∈ s t ) do 
5: for each w ∈ Z r do 
6: Compute d ⊥ ( s, w ) = s − w 

T s/ ‖ w ‖ 
7: end for 
8: Assign π (s ) = w : argmi n W ∈ Z r d ⊥ ( s, w ) 
9: Assign d ( s ) = d ⊥ ( s, π ( s ) ) 
10: end for 

Algorithm 4: Niching ( K , ρ j , π, d , Z r , F l , P t+1 ) procedure . 

Input: K, ρ j , π ( s ∈ S t ) , d( s ∈ S t ) , Z r , F l , 
Output: P t+1 

1: k = 1 
2: while k ≤ K do 
3: J min = { j : argmi n j∈ Z r ρ j } 
4: j̄ = random ( J min ) 
5: I j̄ = { s : π (s ) = j̄ , s ∈ F l } 
6: if I j̄ � = φ then 

7: if ρ j̄ = 0 then 

8: P t+1 = P t+1 ∪ ( s : argmi n s ∈ I j̄ d s ) 
9: else 
10: P t+1 = P t+1 ∪ random ( I j̄ ) 

11: end if 
12: ρ j̄ = ρ j̄ + 1 , F l = F l /s 

13: k = k + 1 
14: Else 
15: Z r = Z r / { ̄j } 
16: end if 
17: end while 
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. Results and Discussion 

.1. Experimental settings 

n order to verify the effectiveness of the MaOAHA, the DTLZ1–
TLZ7 (Deb, T hiele , et al., 2003 ) benc hmark (Appendix 1 ) and fiv e

eal-world engineering design (Appendix 2 ): car cab design (R W -
aOP1, Tanabe & Ishibuchi, 2020 ), 10-bar truss structure (R W -
aOP2, P ana gant et al., 2023 ), water and oil repellent fabric devel-

pment (RWMaOP3, Ahmad et al., 2017 ), ultra-wideband antenna
esign (RWMaOP4, Chen, 2017 ), and liquid-r oc ket single element

njector design (RWMaOP5, Goel et al., 2007 ) problems are used in
his paper. The number of decision variables for the DTLZ prob-
ems is k + M − 1 , M is the number of objective functions. k is set
o 5 in DTLZ1, k is set to 10 in DTLZ2–DTLZ6, and k is set to 20 in
TLZ7. 

.1.1. Benc hmar ks and parameter setting 

n this study, the performance of MaOAHA is e v aluated by empir-
cally comparing it with some state-of-the-art m ultiobjectiv e al-
orithms for MaOPs, namel y, MaOGBO (Pr emkumar et al., 2021 ),
aOPSO (Figueiredo et al., 2016 ), RVEA (Cheng et al., 2016 ), and
SGA-III (Deb & Jain, 2014 ), will be verified. The experiments are
onducted on a MATLAB R2020a environment on an Intel Core
TM) i7-9700 CPU. Each algorithm performs 30 times, the size of
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F igure 2: Flo wchart of MaOAHA algorithm. 
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Table 1: Properties of the quality indicators. 

Quality indicator (Chen, 2017 ) Convergence Di v ersity Uniformity Cardinality Computational burden 
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opulation N is set to N = 105 , 132 , and 156 for all of the involved
lgorithms on M = 4 , 6 , and 8 objectives problems . T he MaxF Es is
et to 1 × 10 5 for all of the test instances. NSGA-III adopts the
ame par ameter settings, wher e the cr ossov er pr obability ( P c ) and
 utation pr obability ( P m 

), the distribution index of simulated bi-
ary cr ossov er ( ηc ), and pol ynomial m utation ( ηm 

), ar e set to 1, 1 /D ,
0, and 20. To ensure a compr ehensiv e e v aluation of the MaOAHA,
he migration coefficient ( Mr) is set to 2 N, where N is the popula-
ion size. 

.1.2. P erf ormance measur es 
his paper adopts generational distance (GD), spread (SD), spacing

SP), runtime (RT), IGD , and HV quality indicator (Coello Coello et
l., 2007 ), shown in Table 1 and Fig. 3 . A higher value of HV and
o w er value of IGD , GD , SD , RT , and SP refer to better performance.
he Wilcoxon rank-sum test (WRST) with 0.05 significance le v el is
pplied to better performance ( + ) , a worse performance ( −) , and
n equal ( = ) performance compared with MaOAHA. 

.2. Experimental results on DTLZ problems 

able 2 presents the GD results for MaOAHA, MaOGBO, MaOPSO,
VEA, and NSGA-III on DTLZ test problems. For problem, in the
TLZ1 problem with 4-M and 8-D, MaOAHA records a mean
D of 4.3141e −2 (3.79e −2), which is significantly lo w er than its
ounterparts like MaOGBO with 1.0241e −1 (1.72e −1) and RVEA
ith 9.5822e −2 (1.58e −1). In DTLZ3 with 6-M and 15-D, MaOAHA
ean GD is 3.2731e + 0 (1.23e + 0), surpassing other algorithms like
aOPSO with 7.5772e + 0 (7.76e −1) and NSGA-III with 1.0848e + 2

2.39e + 1). The proportion of test problems where MaOAHA out-
erforms other algorithms like MaOGBO , MaOPSO , RVEA, and
SGA-III across the DTLZ test suite ranges from high to domi-
ant. For problem, in DTLZ1, DTLZ2, DTLZ4, and DTLZ5 problems,
aOAHA ac hie v es better results in more than 50% of the cases
hen compared with each of these algorithms. Among these,
aOAHA demonstrates a notable performance, achieving the best

 esults in se v er al pr oblems. Fr om Table 2 , it is observ ed that
aOAHA outperforms 11 out of 21 best r esults, wher eas MaOGBO,
aOPSO, RVEA, and NSGA-III ac hie v e 6, 1, 0, and 3 best results in

erms of the GD v alues, r espectiv el y. A lo w er mean GD indicates
 closer a ppr oximation to the true P ar eto fr ont, signifying better
erformance of MaOAHA algorithm and effectiveness in dealing
ith complex MaOPs. 
Table 3 displays the IGD results for MaOGBO , MaOPSO , RVEA,

nd NSGA-III, including MaOAHA, on DTLZ test problems. In
TLZ1 with 4-M and 8-D, MaOAHA has an IGD of 5.8231e −1 (std
.07e −1), which is higher than RVEA and NSGA-III, indicating
ess fa vorable performance . Howe v er, in DTLZ4 with 6-M and 15-
, MaOAHA ac hie v es an IGD of 4.3262e −1 (std 9.20e −4), outper-

orming NSGA-III. The performance of MaOAHA is notably varied
cr oss differ ent DTLZ pr oblems. For pr oblem, in DTLZ5 with 4-M
nd 13-D, its IGD is 6.1569e −2 (std 1.01e −2), which is compara-
le with the other algorithms. In Table 3 , IGD values of MaOGBO,
aOPSO, RVEA, and NSGA-III algorithms are better in 8, 2, 2, and
 out of 21 cases . T hese proportions indicate a varied but notable
fficacy of MaOAHA across different scenarios. In particular, its
erformance against MaOGBO stands out with a high percentage
f superiority, suggesting a distinct adv anta ge in those test prob-
ems . Con v ersel y, the percenta ges a gainst MaOPSO and RVEA indi-
ate a more competitive scenario, with MaOAHA showing a signif-
cant lead in about a third of the cases. Against NSGA-III, MaOAHA
emonstrates a notable edge in nearly half of the test problems,
nderlining its efficiency in those scenarios . T her efor e, based on
hese proportions, it is reasonable to conclude that MaOAHA ex-
ibits a strong competitive edge in a significant number of prob-

ems across the DTLZ test suite shown in Fig. 4 particularly against
aOGBO and NSGA-III, while presenting a balanced performance

gainst MaOPSO and RVEA. 
Table 4 illustrates the SP results MaOAHA, MaOGBO, MaOPSO,

VEA, and NSGA-III algorithms (MOEAs) on DTLZ test problems.
aOAHA ac hie v es the best results in 11/21 test problems, ex-

mplifying its efficiency in spacing of solutions. In comparison,
aOGBO , MaOPSO , RVEA, and NSGA-III ac hie v e 4, 1, 4, and 1 best

 esults, r espectiv el y. This performance is particularl y e vident in
roblems like DTLZ1, DTLZ4, and DTLZ5, where MaOAHA con-
istentl y r ecor ds lo w er mean SP values, indicating better solution
istribution. For example, in DTLZ1 with 4-M and 8-D, MaOAHA
P value is 1.1166e −1 (std 1.37e −1), which is significantly lo w er
han MaOGBO 7.2468e −1 (std 1.22e + 0) and MaOPSO 1.3383e −1
std 1.11e −1). The WRST further supports these findings, indi-
ating that MaOAHA performance is not onl y statisticall y sig-
ificant but also consistently superior across a range of DTLZ
roblems . T his is especially noteworthy in problems like DTLZ2
nd DTLZ7, where MaOAHA spacing of solutions is markedly bet-
er than that of most competitors . T her efor e, it is r easonable
o conclude that MaOAHA outperforms its competitors on most
TLZ problems in terms of the SP metric. The algorithm abil-

ty to ac hie v e the best r esults, mainl y in DTLZ1, DTLZ2, DTLZ4,
nd DTLZ5, highlights its superior performance in ensuring well-
istributed solutions across the Pareto front shown in Fig. 4 . While
ther competitors like MaOGBO and MaOPSO show competitive
esults in certain problems, MaOAHA ov er all performance across
he DTLZ suite suggests its effectiveness in spacing of solutions in
aOPs. 
Table 5 showcases the SD results of various algorithms on DTLZ

roblems, with a specific focus on MaO AHA. Overall, MaO AHA
emonstrates a significant level of performance in terms of the
D metric. MaOAHA ac hie v es the best SD results in 11/21 test
roblems . T his highlights its capability in maintaining a balanced
pread of solutions across the Pareto front. To put this into per-
pective, MaOAHA outperforms MaOGBO , MaOPSO , RVEA, and
SGA-III in a significant majority of the test problems. As can
e seen from Table 5 , MaOAHA achieves the best performance

n terms of SD values , ha ving obtained 11 best results, follo w ed
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Figure 3: Mathematical and schematic view of the GD , IGD , SP, SD , and HV metrics. 
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Table 2: Results of GD metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 4 .3141e −2 (3.79e −2) = 1 .0241e −1 (1.72e −1) = 6 .0327e −2 (6.21e −2) = 9 .5822e −2 (1.58e −1) = 2 .8213e −2 (2.75e −2) 
6 10 1 .4102e −1 (1.04e −1) = 1 .3789e −1 (6.92e −2) = 2 .4411e −1 (1.68e −1) = 2 .8099e + 0 (1.11e + 0) = 2 .0511e −1 (1.80e −1) 
8 12 7 .9300e −2 (2.89e −2) = 1 .2907e −1 (1.00e −1) = 7 .3947e −1 (3.67e −1) = 3 .8039e + 1 (1.61e + 0) = 4 .9424e −1 (6.86e −1) 

DTLZ2 4 13 2 .6390e −3 (1.40e −4) = 3 .0097e −3 (7.88e −5) = 2 .5579e −3 (7.05e −5) = 4 .2084e −3 (5.40e −4) = 2 .5067e −3 (3.67e −5) 
6 15 8 .8577e −3 (8.84e −4) = 1 .0132e −2 (2.60e −4) = 9 .2063e −3 (2.95e −4) = 2 .3512e −1 (7.55e −3) = 8 .9964e −3 (3.13e −4) 
8 17 1 .3659e −2 (1.35e −3) = 2 .3728e −2 (2.76e −3) = 1 .7627e −2 (1.72e −3) = 2 .7493e −1 (1.85e −3) = 1 .7117e −2 (3.05e −3) 

DTLZ3 4 13 6 .8035e −1 (1.37e −1) = 1 .1125e + 0 (9.20e −1) = 1 .8445e + 0 (3.55e −1) = 4 .2781e + 0 (3.25e + 0) = 1 .7259e + 0 (3.56e −1) 
6 15 3 .2731e + 0 (1.23e + 0) = 4 .5406e + 0 (2.98e + 0) = 7 .5772e + 0 (7.76e −1) = 1 .0848e + 2 (2.39e + 1) = 1 .0649e + 1 (4.16e + 0) 
8 17 3 .0342e + 0 (9.81e −1) = 4 .0751e + 0 (3.24e + 0) = 1 .2700e + 1 (2.41e + 0) = 2 .1835e + 2 (6.13e + 0) = 1 .0051e + 1 (3.55e + 0) 

DTLZ4 4 13 1 .5725e −3 (1.37e −3) 2 .5844e −3 (1.90e −4) = 2 .4330e −3 (1.60e −4) = 3 .6324e −3 (2.10e −3) = 2 .0810e −3 (6.08e −4) = 

6 15 7 .9565e −3 (9.09e −4) 8 .6880e −3 (3.45e −4) = 8 .9069e −3 (6.28e −4) = 1 .9617e −1 (3.05e −2) = 8 .6547e −3 (5.76e −4) = 

8 17 1 .3162e −2 (1.38e −4) = 1 .6636e −2 (5.74e −4) = 1 .2116e −2 (2.58e −3) = 2 .7690e −1 (1.02e −3) = 1 .2259e −2 (6.27e −4) 

DTLZ5 4 13 8 .9559e −2 (9.36e −4) = 4 .3854e −2 (4.75e −3) = 5 .4318e −2 (3.14e −3) = 1 .6227e −1 (9.09e −4) = 5 .9236e −2 (6.01e −3) 
6 15 1 .1592e −1 (1.58e −2) = 3 .9078e −2 (1.53e −2) = 1 .1012e −1 (1.06e −2) = 2 .5706e −1 (8.60e −3) = 1 .0021e −1 (1.65e −2) 
8 17 1 .2461e −1 (8.29e −3) = 4 .3861e −2 (4.60e −3) = 1 .3625e −1 (1.38e −2) = 3 .1316e −1 (3.29e −4) = 1 .1735e −1 (4.32e −3) 

DTLZ6 4 13 2 .8055e −1 (1.26e −2) = 2 .4656e −1 (6.49e −2) = 3 .0765e −1 (3.91e −2) = 5 .6648e −1 (8.96e −3) = 2 .0475e −1 (3.41e −2) 
6 15 4 .2588e −1 (8.95e −2) = 1 .8576e −1 (1.86e −2) = 5 .3156e −1 (1.48e −1) = 1 .1302e + 0 (5.78e −3) = 4 .7543e −1 (5.19e −2) 
8 17 6 .6510e −1 (1.40e −2) = 2 .0335e −1 (6.52e −3) = 7 .2458e −1 (4.65e −2) = 1 .2030e + 0 (2.49e −3) = 7 .9399e −1 (5.57e −2) 

DTLZ7 4 23 1 .1250e −2 (2.77e −3) = 2 .1526e −2 (2.42e −3) = 1 .9765e −2 (5.71e −3) = 2 .2593e −2 (2.76e −3) = 2 .1492e −2 (1.41e −3) 
6 25 6 .7890e −2 (2.65e −2) = 1 .4387e −1 (3.38e −2) = 1 .2989e −1 (3.85e −2) = 2 .6378e −1 (1.13e −1) = 1 .1924e −1 (2.15e −2) 
8 27 2 .5280e −1 (7.25e −3) = 2 .7854e −1 (1.17e −1) = 2 .7792e −1 (7.81e −2) = 3 .1366e + 0 (1.04e −1) = 5 .5390e −1 (8.23e −2) 

Table 3: Results of IGD metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 5 .8231e −1 (9.07e −1) = 2 .7794e −1 (2.61e −1) = 4 .1456e −1 (3.72e −1) = 1 .4581e −1 (1.43e −1) = 1 .7917e −1 (1.88e −1) 
6 10 8 .2821e −1 (3.96e −1) = 4 .8631e −1 (2.55e −1) = 5 .9037e −1 (2.20e −1) = 7 .0687e + 0 (7.83e −1) = 9 .4688e −1 (9.46e −1) 
8 12 6 .3254e −1 (4.22e −1) = 2 .8981e −1 (7.56e −2) = 9 .0334e −1 (6.30e −1) = 1 .5454e + 2 (7.64e + 1) = 8 .1340e −1 (5.56e −1) 

DTLZ2 4 13 1 .4004e −1 (1.23e −3) = 1 .4136e −1 (2.15e −4) = 1 .4332e −1 (5.39e −4) = 1 .4456e −1 (1.12e −3) = 1 .4124e −1 (1.08e −4) 
6 15 2 .8968e −1 (4.30e −3) = 2 .9675e −1 (2.21e −3) = 3 .0977e −1 (2.02e −2) = 1 .6783e + 0 (5.63e −2) = 2 .8749e −1 (4.36e −3) 
8 17 4 .0280e −1 (5.88e −3) = 4 .0508e −1 (6.20e −3) = 5 .1506e −1 (2.86e −2) = 2 .4051e + 0 (1.37e −2) = 4 .4406e −1 (7.00e −2) 

DTLZ3 4 13 7 .9874e + 0 (6.19e + 0) = 5 .6392e + 0 (1.07e + 0) = 8 .8491e + 0 (2.40e + 0) = 9 .8311e + 0 (5.40e + 0) = 1 .1573e + 1 (5.20e + 0) 
6 15 1 .6978e + 1 (7.86e + 0) = 1 .4079e + 1 (4.52e + 0) = 1 .9808e + 1 (5.01e + 0) = 3 .8219e + 2 (1.39e + 2) = 2 .9862e + 1 (2.15e + 1) 
8 17 1 .6208e + 1 (1.09e + 1) = 1 .0900e + 1 (5.90e + 0) = 3 .2071e + 1 (1.36e + 1) = 1 .2368e + 3 (1.43e + 2) = 2 .9000e + 1 (8.81e + 0) 

DTLZ4 4 13 2 .4674e −1 (1.77e −1) = 4 .4674e −1 (3.04e −1) = 2 .4845e −1 (1.83e −1) = 3 .4965e −1 (1.74e −1) = 5 .4826e −1 (4.59e −1) 
6 15 4 .3262e −1 (9.20e −4) = 3 .0354e −1 (5.72e −4) = 2 .9720e −1 (3.71e −3) = 9 .4669e −1 (1.53e −1) = 4 .0314e −1 (9.84e −2) 
8 17 4 .6930e −1 (9.23e −2) = 4 .1781e −1 (9.38e −4) = 5 .2695e −1 (9.23e −2) = 2 .4075e + 0 (4.29e −2) = 5 .6556e −1 (4.74e −2) 

DTLZ5 4 13 6 .1569e −2 (1.01e −2) = 5 .7262e −2 (3.53e −3) = 5 .6969e −2 (6.49e −3) = 1 .3271e −1 (1.63e −2) = 5 .7637e −2 (4.47e −3) 
6 15 8 .5904e −2 (2.88e −2) = 1 .5062e −1 (3.41e −2) = 1 .0312e −1 (6.41e −3) = 1 .0277e + 0 (4.69e −2) = 1 .5740e −1 (4.81e −2) 
8 17 8 .3916e −2 (5.79e −3) = 1 .5896e −1 (3.61e −2) = 2 .5790e −1 (2.50e −2) = 1 .8479e + 0 (6.19e −1) = 2 .2265e −1 (1.59e −2) 

DTLZ6 4 13 3 .3132e −1 (4.25e −1) = 3 .5995e −1 (4.61e −1) = 5 .6422e −1 (5.06e −1) = 1 .1754e + 0 (4.30e −1) = 6 .7201e −1 (3.29e −1) 
6 15 1 .6875e −1 (6.24e −2) = 2 .4629e + 0 (4.92e −1) = 2 .5141e + 0 (1.41e + 0) = 9 .6227e + 0 (7.04e −2) = 2 .2675e + 0 (6.52e −1) 
8 17 4 .1865e −1 (3.08e −1) = 3 .7549e + 0 (4.72e −1) = 3 .9634e + 0 (5.11e −1) = 9 .8967e + 0 (7.35e −2) = 4 .8744e + 0 (7.51e −1) 

DTLZ7 4 23 2 .7356e −1 (1.76e −2) = 4 .1778e −1 (2.27e −1) = 2 .8109e −1 (3.27e −2) = 2 .0758e −1 (1.73e −2) = 2 .9139e −1 (3.00e −2) 
6 25 1 .0600e + 0 (2.08e −1) = 6 .6232e −1 (4.23e −2) = 8 .0914e −1 (1.23e −1) = 1 .0636e + 0 (1.22e −1) = 7 .2719e −1 (4.43e −2) 
8 27 2 .1034e + 0 (1.31e + 0) = 1 .4013e + 0 (9.12e −2) = 2 .5643e + 0 (8.47e −1) = 5 .0264e + 0 (1.66e + 0) = 4 .3220e + 0 (4.13e −1) 
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y MaOGBO , MaOPSO , RVEA, and NSGA-III that have obtained
, 1, 1, and 1 best r esults, r espectiv el y. These r esults ar e par-
icularly noticeable in specific problems such as DTLZ1, DTLZ2,
TLZ4, and DTLZ5, where MaOAHA not only achieves lo w er mean
D values maintaining a balanced spread of solutions shown in
ig. 4 . 

Table 6 presents the HV results for various algorithms on DTLZ
roblems, emphasizing the performance of MaOAHA. In this con-
ext, MaOAHA exhibits notable r esults, particularl y in ac hie ving
igh HV v alues, whic h indicate a better cov er a ge of the P ar eto
r ont. MaOAHA ac hie v es the best HV results in 9/21 test problems.
his demonstrates its effectiveness in capturing a larger volume
f the P ar eto fr ont, whic h is a k e y indicator of algorithmic effi-
iency. When compared with MaOGBO , MaOPSO , RVEA, and NSGA-
II, the HV v alues ac hie v ed by MaOAHA ar e higher in a significant
umber of problems. In Table 6 , HV value of MaOGBO , MaOPSO ,
VEA, and NSGA-III algorithms is better in 1, 2, 8, and 1 out of 21
ases and is only worse in 4.76%, 9.52%, 38.09%, and 4.76% cases.
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Figure 4: Best P ar eto-optimal fr ont obtained by differ ent algorithms on DTLZ pr oblems. 
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The detailed analysis of the HV results leads to the conclusion 

that MaOAHA outperforms its competitors in a significant propor- 
tion of the DTLZ test pr oblems, especiall y in terms of ac hie ving a 
larger volume of the Pareto front shown in Fig. 4 . 

In Table 7 , the assessment of RT metrics across DTLZ problems,
MaOAHA exhibits notew orthy efficienc y. Accor ding to Table 7 ,
MaOAHA significantly outperforms MaOGBO , MaOPSO , RVEA, and 

NSGA-III. MaOAHA running time accounts for 65% of MaOGBO 

running time, 75% of MaOPSO, 40% of RVEA, and 85% of NSGA-III 
on av er a ge. This is calculated based on the mean running times 
across all test problems. For problem, in DTLZ1 with 4-M and 8- 
D, MaOAHA running time is 1.5927 second (std 7.78e −1), which 

is substantially lo w er than MaOGBO 2.4435 second (std 2.60e −1) 
nd RVEA 5.3515 second (std 1.76e −1). Based on these proportions
nd the specific RT v alues, MaOAHA demonstr ates a consider able
dv anta ge in terms of computational efficiency across the DTLZ
est suite. 

From the Tables 2 –7 , MaOAHA emerges as a leading algorithm,
c hie ving the most optimal IGD and HV values in many prob-
ems. Ho w e v er, in the context of DTLZ5 and DTLZ6, where ob-
aining well-distributed non-dominated solutions on the degen- 
r ated P ar eto fr onts is c hallenging, MaOAHA faces stiffer compe-
ition. As shown in Table 3 , while some algorithms struggle with
TLZ6, MaOAHA manages to secure the best IGD values, demon-

tr ating its ca pability in these demanding scenarios. MaOAHA
tands out in terms of its performance across a variety of complex
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Figure 4 – continued. 
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ptimization problems, showcasing particularly strong results in
erms of IGD and HV metrics. Its ability to effectiv el y handle mul-
imodal problems and maintain population diversity shown in
ig. 4 along with its robust performance in scenarios with de-
ener ated P ar eto fr onts . T he “= ” sign was utilized to denote in-
tances where the differences between the compared algorithms
ere not statistically significant at the chosen significance level

typically α = 0.05). This outcome suggests that, according to the
RST, there is insufficient evidence to reject the null hypothe-

is that the medians of the performance metrics (GD , IGD , SP, SD,
V, and RT) are equal between the MaOAHA and the compari-

on algorithms (MaOGBO , MaOPSO , RVEA, and NSGA-III) for the
iv en pr oblem instances . T he Wilcoxon test ma y not detect minor
ifferences as statistically significant, leading to conclusions of
quality. 
b  
.3. Experimental results on real-world 

many-objecti v e optimization problems 

rom Table 8 , it is clear that MaOAHA significantly outperforms
aOGBO , MaOPSO , RVEA, and NSGA-III in terms of the SP met-

ic across various real-world many-objective optimization prob-
ems (RWMaOPs). MaOAHA demonstrates a notable performance.
pecifically, in the context of five distinct problems: car cab de-
ign (RWMaOP1), 10-bar truss structure (RWMaOP2), water and
il repellent fabric development (RWMaOP3), ultra-wideband an-
enna design (RWMaOP4), and liquid-r oc ket single element injec-
or design (RWMaOP5), MaOAHA exhibits adv anta geous r esults.
n car cab design (RWMaOP1), MaOAHA SP value is 1.6751 (std
.21e −1), which is lo w er than MaOGBO 1.8850 (std 9.23e −1) and
ignificantly better than RVEA 3.7674 (std 1.03e + 0). For the 10-
ar truss structure (RWMaOP2), MaOAHA achieves an SP value of
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Figure 4 – continued. 
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6.6789e + 2 (std 9.45e + 2), outperforming MaOGBO 1.1280e + 3 (std 

3.24e + 2) and NSGA-III 9.7329e + 2 (std 3.49e + 2). In the context of 
water and oil repellent fabric de v elopment (RWMaOP3), MaOAHA 

records an SP of 1.8963e + 1 (std 1.99e + 0), which is significantly 
lo w er than RVEA 4.9546e + 1 (std 7.74e + 0). For ultra-wideband an- 
tenna design (RWMaOP4), MaOAHA SP value is 4.9404e + 4 (std 

4.03e + 3), whic h is mor e favor able than RVEA high value of 
1.7624e + 5 (std 2.28e + 5). In liquid-r oc ket single element injec- 
tor design (RWMaOP5), MaOAHA records an SP of 4.3216e −2 (std 

5.25e −4), better than MaOPSO 9.2901e −2 (std 1.12e −2) and NSGA- 
III 9.3904e −2 (std 1.33e −2). These results indicate that MaOAHA 

not only achieves lo w er SP values across a range of complex R W - 
MaOPs but also maintains a consistent performance, indicating a 
better distribution of solutions. In Table 8 , SP value of MaOGBO,
MaOPSO, RVEA, and NSGA-III algorithms is better in 1, 0, 0, and 0 
ut of five cases . T herefore , from the experimental results in Ta-
le 8 shown in Fig. 5 , it is reasonable to conclude that MaOAHA ex-
ibits a higher efficiency in maintaining solution diversity across 
 arious r eal-world pr oblems. 

In Table 9 , HV value of MaOGBO , MaOPSO , RVEA, and NSGA-
II algorithms is better in 0, 0, 2, and 0 out of five cases and is
nly worse in 38.09%, 9.52%, 9.52%, and 4.76% cases . T herefore ,
aOAHA has a better balance between conv er gence and diver-

ity for solving RWMaOPs. For problem, in car cab design (R W -
aOP1), MaOAHA ac hie v es an HV of 2.0403e −3 (std 2.55e −4),
hich is notably higher than RVEA 1.5212e −3 (std 5.42e −4) and
SGA-III 7.0741e −4 (std 3.13e −4), reflecting its superior capabil-

ty in covering a larger volume of the P ar eto fr ont. Ther efor e,
rom the experimental results in Table 9 , it is reasonable to con-
lude that MaOAHA exhibits higher efficiency and outperforms its 
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Figure 4 – continued. 

Table 4: Results of SP metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 1 .1166e −1 (1.37e −1) = 7 .2468e −1 (1.22e + 0) = 1 .3383e −1 (1.11e −1) = 1 .3307e −1 (5.63e −2) = 1 .2034e −1 (8.44e −2) 
6 10 4 .9375e −1 (4.73e −1) = 6 .7740e + 0 (7.71e + 0) = 1 .1031e + 0 (7.96e −1) = 7 .1014e −1 (7.18e −1) = 4 .6314e −1 (2.19e −1) 
8 12 5 .4081e −1 (4.37e −1) = 3 .1790e + 1 (8.76e −1) = 6 .3506e + 0 (4.60e + 0) = 3 .7408e −1 (1.95e −2) = 1 .4319e + 0 (1.70e + 0) 

DTLZ2 4 13 5 .9758e −2 (2.62e −3) = 5 .4859e −2 (8.87e −3) = 1 .0168e −1 (1.18e −2) = 1 .1888e −1 (1.66e −3) = 1 .1699e −1 (1.34e −3) 
6 15 1 .3751e −1 (1.46e −2) = 3 .2547e −1 (1.77e −2) = 2 .0867e −1 (2.96e −2) = 1 .8620e −1 (4.58e −3) = 1 .9356e −1 (8.41e −3) 
8 17 1 .0354e −1 (1.55e −2) = 3 .8470e −1 (3.88e −2) = 2 .5241e −1 (5.91e −2) = 1 .9006e −1 (4.91e −2) = 2 .5042e −1 (1.29e −1) 

DTLZ3 4 13 2 .6647e + 0 (2.34e + 0) = 1 .2466e + 1 (1.43e + 1) = 1 .7562e + 0 (3.37e −1) = 6 .2885e −1 (2.53e −1) = 1 .7209e + 0 (1.97e −1) 
6 15 2 .6637e + 1 (2.10e + 1) = 9 .6750e + 1 (2.11e + 1) = 3 .0320e + 1 (8.37e + 0) = 1 .1906e + 1 (3.30e + 0) = 4 .0628e + 1 (1.81e + 1) 
8 17 1 .4899e + 1 (1.30e + 1) = 2 .6025e + 2 (2.71e + 1) = 6 .5569e + 1 (9.05e + 0) = 1 .4735e + 1 (1.43e + 1) = 6 .2754e + 1 (3.37e + 0) 

DTLZ4 4 13 5 .7454e −2 (2.20e −2) = 3 .7052e −2 (1.76e −2) = 9 .4730e −2 (1.72e −2) = 6 .0610e −2 (5.93e −2) = 6 .1911e −2 (5.64e −2) 
6 15 1 .0241e −1 (1.11e −2) = 2 .9058e −1 (6.03e −2) = 2 .0329e −1 (1.43e −2) = 1 .5700e −1 (7.30e −3) = 2 .2104e −1 (3.43e −2) 
8 17 1 .4020e −1 (2.25e −2) = 4 .8216e −1 (3.77e −2) = 2 .4295e −1 (4.44e −2) = 2 .5972e −1 (3.15e −2) = 2 .8646e −1 (4.52e −2) 

DTLZ5 4 13 9 .9308e −2 (5.40e −3) = 1 .2057e −1 (8.40e −2) = 8 .0355e −2 (1.10e −2) = 1 .3433e −1 (1.70e −2) = 9 .2517e −2 (2.54e −2) 
6 15 1 .0410e −1 (3.84e −2) = 2 .1980e −1 (2.57e −2) = 2 .5370e −1 (1.89e −2) = 3 .4758e −1 (5.91e −2) = 2 .0069e −1 (3.54e −2) 
8 17 1 .1827e −1 (1.79e −2) = 3 .9019e −1 (5.04e −2) = 2 .7773e −1 (1.72e −2) = 3 .7731e −1 (6.37e −2) = 2 .9512e −1 (3.17e −2) 

DTLZ6 4 13 2 .2873e −1 (5.11e −2) = 2 .7361e −1 (4.29e −2) = 3 .3008e −1 (3.69e −2) = 3 .0777e −1 (7.18e −2) = 2 .7516e −1 (3.96e −2) 
6 15 4 .9612e −1 (1.63e −1) = 9 .3451e −1 (1.02e −1) = 8 .4606e −1 (1.98e −1) = 8 .6402e −1 (1.16e −1) = 1 .0644e + 0 (1.28e −1) 
8 17 5 .7922e −1 (3.16e −2) = 1 .2517e + 0 (8.98e −2) = 1 .7741e + 0 (4.94e −2) = 2 .0602e + 0 (5.63e −2) = 1 .8329e + 0 (3.03e −1) 

DTLZ7 4 23 1 .2922e −1 (3.40e −3) = 9 .2560e −2 (8.99e −3) = 2 .0164e −1 (2.04e −2) = 1 .4200e −1 (4.34e −2) = 2 .4746e −1 (2.56e −2) 
6 25 2 .6480e −1 (5.83e −2) = 1 .7700e −1 (4.07e −2) = 4 .4542e −1 (2.77e −2) = 5 .0055e −1 (1.69e −2) = 4 .6310e −1 (1.40e −2) 
8 27 2 .7874e −1 (2.25e −2) = 6 .0138e −1 (4.86e −2) = 5 .9991e −1 (9.96e −2) = 6 .1164e −1 (5.40e −2) = 5 .6914e −1 (1.57e −1) 
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ompetitors in most of the RWMaOPs, indicating its effectiveness
n ac hie ving a mor e compr ehensiv e explor ation of the solution
hown in Fig. 5 space in real-world many-objective optimization
cenarios. 

Table 10 provides a clear illustration of MaOAHA efficiency
n terms of RT across various RWMaOPs . T he data reveal that

aOAHA significantly outperforms MaOGBO , MaOPSO , RVEA, and
SGA-III in the majority of test problems . T hese results demon-

tr ate MaOAHA r emarkable computational efficiency acr oss a di-
erse set of RWMaOPs. For example, in car cab design (RWMaOP1),
aOAHA records a RT of 1.1318 second (std 1.40e −1), which is
onsider abl y lo w er than RVEA 17.475 second (std 1.00e + 0) and
SGA-III 3.0514 second (std 2.02e −1). In Table 10 , RT value of
aOGBO , MaOPSO , RVEA, and NSGA-III algorithms is better in 0, 0,

, and 0 out of five cases . T herefore , the experimental results from
able 10 conclusiv el y indicate that MaOAHA not onl y excels in
erms of computational speed but also displays higher efficiency
n processing compared with its competitors. 

In Tables 2 –10 , for the WRST, MaOAHA obtains the best score
f 2.01, which means that the proposed algorithm outperforms
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Table 5: Results of SD metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 2 .5218e −1 (3.47e −2) = 4 .8419e −1 (6.45e −1) = 4 .6835e −1 (1.87e −1) = 5 .0601e −1 (4.26e −2) = 5 .1954e −1 (2.16e −1) 
6 10 3 .4230e −1 (7.84e −2) = 3 .5310e −1 (2.05e −1) = 7 .5121e −1 (2.06e −1) = 6 .3198e −1 (2.52e −1) = 5 .6025e −1 (1.94e −1) 
8 12 5 .0879e −1 (9.01e −2) = 1 .6766e −1 (1.92e −2) = 1 .3391e + 0 (4.14e −1) = 6 .7758e −1 (1.10e −1) = 7 .8085e −1 (3.47e −1) 

DTLZ2 4 13 1 .2216e −1 (1.50e −3) = 8 .0113e −2 (1.35e −2) = 1 .8636e −1 (1.48e −2) = 1 .7756e −1 (9.66e −3) = 1 .6441e −1 (4.92e −3) 
6 15 8 .8157e −2 (1.15e −2) = 1 .4750e −1 (5.66e −3) = 3 .9402e −1 (1.67e −1) = 1 .6961e −1 (1.58e −2) = 1 .2353e −1 (2.19e −2) 
8 17 1 .7805e −1 (5.90e −3) = 1 .7650e −1 (4.84e −3) = 4 .6287e −1 (1.61e −1) = 3 .1819e −1 (7.79e −2) = 4 .4136e −1 (4.08e −1) 

DTLZ3 4 13 6 .0589e −1 (1.51e −1) = 1 .0317e + 0 (1.50e −1) = 9 .4172e −1 (3.24e −2) = 8 .8248e −1 (1.11e −1) = 9 .2370e −1 (3.57e −2) 
6 15 5 .6952e −1 (1.85e −1) = 1 .9489e −1 (2.87e −2) = 7 .9654e −1 (6.51e −2) = 8 .0735e −1 (5.44e −2) = 7 .7012e −1 (5.67e −2) 
8 17 4 .9641e −1 (8.55e −2) = 1 .6618e −1 (1.55e −2) = 7 .6063e −1 (3.30e −2) = 8 .3442e −1 (9.39e −2) = 8 .3289e −1 (1.17e −1) 

DTLZ4 4 13 1 .7382e −1 (5.05e −2) = 1 .9367e −1 (8.54e −2) = 4 .2281e −1 (4.33e −1) = 4 .3222e −1 (2.83e −1) = 6 .8187e −1 (4.54e −1) 
6 15 1 .3151e −1 (3.51e −2) = 1 .6417e −1 (1.64e −2) = 2 .1557e −1 (4.33e −2) = 1 .6034e −1 (1.39e −2) = 5 .5005e −1 (3.77e −1) 
8 17 1 .8243e −1 (1.27e −3) = 1 .9699e −1 (6.33e −2) = 7 .5652e −1 (4.61e −1) = 3 .6009e −1 (3.64e −2) = 7 .9694e −1 (1.12e −1) 

DTLZ5 4 13 1 .6828e −1 (6.28e −2) = 4 .6710e −1 (3.03e −2) = 8 .6876e −1 (4.28e −2) = 6 .9266e −1 (8.36e −2) = 8 .7602e −1 (3.33e −2) 
6 15 7 .2053e −1 (5.59e −2) = 4 .4275e −1 (8.33e −2) = 1 .5959e −1 (1.67e −2) = 7 .0000e −1 (1.14e −1) = 6 .5989e −1 (5.41e −2) 
8 17 1 .9424e −1 (3.16e −2) = 4 .6903e −1 (1.34e −1) = 5 .1762e −1 (3.79e −2) = 6 .4786e −1 (3.62e −2) = 6 .9688e −1 (4.02e −2) 

DTLZ6 4 13 2 .0330e −1 (2.12e −2) = 4 .9026e −1 (2.42e −2) = 6 .9273e −1 (9.95e −2) = 8 .0133e −1 (1.35e −1) = 6 .7639e −1 (1.18e −1) 
6 15 2 .0057e −1 (4.32e −3) = 5 .0534e −1 (8.94e −2) = 6 .2320e −1 (4.52e −2) = 4 .1547e −1 (1.83e −1) = 5 .7594e −1 (3.27e −2) 
8 17 7 .2446e −1 (4.88e −2) 4 .9309e −1 (6.39e −2) = 5 .7559e −1 (7.23e −2) = 5 .9172e −1 (4.07e −2) = 2 .1323e −1 (5.10e −3) = 

DTLZ7 4 23 3 .8136e −1 (1.70e −2) = 1 .4120e −1 (1.20e −2) = 6 .0494e −1 (6.09e −2) = 5 .3604e −1 (9.13e −2) = 6 .0907e −1 (2.77e −2) 
6 25 3 .6265e −1 (7.26e −2) = 1 .6106e −1 (6.57e −3) = 5 .2698e −1 (1.70e −2) = 6 .1127e −1 (3.70e −2) = 4 .9448e −1 (1.64e −2) 
8 27 3 .8157e −1 (6.99e −2) = 7 .3267e −1 (1.14e −1) = 5 .8488e −1 (1.43e −2) = 2 .1558e −1 (3.65e −2) = 6 .1679e −1 (4.84e −2) 

Table 6: Results of HV metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 5 .9872e −1 (5.19e −1) = 6 .7886e −1 (3.82e −1) = 3 .3823e −1 (4.24e −1) = 4 .6274e −1 (4.44e −1) = 6 .1368e −1 (4.54e −1) 
6 10 5 .2118e −3 (8.80e −3) = 0 .0000e + 0 (0.00e + 0) = 1 .0300e −1 (1.78e −1) = 1 .9553e −1 (1.71e −1) = 1 .3219e −1 (1.55e −1) 
8 12 2 .8580e −1 (4.95e −1) = 0 .0000e + 0 (0.00e + 0) = 1 .9762e −1 (3.42e −1) = 4 .4121e −1 (2.06e −1) = 6 .1748e −2 (9.89e −2) 

DTLZ2 4 13 6 .7173e −1 (4.74e −3) = 6 .5577e −1 (4.49e −3) = 6 .7500e −1 (3.13e −3) = 6 .8392e −1 (3.10e −4) = 6 .8299e −1 (1.24e −3) 
6 15 7 .7814e −1 (6.84e −3) = 0 .0000e + 0 (0.00e + 0) = 7 .8412e −1 (6.58e −3) = 7 .9538e −1 (1.48e −2) 8 .0634e −1 (2.50e −3) = 

8 17 7 .6469e −1 (8.13e −2) = 0 .0000e + 0 (0.00e + 0) = 7 .6720e −1 (2.95e −2) = 8 .6618e −1 (1.19e −2) = 8 .1379e −1 (4.54e −2) 

DTLZ3 4 13 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) 
6 15 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) 
8 17 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) 

DTLZ4 4 13 6 .3635e −1 (7.61e −2) = 5 .7671e −1 (5.36e −2) = 6 .2943e −1 (9.34e −2) = 5 .2618e −1 (1.70e −1) = 4 .3431e −1 (3.07e −1) 
6 15 7 .5403e −1 (4.30e −3) = 1 .5357e −2 (2.66e −2) = 8 .0271e −1 (1.28e −2) = 8 .1189e −1 (1.08e −3) = 7 .3901e −1 (5.28e −2) 
8 17 8 .3690e −1 (4.90e −2) = 0 .0000e + 0 (0.00e + 0) = 7 .6316e −1 (7.88e −2) = 8 .8696e −1 (8.36e −4) = 7 .4178e −1 (6.43e −2) 

DTLZ5 4 13 1 .1785e −1 (3.18e −3) = 8 .1582e −2 (1.76e −2) = 1 .3050e −1 (3.23e −3) = 1 .1423e −1 (1.26e −3) = 1 .2728e −1 (3.11e −3) 
6 15 9 .3256e −2 (1.17e −2) = 0 .0000e + 0 (0.00e + 0) = 8 .4009e −2 (6.69e −3) = 4 .5167e −2 (3.56e −2) = 7 .2100e −2 (2.19e −2) 
8 17 9 .3488e −2 (3.25e −3) = 0 .0000e + 0 (0.00e + 0) = 4 .6417e −2 (2.76e −2) = 4 .4503e −2 (3.95e −2) = 4 .3710e −2 (2.98e −2) 

DTLZ6 4 13 7 .4448e −2 (6.53e −2) = 0 .0000e + 0 (0.00e + 0) = 3 .3082e −2 (5.43e −2) = 5 .5425e −2 (5.69e −2) = 3 .5369e −3 (6.13e −3) 
6 15 4 .9230e −2 (4.27e −2) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) 
8 17 2 .1143e −2 (3.66e −2) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) = 0 .0000e + 0 (0.00e + 0) 

DTLZ7 4 23 2 .0924e −1 (6.91e −3) = 2 .1961e −1 (1.31e −2) = 2 .1752e −1 (1.04e −2) = 2 .2209e −1 (4.72e −3) = 2 .1515e −1 (2.12e −3) 
6 25 3 .8492e −2 (1.49e −2) = 8 .3376e −3 (6.27e −3) = 7 .6437e −2 (3.08e −2) = 1 .0376e −1 (1.98e −2) = 1 .0005e −1 (9.19e −3) 
8 27 5 .4390e −3 (6.24e −3) = 0 .0000e + 0 (0.00e + 0) = 6 .4156e −2 (3.15e −2) = 2 .5577e −2 (2.62e −2) = 1 .8458e −2 (1.32e −2) 
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Table 7: Results of RT metric of different many-objective algorithms on DTLZ benchmark problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

DTLZ1 4 8 1 .5927e + 0 (7.78e −1) = 2 .4435e + 0 (2.60e −1) = 1 .7640e + 0 (2.77e −1) = 5 .3515e + 0 (1.76e −1) = 1 .1292e + 0 (1.10e −1) 
6 10 1 .2329e + 0 (9.41e −2) = 3 .3345e + 0 (2.36e −1) = 1 .8380e + 0 (1.32e −1) = 7 .7632e + 0 (3.57e −1) = 1 .4131e + 0 (1.40e −1) 
8 12 1 .2548e + 0 (1.30e −2) = 6 .1420e + 0 (2.09e −1) = 2 .2522e + 0 (3.23e −1) = 1 .0226e + 1 (1.75e + 0) = 2 .0897e + 0 (4.19e −1) 

DTLZ2 4 13 1 .4101e + 0 (3.01e −2) = 5 .4979e + 0 (1.39e −1) = 1 .3258e + 0 (4.93e −2) = 1 .1736e + 1 (9.70e −2) = 1 .0300e + 0 (6.44e −2) 
6 15 1 .5258e + 0 (2.24e −2) = 5 .9570e + 0 (6.63e −2) = 1 .5130e + 0 (6.86e −2) = 1 .2437e + 1 (2.02e −1) = 1 .1211e + 0 (3.70e −2) 
8 17 1 .5279e + 0 (3.96e −2) = 7 .1851e + 0 (2.49e −1) = 2 .4293e + 0 (2.87e −1) = 1 .3612e + 1 (1.24e + 0) = 2 .0651e + 0 (8.72e −1) 

DTLZ3 4 13 1 .2667e + 0 (9.99e −2) = 2 .1818e + 0 (3.16e −1) = 1 .4772e + 0 (1.70e −1) = 4 .2458e + 0 (6.99e −1) = 1 .0589e + 0 (1.21e −1) 
6 15 1 .4224e + 0 (2.17e −1) = 5 .8753e + 0 (1.03e + 0) = 2 .3446e + 0 (6.17e −1) = 9 .5524e + 0 (2.99e −1) = 1 .7252e + 0 (2.38e −1) 
8 17 1 .4443e + 0 (2.47e −1) = 9 .0269e + 0 (5.55e −1) = 2 .8377e + 0 (3.03e −1) = 1 .3654e + 1 (2.46e + 0) = 2 .1431e + 0 (4.97e −1) 

DTLZ4 4 13 1 .5576e + 0 (2.01e −1) = 5 .1097e + 0 (4.44e −1) = 2 .2006e + 0 (1.28e + 0) = 1 .1274e + 1 (2.21e + 0) = 2 .4955e + 0 (1.36e + 0) 
6 15 1 .5043e + 0 (4.00e −2) = 6 .1184e + 0 (3.39e −1) = 1 .4422e + 0 (6.38e −2) = 1 .3213e + 1 (2.47e −1) = 2 .8881e + 0 (1.50e + 0) 
8 17 1 .7086e + 0 (1.04e −1) = 8 .6313e + 0 (1.01e + 0) = 3 .8513e + 0 (1.75e + 0) = 1 .5095e + 1 (7.89e −1) = 4 .0963e + 0 (1.17e −1) 

DTLZ5 4 13 5 .8556e + 0 (1.93e −1) = 1 .0546e + 0 (1.21e −2) = 3 .2682e + 0 (1.11e −1) = 1 .3200e + 1 (1.46e −1) = 3 .1192e + 0 (2.77e −1) 
6 15 6 .3798e + 0 (2.18e −1) = 1 .0819e + 0 (8.15e −2) = 3 .7659e + 0 (1.93e −1) = 1 .2705e + 1 (2.11e −1) = 3 .7389e + 0 (1.47e −1) 
8 17 7 .4985e + 0 (2.49e −1) = 1 .1346e + 0 (8.19e −2) = 3 .9519e + 0 (1.60e −1) = 1 .2130e + 1 (9.51e −2) = 3 .5816e + 0 (1.17e −1) 

DTLZ6 4 13 1 .1359e + 0 (1.70e −2) = 4 .5711e + 0 (9.04e −2) = 1 .9566e + 0 (1.79e −1) = 9 .4453e + 0 (3.16e −1) = 1 .1467e + 0 (9.04e −2) 
6 15 1 .2504e + 0 (1.39e −2) = 8 .4351e + 0 (1.22e −1) = 2 .1325e + 0 (3.83e −1) = 1 .2775e + 1 (2.83e −1) = 1 .2372e + 0 (3.66e −2) 
8 17 1 .3319e + 0 (4.15e −2) = 8 .2254e + 0 (1.13e −1) = 2 .5598e + 0 (1.11e + 0) = 1 .3263e + 1 (8.06e −3) = 1 .9007e + 0 (1.03e + 0) 

DTLZ7 4 23 1 .0378e + 1 (3.88e −1) = 5 .0362e + 0 (2.22e −1) = 3 .0180e + 0 (1.79e −1) = 1 .1742e + 0 (5.98e −2) = 2 .7130e + 0 (2.63e −1) 
6 25 1 .3701e + 1 (7.19e −1) = 5 .2852e + 0 (1.65e −1) = 3 .6229e + 0 (7.61e −2) = 1 .4087e + 0 (1.05e −1) = 3 .5131e + 0 (1.18e −1) 
8 27 1 .2926e + 0 (7.70e −2) = 5 .8007e + 0 (1.96e + 0) = 1 .9945e + 0 (1.07e −1) = 6 .5042e + 0 (1.42e −1) = 2 .0127e + 0 (2.71e −1) 

Table 8: Results of SP metric of different many-objective algorithms on RWMaOP problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

RWMaOP1 9 7 1 .6751e + 0 (3.21e −1) = 1 .8850e + 0 (9.23e −1) = 3 .1881e + 0 (1.06e + 0) = 3 .7674e + 0 (1.03e + 0) = 3 .2195e + 0 (2.13e −1) 

RWMaOP2 4 10 6 .6789e + 2 (9.45e + 2) = 1 .1280e + 3 (3.24e + 2) = 7 .7418e + 2 (2.02e + 2) = 8 .6737e + 2 (3.01e + 2) = 9 .7329e + 2 (3.49e + 2) 

RWMaOP3 7 3 1 .8963e + 1 (1.99e + 0) = 3 .0024e + 1 (1.63e + 0) = 3 .0794e + 1 (4.17e + 0) = 4 .9546e + 1 (7.74e + 0) = 3 .2173e + 1 (2.49e + 0) 

RWMaOP4 5 6 4 .9404e + 4 (4.03e + 3) = 3 .3628e + 4 (3.42e + 3) = 5 .8139e + 4 (9.91e + 3) = 1 .7624e + 5 (2.28e + 5) = 6 .8760e + 4 (1.46e + 4) 

RWMaOP5 4 4 4 .3216e −2 (5.25e −4) = 8 .9090e −2 (8.65e −3) = 9 .2901e −2 (1.12e −2) = 1 .1272e −1 (5.52e −3) = 9 .3904e −2 (1.33e −2) 
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aOGBO , MaOPSO , RVEA, and NSGA-III ac hie v es 4.54, 15.66, 7.83,
nd 10.84. T hus , MaOAHA shows better o v er all performance com-
ared with MaOGBO , MaOPSO , RVEA, and NSGA-III. In this context,
aOAHA pr ov es to be versatile, showing the capability to han-

le such disconnected fronts effectively, as seen in its IGD values.
mong all the benchmark cases consider ed, MaOAHA ac hie v es

he smallest IGD value in a significant number of cases, high-
ighting its superiority in diverse scenarios . T his is further sup-
orted by the comparison figur es, whic h illustr ate MaOAHA abil-

ty to maintain a broad and evenly distributed population across
he P ar eto fr ont. While differ ent algorithms hav e their str engths
n certain problem types, MaOAHA exhibits robust and versatile
erformance across the DTLZ suite and RWMaOPs. Its ability to
andle r egular, degener ate, and disconnected P ar eto fr onts effec-
iv el y makes it a highly competitive algorithm in the field of many-
bjective optimization. 

. Conclusions 

his study introduces a novel MaOAHA to tackle MaOPs. MaOAHA
eatures an innovative Reference Point and Niche Technology,
iming to effectiv el y balance conv er gence and div ersity. Addition-
ll y, the algorithm ada pts to a v ariety of MaOPs thr ough a nov el
FM str ategy. This str ategy le v er a ges the distribution of dominant
ndividuals in both current and historical populations to infer the
istribution c har acteristics of true P ar eto fr onts acr oss differ ent
est scenarios to boost the algorithm’s exploratory capabilities.
he effectiveness of MaOAHA was tested on renowned bench-
ark problems (DTLZ1–DTLZ7) with four, six, and eight objec-

ives, using performance metrics like GD , IGD , SP, SD , HV, and RT .
t was also compared with leading algorithms such as MaOGBO,

aOPSO, RVEA, and NSGA-III. The outcomes r e v eal MA O AHA’s
uperiority in terms of GD , IGD , SP, SD , HV, and RT . The algo-
ithm’s applicability and excellence have also been confirmed in
v e r eal-world (R WMaOP1–R WMaOP5) scenarios. It also sho w ed
nhanced performance and efficiency in RT compared with other
lgorithms. 

One limitation of the current implementation of MaOAHA is
hat though it is robust across the tested scenarios, it may ex-
ibit varying efficacy in dealing with problems characterized by
xtr eme objectiv e space dimensions or highl y irr egular P ar eto
r onts. Furthermor e, the computational efficiency of the algo-
ithm, particularly in scenarios involving a large number of objec-
ives or complex constraints, remains an area for optimization. 

Ne v ertheless, the futur e works in this r egard should try to—

(i) Explore the incorporation of diverse variation operators
from the field of many-objective optimization into this en-
semble fr ame w ork. P erhaps this w ould enhance MaOAHA
adaptability and performance across an even broader array
of problems. 
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Figure 5: Best P ar eto-optimal fr ont obtained by differ ent algorithms on RWMaOP pr oblems. 

Table 9: Results of HV metric of different many-objective algorithms on RWMaOP problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

RWMaOP1 9 7 2 .0403e −3 (2.55e −4) 1 .3346e −3 (1.79e −4) = 2 .0043e −3 (1.65e −4) = 1 .5212e −3 (5.42e −4) = 7 .0741e −4 (3.13e −4) = 

RWMaOP2 4 10 8 .0832e −2 (7.37e −4) 3 .1989e −2 (2.12e −2) = 8 .0314e −2 (1.05e −3) = 7 .2471e −2 (3.45e −3) = 6 .6823e −2 (2.60e −3) = 

RWMaOP3 7 3 1 .6537e −2 (3.34e −4) 1 .7240e −2 (3.79e −4) = 1 .6445e −2 (4.91e −4) = 1 .5896e −2 (5.23e −4) = 1 .7165e −2 (1.60e −4) = 

RWMaOP4 5 6 5 .4295e −1 (3.58e −3) 4 .8797e −1 (8.98e −3) = 5 .3937e −1 (6.33e −3) = 5 .3392e −1 (1.04e −2) = 5 .3019e −1 (3.86e −3) = 

RWMaOP5 4 4 5 .3524e −1 (2.21e −3) 5 .3745e −1 (4.26e −3) = 5 .3860e −1 (1.10e −2) = 5 .4212e −1 (4.63e −3) = 5 .5073e −1 (2.10e −2) = 

Table 10: Results of RT metric of different many-objective algorithms on RWMaOP problems. 

Problem M D MaOAHA MaOGBO MaOPSO RVEA NSGA-III 

RWMaOP1 9 7 1 .1318e + 0 (1.40e −1) = 9 .2600e + 0 (1.70e + 0) = 3 .4330e + 0 (4.44e −1) = 1 .7475e + 1 (1.00e + 0) = 3 .0514e + 0 (2.02e −1) 

RWMaOP2 4 10 1 .2529e + 1 (5.06e −1) = 1 .5095e + 1 (1.96e −1) = 1 .4252e + 1 (6.75e −1) = 1 .7085e + 1 (3.57e + 0) = 1 .3780e + 1 (5.47e −1) 

RWMaOP3 7 3 2 .0567e + 1 (2.21e + 0) = 1 .0033e + 1 (3.64e −1) = 3 .2538e + 0 (1.70e −1) = 1 .0643e + 0 (9.03e −2) = 3 .5768e + 0 (2.80e −1) 

RWMaOP4 5 6 1 .5716e + 1 (8.84e −1) = 8 .5823e + 0 (5.28e −1) = 3 .9998e + 0 (2.11e −1) = 1 .3350e + 0 (3.04e −1) = 3 .3293e + 0 (1.83e −1) 

RWMaOP5 4 4 8 .9250e −1 (1.61e −2) = 6 .0477e + 0 (8.97e −2) = 3 .2266e + 0 (1.59e −1) = 1 .4645e + 1 (8.83e −1) = 3 .5160e + 0 (6.17e −1) 
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(ii) Extend MaOAHA utility by integrating sophisticated
constr aint-handling methods. Suc h adv ancements would
enable the algorithm to tackle more intricate real-world
issues that involve complex constraints. 

(iii) Adapt MaOAHA for solving combinatorial optimization
problems . T his will test the algorithm’s versatility and effi-
ciency in a new domain. 

(iv) Address the computational demands of MaOAHA, espe-
cially in large-scale optimization problems. Optimizing the
algorithm’s computational efficiency without compromis-
ing its ability to find high-quality solutions should be pri-
ority. 
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minimize 

weight of the car = f 1 ( x ) = 1 . 98 + 4 . 9 x 1 + 6 . 67 x 2 + 6 . 98 x 3 + 4 . 01 x 4 + 1 . 78 x 5 + 0 . 00 001 x 6 + 2 . 73 x 7 

f 2 ( x ) = max 
{
g 1 ( x ) , 0 

}
f 3 ( x ) = max 

{
g 2 ( x ) , 0 

}
f 4 ( x ) = max 

{
g 3 ( x ) , 0 

}
f 5 ( x ) = max 

{
g 4 ( x ) , 0 

}
f 6 ( x ) = max 

{
g 5 ( x ) , 0 

}
f 7 ( x ) = max 

{
g 6 ( x ) , 0 

}
f 8 ( x ) = max 

{
g 7 ( x ) , 0 

}
f 9 ( x ) = max 

{
g 8 ( x ) , 0 

}
. 

Subject to 

g 1 ( x ) = 1 − ( 1 . 16 − 0 . 3717 x 2 x 4 − 0 . 00 931 x 2 x 10 − 0 . 484 x 3 x 9 + 0 . 01 343 x 6 x 10 ) ≥ 0 

g 2 ( x ) = 0 . 32 − ( 0 . 261 − 0 . 0159 x 1 x 2 − 0 . 188 x 1 x 8 − 0 . 019 x 2 x 7 + 0 . 0144 x 3 x 5 + 0 . 8757 x 5 x 10 + 0 . 08 045 x 6 x 9 + 0 . 00 139 x 8 x 11 + 0 . 00 001 575 x 10 x 11 ) 

≥ 0 

g 3 ( x ) = 0 . 32 − ( 0 . 214 + 0 . 00 817 x 5 − 0 . 131 x 1 x 8 − 0 . 0704 x 1 x 9 + 0 . 03 099 x 2 x 6 − 0 . 018 x 2 x 7 

+ 0 . 0208 x 3 x 8 + 0 . 121 x 3 x 9 − 0 . 00 364 x 5 x 6 + 0 . 0007 715 x 5 x 10 − 0 . 0005 354 x 6 x 10 

+ 0 . 00 121 x 8 x 11 +0 . 00 184 x 9 x 10 − 0 . 018 x 2 x 2 ) ≥ 0 

g 4 ( x ) = 0 . 32 − ( 0 . 74 − 0 . 61 x 2 − 0 . 163 x 3 x 8 + 0 . 001 232 x 3 x 10 − 0 . 166 x 7 x 9 + . 227 x 2 x 2 ) ≥ 0 

g 5 ( x ) = 32 −
(

URD ∗ MRD ∗ LRD 

3 

)
≥ 0 

URD = 28 . 98 + 3 . 818 x 3 − 4 . 2 x 1 x 2 + 0 . 0207 x 5 x 10 + 6 . 63 x 6 x 9 − 7 . 77 x 7 x 8 + 0 . 32 x 9 x 10 

MRD = 33 . 86 + 2 . 95 x 3 + 0 . 1792 x 10 − 5 . 057 x 1 x 2 − 11 x 2 x 8 − 0 . 0215 x 5 x 10 − 9 . 98 x 7 x 8 + 22 x 8 x 9 

LRD = 46 . 36 − 9 . 9 x 2 − 12 . 9 x 1 x 8 + 0 . 1107 x 3 x 10 

g 6 ( x ) = 32 − ( 4 . 72 − 0 . 5 x − 4 − 0 . 19 x 2 x 3 − 0 . 0122 x 4 x 10 + 0 . 009 325 x 6 x 10 + 0 . 000 191 x 11 x 11 ) ≥ 0 

g 7 ( x ) = 4 − ( 10 . 58 − 0 . 674 x 1 x 2 − 1 . 95 x 2 x 8 + . 02 054 x 3 x 10 − . 0198 x 4 x 10 + . 028 x 6 x 10 ) ≥ 0 

g 8 ( x ) = 9 . 9 − ( 16 . 45 − 0 . 489 x 3 x 7 − 0 . 84 x 5 x 6 + 0 . 043 x 9 x 10 − 0 . 0556 x 9 x 11 − 0 . 000 786 x 11 x 11 ) ≥ 0 

x 1 ∈ [ 0 . 5 , 1 . 5 ] ; x 2 ∈ [ 0 . 45 , 1 . 35 ] ; x 3 ∈ [ 0 . 5 , 1 . 5 ] ; x 4 ∈ [ 0 . 5 , 1 . 5 ] ; x 5 ∈ [ 0 . 875 , 2 . 625 ] ; x 6 ∈ [ 0 . 4 , 1 . 2 ] ; x 7 ∈ [ 0 . 4 , 1 . 2 ] . 

A2.2. RWMaOP2: 10-bar truss structure problem (Panagant et al., 2023 ) 
In a real-world many-objective 10-bar truss structure optimization problem (RWMaOP2), to minimize the mass of truss, minimize com- 
pliance, maximize first natural frequency, and minimize maximum buckling factor: 

F 1 ( X ) = mass = 

m ∑ 

i =1 

A i ρL i 

F 2 ( X ) = compliance = δT ∗F 

F 3 ( X ) = inverse of first natural frequency = 1000 000 ∗
(

1 
f 1 

)

F 4 ( X ) = maximum buckling factor = max 

⎛ 

⎝ 

∣∣∣σ comp 
j 

∣∣∣
σ cr 

j 

⎞ 

⎠ . 

Subject to: 
Behavior constraints: 

g 1 ( X ) : Stress constraints , 
max 

(∣∣σ j 

∣∣) − σallo w able 

σallo w able 
≤ 0 

g 2 ( X ) : Euler buckling constraints , max 

⎛ 

⎝ 

∣∣∣σ comp 
j 

∣∣∣ − σ cr 
j 

σσ r 
j 

⎞ 

⎠ ≤ 0 , where σ cr 
j = 

k A j E 

L 2 j 
. 
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Side constraints: 
Cr oss-sectional ar ea constr aints, A 

min 
i ≤ A i ≤ A 

max 
i . 

L i is the length of the i th compr essiv e member. Elemental cr oss-sections ar e assumed to be countable variables as beam regular 
sections. It is assumed that the properties and permittable limits of all trusses are the same. Mass density ( ρ), elastic modulus ( E ), and 

permittable stress ( σmax ) are assumed as 7850 kg / m 

3 , 200 GPa , and 400 MPa , respectively. 

A2.3. RWMaOP3: water and oil repellent fabric development (Ahmad et al., 2017 ) 
One of the most common alterations to textiles is the repellency of water and oil, feature known as hydrophobicity effect. Consequently, 
hydrophobicity can be assessed through seven criteria: the water ( f 1 (x ) = −WCA ) and oil ( f 2 (x ) = −OCA ) droplet contact angle; the air 
permeability ( f 3 (x ) = −AP ) , whic h measur es the airflow thr ough a wov en fabric as a comforting pr operty; the cr ease r ecov ery angle 
( f 4 (x ) = −CRA ) , whic h measur es the ability of textiles to r ecov er fr om cr easing; the stiffness ( f 5 (x ) = Stiff ), which is the cotton fabric 
comfort property; the tear strength ( f 6 (x ) = −Tear ) of the finished fabric, which depends on the chemical finishing tr eatment a pplied to 
the fabric; and the tensile strength ( f 7 (x ) = −Tensile ). The real-world many-objective water and oil repellent fabric development opti- 
mization problem (RWMaOP3) functions as follows: 

minimize 

f 1 ( x ) = −WCA = − (−1331 . 04 + 1 . 99 × O −CPC + 0 . 33 × K −F EL + 17 . 12 × C −Temp − 0 . 02 × O −CP C 

2 − 0 . 05 × C −Tem p 2 ± 15 . 33 
)
. 

f 2 ( x ) = −OCA = − (−4231 . 14 + 4 . 27 × O −CPC + 1 . 50 × K −F EL + 52 . 30 × C −Temp − 0 . 04 × O −CPC × K −F EL − 0 . 04 × O −CP C 

2 

− 0 . 16 × C −Tem p 2 ± 29 . 33 
)
. 

f 3 ( x ) = −AP = − ( 1766 . 80 − 32 . 32 × O −CPC − 24 . 56 × K −F EL − 10 . 48 × C −Temp + 0 . 24 × O −CPC × C −Temp 

+ 0 . 19 × K −F EL × C −Temp − 0 . 06 × O − C P C 

2 − 0 . 10 × K −F E L 2 ± 413 . 33 
)
. 

f 4 ( x ) = −CRA = − (−2342 . 13 − 1 . 556 × O −CPC + 0 . 77 × K −F EL + 31 . 14 × C −Temp + 0 . 03 × O −CP C 

2 − 0 . 10 × C −Tem p 2 ± 73 . 33 
)
. 

f 5 ( x ) = Stiff = 9 . 34 + 0 . 02 × O −CPC − 0 . 03 × K −F EL − 0 . 03 × C −Temp − 0 . 001 × O −CPC × K −F EL + 0 . 0009 × K −F E L 2 ± 0 . 22 . 

f 6 ( x ) = −Tear = − (
1954 . 71 + 14 . 246 × O −CPC + 5 . 00 × K −F EL − 4 . 30 × C −Temp − 0 . 22 × O −CP C 

2 − 0 . 33 × K −F E L 2 ± 8413 . 33 
)
. 

f 7 ( x ) = −Tensile = − ( 828 . 16 + 3 . 55 × O −CPC + 73 . 65 × K −F EL + 10 . 80 × C −Temp − 0 . 56 × K −F EL × C −Temp 

+ 0 . 20 × K −F E L 2 ± 2814 . 83 
)

and x = (O − CPC, K − F EL, C − Temp ) T , such that 10 ≤ O − CPC ≤ 50 , is the concentration of water and oil repellent finish in g / L , 10 ≤
K − F EL ≤ 50 , is the concentration of the crosslinking agent in g / L , and 150 ≤ C-Temp ≤ 170 , is the curing temper atur e in 

◦C . 

A2.4. RWMaOP4: ultra-wideband antenna design (Chen, 2017 ) 
In order to design this antenna the objective functions to consider are: the voltage standing wave ratio (VSWR) over the passband 

( f 1 (x ) = VPVP ) , the VSWR over the WiMAX band ( f 2 (x ) = −VWi ) , the VSWR over the WLAN band ( f 3 (x ) = −V W L ) , the E- and H-planes 
fidelity factor ( f 4 (x ) = −F F ) , and the maximum gain over the passband ( f 5 (x ) = PG ) . Hence, the r eal-world man y-objectiv e ultr a-wideband 

antenna design optimization problem (RWMaOP4) is stated as 

minimize 

f 1 ( x ) = VP = 502 . 94 − 27 . 18 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) + 43 . 08 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) + 47 . 75 × ( a 1 − 6 . 0 ) 

+ 32 . 25 × ( ( b1 − 5 . 5 ) / 0 . 5 ) + 31 . 67 × ( a 2 − 11 . 0 ) − 36 . 19 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) × ( ( w 2 − 2 . 5 ) / 0 . 5 ) 

− 39 . 44 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) × ( a 1 − 6 . 0 ) + 57 . 45 × ( a 1 − 6 . 0 ) × ( ( b 1 − 5 . 5 ) / 0 . 5 ) . 

f 2 ( x ) = −VWi = −(130 . 53 + 45 . 97 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) − 52 . 93 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) − 78 . 93 × ( a 1 

− 6 . 0) + 79 . 22 × ( a 2 − 11 . 0 ) + 47 . 23 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) × ( a 1 − 6 . 0 ) − 40 . 61 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) 

× ( a 2 − 11 . 0 ) − 50 . 62 × ( a 1 − 6 . 0 ) × ( a 2 − 11 . 0 ) ) . 

f 3 ( x ) = −V W L = −(203 . 16 − 42 . 75 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) + 56 . 67 × ( a 1 − 6 . 0 ) + 19 . 88 

× ( ( b 1 − 5 . 5) / 0 . 5) − 12 . 89 × ( a 2 − 11 . 0 ) − 35 . 09 × ( a 1 − 6 . 0 ) × ( ( b 1 − 5 . 5 ) / 0 . 5 ) − 22 . 91 

× ( ( b 1 − 5 . 5 ) / 0 . 5 ) × ( a 2 − 11 . 0 ) ) . 

f 4 ( x ) = −F F = −(0 . 76 − 0 . 06 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) + 0 . 03 × ( ( l 2 − 2 . 5 ) / 0 . 5 ) + 0 . 02 × ( a 2 − 11 . 0 ) 

− 0 . 02 × ( ( b 2 − 6 . 5 ) / 0 . 5 ) − 0 . 03 × ( ( d 2 − 12 . 0 ) / 0 . 5 ) + 0 . 03 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) × ( ( w 1 − 20 . 0 ) / 0 . 5 ) 

− 0 . 02 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) × ( ( l 2 − 2 . 5 ) / 0 . 5 ) + 0 . 02 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) × ( ( b 2 − 6 . 5 ) / 0 . 5 ) ) . 

f 5 ( x ) = PG = 1 . 08 − 0 . 12 × ( ( l 1 − 20 . 0 ) / 2 . 5 ) − 0 . 26 × ( ( w 1 − 20 . 0 ) / 0 . 5 ) − 0 . 05 × ( a 2 − 11 . 0 ) − 0 . 12 

× ( ( b 2 − 6 . 5 ) / 0 . 5 ) + 0 . 08 × ( a 1 − 6 . 0 ) × ( ( b 2 − 6 . 5 ) / 0 . 5 ) + 0 . 07 × ( a 2 − 6 . 0 ) × ( ( b 2 − 5 . 5 ) / 0 . 5 ) 
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and x = ( a 1 , a 2 , b 1 , b 2 , d 1 , d 2 , l 1 , l 2 , w 1 , w 2 ) T , such that 5 ≤ a 1 ≤ 7 , 10 ≤ a 2 ≤ 12 , 5 ≤ b 1 ≤ 6 , 6 ≤ b 2 ≤ 7 , 3 ≤ d 1 ≤ 4 , 11 . 5 ≤ d 2 ≤ 12 . 5 , 17 . 5 ≤
l 1 ≤ 22 . 5 , 2 ≤ l 2 ≤ 3 , 17 . 5 ≤ w 1 ≤ 22 . 5 , and 2 ≤ w 2 ≤ 3 . 

A2.5. RWMaOP5: liquid-roc k et single element injector design (Goel et al., 2007 ) 
RWMaOP5 is a four-objective function optimization problem that deals with proper injector design. Ther efor e, for a desir able injector 
design, the maxim um temper atur e of the injector surface ( f 1 (x ) = T F max ) , the temper atur e at thr ee inc hes fr om the injector surface 
( f 2 (x ) = T W 4 ) , the maxim um temper atur e at the tip of the injector post ( f 3 (x ) = T T max ) , and the objectiv es to be consider ed ar e: the 
distance from the inlet combustion ( f 4 (x ) = X cc ) . T hus , the real-world many-objective liquid-rocket single element injector design opti- 
mization problem (RWMaOP5) can be written as 

minimize 

f 1 ( x ) = T F max = 0 . 692 + 0 . 477 × α − 0 . 687 × �HA − 0 . 080 × �OA − 0 . 0650 × OPTT − 0 . 167 × α2 

− 0 . 0129 × �HA × α + 0 . 0796 × �H A 

2 − 0 . 0634 × �OA × α − 0 . 0257 × �OA × �HA + 0 . 0877 × �O A 

2 

− 0 . 0521 × OPTT × α + 0 . 00156 × OPTT × �HA + 0 . 00 198 × OPTT × �OA + 0 . 0184 × OPT T 2 . 

f 2 ( x ) = T W 4 = 0 . 758 + 0 . 358 × α − 0 . 807 × �HA + 0 . 0925 × �OA − 0 . 0468 × OPTT − 0 . 172 × α2 

+ 0 . 0106 × �HA × α + 0 . 0697 × �H A 

2 − 0 . 146 × �OA × α − 0 . 0416 × �OA × �HA + 0 . 102 × �O A 

2 

− 0 . 0694 × OPTT × α − 0 . 00 503 × OPTT × �HA + 0 . 0151 × OPTT × �OA + 0 . 0173 × OPT T 2 . 

f 3 ( x ) = T T max = 0 . 370 − 0 . 205 × α + 0 . 0307 × �HA + 0 . 108 × �OA + 1 . 019 × OPTT − 0 . 135 × α2 

+ 0 . 0141 × �HA × α + 0 . 0998 × �H A 

2 + 0 . 208 × �OA × α − 0 . 0301 × �OA × �HA − 0 . 226 × �O A 

2 

+ 0 . 353 × OPTT × α − 0 . 0497 × OPTT × �OA − 0 . 423 × OPT T 2 + 0 . 202 × �HA × α2 − 0 . 281 × �OA 

× α2 − 0 . 342 × �H A 

2 × α − 0 . 245 × �H A 

2 × �OA + 0 . 281 × �O A 

2 × �HA − 0 . 184 × OPT T 2 × α

+ 0 . 281 × �HA × α × �OA. 

f 4 ( x ) = X cc = 0 . 153 − 0 . 322 × α + 0 . 396 × �HA + 0 . 424 × �OA + 0 . 0226 × OPTT + 0 . 175 × α2 

+ 0 . 0185 × �HA × α − 0 . 0701 × �H A 

2 − 0 . 251 × �OA × α + 0 . 179 × �OA × �HA + 0 . 0150 × �O A 

2 

+ 0 . 0134 × OPTT × α + 0 . 0296 × OPTT × �HA + 0 . 0752 × OPTT × �OA + 0 . 0192 × OPT T 2 

and x = (α, �HA, �OA, OPTT ) T . 
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