
Modelling Two-Dimensional Laplace Equation Using Monte Carlo Simulation: A Python

Viewpoint

Pankaj Dumka1* , Rishika Chauhan2 , Rohit Mishra1 , Darshana Dave3 , Chandrakant Sonawane4 ,

Anand Pandey4 , Ghanshyam Tejani5,6

1 Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna 473226, India
2 Department of Electronics and Communication Engineering, Jaypee University of Engineering and Technology, Guna

473226, India
3 Department of Mechanical Engineering, GEC Bhavnagar, Gujarat 364002, India
4 Department of Mechanical Engineering, Symbiosis International University, Pune 412115, India
5 Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan
6 Jadara Research Center, Jadara University, Irbid 21110, Jordan

Corresponding Author Email: p.dumka.ipec@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120118 ABSTRACT

Received: 30 September 2024

Revised: 8 November 2024

Accepted: 15 November 2024

Available online: 25 January 2025

This article explores the application of Monte Carlo simulation to model the two-

dimensional Laplace equation which is commonly used in the steady-state heat

conduction problems. By using statistical random walk principles, the study develops a

Python-based algorithm to approximate solutions for the Laplace equation having fixed

boundary (Dirichlet) conditions. The methodology involves formulating probability-

based steps, discretizing the equation, and simulating particle paths to estimate

temperatures at each grid point. A Python program has been developed to automate this

process which has been tested using a sample problem. The results showed excellent

agreement with analytical solutions, achieving 98% accuracy with 2000 random walks

per node. The findings highlight the trade-off between increased accuracy and

computational effort, as accuracy improves with a higher number of random walks. This

approach and the provided Python code offer researchers a framework for applying

Monte Carlo methods to similar problems and thus illustrate the adaptability of Python

for complex simulations.

Keywords:

heat conduction, two-dimensional heat

conduction, Monte Carlo simulation, random

walk, python programming, Laplace equation

1. INTRODUCTION

Often, in many heat transfer studies, steady state solutions

are required, and to understand them, the two - dimensional

(2D) Laplace equation is solved [1]. Modelling 2D heat

conduction is important for understanding steady-state

temperature distributions in various engineering applications,

such as thermal insulation, electronics cooling, and material

processing. Conventional methods, including analytical

solutions and deterministic numerical procedures like finite

difference or finite element methods, are well-established for

solving such problems. However, these approaches often

require complex mathematical formulations and boundary

condition handling, especially in cases with irregular

geometries or variable material properties. Monte Carlo

simulations (MC) provide a valuable choice by approaching

the problem statistically rather than analytically. This

statistical view offers flexibility in handling the diverse

boundary conditions and geometries thereby making it

particularly useful in applications where deterministic

methods may be difficult to implement. Many studies on

various facets of 2D heat transport provide both analytical and

numerical data [2, 3]. Yet, there is a dearth of literature that

not only approaches the heat transfer problem statistically but

also explains and illustrates the solution in a way that is simple

to reproduce [4]. The MC method for heat conduction relies

on simulating random particle movements or "walks" to guess

the temperature distribution, making it an intuitive and

adaptable approach. This method by-passes the need for

detailed analytical formulations by forming probabilistic rules

for particle movement, which ultimately approximate the heat

conduction process. Regardless of its advantages, MC

methods are less frequently applied to heat transfer problems,

especially in two-dimensional contexts, due to a lack of

straightforward, reproducible implementation workflows.

This study addresses this gap by developing a clear, replicable

framework for using MC in 2D heat conduction scenarios,

explaining its applicability through a practical Python

implementation.

Previous studies that have used MC methods in heat transfer

which generally focus on complex systems, often at three-

dimensional scales, or utilize stochastic approaches within

deterministic frameworks to solve specific boundary or

material uncertainties. However, literature is sparse on using

the MC simulation exclusively for solving the 2D Laplace

equation in steady-state heat conduction, mainly with a focus

Mathematical Modelling of Engineering Problems
Vol. 12, No. 1, January, 2025, pp. 159-165

Journal homepage: http://iieta.org/journals/mmep

159

https://orcid.org/0000-0001-5799-6468
https://orcid.org/0000-0001-8483-865X
https://orcid.org/0000-0002-0067-1205
https://orcid.org/0009-0005-9209-5987
https://orcid.org/0000-0002-3408-5060
https://orcid.org/0000-0002-5648-0897
https://orcid.org/0000-0001-9106-0313
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120118&domain=pdf

on accessibility for researchers and practitioners who may lack

extensive programming or analytical expertise. This paper

seeks to address these limitations by creating a simple,

replicable model that showcases MC simulation as a primary

method for 2D heat conduction, which could be especially

valuable for educational and preliminary research purposes.

As a result, the authors of this research study felt the necessity

to develop a piece that would concentrate on the use of MC

simulation in a situation involving 2D heat conduction. This

simulation is similar to playing a game [5, 6]. The solution can

be found without delving into the problem's analytical nature

if the game's rules are established for a certain kind of problem.

In order to write the temperature at any node in terms of its

surrounding nodes and their respective uncertainties, the

differential equations in the heat transfer problem are first

discretized, as is done in the finite difference techniques.

Random walks are obtained from that node, and they are used

to predict the node's temperature. The method's strongest

feature is that, with the exception of boundary nodes, it can tell

the value at discrete locations without knowing about other

points if one has to know the temperature at any particular

point [7].

The quantity of randomly generated numbers (random

walks) created must be sufficient to ensure the accuracy of the

solutions acquired from the MC simulation. Because

performing the operation by hand is not an option, computer

programmes must be created instead. Python programming is

a popular choice for mathematical and scientific computation

because of its simple syntax and ease of use [8-15].

Additionally, highly robust and extensive are the libraries for

arrays (NumPy) and data visualisation (Matplotlib) [16-20]. In

addition to filling this procedural gap, the use of Python for

implementing the MC simulation brings several unique

benefits. Python is increasingly popular in scientific

computing due to its readability, large libraries, and active user

community. By using Python’s NumPy for array manipulation

and Matplotlib for visualization, this study provides a user-

friendly approach that enables readers to quickly adopt and

familiarize the code to their own studies. The MC model and

code presented in this article offer a starting point for

extending the simulations to more complex heat transfer

problems, where Python’s abilities can be further exploited to

include additional physical factors or boundary conditions.

The differential equations are discretized in this article after

a description of the heat conduction problem. Both the

implementation process and the MC algorithm are described,

together with Python programming. A 2D heat conduction

problem is taken to check the Python program.

Ultimately, this study aims to provide a bridge between

traditional heat transfer modelling techniques and statistical

approaches by illustrating the practicality and effectiveness of

MC simulations in solving 2D steady-state conduction

problems. By demonstrating that MC simulations can achieve

high accuracy (98% agreement with analytical solutions in this

case) with an increase in computational resources, this study

highlights the potential of MC methods as an efficient and

scalable alternative. This approach not only expands the

toolkit available to researchers but also offers an accessible

framework for solving problems that may be difficult to

approach using conventional methods, marking a significant

step towards broader adoption of statistical simulation

methods in heat transfer analysis.

2. MONTE CARLO FORMULATION

Consider a two-dimensional rectangular domain as shown

in Figure 1.

Figure 1. Heat conduction in 1D slab

In this figure, the rectangular domain represents a two-

dimensional surface where heat conduction is happening in a

steady-state manner. Each boundary of this domain is held at

some fixed temperature (𝑇), simulating the thermal conditions

one might encounter in a heated metal plate or a similar planar

material. This arrangement will allow to focus on heat

conduction within the boundaries without the need for external

influences. The domain length in 𝑥 and 𝑦 directions are ℓ𝑥

and ℓ𝑦 respectively, and it has been assumed that the

temperature variation occurs only within this plane (i.e., there

is no variation normal to the plane). This assumption is often

valid for thin plates where the thickness of the plate is small

compared to the other dimensions. The boundary temperatures

of the domain are specified. The domain length in x and y

directions are ℓ𝑥 and ℓ𝑦 respectively. As there is no variation

in the temperature in the directions normal to the plane of

paper, the problem comes under the category of 2D conduction.

The choice of the rectangular domain is both practical and

analytically suitable, as it aligns with commonly faced shapes

in engineering and materials science, such as plates, walls, and

panels. The rectangular geometry allows for direct application

of the finite difference method on a uniform grid, enabling a

systematic exploration of 2D heat conduction performance.

However, the principles and approach used here can be

extended to other geometries, such as circular or irregular

domains. However, these would require modified

discretization schemes and possibly different boundary

conditions to address their unique shapes.

The governing equation for 2D steady state heat conduction

is Laplace equation which is shown in Eq. (1).

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0 (1)

Now discretizing the Eq. (1) in the domain using a second

order finite difference scheme with the help of the grid shown

in Figure 2 will result in Eq. (2).

160

Figure 2. Computational grid

𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

Δ𝑥2
+

𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

Δ𝑦2
= 0 (2)

On further simplification, Eq. (2) becomes:

𝑇𝑖 =
1

2(𝛼2 + 1)
𝑇𝑖,𝑗+1 +

1

2(𝛼2 + 1)
𝑇𝑖,𝑗−1

+
𝛼2

2(𝛼2 + 1)
𝑇𝑖−1,𝑗 +

𝛼2

2(𝛼2 + 1)
𝑇𝑖+1,𝑗

(3)

where, 𝛼 =
Δ𝑥

Δ𝑦
. From the point of view of MC simulation, the

coefficients of neighbouring points can be written in terms of

probability of random walk in the left, right, top and bottom

directions as shown in Eq. (4):

𝑇𝑖 = 𝑝𝑥
+𝑇𝑖,𝑗+1 + 𝑝𝑥

−𝑇𝑖,𝑗−1 + 𝑝𝑦
+𝑇𝑖+1,𝑗 + 𝑝𝑦

−𝑇𝑖−1,𝑗 (4)

where,

𝑝𝑥
+ =

1

2(𝛼2+1)
; 𝑝𝑥

− =
1

2(𝛼2+1)
; 𝑝𝑦

+ =
𝛼2

2(𝛼2+1)
; 𝑝𝑦

− =
𝛼2

2(𝛼2+1)
.

The probabilities 𝑝𝑥
+, 𝑝𝑥

−, 𝑝𝑦
+, and 𝑝𝑦

− show the likelihood of

the temperature at point (𝑖,𝑗) being influenced by its

neighbouring points in the positive and negative 𝑥 and 𝑦

directions. These probabilities are developed from the

coefficients in the discretized finite difference equation, and

they ensure that the influence of each neighbouring

temperature is appropriately weighted in the random walk

process. For example, 𝑝𝑥
+ and 𝑝𝑥

− determine the chances of

moving to the right or left (in the 𝑥 direction), while 𝑝𝑦
+ and

𝑝𝑦
− correspond to the upward and downward movement (in the

𝑦 direction). The sum of these probabilities is unity, thereby

ensuring that every step in the random walk conforms to a

balanced distribution over all the possible directions.

For the sake of simplicity, if one considers Δ𝑥 = Δ𝑦 (equal

grid spacing in 𝑥 and 𝑦 direction) then all the probabilities

become equal to 1/4. The important point to node here

regarding the probabilities is that, all the probabilities should

be positive, and their sum should be unity.

For a random walk started at point (𝑖, 𝑗) (i.e., the random

number 'rn' generated) the rule to initialize the random walk is

as follows:

• if 𝑟𝑛 < 𝑝𝑥
+ move to (𝑖, 𝑗 + 1) location (Move right)

• if 𝑝𝑥
+ < 𝑟𝑛 < 𝑝𝑥

+ + 𝑝𝑦
+ move to (𝑖 − 1, 𝑗) location

(Move up)

• if 𝑝𝑥
+ + 𝑝𝑦

+ < 𝑟𝑛 < 𝑝𝑥
+ + 𝑝𝑦

+ + 𝑝𝑥
− move to (𝑖, 𝑗 −

1) location (Move left)

• if 𝑝𝑥
+ + 𝑝𝑦

+ + 𝑝𝑥
− < 𝑟𝑛 < 1 move to (𝑖 + 1, 𝑗)

location (Move down)

The random walk algorithm is used here as a probabilistic

method to estimate the temperature distribution in the domain.

Each random walk simulates the path of the thermal energy

diffusing from a given point until it reaches the boundary. By

averaging the recorded boundary temperatures after a set

number of walks (𝑁), the steady-state temperature is estimated

at the starting point. This approach captures the physical

process of heat diffusion, where thermal energy spreads

through a medium in various directions and thus gradually

reaching equilibrium. Finish the walk when the random walk

reaches a boundary point. Record the temperature and save it.

Start another random walk from the point 𝑖, 𝑗 and the process

must be repeated till the initial specified number of random

walks (𝑁) . To obtain the final temperature at the (𝑖, 𝑗) th

location, add all the recorded temperatures at the end of each

walk and divide the sum by the (𝑁) . Mathematically it is

represented in Eq. (5).

𝑇𝑖,𝑗 =
1

𝑁
∑ Tw

i

N

i=1

 (5)

where, 𝑇𝑤
𝑖 is the wall temperature at the end of 𝑖th random walk.

3. PYTHON IMPLEMENTATION

The algorithm to implement the above procedure is as

follows:

a) Define the domain length.

b) Define the number of nodes and evaluate their

spacing.

c) Generate array of 𝑥 and y in the domain.

d) Create an empty temperature array and set the left and

right boundary temperatures.

e) Select the total number of random walks (N).

f) As the first and last nodes have already fixed

temperatures (due to boundary conditions) so inner

nodes must be swept to evaluate the temperature.

Therefore, run for loops to sweep through the inner

nodes. For every inside node the MC simulation must

be performed as presented in Section 2 which is

summarized below:

• Initialize Σ𝑇 with zero.

• Run an indefinite loop which will break only when

the boundary nodes are arrived at during a random

walk. In this loop generate a random number (rn)

between 0 and 1 (as probability cannot exceed 1). Use

the rule set in the Section 2 for the random walk to

move in the domain. Repeat this procedure till the

loop breaks. Before breaking the while loop,

increment Σ𝑇 by the boundary temperature at which

the random walk has reached.

• Repeat it for all the number of walks i.e., 𝑁 . And

divide Σ𝑇 by 𝑁 . Store it in the (𝑖, 𝑗) th location of

161

temperature array.

• Repeat the procedure till all the inner nodes are

covered.

The generalized pseudo code based on the algorithm

mentioned above is as follows:

1). Initialize simulation parameters:

 - Define domain length (ℓx, ℓy).

 - Set number of nodes along x and y axes (nc, nr).

 - Calculate spacing between nodes (Δx, Δy).

 - Generate arrays for x and y positions.

2). Initialize temperature array T:

 - Set boundary conditions:

 - T[0, :] = Top boundary temperature.

 - T[-1, :] = Bottom boundary temperature.

 - T[:, 0] = Left boundary temperature.

 - T[:, -1] = Right boundary temperature.

3). Define random walk parameters:

 - Set probabilities for each direction (p_xp, p_xm,

p_yp, p_ym).

 - Define the number of random walks (N).

4). For each interior node (i, j) in the temperature array

T:

 - Initialize total temperature sum, ΣT=0.

5). For each random walk (rw) from the current node (i,

j):

 - Set the starting position (i_node, j_node) to (i, j).

6). While the current position (i_node, j_node) is not on

a boundary:

 - Generate a random number (rn) between 0 and 1.

 - Determine the direction of movement based on rn:

 - If rn < p_xp, move right (increase j_node by 1).

 - Else if p_xp ≤ rn < (p_xp + p_yp), move up

(decrease i_node by 1).

 - Else if (p_xp + p_yp) ≤ rn < (p_xp + p_yp + p_xm),

move left (decrease j_node by 1).

 - Else, move down (increase i_node by 1).

 - If a boundary is reached:

 - Add the boundary temperature at T[i_node, j_node]

to ΣT.

 - Exit the while loop.

7). After all random walks are completed for node (i, j):

 - Calculate the average temperature at node (i, j) as

T[i, j] = ΣT / N.

8). Repeat steps 4-7 for all interior nodes in T.

9). Plot the final temperature distribution T as a contour

plot.

10). End of simulation.

Consider the following problem (Figure 3) on which the

algorithm is applied:

The example problem chosen for this implementation is a

standard steady-state heat conduction case in a 2D rectangular

domain with specified boundary temperatures, thus making it

suitable as a test case due to its simplicity and known

analytical solution for verification. The domain lengths in x

and y direction are one unit each. The boundary conditions

used (left and top boundaries at 100 units, right and bottom

boundaries at 30 units) represent a realistic gradient commonly

seen in thermal systems, where one side is hotter than the other.

The grid size (20×20) and the number of random walks

(N=2000 per node) were selected to balance the computational

efficiency and accuracy; a finer grid or a higher number of

random walks would improve the accuracy but increase the

computation time. With this setup, the MC method achieves a

high degree of agreement with the analytical solution, as can

be seen later in this section (97% match for N=2000). This

example problem serves as an effective benchmark to validate

the Python code and assess solution accuracy across different

grid sizes and walks.

Figure 3. Problem definition

The Python program to implement the algorithm discussed

above is as follows:

from pylab import *

from numpy import *

Defining domain

ℓx=1

ℓy=1

Number of nodes

nc=20

nr=20

Spacing between nodes

Δx=ℓx/(nc-1)

Δy=ℓx/(nr-1)

Array of x and y

x=linspace(0,ℓx,nc)

y=linspace(0,ℓy,nr)

Temperature array

T=empty((nr,nc))

Boundary Condition

T[0,:]=100 # Top

T[-1,:]=30 # Bottom

T[:,0]=100 # Left

T[:,-1]=30 # Right

probabilites

p_xp=p_xm=p_yp=p_ym=1/4

162

Number of random walks

N=2000

for i in range(1,nr-1):

 for j in range(1,nc-1):

 # initializing ΣT

 ΣT=0

 # Starting random walks for ith and jth nodes

 for rw in range(N):

 # Resetting of node at this point is must

 i_node=i

 j_node=j

 while True:

 # Generating random number

 rn=random.uniform(0,1)

 # Termination criterion

 if i_node==0 or i_node==nr-1 or j_node==0 or

j_node==nc-1:

 ΣT=ΣT+T[i_node,j_node]

 break

 # Direction of random walk

 elif rn<p_xp:

 j_node=j_node+1

 elif p_xp<rn<p_xp+p_yp:

 i_node=i_node-1

 elif p_xp+p_yp<rn<p_xp+p_yp+p_xm:

 j_node=j_node-1

 else:

 i_node= i_node+1

 # Summing up all the tem's taking their average

 T[i,j]=ΣT/N

Data Plotting

figure(dpi=300)

X,Y=meshgrid(x,flipud(y))

cp=contourf(X,Y,T,20,cmap='jet')

colorbar()

cp=contour(X,Y,T,10,colors='k')

clabel(cp,inline=True, fontsize=10)

xlabel('x')

ylabel('y')

savefig('2D.jpg')

The program output is shown in Figure 4. In the program

the number of random walks for each node was taken as 2000.

The answer is close to the analytical results.

One should be aware that the simulation outcome will never

always look exactly like what is depicted above, but rather,

there will always be variation, albeit a little amount of

variation for a lot of random walks. Figure 5 shows how the

solution varies with the variation in the number of random

walks, for x=0.5 units, and different y locations.

As observed in Figure 5, the accuracy of the solution

improves with the number of random walks, and for N=2000,

the statistical output is 97% of the analytical result. The error

for 10, 100, 500, 1000, 2000 random walks is also presented

in Table 1.

Figure 4. Temperature contour in the domain

Figure 5. Variation of temperature with different random

walks

Table 1. Variation of % errors for different random walks

y 10 100 500 1000 2000

1 0.00 0.00 0.00 0.00 0.00

0.9 7.53 -1.51 -1.20 -0.30 -1.20

0.8 0.00 -2.44 -4.23 -2.20 -1.99

0.7 17.72 -0.89 0.18 -0.80 -2.57

0.6 9.72 -3.89 -1.94 -2.33 -2.87

0.5 -10.77 0.00 -2.80 0.65 0.70

0.4 -12.07 -1.21 -1.69 -1.57 2.96

0.3 27.45 6.86 9.33 0.27 3.50

0.2 47.73 15.91 7.00 5.41 4.30

0.1 56.76 -3.78 5.30 1.14 3.50

0 0.00 0.00 0.00 0.00 0.00

Table 2. Grid size, random walk and estimated runtime

Grid Size Random Walks (N) Estimated Runtime (s)

10×10 1000 ~2

10×10 2000 ~4

20×20 1000 ~8

20×20 2000 ~15

20×20 5000 ~35

40×40 1000 ~30

40×40 2000 ~55

40×40 5000 ~138

163

To evaluate the influence of grid refinement on accuracy, a

grid convergence study has been conducted. Solutions on

progressively finer grids (10×10, 20×20, and 40×40) were

compared with the analytical solution, showing a notable

increase in accuracy with mesh refinement. For instance, while

a 10×10 grid offers an approximation, the 40×40 grid solution

aligns closely with analytical values. This convergence comes

at a computational cost. Table 2 summarizes the runtime

which is associated with each grid size and random walk count

(N). For example, with 2000 random walks per node, the

runtime on a 20×20 grid is approximately 15 seconds, while

the 40×40 grid requires 55 seconds. Doubling the number of

random walks to 5000 further increases the runtimes to about

35 seconds and 138 seconds for 20×20 and 40×40 grids

respectively. Thus, the choice of grid size and random walk

count involves balancing accuracy and efficiency.

4. CONCLUSION

In this communication the Monte Carlo (MC) simulation

has been employed to model a two-dimensional steady state

conduction problem (Laplace equation) with fixed (Dirichlet)

boundary constraints. The technique has been presented and is

built as an algorithm which is programmed in Python. A

numerical problem was used to test the Python code, and it was

found that the outcomes are like those of the analytical results.

With 2000 random walks, the computed temperature

distribution has showed an accuracy of approximately 97%

compared to the analytical solution. This has highlighted the

effectiveness of the method. Key findings from the study have

demonstrated that increasing the number of random walks

improves the accuracy of the solution, but at the cost of bigger

computational time. For instance, on a 20×20 grid with 2000

random walks per node, the runtime was approximately 15

seconds, while on a 40×40 grid with the same number of

random walks, the runtime increased to about 55 seconds.

The developed Python program serves as a effective tool for

researchers to understand the application of statistical methods

such as MC simulations and provides a basis for developing

more complex models. While the study reveals the potential of

this approach for solving heat conduction problems, it is

important to note that the method’s computational cost grows

with grid refinement and the number of random walks, which

may limit its scalability for larger problems. The technique

also assumes steady-state conditions, restraining its

applicability to transient heat conduction problems. Future

research could focus on optimizing the random walk algorithm

to enhance convergence rates, exploring parallelization

strategies to reduce the runtime, and extending the method to

handle more complex geometries and transient heat

conduction problems. Additionally, further validation against

the experimental data and comparison with other numerical

methods will strengthen the robustness of this approach.

REFERENCES

[1] Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt,

D.P. (2018). Fundamentals of Heat and Mass Transfer.

John Wiley & Sons.

[2] Patankar, S.V. (1980). Numerical Heat Transfer and

Fluid Flow. Hemisphere Publishing Corporation.

McGraw-Hill.

[3] Deo, A., Joshi, A.R., Parashar, A., Mishra, D.R., Dumka,

P. (2022). Analysing one dimensional tapered pin-fin

using finite difference. Research and Applications of

Thermal Engineering, 5(1): 1-6.

[4] Sizyuk, V., Hassanein, A. (2014). Efficient monte Carlo

simulation of heat conduction problems for integrated

multi-physics applications. Numerical Heat Transfer,

Part B: Fundamentals, 66(5): 381-396.

https://doi.org/10.1080/10407790.2014.922850

[5] Zio, E. (2013). Monte Carlo simulation: The method. In:

The Monte Carlo Simulation Method for System

Reliability and Risk Analysis. Springer Series in

Reliability Engineering. Springer, London.

https://doi.org/10.1007/978-1-4471-4588-2_3

[6] Harrison, R.L. (2010). Introduction to Monte Carlo

simulation. AIP Conference Proceedings, 1204: 17.

https://doi.org/10.1063/1.3295638

[7] Gembarovic, J. (2017). Using Monte Carlo simulation

for solving heat conduction problems, ResearchGate

Preprint, 1-25.

https://doi.org/10.13140/RG.2.2.20591.64162

[8] Dumka, P., Gajula, K., Sharma, V., Mishra, D.R. (2022).

Modelling pipe flow using Python. International

Education & Research Journal, 8(10): 4-7.

https://www.researchgate.net/publication/364385651_M

ODELLING_PIPE_FLOW_USING_PYTHON.

[9] Dumka, P., Dumka, R., Mishra, D.R. (2022). Numerical

Methods Using Python. Blue Rose Publishers.

https://books.google.co.in/books/about/Numerical_Met

hods_using_Python_For_scien.html?id=zRWdEAAAQ

BAJ&redir_esc=y.

[10] Joshi, A.R., Deo, A., Parashar, A., Mishra, D.R., Dumka,

P. (2023). Modelling steam power cycle using Python.

International Journal of Scientific Research in Computer

Science, Engineering and Information Technology

(IJSRCSEIT), 9(1): 152-162.

https://doi.org/10.32628/CSEIT228671

[11] Dumka, P., Mishra, D.R. (2022). Understanding the

TDMA/Thomas algorithm and its Implementation in

Python. International Journal of All Research Education

and Scientific Methods, 10(10): 998-1002.

[12] Dumka, P., Pawar, P.S., Sauda, A., Shukla, G., Mishra,

D.R. (2022). Application of He's homotopy and

perturbation method to solve heat transfer equations: A

Python approach. Advances in Engineering Software,

170: 103160.

https://doi.org/10.1016/j.advengsoft.2022.103160

[13] Backer, A. (2007). Computational physics education

with Python. Computing in Science & Engineering, 9(3):

30-33. https://doi.org/10.1109/MCSE.2007.48

[14] Dumka, P., Chauhan, R., Singh, A., Singh, G., Mishra, D.

(2022). Implementation of Buckingham's Pi theorem

using Python. Advances in Engineering Software, 173:

103232.

https://doi.org/10.1016/j.advengsoft.2022.103232

[15] Dumka, P., Rana, K., Tomar, S.P.S., Pawar, P.S., Mishra,

D.R. (2022). Modelling air standard thermodynamic

cycles using Python. Advances in Engineering Software,

172: 103186.

https://doi.org/10.1016/j.advengsoft.2022.103186

[16] Ranjani, J., Sheela, A., Meena, K.P. (2019). Combination

of NumPy, SciPy and Matplotlib/Pylab-A good

alternative methodology to MATLAB-A Comparative

analysis. In 2019 1st International Conference on

164

Innovations in Information and Communication

Technology (ICIICT), Chennai, India, pp. 1-5.

https://doi.org/10.1109/ICIICT1.2019.8741475

[17] Bauckhage, C. (2020). NumPy/SciPy recipes for data

science: Subset-constrained vector quantization via mean

discrepancy minimization, 1-4.

[18] Porcu, V. (2018). Matplotlib. In: Python for Data Mining

Quick Syntax Reference. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-4113-4_10

[19] Bisong, E., Bisong, E. (2019). Matplotlib and seaborn. In

Building Machine Learning and Deep Learning Models

on Google Cloud Platform: A Comprehensive Guide for

Beginners, Apress, Berkeley, CA, pp. 151-165.

https://doi.org/10.1007/978-1-4842-4470-8_12

[20] Dumka, P., Chauhan, R., Mishra, D.R., Shaik, F.,

Govindaraj, P., Kumar, A., Sonawane, C., Velkin, V.I.

(2024). Development and implementation of a Python

functions for automated chemical reaction balancing.

Indonesian Journal of Electrical Engineering and

Computer Science, 34(3): 1557-1565.

https://doi.org/10.11591/ijeecs.v34.i3.pp1557-1565

165

