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This article explores the application of Monte Carlo simulation to model the two-

dimensional Laplace equation which is commonly used in the steady-state heat 

conduction problems. By using statistical random walk principles, the study develops a 

Python-based algorithm to approximate solutions for the Laplace equation having fixed 

boundary (Dirichlet) conditions. The methodology involves formulating probability-

based steps, discretizing the equation, and simulating particle paths to estimate 

temperatures at each grid point. A Python program has been developed to automate this 

process which has been tested using a sample problem. The results showed excellent 

agreement with analytical solutions, achieving 98% accuracy with 2000 random walks 

per node. The findings highlight the trade-off between increased accuracy and 

computational effort, as accuracy improves with a higher number of random walks. This 

approach and the provided Python code offer researchers a framework for applying 

Monte Carlo methods to similar problems and thus illustrate the adaptability of Python 

for complex simulations. 
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1. INTRODUCTION

Often, in many heat transfer studies, steady state solutions 

are required, and to understand them, the two - dimensional 

(2D) Laplace equation is solved [1]. Modelling 2D heat 

conduction is important for understanding steady-state 

temperature distributions in various engineering applications, 

such as thermal insulation, electronics cooling, and material 

processing. Conventional methods, including analytical 

solutions and deterministic numerical procedures like finite 

difference or finite element methods, are well-established for 

solving such problems. However, these approaches often 

require complex mathematical formulations and boundary 

condition handling, especially in cases with irregular 

geometries or variable material properties. Monte Carlo 

simulations (MC) provide a valuable choice by approaching 

the problem statistically rather than analytically. This 

statistical view offers flexibility in handling the diverse 

boundary conditions and geometries thereby making it 

particularly useful in applications where deterministic 

methods may be difficult to implement. Many studies on 

various facets of 2D heat transport provide both analytical and 

numerical data [2, 3]. Yet, there is a dearth of literature that 

not only approaches the heat transfer problem statistically but 

also explains and illustrates the solution in a way that is simple 

to reproduce [4]. The MC method for heat conduction relies 

on simulating random particle movements or "walks" to guess 

the temperature distribution, making it an intuitive and 

adaptable approach. This method by-passes the need for 

detailed analytical formulations by forming probabilistic rules 

for particle movement, which ultimately approximate the heat 

conduction process. Regardless of its advantages, MC 

methods are less frequently applied to heat transfer problems, 

especially in two-dimensional contexts, due to a lack of 

straightforward, reproducible implementation workflows. 

This study addresses this gap by developing a clear, replicable 

framework for using MC in 2D heat conduction scenarios, 

explaining its applicability through a practical Python 

implementation. 

Previous studies that have used MC methods in heat transfer 

which generally focus on complex systems, often at three-

dimensional scales, or utilize stochastic approaches within 

deterministic frameworks to solve specific boundary or 

material uncertainties. However, literature is sparse on using 

the MC simulation exclusively for solving the 2D Laplace 

equation in steady-state heat conduction, mainly with a focus 
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on accessibility for researchers and practitioners who may lack 

extensive programming or analytical expertise. This paper 

seeks to address these limitations by creating a simple, 

replicable model that showcases MC simulation as a primary 

method for 2D heat conduction, which could be especially 

valuable for educational and preliminary research purposes. 

As a result, the authors of this research study felt the necessity 

to develop a piece that would concentrate on the use of MC 

simulation in a situation involving 2D heat conduction. This 

simulation is similar to playing a game [5, 6]. The solution can 

be found without delving into the problem's analytical nature 

if the game's rules are established for a certain kind of problem. 

In order to write the temperature at any node in terms of its 

surrounding nodes and their respective uncertainties, the 

differential equations in the heat transfer problem are first 

discretized, as is done in the finite difference techniques. 

Random walks are obtained from that node, and they are used 

to predict the node's temperature. The method's strongest 

feature is that, with the exception of boundary nodes, it can tell 

the value at discrete locations without knowing about other 

points if one has to know the temperature at any particular 

point [7]. 

The quantity of randomly generated numbers (random 

walks) created must be sufficient to ensure the accuracy of the 

solutions acquired from the MC simulation. Because 

performing the operation by hand is not an option, computer 

programmes must be created instead. Python programming is 

a popular choice for mathematical and scientific computation 

because of its simple syntax and ease of use [8-15]. 

Additionally, highly robust and extensive are the libraries for 

arrays (NumPy) and data visualisation (Matplotlib) [16-20]. In 

addition to filling this procedural gap, the use of Python for 

implementing the MC simulation brings several unique 

benefits. Python is increasingly popular in scientific 

computing due to its readability, large libraries, and active user 

community. By using Python’s NumPy for array manipulation 

and Matplotlib for visualization, this study provides a user-

friendly approach that enables readers to quickly adopt and 

familiarize the code to their own studies. The MC model and 

code presented in this article offer a starting point for 

extending the simulations to more complex heat transfer 

problems, where Python’s abilities can be further exploited to 

include additional physical factors or boundary conditions. 

The differential equations are discretized in this article after 

a description of the heat conduction problem. Both the 

implementation process and the MC algorithm are described, 

together with Python programming. A 2D heat conduction 

problem is taken to check the Python program. 

Ultimately, this study aims to provide a bridge between 

traditional heat transfer modelling techniques and statistical 

approaches by illustrating the practicality and effectiveness of 

MC simulations in solving 2D steady-state conduction 

problems. By demonstrating that MC simulations can achieve 

high accuracy (98% agreement with analytical solutions in this 

case) with an increase in computational resources, this study 

highlights the potential of MC methods as an efficient and 

scalable alternative. This approach not only expands the 

toolkit available to researchers but also offers an accessible 

framework for solving problems that may be difficult to 

approach using conventional methods, marking a significant 

step towards broader adoption of statistical simulation 

methods in heat transfer analysis. 

 

 

2. MONTE CARLO FORMULATION 

 

Consider a two-dimensional rectangular domain as shown 

in Figure 1. 

 

 
 

Figure 1. Heat conduction in 1D slab 

 

In this figure, the rectangular domain represents a two-

dimensional surface where heat conduction is happening in a 

steady-state manner. Each boundary of this domain is held at 

some fixed temperature (𝑇), simulating the thermal conditions 

one might encounter in a heated metal plate or a similar planar 

material. This arrangement will allow to focus on heat 

conduction within the boundaries without the need for external 

influences. The domain length in 𝑥  and 𝑦  directions are ℓ𝑥 

and ℓ𝑦  respectively, and it has been assumed that the 

temperature variation occurs only within this plane (i.e., there 

is no variation normal to the plane). This assumption is often 

valid for thin plates where the thickness of the plate is small 

compared to the other dimensions. The boundary temperatures 

of the domain are specified. The domain length in x and y 

directions are ℓ𝑥 and ℓ𝑦 respectively. As there is no variation 

in the temperature in the directions normal to the plane of 

paper, the problem comes under the category of 2D conduction. 

The choice of the rectangular domain is both practical and 

analytically suitable, as it aligns with commonly faced shapes 

in engineering and materials science, such as plates, walls, and 

panels. The rectangular geometry allows for direct application 

of the finite difference method on a uniform grid, enabling a 

systematic exploration of 2D heat conduction performance. 

However, the principles and approach used here can be 

extended to other geometries, such as circular or irregular 

domains. However, these would require modified 

discretization schemes and possibly different boundary 

conditions to address their unique shapes. 

The governing equation for 2D steady state heat conduction 

is Laplace equation which is shown in Eq. (1). 

 

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
= 0 (1) 

 

Now discretizing the Eq. (1) in the domain using a second 

order finite difference scheme with the help of the grid shown 

in Figure 2 will result in Eq. (2). 
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Figure 2. Computational grid 

 
𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

Δ𝑥2
+  

𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

Δ𝑦2
= 0 (2) 

 

On further simplification, Eq. (2) becomes: 

 

𝑇𝑖 =
1

2(𝛼2 + 1)
𝑇𝑖,𝑗+1 +

1

2(𝛼2 + 1)
𝑇𝑖,𝑗−1

+
𝛼2

2(𝛼2 + 1)
𝑇𝑖−1,𝑗 +

𝛼2

2(𝛼2 + 1)
𝑇𝑖+1,𝑗 

(3) 

 

where, 𝛼 =
Δ𝑥

Δ𝑦
. From the point of view of MC simulation, the 

coefficients of neighbouring points can be written in terms of 

probability of random walk in the left, right, top and bottom 

directions as shown in Eq. (4): 

 

𝑇𝑖 = 𝑝𝑥
+𝑇𝑖,𝑗+1 + 𝑝𝑥

−𝑇𝑖,𝑗−1 + 𝑝𝑦
+𝑇𝑖+1,𝑗 + 𝑝𝑦

−𝑇𝑖−1,𝑗 (4) 

 

where, 

 

𝑝𝑥
+ =

1

2(𝛼2+1)
; 𝑝𝑥

− =
1

2(𝛼2+1)
; 𝑝𝑦

+ =
𝛼2

2(𝛼2+1)
; 𝑝𝑦

− =
𝛼2

2(𝛼2+1)
. 

 

The probabilities 𝑝𝑥
+, 𝑝𝑥

−, 𝑝𝑦
+, and 𝑝𝑦

− show the likelihood of 

the temperature at point (𝑖,𝑗) being influenced by its 

neighbouring points in the positive and negative 𝑥 and 𝑦 

directions. These probabilities are developed from the 

coefficients in the discretized finite difference equation, and 

they ensure that the influence of each neighbouring 

temperature is appropriately weighted in the random walk 

process. For example, 𝑝𝑥
+  and 𝑝𝑥

−  determine the chances of 

moving to the right or left (in the 𝑥 direction), while 𝑝𝑦
+ and 

𝑝𝑦
− correspond to the upward and downward movement (in the 

𝑦 direction). The sum of these probabilities is unity, thereby 

ensuring that every step in the random walk conforms to a 

balanced distribution over all the possible directions. 

For the sake of simplicity, if one considers Δ𝑥 = Δ𝑦 (equal 

grid spacing in 𝑥  and 𝑦  direction) then all the probabilities 

become equal to 1/4. The important point to node here 

regarding the probabilities is that, all the probabilities should 

be positive, and their sum should be unity. 

For a random walk started at point (𝑖, 𝑗) (i.e., the random 

number 'rn' generated) the rule to initialize the random walk is 

as follows: 

• if 𝑟𝑛 < 𝑝𝑥
+ move to (𝑖, 𝑗 + 1) location (Move right) 

• if 𝑝𝑥
+ < 𝑟𝑛 < 𝑝𝑥

+ + 𝑝𝑦
+  move to (𝑖 − 1, 𝑗)  location 

(Move up) 

• if 𝑝𝑥
+ + 𝑝𝑦

+ < 𝑟𝑛 < 𝑝𝑥
+ + 𝑝𝑦

+ + 𝑝𝑥
−  move to (𝑖, 𝑗 −

1) location (Move left) 

• if 𝑝𝑥
+ + 𝑝𝑦

+ + 𝑝𝑥
−  < 𝑟𝑛 < 1  move to (𝑖 + 1, 𝑗) 

location (Move down) 

 

The random walk algorithm is used here as a probabilistic 

method to estimate the temperature distribution in the domain. 

Each random walk simulates the path of the thermal energy 

diffusing from a given point until it reaches the boundary. By 

averaging the recorded boundary temperatures after a set 

number of walks (𝑁), the steady-state temperature is estimated 

at the starting point. This approach captures the physical 

process of heat diffusion, where thermal energy spreads 

through a medium in various directions and thus gradually 

reaching equilibrium. Finish the walk when the random walk 

reaches a boundary point. Record the temperature and save it. 

Start another random walk from the point 𝑖, 𝑗 and the process 

must be repeated till the initial specified number of random 

walks (𝑁) . To obtain the final temperature at the (𝑖, 𝑗) th 

location, add all the recorded temperatures at the end of each 

walk and divide the sum by the (𝑁) . Mathematically it is 

represented in Eq. (5). 

 

𝑇𝑖,𝑗 =
1

𝑁
∑ Tw

i

N

i=1

 (5) 

 

where, 𝑇𝑤
𝑖  is the wall temperature at the end of 𝑖th random walk. 

 

 

3. PYTHON IMPLEMENTATION 

 

The algorithm to implement the above procedure is as 

follows: 

a) Define the domain length. 

b) Define the number of nodes and evaluate their 

spacing. 

c) Generate array of 𝑥 and y in the domain. 

d) Create an empty temperature array and set the left and 

right boundary temperatures. 

e) Select the total number of random walks (N). 

f) As the first and last nodes have already fixed 

temperatures (due to boundary conditions) so inner 

nodes must be swept to evaluate the temperature. 

Therefore, run for loops to sweep through the inner 

nodes. For every inside node the MC simulation must 

be performed as presented in Section 2 which is 

summarized below: 

• Initialize Σ𝑇 with zero. 

• Run an indefinite loop which will break only when 

the boundary nodes are arrived at during a random 

walk. In this loop generate a random number (rn) 

between 0 and 1 (as probability cannot exceed 1). Use 

the rule set in the Section 2 for the random walk to 

move in the domain. Repeat this procedure till the 

loop breaks. Before breaking the while loop, 

increment Σ𝑇 by the boundary temperature at which 

the random walk has reached. 

• Repeat it for all the number of walks i.e., 𝑁 . And 

divide Σ𝑇  by 𝑁 . Store it in the (𝑖, 𝑗) th location of 
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temperature array. 

• Repeat the procedure till all the inner nodes are 

covered. 

 

The generalized pseudo code based on the algorithm 

mentioned above is as follows: 

 

1). Initialize simulation parameters: 

    - Define domain length (ℓx, ℓy). 

    - Set number of nodes along x and y axes (nc, nr). 

    - Calculate spacing between nodes (Δx, Δy). 

    - Generate arrays for x and y positions. 

 

2). Initialize temperature array T: 

    - Set boundary conditions: 

        - T[0, :] = Top boundary temperature. 

        - T[-1, :] = Bottom boundary temperature. 

        - T[:, 0] = Left boundary temperature. 

        - T[:, -1] = Right boundary temperature. 

 

3). Define random walk parameters: 

    - Set probabilities for each direction (p_xp, p_xm, 

p_yp, p_ym). 

    - Define the number of random walks (N). 

 

4). For each interior node (i, j) in the temperature array 

T: 

    - Initialize total temperature sum, ΣT=0. 

 

5). For each random walk (rw) from the current node (i, 

j): 

    - Set the starting position (i_node, j_node) to (i, j). 

 

6). While the current position (i_node, j_node) is not on 

a boundary: 

     - Generate a random number (rn) between 0 and 1. 

     - Determine the direction of movement based on rn: 

     - If rn < p_xp, move right (increase j_node by 1). 

     - Else if p_xp ≤ rn < (p_xp + p_yp), move up 

(decrease i_node by 1). 

     - Else if (p_xp + p_yp) ≤ rn < (p_xp + p_yp + p_xm), 

move left (decrease j_node by 1). 

     - Else, move down (increase i_node by 1). 

     - If a boundary is reached: 

     - Add the boundary temperature at T[i_node, j_node] 

to ΣT. 

     - Exit the while loop. 

 

7). After all random walks are completed for node (i, j): 

        - Calculate the average temperature at node (i, j) as 

T[i, j] = ΣT / N. 

 

8). Repeat steps 4-7 for all interior nodes in T. 

 

9). Plot the final temperature distribution T as a contour 

plot. 

 

10). End of simulation. 

 

Consider the following problem (Figure 3) on which the 

algorithm is applied: 

The example problem chosen for this implementation is a 

standard steady-state heat conduction case in a 2D rectangular 

domain with specified boundary temperatures, thus making it 

suitable as a test case due to its simplicity and known 

analytical solution for verification. The domain lengths in x 

and y direction are one unit each. The boundary conditions 

used (left and top boundaries at 100 units, right and bottom 

boundaries at 30 units) represent a realistic gradient commonly 

seen in thermal systems, where one side is hotter than the other. 

The grid size (20×20) and the number of random walks 

(N=2000 per node) were selected to balance the computational 

efficiency and accuracy; a finer grid or a higher number of 

random walks would improve the accuracy but increase the 

computation time. With this setup, the MC method achieves a 

high degree of agreement with the analytical solution, as can 

be seen later in this section (97% match for N=2000). This 

example problem serves as an effective benchmark to validate 

the Python code and assess solution accuracy across different 

grid sizes and walks. 

 

 
 

Figure 3. Problem definition 

 

The Python program to implement the algorithm discussed 

above is as follows: 

 

from pylab import * 

from numpy import * 

 

# Defining domain 

ℓx=1 

ℓy=1 

 

# Number of nodes 

nc=20 

nr=20 

 

# Spacing between nodes 

Δx=ℓx/(nc-1) 

Δy=ℓx/(nr-1) 

 

# Array of x and y 

x=linspace(0,ℓx,nc) 

y=linspace(0,ℓy,nr) 

 

 

# Temperature array 

T=empty((nr,nc)) 

 

# Boundary Condition 

T[0,:]=100 # Top 

T[-1,:]=30 # Bottom 

T[:,0]=100 # Left 

T[:,-1]=30 # Right 

 

# probabilites 

p_xp=p_xm=p_yp=p_ym=1/4 
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# Number of random walks 

N=2000 

 

for i in range(1,nr-1): 

    for j in range(1,nc-1): 

         

        # initializing ΣT 

        ΣT=0 

        # Starting random walks for ith and jth nodes 

        for rw in range(N): 

            # Resetting of node at this point is must 

            i_node=i  

            j_node=j  

            while True: 

                # Generating random number 

                rn=random.uniform(0,1) 

                 

                # Termination criterion 

                if i_node==0 or i_node==nr-1 or j_node==0 or 

j_node==nc-1: 

                    ΣT=ΣT+T[i_node,j_node] 

                    break 

                     

                # Direction of random walk 

                elif rn<p_xp: 

                    j_node=j_node+1 

                     

                elif p_xp<rn<p_xp+p_yp: 

                    i_node=i_node-1 

                     

                elif p_xp+p_yp<rn<p_xp+p_yp+p_xm: 

                    j_node=j_node-1 

                     

                else: 

                    i_node= i_node+1 

        # Summing up all the tem's taking their average 

        T[i,j]=ΣT/N 

 

 

# Data Plotting 

figure(dpi=300) 

X,Y=meshgrid(x,flipud(y)) 

cp=contourf(X,Y,T,20,cmap='jet') 

colorbar() 

cp=contour(X,Y,T,10,colors='k') 

clabel(cp,inline=True, fontsize=10) 

xlabel('x') 

ylabel('y') 

savefig('2D.jpg') 

 

The program output is shown in Figure 4. In the program 

the number of random walks for each node was taken as 2000. 

The answer is close to the analytical results. 

One should be aware that the simulation outcome will never 

always look exactly like what is depicted above, but rather, 

there will always be variation, albeit a little amount of 

variation for a lot of random walks. Figure 5 shows how the 

solution varies with the variation in the number of random 

walks, for x=0.5 units, and different y locations. 

As observed in Figure 5, the accuracy of the solution 

improves with the number of random walks, and for N=2000, 

the statistical output is 97% of the analytical result. The error 

for 10, 100, 500, 1000, 2000 random walks is also presented 

in Table 1. 

 
 

Figure 4. Temperature contour in the domain 

 

 
 

Figure 5. Variation of temperature with different random 

walks 
 

Table 1. Variation of % errors for different random walks 

 
y 10 100 500 1000 2000 

1 0.00 0.00 0.00 0.00 0.00 

0.9 7.53 -1.51 -1.20 -0.30 -1.20 

0.8 0.00 -2.44 -4.23 -2.20 -1.99 

0.7 17.72 -0.89 0.18 -0.80 -2.57 

0.6 9.72 -3.89 -1.94 -2.33 -2.87 

0.5 -10.77 0.00 -2.80 0.65 0.70 

0.4 -12.07 -1.21 -1.69 -1.57 2.96 

0.3 27.45 6.86 9.33 0.27 3.50 

0.2 47.73 15.91 7.00 5.41 4.30 

0.1 56.76 -3.78 5.30 1.14 3.50 

0 0.00 0.00 0.00 0.00 0.00 

 

Table 2. Grid size, random walk and estimated runtime 

 
Grid Size Random Walks (N) Estimated Runtime (s) 

10×10 1000 ~2 

10×10 2000 ~4 

20×20 1000 ~8 

20×20 2000 ~15 

20×20 5000 ~35 

40×40 1000 ~30 

40×40 2000 ~55 

40×40 5000 ~138 
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To evaluate the influence of grid refinement on accuracy, a 

grid convergence study has been conducted. Solutions on 

progressively finer grids (10×10, 20×20, and 40×40) were 

compared with the analytical solution, showing a notable 

increase in accuracy with mesh refinement. For instance, while 

a 10×10 grid offers an approximation, the 40×40 grid solution 

aligns closely with analytical values. This convergence comes 

at a computational cost. Table 2 summarizes the runtime 

which is associated with each grid size and random walk count 

(N). For example, with 2000 random walks per node, the 

runtime on a 20×20 grid is approximately 15 seconds, while 

the 40×40 grid requires 55 seconds. Doubling the number of 

random walks to 5000 further increases the runtimes to about 

35 seconds and 138 seconds for 20×20 and 40×40 grids 

respectively. Thus, the choice of grid size and random walk 

count involves balancing accuracy and efficiency. 

 

 

4. CONCLUSION 

 

In this communication the Monte Carlo (MC) simulation 

has been employed to model a two-dimensional steady state 

conduction problem (Laplace equation) with fixed (Dirichlet) 

boundary constraints. The technique has been presented and is 

built as an algorithm which is programmed in Python. A 

numerical problem was used to test the Python code, and it was 

found that the outcomes are like those of the analytical results. 

With 2000 random walks, the computed temperature 

distribution has showed an accuracy of approximately 97% 

compared to the analytical solution. This has highlighted the 

effectiveness of the method. Key findings from the study have 

demonstrated that increasing the number of random walks 

improves the accuracy of the solution, but at the cost of bigger 

computational time. For instance, on a 20×20 grid with 2000 

random walks per node, the runtime was approximately 15 

seconds, while on a 40×40 grid with the same number of 

random walks, the runtime increased to about 55 seconds. 

The developed Python program serves as a effective tool for 

researchers to understand the application of statistical methods 

such as MC simulations and provides a basis for developing 

more complex models. While the study reveals the potential of 

this approach for solving heat conduction problems, it is 

important to note that the method’s computational cost grows 

with grid refinement and the number of random walks, which 

may limit its scalability for larger problems. The technique 

also assumes steady-state conditions, restraining its 

applicability to transient heat conduction problems. Future 

research could focus on optimizing the random walk algorithm 

to enhance convergence rates, exploring parallelization 

strategies to reduce the runtime, and extending the method to 

handle more complex geometries and transient heat 

conduction problems. Additionally, further validation against 

the experimental data and comparison with other numerical 

methods will strengthen the robustness of this approach. 
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