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A B S T R A C T

This study measures the resonance frequency and relative frequency change of concrete cylindrical shells rein-
forced with nanoclay and resting on viscoelastic foundations under combined in-plane and airflow pressures.
Advanced mathematical modeling is employed to measure the natural frequencies of the system, incorporating
the effects of nanoclay reinforcement on material properties. The viscoelastic foundation is represented using a
Kelvin-Voigt framework, accurately modeling the time-dependent behavior of the substrate. Parameterized
simulations are conducted to measure the structural response, focusing on the influence of varying nanoclay
content and in-plane pressures on frequency characteristics. The mathematical model is validated by measuring
its performance against experimental datasets from the literature and by integrating a deep neural network
(DNN) with a fuzzy algorithm for computational verification. Results reveal that nanoclay reinforcement
significantly measures as an enhancement in the stiffness and stability of the shell, resulting in increased natural
frequencies. Additionally, the mechanical effects induced by the interplay of in-plane and airflow pressures are
captured effectively through the proposed measurement framework. This research establishes a robust meth-
odology for the analysis of reinforced cylindrical shells, providing key insights into material and structural design
optimization for aeronautical and civil engineering applications. The integration of a DNN-fuzzy algorithm en-
hances the reliability of the measurement outcomes, setting the foundation for advanced predictive tools in
structural dynamics. These findings offer valuable measures to understand reinforced shell behavior under
complex pressure conditions, facilitating improved design strategies.

1. Introduction

Nanoclay reinforcement plays a critical role in engineering due to its
ability to enhance material properties at a nanoscale level [1,2]. These
materials are composed of layered silicates with high aspect ratios, of-
fering a unique combination of mechanical, thermal, and barrier en-
hancements [3]. When incorporated into polymer matrices, nanoclays
improve stiffness, strength, and resistance to deformation without
significantly increasing the material’s weight [4]. Their nanoscale di-
mensions enable large interfacial areas, which promote effective load
transfer and interfacial bonding [5]. Additionally, nanoclay-reinforced
composites exhibit superior thermal stability and flame retardancy,
making them ideal for applications in the aerospace, automotive, and

construction industries [6]. Their exceptional barrier properties against
gases and liquids also make them indispensable in packaging technol-
ogies [7]. Nanoclays are cost-effective and environmentally friendly,
providing engineers with a sustainable alternative for material
enhancement [8]. The tailoring of nanoclay properties through surface
modification further allows for customized solutions tailored to specific
engineering challenges [9]. Moreover, their dispersibility in various
matrices supports versatile applications across diverse fields [10].
Overall, nanoclay reinforcement is a cornerstone of modern materials
engineering, contributing significantly to advancements in lightweight
and high-performance composite materials [11].

Concrete structures are fundamental to engineering due to their
durability, versatility, and ability to withstand significant loads [12]. As
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a composite material, concrete is widely used in the construction of
buildings, bridges, dams, and infrastructure, offering engineers a cost-
effective and sustainable option for large-scale projects [13]. Its excel-
lent compressive strength and adaptability to various forms enable the
design of complex and resilient structures [14]. Additionally, concrete’s
compatibility with reinforcing materials like steel enhances its tensile
strength, allowing it to meet diverse structural demands [15]. The
longevity and minimal maintenance requirements of concrete structures
make them an essential component in addressing the growing global
need for sustainable and reliable infrastructure [16].

Natural frequency analysis is a critical aspect of structural engi-
neering, as it helps engineers understand how structures respond to
dynamic loads and vibrational forces [17]. Every structure has inherent
natural frequencies, and resonance occurs when external vibrations
match these frequencies, potentially causing catastrophic failure [18].
By analyzing natural frequencies, engineers can predict and mitigate
resonance effects, ensuring the structural integrity and safety of build-
ings, bridges, and machinery [19]. This analysis is especially vital in
seismic and wind engineering, where dynamic forces can have a pro-
found impact [20]. It also supports the optimization of materials and
design, balancing strength and flexibility to minimize vibrational am-
plitudes [21]. Natural frequency analysis is essential in designing
structures that interact with moving components [22]. Additionally, it
informs decisions about damping systems and isolation techniques to
reduce vibrational impacts [23]. Advances in computational tools have
enabled engineers to perform accurate modal analysis, even for complex
geometries [24]. The results of such analyses contribute to the devel-
opment of safer and more resilient infrastructure [25]. Ultimately,
natural frequency analysis is indispensable for creating designs that
ensure long-term performance, reliability, and compliance with safety
standards [26].

Machine learning (ML) algorithms are transforming engineering by
enabling the analysis of complex data and the development of intelli-
gent, predictive systems [27]. Engineers leverage ML to optimize design
processes, automate decision-making, and enhance the efficiency of
manufacturing and operations [28]. These algorithms identify patterns
and insights from vast datasets, surpassing traditional computational
methods in accuracy and speed [29]. In structural engineering, ML aids
in predicting material behaviors and failure modes, improving safety
and reliability [30]. Electrical engineers use ML for optimizing power
systems, predictive maintenance, and smart grid technologies [31].
Similarly, ML in mechanical engineering facilitates robotics, control
systems, and advanced simulations [32]. The integration of ML algo-
rithms accelerates innovation by reducing experimentation costs and
time, fostering data-driven design and prototyping [33]. Furthermore,
ML enhances the precision of diagnostics and monitoring in various
engineering systems, enabling proactive responses to potential issues
[34]. Advances in ML frameworks and tools empower engineers to
tackle multidisciplinary challenges, from renewable energy optimiza-
tion to autonomous systems [35]. Ultimately, ML algorithms are indis-
pensable for modern engineering, driving advancements that reshape
industries and improve the quality of life globally [36].

This work examines the resonance frequency and relative frequency
variation of concrete cylindrical shells reinforced with nanoclay, sup-
ported by viscoelastic foundations, under the influence of combined in-
plane and airflow forces. The inherent frequencies of the system are
studied using sophisticated mathematical modeling, taking into account
the effect of nanoclay reinforcement on material characteristics. The
viscoelastic foundation was represented using a Kelvin-Voigt model,
which accounts for the time-dependent characteristics of the viscoelastic
substrate. The structural response is measured by parameterized simu-
lations, emphasizing the effect of different nanoclay concentrations and
in-plane pressures on frequency characteristics. The mathematical
model is also validated using existing experimental datasets from the
literature and a deep neural network combined with a fuzzy algorithm,
offering a strong computational method for corroborating analytical

findings. The results indicate that nanoclay reinforcement significantly
improves the stiffness and stability of the shell, resulting in increased
natural frequencies. Moreover, the interplay between in-plane pressure
and airflow pressure generates mechanical effects that are precisely
represented by the suggested model. This study presents a thorough
technique for the analysis of reinforced cylindrical shells, with ramifi-
cations for design optimization in aeronautical and civil engineering
fields. The use of the DNN-fuzzy method for result validation guarantees
the trustworthiness of outputs, facilitating the development of sophis-
ticated forecasting tools in structural dynamics. These results boost the
comprehension of reinforced shell behavior under intricate pressure
situations, facilitating improved material and structural design.

2. Mathematical modeling

2.1. Material properties of the nanoclay composites reinforced concrete
shell structure

Currently, a frequently used material in industry is a composite
composed of polymers. These materials are attracting significant
attention in the aerospace, military, and aviation industries because of
their exceptional mechanical properties and substantial weight reduc-
tion in structural design. Composite materials are distinguished from
traditional metallic alloys by their exceptional attributes, including a
high strength-to-weight ratio, fatigue resistance, and wear resistance
[37]. Furthermore, this study considers a cylindrical shell denoted by
the letter L. Fig. 1 illustrates that the mean radius is denoted as R and the
shell thickness as h. The radial coordinate is denoted as r , while X

represents the axial direction. The circumferential angle θ defines the
shell’s angular position.

2.2. Elasticity modulus using the Halpin-Tsai model

The elastic modulus of composite materials, including nanoclay-
reinforced composites, is often estimated using the Halpin-Tsai model.
This model considers the distribution, shape, and direction of the rein-
forcement inside the matrix. The effective Young’s modulus, Ec, of a
nanoclay-reinforced composite may be estimated as follows:

Ec = Em × ((1+ 2ηWNC)/(1 − ηWNC) ) (1)

where:
Ec = Effective Young’s modulus of the composite.
Em = Young’s modulus of the matrix material.
WNC = Volume fraction of the nanoclay.η = Reinforcement efficiency

parameter, defined as:

η =
( (
Ef
/
Em

)
− 1

)/( (
Ef
/
Em

)
− 2ζ

)
, (2)

where:
Ef = Young’s modulus of the nanoclay.
ζ = A parameter depending on the shape and orientation of the

nanoclay particles.

2.3. Other material properties

The Poisson’s ratio of the composite can be estimated as:

ϑc = ϑm × (1 − WNC)+ϑf ×WNC, (3)

where:
ϑc= Poisson’s ratio of the composite.
ϑm= Poisson’s ratio of the matrix.
ϑf= Poisson’s ratio of the nanoclay. The density of the composite is

given by:

ρc = ρm × (1 − WNC)+ ρf ×WNC, (4)
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where:
ρc = Density of the composite.
ρm = Density of the matrix.
ρf = Density of the nanoclay.

2.4. Distribution pattern of nanoclay along with thickness direction

The distribution of nanoclay may significantly influence the me-
chanical, thermal, and barrier properties of a composite material. The
volume fraction, defined as the ratio of nanoclay volume to the total
volume of the composite material, is often used to evaluate the impact of
nanoclay dispersion. The role of nanoclay dispersion varies with volume
percentage in several orientations, including thickness and in-plane di-
rections.

PatternO : VNC(r ) = 2

⎛

⎜
⎜
⎝1 − 2

⃒
⃒
⃒
⃒r −

(

Ri + h
2

) ⃒
⃒
⃒
⃒

h

⎞

⎟
⎟
⎠V

*
NC, (5a)

PatternUD : VNC(r ) = V*
NC (5b)

PatternX : VNC(r ) = 4

⃒
⃒
⃒
⃒r −

(

Ri + h
2

) ⃒
⃒
⃒
⃒

h
V*
NC, (5c)

The total volume % of nanoclays is represented by V*
NC. It stays stable

and unaltered by the dispersions of nanoclays. This may be articulated as
follows:

Fig. 1. Geometry and coordinate system of a concrete shell reinforced by nanoclay under airflow pressure.
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V*
NC =

WNC

WNC + ρc/ρm − WNCρc/ρm
. (6)

Various distribution patterns of nanoclays are shown in Fig. 2.
The properties of the materials used are presented in Table 1.

2.5. Kinematic relations and energy expressions

The linear strain–displacement relationships may be elucidated
using the three-dimensional shell theory of elasticity as

E X =
∂U
∂X ,E θ =

∂V
r∂θ

+
W

r
,E r =

∂W
∂r , (7a)

γθr =
∂W
r∂θ

+
∂V
∂r −

V

r
, γX r =

∂U
∂r +

∂W
∂X , γX θ =

∂U
r∂θ

+
∂V
∂X . (7b)

E X , E θ and E r denote the normal strains along the respective di-
rections; γθr , γX r and γX θ signify the shear strains; and U , V and W

represent the displacement components in the X (axial), θ(circumfer-
ential), and r (radial) directions. According to Hooke’s law, the
comprehensive stress–strain relationships may be articulated as

σX = G 11E X +G 12E θ +G 13E r , (8a)

Fig. 1. (continued).

Fig. 2. Various distribution patterns of nanoclays.

Table 1
Mechanical characteristics of the two constituents of the matrix and the rein-
forcement [38].

Property name Matrix Nanoclay

Modulus of elasticity (E) [GPa] 25 178
Density (ρ) [kg/m3] 2300 2580
Poisson’s ratio (ϑ) 0.2 0.25
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σθ = G 12E X +G 22E θ +G 23E r , (8b)

σr = G 13E X +G 23E θ +G 33E r , (8c)

τθr = G 44γθr , (8d)

τX r = G 55γX r (8e)

τX θ = G 66γX θ. (8f)

where σX , σθ and σr denote normal stresses; τθr , τX r and τX θ indicate
shear stresses; G ij(i, j = 1 − 6) represent the elastic constants, which
may be expressed as

G 11 = G 22 = G 33 =
Ec(1 − ϑc)

(1+ ϑc)(1 − 2ϑc)
,G 12 = G 13 = G 23

=
ϑcEc

(1+ ϑc)(1 − 2ϑc)
, (9a)

G 44 = G 55 = G 66 =
Ec

2(1+ ϑc)
. (9b)

According to the kinematic relations, the strain energy UV of the com-
posite structure is expressed as follows

This research employs a collection of constantly distributed boundary
springs to imitate the boundary conditions [39].

One may produce diverse boundary conditions by altering the values
of each stiffness. The conserved potential energy US of the boundary
springs is

Three sets of linear springs with stiffnesses F U 0, F V 0 and F W 0 (or
F U L, F V L and F W L) are positioned at edge X = 0 (or edge X = L).
Three sets of linear springs with stiffnesses for various boundary con-
ditions, such as simply-supported (S) and clamped (C), can be obtained
by appropriately setting the values of the spring stiffness. Their value is
dependent on the convergence study of the results that will be presented
in the convergence study section. Mechanical stress and viscoelastic
foundations are considered, as previously mentioned. The following
expression denotes the potential energy linked to the three elastic
foundations UF:

UF,WP =
1
2

∫ L

0

∫ 2π

0

{

KwW 2
+ Cd

(
∂W

∂t

)2
}

|r=RoRodθdX , (12a)

UF,P =
1
2

∫ L

0

∫ 2π

0

{

P*
[(

∂W
∂X

)2

+

(
∂W
r∂θ

)2
]}

|r=RoRodθdX . (12b)

UF,WP denotes the potential energy associated with visco-elastic foun-
dations, whereas UF,P signifies the potential energy related to mechan-
ical load. Also, P* shows the pressure. Furthermore, the kinetic energy T
may be represented as

T =

∫ Ro

Ri

∫ 2π

0

∫ L

0

ρc
2

{(
∂U
∂t

)2

+

(
∂V
∂t

)2

+

(
∂W

∂t

)2
}

rdX dθdr . (13)

Furthermore, to effectuate a work alteration by airflow pressure pres-
sure, UF,V may be articulated as follows:

UF,V = −
1
2

∫ L

0

∫ 2π

0

{

qr

(
∂W
∂X

)2
}

|r=RoRodθdX . (14)

In which:

qr =
1
2

ρairV
2
airsin(θair). (15)

In this context, θair and Vair represent the wind attack angle and average
wind speed, respectively, while the air density, ρair, is assumed to beρair

= 1.235 [kg/m3] [40].

2.6. Admissible displacement functions and unified solution

This section identifies six unique kinds of permissible functions for
comparison. The recursive formulae of order i and variable A may be

denoted as Bi(A). The intervals of A differ across distinct polynomials;
hence, the following equations may be presented:

(1) Chebyshev polynomials of the first kind (Chebyshev I) [41]

B0(Y) = 1,B1(Y) = Y,Bi(Y) = 2YBi− 1(Y) − Bi− 2(Y), i ≥ 2,Y ∈ [ − 1, 1].
(16)

(2) Chebyshev polynomials of the second kind (Chebyshev II) [41]:

B0(Y) = 1,B1(Y) = 2Y,Bi(Y) = 2YBi− 1(Y) − Bi− 2(Y), i ≥ 2,Y

∈ [ − 1,1]. (17)

(3) Legendre polynomials [41]:

UV =
1
2

∫

V

(σX E X + σr E r + σθE θ + τθr γθr + τX r γX r + τX θγX θ)dV

=
1
2

∫

V

{

G 11

(
∂U
∂X

)2

+2G 12
∂U
∂X

(
∂V
r∂θ

+
W

r

)

+2G 13
∂U
∂X

∂W
∂r +G 22

(
∂V
r∂θ

+
W

r

)2

+2G 23

(
∂V
r∂θ

+
W

r

)
∂W
∂r +G 33

(
∂W
∂r

)2

+G 44

(
∂W
r∂θ

+
∂V
∂r −

V

r

)2

+G 55

(
∂U
∂r +

∂W
∂X

)2

+G 66

(
∂U
r∂θ

+
∂V
∂X

)2
}

dV. (10)

US =
1
2

∫ Ro

Ri

∫ 2π

0

{[
F U 0U

2 + F V 0V
2 + F W 0W

2]
|X =0 +

[
F U LU

2 + F V LV
2 + F W LW

2]
|X =L

}
rdθdr . (11)
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B0(Y) = 1,B1(Y) = 2Y,Bi(Y) =
2i − 1
i

YBi− 1(Y) −
(i − 1)
i

Bi− 2(Y), i

≥ 2,Y ∈ [ − 1, 1]
(18)

(4) Orthogonal polynomials [42]:

B0(Y) = 1,Bi(Y) =
Ci(Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫ 1
0 [Ci(Y) ]

2dY

√ , i ≥ 1. (19)

where Ci(Y) are a set of polynomials which are orthogonal. The corre-
sponding recursive formulas can be constructed below.
{

C1(Y) = 1,C2(Y) = (Y − X1)C1(Y)
Ci+1(Y) = (Y − Xi)Ci(Y) − TiCi− 1(Y), i ≥ 2 ,Y ∈ [0, 1]. (20)

where

Xi =

∫ 1
0 Y[Ci(Y)]

2dY
∫ 1
0 [Ci(Y)]

2dY
,Ti =

∫ 1
0 YCi(Y)Ci− 1(Y)dY
∫ 1
0 [Ci− 1(Y)]

2dY
. (21)

(5) Modified Fourier series of the first kind (Modified Fourier I) [43]:

Bi(Y) =

⎧
⎪⎪⎨

⎪⎪⎩

sin
(i − 3)π

a
Y,1 ≤ i ≤ 2

cos
(i − 3)π

a
Y, i > 2

. (22)

In X direction, a = L, A ∈ [0, L]; in r direction, a = h, A ∈ [0, h]. It is
worth noting that when i = 1 and 2, two supplementary terms with si-
nusoidal form are exerted to assure the second derivatives of admissible
functions.

(6) Modified Fourier series of the second kind (Modified Fourier II)
[44]:

B1(Y) = Y

(
Y

a
− 1

)2

,B2(Y) =
Y

2

a

(
Y

a
− 1

)

,Bi(Y) = cos
(i − 3)π
a

Y, i ≥ 3

(23)

In X direction, a = L, A ∈ [0,L]; in r direction, a = h, A ∈ [0,h]. Again,
two additional terms B1 and B2 are added to deal with any possible
discontinuities. The displacement fields of the composite structures can
be presented in a general form as [45]

U =
∑M

m=0

∑N

n=0

Bm(YX )Bn(Yr )
[
ucmncos(nθ) + u smnsin(nθ)

]
eiωt , (24a)

V =
∑M

m=0

∑N

n=0

Bm(YX )Bn(Yr )
[
vcmncos(nθ) + vsmnsin(nθ)

]
eiωt , (24b)

W =
∑M

m=0

∑N

n=0

Bm(YX )Bn(Yr )
[
wcmncos(nθ) + wsmnsin(nθ)

]
eiωt . (24c)

where ucmn, usmn, vcmn, vsmn, wcmn and wsmn are unknown expanded co-
efficients; M and N represent the maximum values of m and n, respec-
tively; n denotes the circumferential wave number; ω signifies the
angular frequency, and t indicates time; Bm(YX ) and Bn(Yr ) are poly-
nomials of degree m in the length direction and degree n in the radial
direction, respectively. Their expressions are

Bm = [B0(YX ),B1(YX ),⋯,Bm(YX ),⋯,BM(YX ) ], (25a)

Bn = [B0(Yr ),B1(Yr ),⋯,Bn(Yr ),⋯,BN(Yr ) ]. (25b)

The YX and Yr are dimensionless coordinates in the X and r axes,
respectively. They are derived from linear transformations of X and r ,
as distinct polynomials are specified across various intervals. Regarding
Chebyshev polynomials of the first and second kinds, as well as Legendre
polynomials

YX = 2X /L − 1,Yr = 2r/h − 1, (26)

For Orthogonal polynomials and Fourier-Bessel series

YX =
2X

L
,Yr =

2r

h
, (27)

For Modified Fourier I and II

YX = X ,Yr = r , (28)

Then, the unified forms of admissible displacement functions can be
represented as

U = u⋅gU ,V = v⋅gV ,W = w⋅gW , (29)

where

v = w = u, (30b)

gU =
{
uc00,⋯ucmn,⋯ucMN, u

s
00,⋯u smn,⋯usMN

}
eiωt , (30c)

gV =
{
vc00,⋯vcmn,⋯vcMN, v

s
00,⋯vsmn,⋯vsMN

}
eiωt , (30d)

gW =
{
wc00,⋯wcmn,⋯wcMN, w

s
00,⋯wsmn,⋯wsMN

}
eiωt . (30e)

The Rayleigh-Ritz method may now be used to execute the solution
process. The Lagrangian energy function of the composite structure may
be expressed as

f = UV +US+UF,WP+UF,P +UF,V − T. (31)

Subsequently, the function f is minimized about the unknown extended
coefficients ϑ (=umn, vmn and wmn) as shown below.

∂f
∂ϑ

= 0.ϑ = umn, vmn, wmn (32)

Integrating Eqs. (24a), (24b), (24c), and (31) into Eq. (32) yields the
motion equation of the composite structure.
(
K + iωC − ω2M

)
g = 0. (33)

M represents the mass matrices related to kinetic energy; K denotes the
stiffness matrix connected with strain energy, potential energy inside the
limits, elastic foundation, and mechanical load; g =

[
gU ,gV , gW

]T.
in which:

u =

{
B0(YX )B0(Yr )cos(nθ),⋯,Bm(YX )Bn(Yr )cos(nθ),⋯,BM(YX )BN(Yr )cos(nθ)
B0(YX )B0(Yr )sin(nθ),⋯,Bm(YX )Bn(Yr )sin(nθ),⋯,BM(YX )BN(Yr )sin(nθ)

}

, (30a)
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C =

⎡

⎣
0 0 0
0 0 0
0 0 C W W

⎤

⎦, (34a)

C W W =

∫ ∫
{
CdwTw

}
|r=RoRodS3, (34b)

M =

⎡

⎣
M U U 0 0
0 M V V 0
0 0 M W W

⎤

⎦, (34c)

M U U =

∫ ∫ ∫

ρr uTudv,M V V =

∫ ∫ ∫

ρr vTvdv,M W W

=

∫ ∫ ∫

ρr wTwdv, (34d)

dv = rdrdθdX , (34e)

K =

⎡

⎢
⎢
⎣

K U U K U V K U W

K
T
U V K V V K V W

K
T
U W K

T
V W K W W

⎤

⎥
⎥
⎦, (34f)

K U U =

∫ ∫ ∫ (

G 11r
∂uT
∂X

∂u
∂X +G 55r

∂uT
∂r

∂u
∂r +G 66

1
r

∂uT
∂θ

∂u
∂θ

)

dv

+

∫ ∫
{
F U 0u

Tu|X =0 + F U Lu
Tu|X =L

}
dS1,

(34g)

K U V =

∫ ∫ ∫ {

G 12
∂uT
∂X

∂v
∂θ

+G 66
∂uT
∂θ

∂v
∂X

}

dv, (34h)

K U W =

∫ ∫ ∫ {

G 12
∂uT
∂X w +G 13r

∂uT
∂X

∂w
∂r +G 55r

∂uT
∂r

∂w
∂r

}

dv, (34i)

K V V =

∫ ∫ ∫ {
G 22

r

∂vT
∂θ

∂v
∂θ

+
G 44

r
vTv +G 44r

∂vT
∂r

∂v
∂r +G 66r

∂vT
∂X

∂v
∂X

− G 44

(

vT
∂v
∂r +

∂vT
∂r v

)}

dv +
∫ ∫

{
F V 0v

Tv|X =0 + F V Lv
Tv|X =L

}
dS1,

(34j)

K V W =

∫ ∫ ∫ {
G 22

r

∂vT
∂θ

w +G 23
∂vT
∂θ

∂w
∂r +G 44

∂vT
∂r

∂w
∂θ

−
G 44

r
vT

∂w
∂θ

}

dv,

(34k)

dS1 = rdrdθ, dS3 = dX dθ, (34m)

The dimensionless parameters may be calculated as follows:

K*
w =

KwR5

EmI
,P0 = 1[MPa]C*

d =
CdR3
̅̅̅̅̅̅̅̅
EmI

√ . (35)

3. Application of DNN-fuzzy algorithm to estimate the resonance
frequency of nanoclay-reinforced concrete shell structures via
appropriate datasets of mathematical modeling

The accurate estimation of the resonance frequency of nanoclay-
reinforced concrete shell structures is critical for their stability and
performance in various engineering applications. Traditional methods
for determining resonance frequencies often involve labor-intensive
experimental techniques or simplistic analytical models that may not
capture the complex behavior of nanoclay-reinforced materials. Ad-
vances in computational methods, particularly in artificial intelligence
and data-driven modeling, offer promising alternatives. This study ex-
plores the application of a Deep Neural Network (DNN) integrated with
a fuzzy logic algorithm to estimate the resonance frequency of such
structures. The hybrid DNN-fuzzy approach leverages the strengths of
both techniques: the DNN’s ability to model complex nonlinear re-
lationships and fuzzy logic’s capability to handle uncertainty and
imprecision. A comprehensive dataset derived from mathematical sim-
ulations, validated by finite element analysis, forms the foundation of
the predictive model. These simulations incorporate various influencing
factors, such as shell geometry, material properties, and nanoclay con-
tent. The proposed methodology aims to enhance the precision and
computational efficiency of resonance frequency predictions, providing
engineers with a robust tool for design and analysis. The integration of
DNN and fuzzy algorithms not only improves prediction accuracy but
also offers insights into the key parameters affecting structural behavior,
paving the way for advanced material and structural design practices.
Here are the detailed steps of the DNN-Fuzzy algorithm for estimating
the resonance frequency of nanoclay-reinforced concrete shell
structures:

Step 1: Data Preparation

1. Input Data Collection:
• Gather data on shell geometry.
• Obtain material properties.
• Include environmental factors or pressure conditions.

2. Mathematical Simulation:
• Perform finite element analysis (FEA) or other mathematical
simulations to generate a dataset of resonance frequencies corre-
sponding to various structural and material configurations.

3. Preprocessing:
• Normalize the dataset to a uniform scale for efficient DNN training.
• Split the dataset into training, validation, and testing subsets.

K W W =

∫ ∫ ∫ {
G 22

r
wTw + G 23

(

wT
∂w
∂r +

∂wT
∂r w

)

+ G 33r
∂wT
∂r

∂w
∂r +

G 44

r

∂wT
∂θ

∂w
∂θ

+ G 55r
∂wT
∂X

∂w
∂X

}

dv

+

∫ ∫
{
F W 0w

Tw|X =0 + F W Lw
Tw|X =L

}
dS1 +

∫ ∫
{
KWwTw

}⃒
⃒
r=Ro

RodS3 +
∫ ∫ {

P*
∂wT
∂X

∂w
∂X +

B

r 2
∂wT
∂θ

∂w
∂θ

}⃒
⃒
⃒
⃒
r=Ro

×RodS3 +
∫ ∫ {

qr

∂wT
∂X

∂w
∂X

}⃒
⃒
⃒
⃒

r=Ro
RodS3,

(34l)
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Step 2: Deep Neural Network (DNN) Modeling.

4. Network Design:
• Define the DNN architecture, including the number of layers,
neurons, activation functions, and dropout rates.

5. Training the DNN:
• Use the training dataset to optimize the network weights.
• Employ a loss function and an optimizer for training.

6. Validation:
• Monitor the performance on the validation dataset to fine-tune
hyperparameters and prevent overfitting.

Step 3: Fuzzy Logic Integration

7. Defining Fuzzy Rules:
• Develop a set of linguistic rules based on expert knowledge or
dataset insights.

8. Fuzzification:
• Convert numerical inputs into fuzzy variables using member-
ship functions.

9. Inference:
• Apply the fuzzy rules to estimate the resonance frequency
range.

10. Defuzzification:
• Convert the fuzzy output into a crisp value for resonance fre-
quency estimation.

Step 4: DNN-Fuzzy Integration

11. Combining DNN and Fuzzy Outputs:
• Use the DNN to predict a baseline resonance frequency.
• Refine this prediction with the fuzzy logic system to incorpo-
rate uncertainty or imprecise data.

Step 5: Model Evaluation and Result Presentation

12. Testing:
• Evaluate the combined DNN-fuzzy model on the testing
dataset.

• Compare predicted and actual resonance frequencies using
performance metrics such as R-squared, RMSE, or MAE.

13. Visualization:
• Present results using plots and error distributions.

14. Sensitivity Analysis:
• Analyze the impact of key input variables on resonance fre-
quency to interpret model behavior.

15. Validation with Experimental Data:
• Where possible, validate predictions against experimental
resonance frequency measurements.

The final algorithm provides accurate and interpretable resonance
frequency estimates, demonstrating its applicability for design and
optimization in nanoclay-reinforced concrete shell structures. The
mathematical simulation for the DNN-Fuzzy algorithm involves two
main components: (1) constructing the DNN model and (2) integrating
fuzzy logic for refining predictions. Below is the mathematical
framework:

3.1. Mathematical representation of the DNN component

• Input Representation

Let the input vector X contain n features:

X = [x1, x2,⋯, xn] (36)

where x1, x2,⋯, xn represent factors such as material properties, geo-
metric parameters, and environmental conditions.

• Network Layers

The DNN consists of L layers, each defined by:

• Weight matrix W(l),
• Bias vector b(l),
• Activation function f (l).

The output of each layer l is computed as:

Z(l) = f (l)
(
W(l)A(l− 1) + b(l)

)
(37)

where:

• A(l− 1) is the output from the previous layer (with A(0) = X).
• Z(L) gives the final DNN output ŷDNN, the predicted resonance
frequency.

• Loss Function

The training process minimizes a loss function, such as Mean Squared
Error (MSE):

L =
1
m

∑m

i=1
(yi − ŷi)2 (38)

where m is the number of training samples, yi is the true value, and ŷi is
the DNN output.

3.2. Mathematical representation of fuzzy logic component

• Fuzzification

Input features X = [x1, x2,⋯, xn] are converted into fuzzy sets using
membership functions. For a feature xj, the membership function μA

(
xj
)

is defined as:

μA
(
xj
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xj − a
b − a

, a ≤ xj ≤ b

c − xj
c − b

b ≤ xj ≤ c

0, otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(39)

where [a, b, c] are the parameters of the triangular membership function.

• Fuzzy Rules

Define fuzzy rules in the form:
IF (x1isA1) AND (x2isA2) THEN y is B.where A1, A2, and B are fuzzy

sets.

• Inference

Combine multiple rules using fuzzy operators (e.g., min or product)
to compute the fuzzy output. For R rules:

μB(y) = max[min(μA1(x1), μA2(x2), ⋯ )] (40)

• Defuzzification

Convert the fuzzy output into a crisp value ŷFuzzy using the centroid
method:
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ŷFuzzy =
∫
y.μB(y)dy
∫

μB(y)dy (41)

3.3. Dnn-fuzzy integration

Combine the DNN output ŷDNN with the fuzzy logic output ŷFuzzy to
refine predictions:

ŷ = αŷDNN +(1 − α)ŷFuzzy. (42)

where α ∈ [0,1] is a weighting factor tuned during validation.

3.4. Model evaluation

Evaluate the final prediction ŷ against true resonance frequencies y
using metrics such as:

• Root Mean Squared Error (RMSE):

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

⃒
⃒yi − ŷi

⃒
⃒2

√

. (43)

Coefficient of Determination (R2)

R2 = 1 −
∑m

i=1
(
yi − ŷi

)2

∑m
i=1(yi − y)

2 . (44)

where y is the mean of true values. This framework integrates the pre-
dictive power of DNNs with the interpretability of fuzzy logic to provide
accurate and robust resonance frequency estimates.

4. Results and discussion

4.1. Validation of the results via nondestructive testing

Table 2 compares the natural frequencies of a cylindrical shell for
different numbers of circumferential waves based on experimental data
[46] and present results. The circumferential wave numbers analyzed
range from 5 to 15, covering values 5, 7, 9, 11, 13, and 15. The exper-
imental data, denoted as Ref. [46], represent previously published re-
sults, while the present results provide newly computed values. The
comparison evaluates the accuracy and reliability of the present model
by observing deviations in frequencies at each wave number. For wave
number 5, the experimental frequency is 206.5573, while the present
result is slightly higher at 207.2943. At wave number 7, the values differ
more significantly, with 163.3382 for Ref. [46] and 170.7712 for the
present approach. Similarly, as the wave numbers increase, both data-
sets show higher frequencies, though the present model consistently
predicts slightly larger values. At wave number 15, the experimental
frequency is 588.0775, while the present result reaches 600.7371.

Table 2
Comparison of the natural frequencies of cylindrical shells with the published experimental dataset [46].

Number of circumferential waves
5 7 9 11 13 15

Ref. [46]
(EXP)

206.5573 163.3382 224.4411 326.5275 439.0462 588.0775

Present 207.2943 170.7712 231.1354 334.7115 460.6431 600.7371

Table 3
Convergence of non-dimensional frequencies on boundary spring stiffness with
different boundary conditions considering K*

w = 1, C*d = 1, P*/P0 = 1, L/R =

10, R/h = 10, NCWF = 2[%], clamped–clamped boundary conditions,
Vair/V0 = 3, θair = π/4 and Pattern X.

Type of B.Cs F =

1013
F =

1014
F =

1015
F =

1016
F =

1017
F =

1018

Simply-
Simply B.
Cs

0.1933 0.2448 0.2625 0.2625 0.2625 0.2625

Clamped-
Clamped
B.Cs

0.3325 0.4212 0.4515 0.4515 0.4515 0.4515

Fig. 3. The impacts of airflow pressure angle, and velocity ratio on the relative
frequency change (RFC) of the nanoclay-reinforced concrete shell structures
under airflow pressure considering K*

w = 1, C*d = 1, P*/P0 = 1, L/R = 10,
R/h = 10, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.

Fig. 4. The impacts of airflow pressure velocity ratio and nanoclay weight
fraction (NCWF) on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering K*

w = 1, C*d = 1, P*/P0 = 1, L/R = 10,
R/h = 10, θair = π/4, clamped–clamped boundary conditions and Pattern X.
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Overall, the table highlights that the present model closely follows the
trends of the experimental dataset, with minor deviations. These vari-
ations may arise from differences in modeling assumptions, material
properties, or computational methods, yet the results demonstrate good
agreement, validating the proposed approach for frequency prediction
in cylindrical shells.

4.2. Convergence study

The convergence of non-dimensional frequencies on boundary spring
stiffness with different boundary conditions is presented in Table 3. As
mentioned earlier, the sets of linear springs with stiffnesses for various
boundary conditions, such as simply supported and clamped, can be
obtained by appropriately setting the values of the spring stiffness. Their
value is dependent on the convergence study of the results that are
presented in this part. For clamped–clamped boundary conditions,
F U =F V =F W = F ; for simply-supported boundary conditions,
F U =0, andF V = F W = F . As can be seen in Table 3, selecting F =

1015 is appropriate for reaching the convergence result of the presented
study.

4.3. Parametric results

It should be noted that relative frequency change (RFC) is presented
to show the sensitivity of the current concrete shell structure to the
nanoclay reinforcement. In other word, RFC is computed using the
following formulation:

Fig. 5. The impacts of in-plane pressure ratio, airflow pressure velocity ratio, and boundary conditions on the RFC of the nanoclay-reinforced concrete shell
structures under airflow pressure considering K*

w = 1, C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3, θair = π/4, NCWF = 2[%], and Pattern X.

Fig. 6. The impacts of in-plane pressure ratio, and airflow pressure angle on the
RFC of the nanoclay-reinforced concrete shell structures under airflow pressure
considering K*

w = 1, C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3,NCWF = 2[%],
clamped–clamped boundary conditions, and Pattern X.
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RFC = (ω1 − ω2)/ω1. (45)

In Eq. (58), ω1 and ω2 show the resonance frequency value of the current
structure considering and without considering nanoclay as the rein-
forcement, respectively.

Fig. 3 illustrates the influence of airflow pressure angle and velocity
ratio on the RFC of nanoclay-reinforced concrete shell structures sub-
jected to airflow pressure. The RFC, represented on the vertical axis,
indicates the variation in natural frequency due to the applied aero-
dynamic conditions. The horizontal axis denotes the normalized velocity
ratio, Vair/V0 , where V0 is the reference velocity (100m/s). The curves
correspond to different airflow pressure angles: π/8, π/6, π/4, and π/2,
with the critical velocity for each condition marked. It is observed that
for lower-pressure angles (e.g., θair = π/8), the structure demonstrates
greater stability, as the RFC increases more gradually with the velocity
ratio. Conversely, as the pressure angle increases (e.g., θair = π/2), the
RFC grows sharply, indicating earlier resonance and reduced stability.
The critical Vair/V0 values, where the transition from stability in
response (S.I.R) to instability in response (IS.I.R) occurs, are clearly
annotated. This signifies the onset of resonance frequency conditions,
beyond which the structural integrity degrades. The figure emphasizes
the interplay between aerodynamic pressure distribution and structural
dynamics, vital for optimizing stability under varying operational
conditions.

Fig. 4 demonstrates the effects of airflow pressure velocity ratio and
nanoclay weight fraction (NCWF) on the RFC of nanoclay-reinforced
concrete shell structures under aerodynamic pressure. The RFC,
plotted on the vertical axis, quantifies the natural frequency variation,
while the horizontal axis represents the normalized velocity ratio. The
figure includes curves for four NCWF levels: 1 %, 2 %, 3 %, and 4 %. It is
evident that as the NCWF increases, the RFC rises for a given Vair/V0,
highlighting the beneficial role of nanoclay in enhancing structural
stiffness. At NCWF= 1 % (blue curve), the RFC growth is minimal across
the velocity range, signifying lower structural sensitivity to aerodynamic
pressure. In contrast, the NCWF = 4 % curve (green) shows a pro-
nounced RFC increase, indicating stronger interaction between the
nanoclay-reinforced material and airflow dynamics. The overall trend
reveals that higher NCWF values improve the resonance frequency
response, delaying the onset of instability (IS.I.R) as Vair/V0 increases.
This underscores the importance of nanoclay reinforcement in tailoring

the aerodynamic and structural performance of concrete shells, partic-
ularly for applications involving high-pressure aerodynamic
environments.

Fig. 5 explores the combined effects of in-plane pressure ratio,
airflow pressure velocity ratio, and boundary conditions on the RFC of
nanoclay-reinforced concrete shell structures. The figure consists of
three subplots, corresponding to different boundary conditions: simply-
simply (top left), clamped-simply (top right), and clamped–clamped
(bottom). Each subplot illustrates the RFC against the normalized in-
plane pressure ratio for three values of Vair/V0 : 0.5, 1, and 1.5. Across
all boundary conditions, the RFC increases with both P*/P0 and Vair/V0.
The clamped–clamped case (bottom) shows the least sensitivity to
changes in P*/P0 and Vair/V0 , indicating higher structural stability. In
contrast, the simply-simply case (top left) exhibits a more pronounced
RFC increase, reflecting greater susceptibility to aerodynamic and in-

Fig. 7. The impacts of in-plane pressure ratio, and dimensionless Winkler
parameter on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.

Fig. 8. The impacts of in-plane pressure ratio, and dimensionless damping
parameter on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering K*

w = 1, L/R = 10, R/h = 10, Vair/V0 = 3,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.

Fig. 9. The impacts of dimensionless Winkler parameter and in-plane pressure
ratio on the RFC of the nanoclay-reinforced concrete shell structures under
airflow pressure considering C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3, θair =

π/4, NCWF = 2[%], clamped–clamped boundary conditions and Pattern X.
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plane pressure effects. The clamped-simply case (top right) demon-
strates intermediate behavior, where clamping enhances stability
compared to the simply-supported configuration but is less effective
than full clamping. This figure underscores the critical role of boundary
conditions in modulating resonance behavior and stability under com-
bined aerodynamic and in-plane pressure conditions, offering insights
into optimizing structural designs for enhanced performance.

Fig. 6 illustrates the relationship between the RFC and the normal-
ized in-plane pressure ratio for nanoclay-reinforced concrete shell
structures subjected to airflow pressure. Different curves correspond to
various airflow pressure angles ranging from π/8 to π/2. As shown, the
RFC increases nonlinearly with increasing in-plane pressure ratios for all
angles. The results highlight that higher airflow angles lead to earlier
critical pressure points, where the RFC approaches instability. Specif-
ically, the θair = π/2 case (green dash-dot line) reaches critical reso-
nance at a lower pressure ratio compared to the θair = π/8 case (solid
blue line), indicating increased susceptibility to instability (IS.I. R) at
higher angles. The marked arrows identify critical in-plane pressures,
where structural stability transitions from stability in response (S.I. R) to
instability in response. These findings emphasize the role of both in-
plane pressure and airflow angles in governing resonance behavior
and structural stability. This analysis is crucial for predicting failure
thresholds in shell structures under dynamic loads, aiding in their design
and safety assessment.

Fig. 7 illustrates the effect of the in-plane pressure ratio and the
dimensionless Winkler parameter on the RFC of nanoclay-reinforced
concrete shell structures subjected to airflow pressure. Four curves
represent different values of the Winkler parameter which model the
stiffness of the elastic foundation. The results indicate that higher
Winkler parameter values reduce the RFC, implying improved structural
stability due to increased foundation stiffness. Specifically, the blue
curve (K*

w = 0) shows the highest sensitivity to pressure variations,
leading to greater RFC and potential instability. Conversely, the green
dash-dot curve (K*

w = 1.5) exhibits minimal RFC, reflecting enhanced
stability. This behavior highlights the stabilizing effect of the elastic
foundation, which mitigates resonance frequency shifts under pressure.
The findings underscore the importance of incorporating nanoclay
reinforcement and foundation stiffness adjustments in designing stable
shell structures, particularly in environments with dynamic pressure
conditions.

Fig. 8 investigates the effect of the in-plane pressure ratio and the
dimensionless damping parameter on the RFC of nanoclay-reinforced
concrete shell structures under airflow pressure. As the damping
parameter increases, the RFC grows more rapidly with increasing pres-
sure, indicating reduced stability. Specifically, the green dash-dot curve
(C*

d = 1.5) reaches critical resonance conditions at a lower pressure
ratio, suggesting earlier instability compared to the blue curve (C*d = 0),
which maintains stability over a wider pressure range. Arrows mark the
critical in-plane pressures, where resonance frequency shifts signifi-
cantly, highlighting the onset of instability. The results emphasize that
higher damping reduces the system’s ability to dissipate energy, making
it more susceptible to dynamic instability. This analysis underscores the
importance of optimizing damping characteristics in conjunction with
nanoclay reinforcement to enhance the stability of concrete shell

Fig. 10. The impacts of dimensionless Winkler parameter and airflow pressure
velocity ratio on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering C*

d = 1, P*/P0 = 1, L/R = 10, R/h = 10,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.

Fig. 11. The impacts of the dimensionless Winkler parameter and dimension-
less damping parameter on the RFC of the nanoclay-reinforced concrete shell
structures under airflow pressure considering P*/P0 = 1, L/R = 10, R/h = 10,
Vair/V0 = 3, θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions
and Pattern X.

Fig. 12. The impacts of dimensionless Winkler parameter and dimensionless
in-plan pressure on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering K*

w = 1, L/R = 10, R/h = 10, Vair/V0 = 3,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.
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structures under variable pressure conditions.
Fig. 9 illustrates the relationship between the relative frequency

change of nanoclay-reinforced concrete shell structures and the
dimensionless Winkler parameter under varying in-plane pressure ratios
in the presence of airflow pressure. The figure indicates that for all cases,
the RFC decreases as K*

w increases, signifying reduced sensitivity of the
structure’s resonance frequency to reinforcement as the foundation
stiffness increases. At lower K*

w, RFC values are higher, suggesting
greater structural sensitivity. Additionally, higher in-plane pressure ra-
tios result in elevated RFC values across the entire range of K*

w. This
trend demonstrates that greater in-plane pressures amplify the reso-
nance frequency sensitivity to nanoclay reinforcement, possibly pushing
the structure closer to instability. Notably, whenP*/P0 = 0, the structure
exhibits the least sensitivity (lowest RFC), implying higher stability.
Conversely, P*/P0=2 corresponds to the highest RFC values, indicating
higher susceptibility to instability under critical conditions. This high-
lights the influence of in-plane pressure and foundation stiffness on the
dynamic behavior of reinforced concrete shells.

Fig. 10 explores the relationship between the relative frequency
change of nanoclay-reinforced concrete shell structures and the
dimensionless Winkler parameter, under varying airflow pressure ve-
locity ratios. The RFC consistently decreases as K*

w increases for all ve-
locity ratios, indicating that increasing foundation stiffness mitigates
resonance frequency sensitivity. When K*

w is low, RFC values are
significantly higher, reflecting greater sensitivity to nanoclay rein-
forcement under low foundation stiffness conditions. As the airflow
pressure velocity ratio increases, the RFC values across all K*

w levels
become progressively larger. Specifically, whenVair/V0 = 6.5, the RFC
reaches its highest values, signifying heightened sensitivity and poten-
tial for instability. Conversely, atVair/V0 = 0, RFC values are minimal,
representing the most stable conditions. The sharp increase in RFC at
higher airflow velocities highlights the destabilizing influence of aero-
dynamic forces, especially when combined with low foundation stiff-
ness. This underscores the importance of optimizing both material
reinforcement and pressure conditions to ensure stability in nanoclay-
reinforced concrete shell structures.

Fig. 11 presents the effects of the dimensionless Winkler parameter
and dimensionless damping parameter on the relative frequency change
of nanoclay-reinforced concrete shell structures under airflow pressure.
The RFC values decrease as K*

w increases for all C*d cases, indicating that

increased foundation stiffness reduces sensitivity to nanoclay rein-
forcement. At higher damping parameters, the RFC values across the
range of K*

w are elevated, signifying that increased damping enhances
the resonance frequency sensitivity of the structure. When C*d = 0, the
lowest RFC values are observed, suggesting maximum stability. As C*

d
increases to 3, the RFC reaches its peak, indicating heightened structural
sensitivity and potential instability. This trend underscores the desta-
bilizing effect of increased damping, which amplifies the dynamic
response of the system under airflow pressure. The figure highlights the
combined roles of foundation stiffness and damping in influencing the
stability and resonance behavior of nanoclay-reinforced concrete shell
structures. Optimal control of these parameters is critical for achieving
desired structural performance and minimizing the risk of instability.

Fig. 12 illustrates the relationship between the relative frequency
change and the dimensionless Winkler parameter for nanoclay-
reinforced concrete shell structures subjected to varying airflow pres-
sures. The RFC increases with C*

d for all pressure ratios, signifying
enhanced sensitivity of the structure’s resonance frequency as the

Fig. 13. The impacts of dimensionless damping parameter and airflow pressure
velocity ratio on the RFC of the nanoclay-reinforced concrete shell structures
under airflow pressure considering K*

w = 1, P*/P0 = 1, L/R = 10, R/h = 10,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and
Pattern X.

Fig. 14. The impacts of dimensionless Winkler parameter and in-plane pressure
ratio on the RFC of the nanoclay-reinforced concrete shell structures under
airflow pressure considering C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3, θair =

π/4, NCWF = 2[%], clamped–clamped boundary conditions and Pattern X.

Fig. 15. The impacts of dimensionless damping parameter and in-plane pres-
sure ratio on the RFC of the nanoclay-reinforced concrete shell structures under
airflow pressure considering K*

w = 1, L/R = 10, R/h = 10, Vair/V0 = 3, θair =

π/4, NCWF = 2[%], clamped–clamped boundary conditions and Pattern X.
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Winkler parameter increases. At lower C*d, the curves exhibit relatively
gradual changes, indicating stability in response (S.I.R). However, as C*d
exceeds a critical threshold (C*

d > 1.5), marked by a vertical boundary, a
rapid escalation in RFC is observed, transitioning the structure into
instability in response. Higher pressure ratios amplify the sensitivity, as
evidenced by the steepness of the curves. For instance, the green curve
(P*/P0 = 2.5) shows the most pronounced response, indicating a greater
likelihood of resonance-induced instability under high-pressure condi-
tions. This behavior demonstrates that both the reinforcement proper-
ties and applied pressure significantly affect the structural dynamics.
Overall, the figure emphasizes the critical role of nanoclay reinforce-
ment in modulating stability and underscores the importance of con-
trolling C*

d to mitigate instability risks in concrete shell structures.
Fig. 13 depicts the effect of the dimensionless damping parameter

and airflow pressure velocity ratio on the RFC for nanoclay-reinforced
concrete shell structures under airflow pressure. As C*d increases, the
RFC demonstrates a consistent upward trend across all velocity ratios,
highlighting the enhanced sensitivity of the resonance frequency to
damping. At lower values of C*d, the changes in RFC are minimal, indi-
cating a stable structural response. However, as C*d grows, the RFC in-
creases more significantly, especially for higher velocity ratios
(Vair/V0 = 3), as observed in the steepest green curve. The figure un-
derscores that the effect of airflow pressure velocity ratio becomes more
pronounced at higher C*d, suggesting that increased airflow amplifies the
impact of damping on the structural dynamics. Comparatively, the
lowest velocity ratio results in the least RFC, indicating reduced sensi-
tivity in the absence of airflow pressure. This analysis demonstrates the
critical interplay between damping and airflow velocity in influencing
the stability and resonance behavior of reinforced concrete shell

structures under dynamic conditions.
Fig. 14 shows the effect of the dimensionless Winkler parameter and

the in-plane pressure ratio on the relative frequency change of nanoclay-
reinforced concrete shell structures. The RFC increases with both K*

w and
P*/P0, indicating that greater reinforcement stiffness and higher in-
plane pressure amplify the resonance frequency response of the struc-
ture. For small values of K*

w and P*/P0, the RFC remains relatively low
and stable, reflecting a limited sensitivity to dynamic effects. However,
as these parameters increase, the RFC exhibits a sharp rise, particularly
at higher P*/P0, demonstrating enhanced instability in response. This
behavior underscores the influence of both reinforcement stiffness and
in-plane pressure on the stability and dynamic characteristics of rein-
forced shell structures under airflow conditions.

Fig. 15 examines the impact of the dimensionless damping parameter
and in-plane pressure ratio on the RFC of nanoclay-reinforced concrete
shell structures. The RFC shows a nonlinear growth as both C*

d and P
*/P0

increase. At lower values of these parameters, the RFC remains minimal,
indicating stability. However, as P*/P0 and C*

d rise, the RFC demon-
strates a steeper increase, reflecting an enhanced sensitivity to damping
effects under higher in-plane pressures. The interaction between
damping and pressure suggests that controlling C*d is essential for miti-
gating dynamic instability in reinforced shell structures subjected to
airflow-induced stresses.

4.4. Results of presented DNN-fuzzy algorithm

As mentioned in the previous section, the results of the mathematics
simulation are used as the input values of the presented DNN-fuzzy al-
gorithm. It should be noted that 4820 datasets are collected for col-
lecting the results. Fig. 16 illustrates the loss factor plotted against the
number of epochs for both training and validation datasets during the
training process of a machine learning model. The loss factor represents
the error or deviation between the predicted and actual values, serving
as an indicator of the model’s performance. The x-axis denotes the
number of epochs, which refers to the number of iterations through the
entire training dataset, while the y-axis represents the loss factor.
Initially, both the training and validation loss factors are relatively high,
indicating a significant error in the model’s predictions. However, as the
number of epochs increases, the loss factors for both datasets exhibit a
general downward trend, suggesting that the model improves its pre-
dictions by learning from the data. The rapid decrease in loss during the
initial epochs demonstrates the effectiveness of the optimization algo-
rithm in minimizing the error. The training loss fluctuates more than the
validation loss due to the model’s iterative adjustment of weights based
on the training dataset. The validation loss remains consistently lower
and smoother, indicating the model’s ability to generalize well without
overfitting. By the 300th epoch, the loss factors stabilize at lower values
for both datasets, reflecting convergence and improved model perfor-
mance. This figure highlights the model’s successful training and vali-
dation process.

Table 4 presents the influence of RMSETrain on the accuracy of pre-
dicted results for various values of the in-plane pressure ratio. The first
column lists P*/P0, which quantifies the ratio of applied pressure (P*) to

Fig. 16. Loss factor against epoch for training and validation dataset.

Table 4
The influence of RMSETrain on correcting the results of the mentioned algorithm
for various P*/P0 considering K*

w = 1, C*d = 1, L/R = 10, R/h = 10, Vair/V0 = 3,
θair = π/4, NCWF = 2[%], clamped–clamped boundary conditions and Pattern
X.

P*/P0 MS Predicted
RMSETrain =

0.3152
RMSETrain =

0.3593
RMSETrain =

0.3891

0 1.16287 0.89806 1.10766 1.16434
0.15 0.97762 0.80106 0.89637 0.97761
0.3 0.65844 0.44981 0.57359 0.65917
0.45 0.42185 0.35039 0.3928 0.42325
0.6 0.2299 0.14693 0.22005 0.22979

Table 5
The influence of R2 on correcting results of the mentioned algorithm for various
NCWF(%) considering K*

w = 1, C*d = 1, P*/P0 = 1, L/R = 10, R/h = 10,
Vair/V0 = 3, θair = π/4, clamped–clamped boundary conditions, and Pattern X.

NCWF(%) MS Predicted
R2 = 0.9121 R2 = 0.9512 R2 = 0.9912

0 0.57139 0.42302 0.53535 0.5727
1 0.82138 0.57359 0.70371 0.82045
1.5 0.89503 0.67301 0.83727 0.89493
2 1.30572 0.94098 1.11295 1.30664
2.5 1.56686 1.19855 1.48866 1.56802
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a reference pressure (P0). The second column (MS) represents the actual
measured values of a property affected by the pressure ratio. The
remaining columns show the predicted results for three different levels
of RMSETrain: 0.3152, 0.3593, and 0.3891. As P*/P0 increases, the MS
values decrease, indicating a nonlinear relationship between the pres-
sure ratio and the measured property. For each RMSETrain, the predicted
values are presented to evaluate the model’s accuracy. Lower values of
RMSETrain correspond to predictions that more closely match the
measured data (MS), suggesting improved performance of the algo-
rithm. For instance, when RMSETrain = 0.3152, the predicted values align
more closely with the MS values across all P*/P0 levels compared to
higher RMSE values. This table demonstrates how minimizing RMSETrain
during the training phase enhances the model’s ability to predict out-
comes accurately, emphasizing the importance of robust training pro-
cesses for reliable predictions in applications involving structural
pressure ratios.

Table 5 evaluates the influence of R2 on the accuracy of predicted
results for various nanoclay weight fractions, measured in %). The first
column lists the NCWF values, indicating the proportion of nanoclay in
the material. The second column (MS) contains the measured (true)
values of a property affected by NCWF. The subsequent columns present
the predicted results for three levels of R2: 0.9121, 0.9512, and 0.9912.
As NCWF increases, the MS values also increase, indicating that the
property under consideration positively correlates with nanoclay con-
tent. Predictions made by the algorithm improve as R2 increases. When
R2= 0.9912, the predicted values align closely with theMS values across
all NCWF levels, demonstrating the highest predictive accuracy.
Conversely, when R2 = 0.9121, the predictions show a larger deviation
from the MS values, particularly at higher NCWF percentages. This table
highlights the importance of achieving high R2 values for accurate
modeling and prediction. As R2 approaches 1, the model captures the
variance in the data more effectively, leading to predictions that are
more reliable and closely aligned with the actual measurements.

5. Conclusion

This study measured the resonance frequency and relative frequency
changes in concrete cylindrical shells reinforced with nanoclay and
resting on viscoelastic foundations under combined in-plane and airflow
pressures. Through advanced mathematical modeling, the natural fre-
quencies of the system were determined, considering the influence of
nanoclay reinforcement and the viscoelastic behavior of the foundation,
represented by a Kelvin-Voigt framework. The measurement of struc-
tural response was conducted using parameterized simulations,
providing detailed insights into the effects of varying nanoclay content
and in-plane pressures on frequency characteristics. The accuracy and
reliability of the mathematical model were validated using experimental
datasets from the literature and a deep neural network integrated with a
fuzzy algorithm. This computational approach ensured robust verifica-
tion of the analytical results. The measurements demonstrated that
nanoclay reinforcement significantly improved the stiffness and stability
of the shells, resulting in higher natural frequencies. Furthermore, the
interaction between in-plane pressure and airflow pressure was shown
to induce mechanical effects that were captured accurately through the
proposed model. This research provides a measurement-centric frame-
work for evaluating the dynamic behavior of reinforced cylindrical
shells. The findings highlight the importance of nanoclay as a reinforc-
ing material in enhancing structural performance, particularly under
complex pressure conditions. The integration of computational intelli-
gence methods, such as the DNN-fuzzy algorithm, with traditional
measurement techniques ensures high precision and reliability, setting a
benchmark for similar studies in structural dynamics. By combining
accurate measurement methods with advanced modeling and verifica-
tion techniques, this study contributes to the broader field of structural
optimization in aeronautical and civil engineering applications. These

results underscore the critical role of precise frequency measurement in
understanding the interplay between material enhancements, pressures,
and foundation properties, paving the way for future advancements in
the design and analysis of reinforced structures.
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