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In this paper, we introduce an improved water strider algorithm designed to solve the inverse form 
of the Burgers-Huxley equation, a nonlinear partial differential equation. Additionally, we propose 
a physics-informed neural network to address the same inverse problem. To demonstrate the 
effectiveness of the new algorithm and conduct a comparative analysis, we compare the results 
obtained using the improved water strider algorithm against those derived from the original water 
strider algorithm, a genetic algorithm, and a physics-informed neural network with three hidden 
layers. Solving the inverse form of nonlinear partial differential equations is crucial in many scientific 
and engineering applications, as it allows us to infer unknown parameters or initial conditions from 
observed data. This process is often challenging due to the complexity and nonlinearity of the 
equations involved. Meta-heuristic algorithms and neural networks have proven to be effective tools 
in addressing these challenges. The numerical results affirm the efficiency of our proposed method 
in solving the inverse form of the Burgers-Huxley equation. The best results were obtained using the 
improved water strider algorithm and the physics-informed neural network with 10,000 iterations. 
With this iteration count, the mean absolute error of these algorithms is O(10−4). Additionally, the 
improved water strider algorithm is nearly four times faster than the physics-informed neural network. 
All algorithms were executed on a computing system equipped with an Intel(R) Core(TM) i7-7500U 
processor and 12.00 GB of RAM, and were implemented in MATLAB.

Keywords  Burgers-Huxley equation, Water strider algorithm, Genetic algorithm, Physics-informed neural 
networks, Artificial intelligence

Partial differential equations (PDEs) are equations that involve partial derivatives of an unknown function 
with respect to several independent variables. The formulation of PDEs with the unknown function 
u(x1, x2, x3, . . . , xn) is as follows:
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PDEs are widely employed to model various phenomena in physics, engineering, biology, and other fields. PDEs 
can be classified into two types: linear and nonlinear. In a linear PDE, the unknown function and its partial 
derivatives appear linearly, meaning they are raised to the first power and are not multiplied or divided by 
each other1. In other words, the function h(·) represents a linear function of u(·) and its partial derivatives. In 
contrast, in a nonlinear PDE, the unknown function and its partial derivatives can appear in a nonlinear fashion, 
meaning they may be raised to powers other than one or be multiplied or divided by each other. In other words, 
h(·) represents a nonlinear function of u(·) and its partial derivatives. Some examples of nonlinear PDEs include 
the Burgers equation, the Burgers-Huxley equation, the Korteweg-de Vries equation, and the Navier-Stokes 
equation.
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The primary goal of solving linear or nonlinear PDEs is to find the unknown function u(·) in the equation, 
which includes all parameters, coefficients, boundary, and initial conditions. However, in some applications, in 
addition to the unknown function u(·), there may be other missing components such as parameters, coefficients, 
boundary, or initial conditions that need to be determined. In such cases, we are dealing with an inverse form 
of a PDE. The main objective of solving an inverse PDE is to estimate the missing components using observed 
data2. In this paper, we address an inverse form of the Burgers-Huxley equation, which is a nonlinear partial 
differential equation. The inverse form of the Burgers-Huxley equation is analyzed in contexts where initial 
conditions are either unknown or cannot be directly measured, yet the system’s temporal behavior can be 
tracked. This scenario frequently arises in disciplines such as physics, engineering, and applied mathematics. 
Solving inverse problems with unknown initial conditions is intricate, often necessitating novel mathematical 
and computational strategies. Addressing these problems is vital as they can reveal insights into system dynamics 
and parameters that are not directly observable3.

Before discussing the inverse form of the Burgers-Huxley equation, we will examine the generalized form of 
the Burgers-Huxley equation. The generalized form of the Burgers-Huxley equation for 0 ≤ x ≤ 1 and t ≥ 0 
is as follows:
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here α, β > 0 are real constants, δ is a positive integer, and γ ∈ (0, 1)4. In this paper, we assume that the initial 
condition described in equation (3) is missing. Consequently, we are dealing with an inverse form of the Burgers-
Huxley equation. The main objective of this research is to find the missing initial condition when we have the 
main equation indicated in Equation (2) and boundary conditions (4) and (5). In solving an inverse form of a 
nonlinear partial differential equation to compensate for the missing part of the equation, a sensor is used at the 
point x = a0 to collect data of u(a0, t) for 0 ≤ t ≤ TM . This data is referred to as the observed data or the over-
specified condition. In this paper, to simulate the observed data, we utilize the exact solution of the equation 
to generate the data at x = a0 as u(a0, tj) + Rj , where j = 1, . . . , M , and a0 = 0.5. Since data rarely comes 
without noise in the real world, we introduce random values Rj  to the simulated observed data to simulate the 
noise. Therefore, the over-specified condition (data coming from a sensor) is as follows:

	 U(a0, tj) + Rj = S(tj), tj = k × j, j = 1, 2, 3, . . . , M.� (8)

In real-world applications, a sensor is used at an interior point a0 to measure and collect data about a system 
modeled by a partial differential equation. This data helps approximate the unknown function of the system 
under consideration. To clarify the role of observed data, let us consider a heat conduction problem, which is 
a simple linear PDE. For example, consider the following heat conduction problem where the initial condition 
f(x) is unknown:

	 Ut(x, t) = Uxx(x, t), 0 ≤ x ≤ 1, t ≥ 1,� (9)

with boundary and initial conditions:

	

u(0, t) = p(t),
u(1, t) = q(t),
u(0, x) = f(x).

Scientific Reports |        (2024) 14:28797 2| https://doi.org/10.1038/s41598-024-78907-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where p(t) = 0, q(t) = sin(1)e−t, and the initial condition f(x) is unknown. This system describes heat 
conduction in a solid bar of length 1 unit. Since the initial condition is unknown, we are dealing with an inverse 
problem. The main goal is to find u(x, t), which represents the temperature at time t and point x, and to 
determine the unknown initial condition. To compensate for the unknown initial condition, a sensor is used to 
collect data at a point in the interval [a, b]. Figure 1 illustrates this scenario.

In real-world applications, there are always measurement errors due to inaccuracies in the sensors used. In 
this paper, we assume a sensor is placed at x = a0 = 0.5. We simulate the data collected by the sensor using 
the function S(tj), represented as Sj = U(a0, tj) + Rj , where Rj  is a small random number that serves as 
random noise due to sensor inaccuracies.

The Burgers-Huxley equation is of very importance in science and engineering, such as neurophysiology, 
mathematical biology, chemical engineering, and more5. For example, equation (2) models the interaction 
between reaction mechanisms, convection effects, and diffusion transports6.

Linear PDEs can be solved by using various methods, such as the separation of variables, Fourier series, 
Laplace transform, and more. Some examples of linear PDEs are the heat equation, the wave equation, and the 
Laplace equation. Nonlinear PDEs including the Burgers-Huxley equation are more difficult to solve than linear 
PDEs, and often require numerical methods or approximation techniques. In recent decades, many methods 
have been introduced to solve the Burgers-Huxley equation such as finite difference methods7, finite element 
methods8, spectral methods9, semi-analytical approaches10, Elzaki transform11, and deep neural network12.

In light of the absence of a solution for the inverse form of the Burgers-Huxley equation in cases where 
the initial condition is unknown, we were motivated to tackle the challenge of solving the inverse form of this 
equation with a missing initial condition. To address the problem, we employed an enhanced version of the 
recently proposed meta-heuristic algorithm known as the water strider algorithm and subsequently compared 
the results with those obtained from the original water strider algorithm, a multi-layer neural network, and a 
genetic algorithm. The criterion for comparing these methods is the mean absolute error (MAE) between the 
approximate and exact initial condition within the range [a, b]. To calculate the MAE, we calculate the absolute 
errors at the points a = x0 < x1 < · · · < xN−1 < xN = b between the approximated f̂(x) and the exact f(x)
, then calculated their mean. The improved water strider algorithm, the original water strider algorithm, and a 
genetic algorithm employ an evolutionary approach to find the unknown initial condition. In contrast, the multi-
layer neural network uses a physics-informed neural network approach to determine the unknown condition.

In fact, our rationale for selecting the water strider algorithm lies in its demonstrated robust performance and 
significantly reduced computational time when contrasted with other meta-heuristic algorithms13. Furthermore, 
we have designed and implemented a physics-informed neural network (PINN) to address the inverse problem 
of this paper. This choice is motivated by the fact that neural networks have garnered significant attention for 
solving partial differential equations14. Furthermore, meta-heuristic algorithms and neural networks are integral 
components of computational intelligence methods. Consequently, it is reasonable to compare the results 
obtained from these two approaches.

In recent years, extensive research in machine learning and computational intelligence has addressed various 
scientific problems and real-world applications. One study utilized a machine learning approach combined with 
an optimization technique to fine-tune the parameters of a neural network model, predicting accurate and reliable 
solutions for traffic flow jamming transitions15. M. Sulaiman et al. investigated the saturation of two immiscible 
fluids (oil and water) flowing through homogeneous porous media during secondary oil recovery. They solved 
the modeled partial differential equation using supervised machine learning algorithms, specifically feedforward 
back-propagated neural networks and the Levenberg-Marquardt optimization algorithm16. In another project, 
M. Sulaiman et al. conducted a numerical investigation of heat transfer and flow of micropolar fluid in porous 
Darcy structures with isothermal and isoflux wall boundary conditions on a stretching sheet17. Dana Mazraeh 
et al. introduced an innovative combination of genetic programming and neural networks to solve nonlinear 
differential equations in astrophysics18. Umar et al. presented numerical simulations of a dynamical HIV model, 
including the effects of prevention, using an advanced computational framework that combines Meyer neural 
networks with local and global search methods, specifically genetic algorithms and interior-point algorithms, 
to solve the HIPV nonlinear mathematical system19. Mukdasaithe et al. aimed to present numerical simulations 
of a novel fractional order Leptospirosis model using stochastic numerical supervised neural networks20. 
Baty solved Lane-Emden type equations in astrophysics using recent deep learning methods with physics-

Fig. 1.  A one dimensional heat conduction problem.
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constrained neural networks21. Ahmad Khan et al. analyzed mathematical models for flow and heat transfer of 
a non-Newtonian fluid in axisymmetric channels with porous walls using continuity and momentum equations 
along with artificial intelligence-based feedforward neural networks22. Shahzad et al. investigated flow and heat 
transfer in a thin film of Cu-nanofluid over a stretching sheet, considering different shape factors along with 
slip and convective boundary conditions. The governing partial differential equations were transformed into 
nonlinear ordinary differential equations using similarity transformation and solved with MATLAB’s BVP4C23. 
Dana Mazraeh et al. presented an improved imperialist competitive algorithm for solving an inverse form of 
the Huxley equation24. Khaled Alarfaj et al. explored deep neural networks with optimization algorithms to 
find approximate solutions for nonlinear fractional differential equations25. Sadaf et al. theoretically investigated 
the Chaffee-Infante equation to determine wave structure variations by finding exact closed-form solutions 
of the considered equations26. Ali et al. examined the perturbed Fokas-Lenells equation using the Bernoulli 
sub-equation function method and the 1

G′  expansion method27. Mazraeh et al. proposed an improved cuckoo 
optimization algorithm to determine the unknown function u(x) in Fredholm integral equations of the second 
kind28. Waqas et al. studied the numerical modeling of hybrid nanofluid with gold and silver nanoparticles across 
a stenotic artery using computational fluid dynamics29. Ali et al. investigated an extended (2+1)-dimensional 
perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in a nano-optical fiber using fourth-order 
spatial derivatives30. Ali researched the Ivancevic option pricing model, an alternative to the traditional Black-
Scholes model, formalized by adaptive nonlinear Schrödinger equations to characterize the option-pricing wave 
function in terms of stock price and time31. Molai et al. solved the mixed fuzzy relation programming with a 
nonlinear objective function using a modified imperialist competitive algorithm32. Zafar et al. explored new 
soliton solutions of the truncated M-fractional (1+1)-dimensional nonlinear Kaup-Boussinesq system using 
the expa function, modified simplest equation, and Sardar sub-equation techniques33. Khan et al. analyzed the 
thermal attributes of conductive, convective, and radiative moving fins with thermal conductivity and constant 
velocity, using the basic Darcy model and a soft computing paradigm based on feedforward artificial neural 
networks and meta-heuristic optimization techniques to evaluate the effects of significant parameters34. Mazraeh 
et al. combined a genetic algorithm with the Sinc-Galerkin method to solve an inverse diffusion problem35. Khan 
et al. investigated the model of swinging oscillation of a solid circular sector in various engineering applications 
using cascade learning36.

In the following section, we present a discretization of the Burgers-Huxley equation using the finite difference 
method. This discretization is employed to solve the direct form of the Burgers-Huxley equation and evaluate the 
fitness value of a candidate solution accordingly.

Discritization of the Burgers-Huxley equation
In this study, we utilize the finite difference method to discretize Equation (2) for α = −1 and δ = 1. 
Consequently, we derive the following discretized representation for the Huxley equation: 

	

−rUi−1,j+1 + (2r + 1)Ui,j+1 − rUi+1,j+1 = rUi−1,j − (2r + kγ)Ui,j

+ (z + k + kγ)U2
i,j − kU3

i,j + rUi+1,j(1 + zUi,j),
i = 1, · · · , N − 1, j = 0, · · · , N − 1

� (10a)

	 Ui,0 = f(ih), i = 1, ..., N − 1, � (10b)

	 U0,j = p(jk), j = 0, 1, ..., N − 1, � (10c)

	 UN,j = q(jk), Nh = 1, j = 0, 1, ..., N − 1, � (10d)

 where x = ih , t = jk, r = k/h2, and z = k/h. In this study, the IWSA, WSA, and GA are used to approximate 
the unknown function f(x) in Equation (2). Specifically, f(x) is treated as a candidate solution represented as a 
real-valued vector (coefficients of a polynomial), which is then input into the fitness function for assessment. 
To evaluate the fitness of a candidate solution, System (10) is solved, and the numerical values Û(xi, tj) are 
computed. Subsequently, the vector ŝ(tj) = Û(x = a0, tj) is compared to the vector s(tj) as described in 
Equation (8). To perform this comparison, the mean squared error is calculated. Smaller values of the mean 
squared error between ŝ(tj) and s(tj) indicate a better approximation of the unknown function f(x). The 
pseudo-code of the fitness function in this study is as follows:

Algorithm 1.  Pseudo-code of the fitness function.
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In Algorithm 1, as the approximation of f(x) converges towards the exact f(x), the denominator decreases. 
Consequently, the value of the fitness function increases.

Methods
In this section, first, we explain briefly the original water strider algorithm, then we introduce our improved 
water strider algorithm (IWSA) and demonstrate how our improvements enhance its accuracy and exploration 
rate. Furthermore, we illustrate how the IWSA is employed to solve the inverse form of the Burgers-Huxley 
equation. Considering that the genetic algorithm is a well-known and extensively studied method, we present 
a concise explanation of the real-valued genetic algorithm for the purpose of solving the inverse form of the 
Burgers-Huxley equation. Furthermore, we present a multi-layer physics-informed neural network designed to 
solve the inverse form of the Burgers-Huxley equation.

Original water strider algorithm
The Water Strider Algorithm (WSA) is a population-based optimization technique that was inspired by the 
life cycle of water strider insects. Water striders, small bugs known for their ability to traverse water surfaces 
using their extended legs and water-repellent hairs, exhibit a range of behaviors, including territoriality, 
communication, mating, feeding, and succession. These behaviors serve as a basis for simulating the search 
process of an optimization problem within the algorithm13. The main steps of the WSA are as follows: 

	1.	� Initialization: Starts by creating an initial population (water striders) of potential solutions or candidate 
solutions to the optimization problem. These solutions are generated randomly as follows: 

	 W S0
i = Ub + R × (Ub − Lb), i = 1, 2, · · · , nws,� (11)

 where W S0
i  is the initial position of ith water strider. Ub and Lb are the maximum and minimum values that 

are allowed, respectively. R is a random number between 0 and 1. The number of WSs is nws. The fitness of 
initial WSs is assessed by applying a fitness function to determine how suitable their positions are within the 
search space.

	2.	� Territoriality: WSs establish territories for their living, mating, and feeding activities. To form a total of nt 
territories, the following method is employed to assign the WSs to these territories:

•	 Sort the WSs in descending order based on their fitness.
•	 Divide sorted WSs into nws

nt  group orderly.
•	 The jth member of each group is assigned to jth territory, where j = 1, 2, ..., nt. In every region, the top-

ranked and bottom-ranked positions in terms of fitness are identified as the female and male (keystone) 
roles, respectively.

	3.	� Communication: By creating ripples of different amplitudes, durations, and frequencies on the water surface, 
water striders can communicate various information. They also use this system to sense potential predators 
and prey. They make waves by moving their legs on the water. Each wave has a specific meaning, such as 
courtship, warding off threats, distinguishing genders, and locating prey, and so on. They detect the commu-
nication waves through sensors on their legs and respond accordingly.

	4.	� Mating: The males make signals to show they want to mate, and the females answer them with signals that 
mean they are interested or not. If the female’s response is positive, they will mate. Otherwise, the male will 
try to force her to mate. The females who do not want to mate use a hardcover to block the male’s hold and 
escape. The male may still manage to mate after some tries, but he usually gives up and leaves. This process 
uses a lot of energy and the male needs food. The keystone (male) may mate or not, either way, the new po-
sition of keystone will be calculated as follows: 

	

{
WSt+1

i = WSt
i + random_number × R, If breeding occurs (with a likelihood of p)

WSt+1
i = WSt

i + R.(1 + random_number), otherwise � (12)

 here WSt
i  is the position of i th  WS in the t th  iteration, random_number is a random number in [0, 1], R 

represents a vector that starts at the location of a male (denoted as 
(
WSt−1

i

)
) and ends at the location of a female 

within the identical territory (
(
WSt−1

F

)
)).

	5.	� Foraging: The mating process consumes considerable energy, regardless of its success. Hence, after com-
pleting mating behavior and relocating to a new position, WSs actively seek food sources. Typically, females 
inhabit areas abundant in food resources, leading males to go toward these locations. Although these areas 
offer easy access to food, males may encounter competition from other males who want to mate. In the algo-
rithm, their assessment of the position’s suitability for food availability involves using an objective function. 
Should the current position post-mating yield a higher objective function value than the previous one, they 
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have likely found food. Conversely, if the post-mating position yields a lower objective function value, it 
prompts them to seek the best habitat boasting the highest fitness. Employing the following equation, they 
navigate toward a new position around the lake’s most optimal WS (WSt

BL), known for its abundant food 
resources. 

	 WSt+1
i = WSt

i + 2rand.
(
WSt

BL − WSt
i

)
� (13)

	6.	� Death or survive: Following the foraging stage, the objective function assesses the outcome of the food gath-
ering process against the previous position. Should the new fitness be lower, the WS will perish due to its 
inability to secure food and heightened potential for confrontation with destination territory WSs. Subse-
quently, a newly matured larva assumes the role of the deceased WS as the keystone, positioned randomly 
within the territory utilizing the following equation. If the new fitness is higher, the keystone will survive. 

	 WSt+1
i = Lbt

j + 2rand
(
Ubt

j − Lbt
j

)
� (14)

 In this context, Ubt
j  and Lbt

j  represent the upper and lower limits of the WS’s position within the jth territory, 
indicating the territorial boundaries where the WS perished.

	7.	� Termination of Algorithm: Steps 2 to 6 are repeated until the termination condition is satisfied.

An improved water strider algorithm
Since the original WSA has shown great performance, in recent years, many researchers have attempted to 
enhance this algorithm as a more powerful method for addressing specific problem domains. Following, we 
provide a review of the efforts made by others to improve the original WSA. However, the novelty of our presented 
improvement lies in our focus on the procedure of replacing new larvae with a dead keystone. Furthermore, this 
study represents the first attempt to solve an inverse form of nonlinear partial differential equations using the 
original WSA and, IWSA, and PINN.

In the article by Xu et al.37, they proposed a modified version of the WSA by incorporating two enhancements: 
the Quasi Opposition-Based Learning (QOBL) technique and an elite-guide evolution mechanism. Duan et al.38 
introduced two improvements to the original WSA. Their enhancements involve integrating an opposition-
based learning (OBL) mechanism, which considers both an individual’s value and its opposite value to choose 
the better candidate for enhancing search diversity. Additionally, they included an adaptive parameter in the 
foraging process. Liao et al.39 employed Levy Fight (LF) as a chaotic mechanism to enhance the exploration 
and convergence rate of the original algorithm. Bi et al.40 modified the foraging update formula using a chaotic 
mechanism to augment the exploration capabilities of the original WSA. Hu et al.41 utilized opposition-based 
learning to accelerate optimization speed and incorporated a chaos map mechanism to increase the exploration 
rate of the original algorithm. Kaveh et al.42 have used opposition-based learning to improve the optimization 
phase of the algorithm and also used a mutation step to increase the exploration rate of the original algorithm. 
Liu et al.43 leveraged the Quasi-opposition learning strategy during the learning phase and integrated an elite-
guide evolution procedure to enhance the optimization and exploration rates of the algorithm. Lastly, Syah et 
al.44 implemented a chaotic mechanism to amplify the exploration capabilities of the algorithm.

Now, we present our improved WSA as follows: In Step 6 of the original WSA, when a keystone dies, a new 
larva is generated randomly to replace the dead WS. However, in nature, newborns and larvae generally do not 
have equal opportunities to grow and enter a territory. Typically, weaker offspring perish due to competition 
for food or through selection mechanisms. Thus, this study accounts for this reality by modifying Step 6 of the 
original WSA. Initially, K larvae are generated randomly, and then one is selected through tournament selection. 
Rather than generating just one larva, k larvae are randomly created, thereby enhancing the exploration rate 
of the original WSA. Furthermore, the most superior among these larvae takes the place of the deceased WS, 
aligning more closely with natural occurrences and increasing the exploitation rate. In fact, in nature, an adult 
female insect typically lays several eggs in her territory. Among the hatched larvae, a number are destroyed based 
on competition or weakness, and the stronger ones replace the weaker ones. Similarly, in our improvement, 
generating multiple larvae randomly in the search space increases the exploration rate. The competitive selection 
mechanism (based on the tournament selection) ensures that the powerful individuals in the search space 
replace the weaker ones, thereby enhancing the exploitation rate.

To compare the performance of the original WSA and the improved version of WSA, we solved an Ackley 
function using both algorithms. The Ackley function is a well-known benchmark function used to evaluate 
optimization algorithms. It is highly multi-modal, meaning it has many local minima, which makes it challenging 
for optimization algorithms to find the global minimum. By using the Ackley function, we can effectively 
compare the performance of the original WSA and the improved WSA in terms of their ability to navigate 
complex landscapes and avoid local minima, demonstrating the improvements in exploration and exploitation 
capabilities. The Ackley function under consideration is as follows:
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	 A(x) = −20e
−0.2

√
1
d

∑d

i=1
x2

i − e

√
1
d

∑d

i=1
cos 2πxi

+ 20 − e1,
� (15)

Figure 2 illustrates Function (15) for xi ∈ [−40, 40], i = 1, 2. For illustration purposes, we have plotted 
Function (15) for only two variables, x1 and x2. In fact, the length of vector x for comparison between the IWSA 
and the original WSA is 20. These algorithms aim to find a vector x that minimizes Function (15). The global 
minimum of Function (15) is at x∗ = [x1, x2, . . . , xn] = [0, 0, . . . , 0]. Furthermore, The global minimum of 
the this function is 0. Therefore, the algorithms aim to find a vector x such that the value of the Ackley function 
approaches 0. In this context, each vector x represents a water strider. Table 1 shows the results obtained from 
the original WSA and the IWSA for different iterations. The original WSA and the improved WSA aim to 
minimize the Ackley function, as shown in Equation (15). As illustrated in Fig. 2, finding the minimum point is 
challenging due to the function’s numerous local minima. Table 1 presents the absolute values obtained by these 
algorithms for minimizing Equation (15) across different iteration numbers. It is evident that the improved WSA 
is more effective at minimizing the Ackley function compared to the original WSA. It’s important to note that 
for each result reported in this paper, the algorithms were run five times, and the best result among those runs 
is reported. Since all algorithms used in this paper are stochastic, different runs might yield different results, 
especially with a low number of iterations. Therefore, to facilitate the reproduction of results, or at least obtain 
results similar to those reported in this paper, we have run the algorithms five times. We did this in the hope that 
the results obtained by other researchers will be close to those presented here. It is worth mentioning that, based 
on our experiments, the results tend to converge with a higher number of iterations.

Figure 3 illustrates the values of Function (15) extracted from Table 1 for different iterations. As it is evident 
from Table 1 and Fig. 3, the accuracy of the IWSA is better than the original WSA.

A real-valued genetic algorithm for solving the inverse form of the Burgers-Huxley equation
The genetic algorithm, primarily formulated by Holland45, relies on principles of biological evolution pioneered 
by Darwin. This approach has proven effective in tackling a range of optimization challenges. It operates as 
a stochastic optimization technique, employing a collection of chromosomes, each embodying a potential 
solution. Through the application of genetic operations, these chromosomes progressively refine, serving as 
the foundation for subsequent generations. This iterative process persists until either the specified number 

Iterations A(x)WSA T ime(S)WSA A(x)IWSA T ime(S)IWSA

100 1.7837 0.048 0.7430 0.061

200 1.1126 0.094 0.4198 0.103

300 1.5127 0.151 0.5474 0.221

400 1.3898 0.228 0.3105 0.243

400 1.1157 0.252 0.2615 0.264

600 0.9369 0.283 0.1477 0.312

700 0.9357 0.338 0.1106 0.420

800 1.0571 0.383 0.0956 0.431

900 0.9899 0.426 0.0963 0.475

1000 0.6134 0.448 0.0533 0.611

Table 1.  Comparison between the original WSA and the IWSA for minimizing Function (15).

 

Fig. 2.  Ackley function for two variables, x1 and x2, in the range [−40, 40]. This figure was plotted in 
MATLAB R2023a.
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of generations is attained or the predetermined fitness threshold is met. The sequence of steps in a genetic 
algorithm includes: 

	1.	� Create an initial set of chromosomes randomly.
	2.	� Assess the fitness of every chromosome within the population.
	3.	� Select some chromosomes as parents.
	4.	� Apply recombination operation on parents.
	5.	� Apply mutation operation on the offspring.
	6.	� Evaluate the fitness of offspring.
	7.	� Update the population.
	8.	� Repeat Step 3 to Step 7, until predefined number of iterations is not satisfied.

Table 2 presents the parameters of a real-valued GA used in this paper.

A multi-layer physics-informed network for solving the inverse form of Burgers-Huxley 
equation
Physics-informed neural networks14 are new methods that use physics knowledge to design and train neural 
networks. These networks combine the power of neural networks with the basics of physics, allowing them to 
learn and use physical laws, constraints, or equations in their structure. By adding this prior knowledge, physics-
informed neural networks improve their learning and generalization from limited data while making sure the 
solutions follow the physical principles of the system. This integration not only makes the predictions more 
precise but also explains how the learned features and the physics are related, offering a potential way to solve 
hard scientific problems and physical modeling tasks. In this study, a physics-informed neural network, with the 
architecture illustrated in Fig. 4, is utilized to solve Equation 2 for α = −1, β = 1, and δ = 1:

In this work, the first hidden layer consists of 10 nodes, the second hidden layer comprises 20 nodes, and the 
third hidden layer comprises 10 nodes. All activation functions in the hidden layers are ’ReLU’, and the ’loss’ 
function is as follows: 

	 Loss = LossP DE(x, t)+Boundary1(0, t) + Boundary2(1, t) + Lossdata, � (16a)

	
LossP DE(x, t) =

(
∂u

∂t
− ∂2u

∂x2 + αuδ ∂u

∂x
− βu(1 − uδ)(uδ − γ)

)2

, � (16b)

Representation Real valued vectores

Length of chromosomes Degree of a polynomial

Recombination One point crossover

Recombination probability 100%
Mutation Adding a random value

Mutation probability 1/n

Parent selection Roulette wheel

Survivor selection Replace the worst

Number of offspring 1

Initialization Random

Termination condition Number of generation

Table 2.  Parameters of the genetic algorithm.

 

Fig. 3.  The values of Fnction (15) extracted from Table 1 for different iterations.
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Boundary1(0, t) =

N∑
j=0

(U(0, tj) − g1(tj))2, � (16c)

	
Boundary2(1, t) =

N∑
j=0

(U(1, tj) − g2(tj))2, � (16d)

	
Lossdata =

N∑
j=0

(U(a0, tj) − s(tj))2 � (16e)

Results
In this study, an inverse form of the Burgers-Huxley equations for α = −1, β = 1, δ = 1, 0 ≤ x ≤ 1, and 
0 ≤ t ≤ 1 is considered as follows46:

	
∂u

∂t
= ∂2u

∂x2 + u
∂u

∂x
+ u(1 − u)(u − γ),� (17)

with the boundary conditions:

	
u(0, t) = 1

2 − 1
2 tanh 3

8 t, � (18)

	
u(1, t) = 1

2 − 1
2 tanh 1

4

(
1 + 3

2 t
)

, � (19)

and the over-specified condition (data coming from sensors):

	 u(a0, t) + R = s(tj), tj = k × j, j = 1, 2, 3, . . . , M.� (20)

where γ = 2.2204−16 and a0 = 0.5. The initial condition is considered unknown in this study. The exact initial 
condition is given by u(x, 0) = f(x) = 1

2 − 1
2 tanh 1

4 x, and it is the target for our algorithms to determine.

Fig. 4.  The architecture of the physics-informed neural network used in this study.
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For clarification purposes, we explain how the collected data from the sensor (over-specified condition) are 
incorporated into loss calculation and how the unknown initial condition f(x) is determined by the algorithms. 
To keep this explanation straightforward, we consider a simple case of partial differential equations (the heat 
conduction equation) as shown in Equation (9). The same approach is applied to solve the inverse form of 
the Burgers-Huxley equation. During the iterations of the improved WSA, original WSA, GA, and the neural 
network described in this paper, the over-specified condition is taken into consideration. This means the 
algorithms aim to minimize the loss and the error between the collected data (over-specified condition) and 
the values of the approximated solution at the sensor location. Figure 5 illustrates how the collected data are 
incorporated into the loss value calculation when solving an inverse form of a partial differential equation. The 
improved WSA, original WSA, and GA try to find f̂(x) so that the total loss is minimized. The PINN tries to 
find the best û(x, t) that minimizes the total loss. After finding the best approximation û(x, t) by the PINN, we 
calculate û(x, 0) = f̂(x). To evaluate the accuracy of the algorithms, we then calculate the mean absolute error 
between the approximated f̂(x) and the exact f(x).

Table 3 displays the mean absolute error between the exact f(x) and the approximated f̂(x) obtained from the 
original WSA, as detailed in Section Methods, the IWSA presented in Section Methods, the genetic algorithm 
described in Section Methods, and the physics-informed neural network explained in Section Methods. In 
general, increasing the number of iterations of the algorithms improves their accuracy. We have reported the 

Iterations MAEGA MAEWSA MAEIWSA MAEPINN

1000 0.00577 0.01704 0.01082 0.00883

2000 0.00201 0.01129 0.00778 0.00747

3000 0.00309 0.00693 0.00820 0.00324

4000 0.00411 0.00250 0.00662 0.00670

5000 0.00258 0.00961 0.00694 0.00226

6000 0.00413 0.00767 0.00957 0.00147

7000 0.00445 0.00609 0.00704 0.00232

8000 0.00339 0.00559 0.00354 0.00125

9000 0.00295 0.00218 0.00210 0.00053

10000 0.00289 0.00164 0.00088 0.00023

Table 3.  Mean absolute error between the exact f(x) and approximated f(x) obtained from the original WSA, 
the IWSA, the genetic algorithm, and the physics-informed neural network explained in Section Methods.

 

Fig. 5.  Incorporation of the collected data into the total loss value calculation.

 

Scientific Reports |        (2024) 14:28797 10| https://doi.org/10.1038/s41598-024-78907-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


results for iterations ranging from 1000 to 10000 because, based on our experiments, the algorithms did not 
converge with fewer than 1000 iterations, and accuracy did not improve significantly beyond 10000 iterations.

According to the last entry of Table 3, when the iteration number is 10,000, the accuracy of the original 
WSA is better than that of the GA, and the accuracy of the improved WSA is better than the original WSA. 
However, the accuracy of the PINN is slightly better than the improved WSA. Conversely, the execution time of 
the improved WSA is almost four times shorter than that of the PINN. In fact, the improved WSA is nearly as 
accurate as the PINN but much faster.

Table 4 shows execution time (in seconds) obtained from the original WSA as detailed in Section Methods, 
the IWSA presented in Section Methods, the genetic algorithm described in Section Methods, and the physics-
informed neural network explained in Section Methods.

The figures, from Figs. 6, 7, 8, 9, illustrate the exact f(x) and the approximated f̂(x) found by the GA, WSA, 
IWSA, and PINN after 10000 iterations, respectively.

Figure 10 depicts the loss values of the PINN over 1000 to 10000 iterations.
Figure 11 shows the mean absolute error, extracted from Table 3, which represents the difference between 

the exact and approximated f(x) values obtained by the GA, the original WSA, IWSA, and PINN across 1000 
to 10000 iterations. As evident from Fig. 11, the accuracy of all algorithms improves as the iteration numbers 

Fig. 7.  The exact and approximated f(x) found by the original WSA after 10000 iterations.

 

Fig. 6.  The exact and approximated f(x) found by the GA after 10000 iterations.

 

Iterations Time(S)GA Time(S)WSA Time(S)IWSA Time(S)PINN

1000 0.94 3.37 4.01 20.94

2000 2.56 7.69 8.70 44.50

3000 3.04 10.57 11.72 65.53

4000 4.92 12.98 13.65 95.84

5000 6.12 16.67 16.45 112.49

6000 7.59 19.23 21.24 155.81

7000 9.22 24.99 30.73 163.41

8000 9.87 26.79 39.91 189.84

9000 11.08 29.54 48.73 205.08

10000 12.21 32.75 51.057 225.73

Table 4.  Execution time (in seconds) obtained from the original WSA, the IWSA, the genetic algorithm, and 
the physics-informed neural network explained in Section Methods.
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Fig. 11.  The mean absolute error, extracted from Table 3, represents the difference between the exact and 
approximated f(x) values obtained by the GA, the original WSA, IWSA, and PINN across 1000 to 10000 
iterations.

 

Fig. 10.  Loss values of the PINN across 1000 to 10000 iterations.

 

Fig. 9.  The exact and approximated f(x) found by the PINN after 10000 iterations.

 

Fig. 8.  The exact and approximated f(x) found by the IWSA after 10000 iterations.
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increase from 1,000 to 10,000. However, the improved WSA and the PINN surpass the other algorithms in terms 
of accuracy and convergence rate.

Figure 12 depicts the execution times (in seconds) of the GA, the original WSA, IWSA, and PINN, extracted 
from Table 3, across 1000 to 10000 iterations.

Comparison study
In this section, we compare the results of this paper with some recent research on neural networks and metaheuristic 
algorithms for solving inverse forms of the Burgers’ equation, Huxley equation, or related equations. In a study by 
S. Alkhadhr, the researchers introduced a method for solving the inverse problem of the Burgers’ equation using 
a physics-informed neural network, considering some coefficients of the problem as unknown47. S. Pakravan’s 
research proposes a novel composite framework to determine unknown parameters of the Burgers’ equation 
using physics-aware neural networks (PANN). This method combines the high expressibility of deep neural 
networks as universal function estimators with the accuracy and reliability of existing numerical algorithms 
for partial differential equations as custom layers in semantic autoencoders48. Boroujeni et al. introduced an 
improved metaheuristic algorithm called the teaching-learning-based algorithm (ITLBO), which they combined 
with numerical methods to solve an inverse form of the Burgers-Fisher equation, with an unknown boundary 
condition that their algorithm aims to identify49. Mazraeh et al. utilized an enhanced metaheuristic algorithm 
known as the imperialist competitive algorithm (IICA) to solve an inverse form of the Huxley equation24. Table 
5 presents a compact comparative study (order of mean absolute error) of the aforementioned articles for solving 
inverse forms of nonlinear partial differential equations related to this research.

Discussion
In this study, for the neural network described in Section Methods, we considered three hidden layers with 
10, 20, and 10 nodes for each layer, respectively. We explored various numbers of hidden layers and nodes for 
each layer, ultimately identifying this architecture as a good trade-off between model complexity and accuracy. 
Additionally, the population size of the genetic algorithm was set to 16. Moreover, the number of water striders 
(nws) in both the IWSA and the original WSA was also set to 16. After experimenting with several values for 
nws, we determined that the best results were obtained when nws was set to 16.

As evidenced by Table 3 and Fig. 11, when the number of iterations reaches 10,000, the accuracy of the IWSA 
and the PINN reaches approximately O(10−4), signifying high precision in solving inverse forms of nonlinear 
PDEs. Furthermore, both the IWSA and PINN outperformed the original WSA and the genetic algorithm. 
Our experiments revealed that accuracy does not significantly improve beyond 10,000 iterations, nor does it 
perform well for iterations fewer than 1000. Hence, we reported iteration numbers ranging from 1000 to 10,000. 
Additionally, it’s evident from Table 3 and Fig. 11 that the genetic algorithm outperforms the original WSA for 
lower iterations, while the original WSA surpasses the GA for higher iterations.

According to our findings, at high iterations, the improved WSA outperforms the original WSA in terms of 
accuracy. This conclusion is based on implementing these algorithms to solve two different types of problems: 
an optimization problem (Ackley function) and an inverse form of a nonlinear partial differential equation. 
The main idea of this research was that including the natural process of replacing young larvae with dead 
insects would likely improve the optimization pattern. After implementing this concept, the results confirmed 
its effectiveness. We believe that following the natural placement process of newly born larvae more closely 
mirrors the natural evolution of these insects and improves the entire algorithm. This improvement increases the 

IWSA Our PINN PINN47 PANN48 ITLBO49 IICA24

O(10−4) O(10−4) O(10−2) O(10−4) O(10−3) O(10−4)

Table 5.  A comparison study (order of mean absolute error) of some recent research articles for solving an 
inverse form of nonlinear partial differential equations related to the subject of this research article.

 

Fig. 12.  The execution times (in seconds) of the GA, the original WSA, IWSA, and PINN, extracted from 
Table 3, across 1000 to 10000 iterations.
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exploration rate of the algorithm, and the initial competition between newly born larvae ensures that the fittest 
individuals enter the new community, leading to the overall enhancement of the proposed algorithm.

Considering execution time, as depicted in Table 4 and Fig. 12, the fastest algorithm is the GA, followed 
by the original WSA, then the IWSA, and finally, the slowest is the PINN. Specifically, the IWSA is almost 
four times faster than the PINN while maintaining almost the same accuracy. However, the drawback of the 
IWSA compared to the PINN is that it’s a stochastic algorithm, leading to varying results in accuracy with each 
execution. Consequently, the advantage of the PINN lies in its result stability, maintaining consistent accuracy 
across different runs with the same iteration number.

Conclusion
In this paper, we introduced a novel improvement of the powerful meta-heuristic water strider algorithm and 
a physics-informed neural network with three hidden layers to solve an inverse form of the Burgers-Huxley 
equation. Given that the Burgers-Huxley equation is a nonlinear partial differential equation, the methods 
presented here can potentially be employed to solve a wide range of nonlinear PDEs. The methods demonstrated 
high accuracy and low execution times, making them suitable for real-world applications. In general, the PINN 
demonstrates superior accuracy across all iterations, achieving the lowest mean absolute error of 0.00023 at 
10,000 iterations, compared to 0.00088 for IWSA, 0.00164 for WSA, and 0.00289 for GA. This suggests that 
PINN is the most precise method for approximating the exact function f(x) among the algorithms tested. 
However, this higher accuracy comes at a higher computational cost, as PINN has the longest execution time 
reaching 225.73 seconds at 10,000 iterations, compared to 51.057 seconds for IWSA, 32.75 seconds for WSA, 
and 12.21 seconds for GA. The IWSA strikes a balance between accuracy and computational efficiency. Although 
slightly less accurate than PINN, IWSA significantly outperforms both the original WSA and GA in terms of 
accuracy, with a MAE of 0.00088 at 10,000 iterations. In terms of execution time, IWSA is approximately four 
times faster than PINN, making it a more practical choice when computational resources or time constraints are 
a consideration. Generally, the IWSA proved to be faster than the PINN; however, the PINN exhibited greater 
stability and consistency across different runs.

Future research could explore comparing other novel meta-heuristic algorithms and employing distinct 
network architectures. Additionally, the use of the Levenberg-Marquardt backpropagation algorithm for training 
the PINN could be considered. Exploring fractional orders of nonlinear PDEs could also be a promising area for 
further investigation.

Data availability
 All data generated or analysed during this study are included in this published article.
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