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The use of proton exchange membrane fuel cells (PEMFCs) in sustainable energy applications depends 
on their high efficiency levels along with their ability to produce low emissions and operation without 
noise. The optimization of PEMFC design variables faces difficulties because of the complex nonlinear 
relationships which exist between activation overpotential and concentration overpotential and 
internal resistance. The optimization methods PSO, DE and WOA face three major setbacks which 
include their delayed convergence rates as well as their sensitiveness to initial parameter settings 
and their tendency to lock onto sub-optimal solutions. The study presents the Parrot Optimizer 
(PO) as a new metaheuristic algorithm which derives its inspiration from the adaptive behaviors of 
Pyrrhura Molinae parrots to overcome current optimization challenges. The PO serves to optimize six 
PEMFC stack design variables for BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard 
Mark V, and STD 250 W. The research performs an extensive comparison between nine advanced 
algorithms to analyze their performance against PSO, DE, WOA, Rabbit Optimization Algorithm 
(ROA), Flamingo Herd Optimization (FHO), Arithmetic Optimization Algorithm (AOA), Sine Cosine 
Algorithm (SCA), Multi-Verse Optimizer (MVO) and Bat Algorithm (BA). The objective function Sum 
of Squared Error (SSE) for stack voltage is minimized using different algorithms for comparative 
analysis. Simulation results for I–V and V–P characteristics aligned closely with experimental data 
under varying temperature and pressure conditions. PO achieved the lowest Mean SSE values across 
all cases, with values of 0.025519, 0.275211, 0.242413, 0.102915, 0.148632, and 0.283774 for the 
BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W stacks, 
respectively. Additionally, PO demonstrated the fastest runtime (RT) in all cases, with values as low 
as 0.116855 s for the Horizon H-12 stack. The results indicate that PO delivers better performance 
than existing algorithms because it reaches the lowest Sum of Squared Error for stack voltage outputs 
across every test scenario. I–V and V–P characteristic simulations match experimental results across 
different temperature and pressure values which proves the theoretical value and practical usage of PO 
in solving nonlinear optimization problems. The study demonstrates PO as a dependable optimization 
method which improves PEMFC design processes while enhancing operational reliability through 
future research that includes real-time control and algorithm combination and system scalability.
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Abbreviations
PEMFC  Proton exchange membrane fuel cell
PO  Parrot Optimizer
PSO  Particle swarm optimization
DE  Differential evolution
WOA  Whale Optimization Algorithm
ROA  Rabbit Optimization Algorithm
FHO  Flamingo Herd Optimization
AOA  Arithmetic Optimization Algorithm
SCA  Sine Cosine Algorithm
MVO  Multi-Verse Optimizer
BA  Bat Algorithm
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SSE  Sum of squared errors
RT  Runtime
FR  Fitness Rank
AE  Absolute error
RE%  Relative error percentage
I–V  Current–voltage
V–P  Voltage–power
List of symbols
Vcell  Output voltage of a single fuel cell
Enerst  Open-circuit voltage of the cell
∆Vact  Activation overpotential
∆Vohm  Ohmic voltage drop
∆Vcon  Concentration overpotential
Tfc  Operating temperature of the fuel cell (Kelvin)
PH2   Partial pressure of hydrogen
PO2   Partial pressure of oxygen
Ifc  Operating current
A  Membrane surface area
RM   Membrane resistance
RC   Proton movement resistance
λ  Adjustable parameter for membrane preparation
b  Parametric coefficient for concentration overpotential
J   Current density
Jmax  Maximum current density
ξ1, ξ2, ξ3, ξ4  Empirical coefficients for activation overpotential
Ncells  Number of cells in the stack
Vstack  Total stack voltage
SSE  Sum of squared errors (objective function)
vmeas  Measured PEMFC voltage
vcal  Calculated PEMFC voltage

1Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan. 
2University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India. 
3Innovation Center for Artificial Intelligence Applications, Yuan Ze University, Taoyuan 320315, Taiwan. 4Department 
of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 
602105, India. 5Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan. 
6Department of Electrical Engineering, Government Engineering College, Gandhinagar, Gujarat 382028, India. 
7Department of Electrical Engineering, Shri K.J. Polytechnic, Bharuch 392001, India. 8Department of Electronics 
and Communication Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 
Chengalpattu, Tamilnadu 603203, India. 9Unit of Scientific Research, Applied College, Qassim University, Buraidah, 
Saudi Arabia. 10Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, 
Nowshahr, Iran. 11Jadara University Research Center, Jadara University, Irbid, Jordan. 12Department of CSE, Graphic 
Era Hill University, Dehradun 248002, India. 13Department of CSE, Graphic Era Deemed to be University, Dehradun, 
Uttarakhand 248002, India. 14Centre for Research Impact and Outcome, Chitkara University Institute of Engineering 
and Technology, Chitkara University, Rajpura, Punjab 140401, India. 15Department of Electrical and Electronics 
Engineering, J.J. College of Engineering and Technology, Tiruchirappalli, Tamilnadu, India. email: mjaidi@zu.edu.
jo; g.gulothungan@gmail.com; alifk@qu.edu.sa; m_khishe@alumni.iust.ac.ir

Proton exchange membrane fuel cells (PEMFCs) are a cornerstone of sustainable energy solutions, offering high 
efficiency, minimal noise, and near-zero emissions. These attributes make PEMFCs particularly attractive for 
commercial applications, especially in the transportation sector. However, the complex nonlinear relationships 
among PEMFC design variables—such as activation overpotential, concentration overpotential, and internal 
resistance—pose significant challenges in achieving optimal performance.

To maximize efficiency and reliability, accurate modeling and precise optimization of PEMFCs are essential. 
Traditional optimization techniques, though widely used, often exhibit significant limitations, including 
sensitivity to initialization, susceptibility to local optima, and a lack of robustness in addressing high-dimensional 
nonlinear problems. Consequently, the development of advanced optimization algorithms tailored for PEMFC 
systems is crucial for advancing their practical applications.

The research on PEMFC modeling and optimization reveals numerous advancements and contributions from 
various studies. Kouache et al. proposed a self-adaptive bonobo optimizer for key parameter estimation of PEM 
fuel cells, emphasizing improved accuracy and computational efficiency, with specific focus on PEMFCs, though 
the study noted potential computational overhead in scaling to larger systems1. El-Fergany et al. introduced 
the Red-Billed Blue Magpie Optimizer to enhance electrical characterization of PEM fuel cells, prioritizing the 
accurate estimation of critical parameters, although comparative results with state-of-the-art methods were not 
provided2. Saidi et al. utilized an enhanced salp swarm algorithm to identify precise parameters of PEMFCs, 
highlighting robust parameter identification under various conditions, yet real-world experimental validation 
was not explored3. Elfar et al. developed a particle swarm optimization algorithm for PEMFC parameter 
identification, demonstrating effectiveness in optimizing performance but without extensive validation under 
varying operating conditions4. Yang et al. applied a neural network coupled with a pelican optimization 
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algorithm for parameter identification of PEMFCs, achieving reduced computational time with high accuracy, 
though scalability issues were not deeply examined5. Shaheen et al. employed the human memory optimizer for 
PEMFC modeling, integrating sensitivity and uncertainty analysis, significantly contributing to robust modeling 
but raising concerns about computational intensity in real-time applications6. Sultan et al. proposed a modified 
manta ray foraging optimization for parameter identification of PEMFCs, achieving enhanced precision but 
leaving the method application to diverse fuel cell types unexplored7. Houssein et al. introduced the Walrus 
Optimizer for PEM fuel cell parameter extraction, demonstrating significant accuracy improvements but lacking 
a detailed comparative analysis with traditional methods8. Priya et al. used the clan co-operative spotted hyena 
optimizer for PEMFC parameter modeling, showcasing computational efficiency but failing to address parameter 
variability extensively under different operating conditions9. Ashraf et al. provided a comprehensive survey of 
AI-based techniques for enhancing solid oxide fuel cell performance, identifying gaps in optimization strategies 
but primarily focusing on solid oxide fuel cells rather than PEMFCs, limiting its direct applicability10. Zhang et 
al. employed a swarm intelligence algorithm for PEMFC parameter identification, achieving high accuracy but 
lacking insights into computational scalability for large datasets11. Ebrahimi et al. used the Repairable Grey Wolf 
Optimization algorithm for PEMFC parameter identification, achieving significant accuracy but not including 
experimental validations to support the simulation results12. Duan et al. proposed the amended deer hunting 
optimization algorithm for PEMFC parameter estimation, demonstrating robustness while lacking detailed 
sensitivity analysis13. He et al. utilized generalized regression neural networks with meta-heuristic algorithms 
for parameter identification, showing effectiveness for PEMFCs but raising concerns about computational 
challenges for real-time applications14. Rubio et al. focused on distributed intelligence for autonomous PEM fuel 
cell control, significantly improving control system efficiency but offering limited insights into scalability and 
adaptability15. Ali et al. developed a coot bird optimizer for quasi-empirical PEM fuel cell models, demonstrating 
adaptability to diverse datasets but requiring further validation in practical applications16. Abdel-Basset et al. 
presented a comparative study of recent methods for PEM fuel cell parameter optimization, highlighting the 
superiority of specific approaches but lacking insights into implementation challenges17. Yang et al. reviewed 
mass transfer mechanisms in multiscale porous media of PEMFCs, providing a detailed theoretical foundation 
but not including computational modeling validation18. Guo et al. developed a digital twin model for hybrid 
PV-SOFC systems, with potential implications for PEMFC modeling, but the focus on SOFCs limited its direct 
applicability to PEMFC research19. Mitra et al. provided a comparative review of parameter estimation methods 
for PEMFCs, highlighting key methodological gaps but not extensively addressing implementation challenges 
in real-world scenarios20. Liu et al. introduced a hybrid particle swarm optimization algorithm with differential 
evolution for PEMFC parameter identification, showing innovation but raising concerns about computational 
intensity for large-scale applications21. Abdel-Basset et al. evaluated improved metaheuristic algorithms for 
PEMFC parameter selection, offering a detailed comparative study but lacking experimental validation22. Wang 
et al. proposed an improved chicken swarm optimization algorithm for PEMFC model parameter estimation, 
effectively demonstrating its potential but failing to validate results extensively against experimental data23. 
Rezk et al. used recent optimization algorithms for PEMFC parameter identification, achieving high accuracy 
but lacking comprehensive scalability analysis24. Zhou et al. applied an improved fish migration optimization 
method to PEMFC parameter identification, showing novel potential but not addressing long-term performance 
stability25. Shalaby et al. explored membrane technologies, which have indirect implications for PEMFCs, focusing 
on water treatment and limiting direct relevance26. Wilberforce et al. utilized neural networks for PEMFC 
power and voltage prediction, achieving high accuracy but not exploring model adaptability to varied operating 
conditions27. Li et al. implemented deep reinforcement learning for PEMFC control, achieving promising results 
in multi-system coordination while noting computational demands as a limitation28. Rezaie et al. proposed a 
modified golden jackal optimization for PEMFC parameter modeling, achieving significant improvements but 
requiring further validation for real-world applicability29. Ding et al. reviewed machine learning applications 
for PEMFC optimization, providing a comprehensive overview but not including practical implementation 
examples30. Yang et al. used the Bald Eagle Search Algorithm for PEMFC parameter identification, achieving 
high efficiency but failing to explore algorithm performance under diverse conditions31. Losantos et al. employed 
genetic algorithms for HTPEMFC parameter characterization, focusing on high-temperature PEMFCs and 
providing limited insights into standard PEMFCs32. Liao utilized neural networks for educational evaluation, 
which has limited relevance to PEMFC modeling33. Li et al. applied multi-objective deep reinforcement learning 
for PEMFC control, achieving promising results but lacking practical implementation examples34. Abdel-Basset 
et al. proposed an efficient parameter estimation algorithm for PEMFCs, showcasing high accuracy while 
lacking insights into scalability35. Li et al. used an improved deterministic policy gradient algorithm for PEMFC 
control, achieving effective results but not addressing adaptability to varied operating conditions36. Gouda et al. 
employed the Jellyfish Search Algorithm for PEMFC parameter extraction, achieving significant improvements 
while scalability remained a concern37. Adaptive Sparrow Search Algorithm was used by Zhu et al. for PEMFC 
parameter identification, with accuracy but without extensive experimental validation38. Finally, Alizadeh et 
al. developed an SCCSA optimization algorithm for PEMFC parameter extraction that was robust but did not 
explore scalability to larger systems39 shown in Table 1.

Although great progress has been made in the modeling and optimization of proton exchange membrane 
fuel cells (PEMFCs), several research gaps still exist. Most of the existing studies are devoted to developing new 
algorithms for parameter identification and optimization, including swarm intelligence, evolutionary methods, 
and neural networks. However, scalability, real world experimental validation and computational efficiency 
under dynamic and diverse operating conditions continue to be challenging. Methods such as the Red-
Billed Blue Magpie Optimizer2, manta ray foraging optimization7 and hybrid particle swarm with differential 
evolution21 have demonstrated potential, but are usually not robust when applied to large scale systems or 
real time operation. In addition, the use of advanced techniques such as machine learning and digital twin 
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References Algorithm/Technique Contribution Limitations Research Gaps

Kouache et al.1 Self-adaptive bonobo optimizer Improved accuracy and computational 
efficiency for PEMFC parameter estimation

Computational overhead in scaling to larger 
systems

Scalability and real-time 
application

El-Fergany 
et al.2 Red-Billed Blue Magpie Optimizer Enhanced electrical characterization of 

PEMFCs
Lack of comparative results with state-of-the-
art methods

Robustness in large-scale 
systems

Saidi et al.3 Enhanced salp swarm algorithm Robust parameter identification under 
various conditions No real-world experimental validation Experimental validation 

under dynamic conditions

Elfar et al.4 Particle swarm optimization Effective PEMFC parameter identification Limited validation under varying operating 
conditions

Comprehensive validation 
across diverse conditions

Yang et al.5 Neural network with pelican 
optimization

Reduced computational time with high 
accuracy Scalability issues not deeply examined Scalability to larger 

systems

Shaheen et al.6 Human memory optimizer Robust PEMFC modeling with sensitivity 
analysis

Computational intensity in real-time 
applications

Real-time computational 
efficiency

Sultan et al.7 Modified manta ray foraging 
optimization

Enhanced precision in parameter 
identification Limited application to diverse fuel cell types Adaptability to different 

fuel cell types

Houssein 
et al.8 Walrus Optimizer Significant accuracy improvements in 

parameter extraction
Lack of detailed comparative analysis with 
traditional methods

Comparative analysis with 
traditional methods

Priya et al.9 Clan co-operative spotted hyena 
optimizer

Computational efficiency in PEMFC 
modeling

Limited exploration of parameter variability 
under different conditions

Parameter variability 
under dynamic conditions

Ashraf et al.10 AI-based techniques for SOFCs Comprehensive survey of optimization 
strategies

Focus on solid oxide fuel cells, limiting direct 
applicability to PEMFCs

Direct applicability to 
PEMFCs

Zhang et al.11 Swarm intelligence algorithm High accuracy in PEMFC parameter 
identification

Limited insights into computational 
scalability for large datasets Scalability to large datasets

Ebrahimi et 
al.12 Repairable Grey Wolf Optimization Significant accuracy in parameter 

identification
No experimental validation of simulation 
results Experimental validation

Duan et al.13 Amended deer hunting optimization Robustness in PEMFC parameter estimation Lack of detailed sensitivity analysis Sensitivity analysis under 
varying conditions

He et al.14
Generalized regression neural 
networks with meta-heuristic 
algorithms

Effectiveness in PEMFC parameter 
identification

Computational challenges for real-time 
applications

Real-time computational 
efficiency

Rubio et al.15 Distributed intelligence for 
autonomous PEMFC control Improved control system efficiency Limited insights into scalability and 

adaptability Scalability and adaptability

Ali et al.16 Coot bird optimizer Adaptability to diverse datasets Requires further validation in practical 
applications

Practical application 
validation

Abdel-Basset 
et al.17 Comparative study of recent methods Superiority of specific approaches in PEMFC 

optimization
Lack of insights into implementation 
challenges Implementation challenges

Yang et al.18 Review of mass transfer mechanisms 
in PEMFCs Detailed theoretical foundation No computational modeling validation Computational modeling 

validation

Guo et al.19 Digital twin model for hybrid PV-
SOFC systems Potential implications for PEMFC modeling Focus on SOFCs, limiting direct applicability 

to PEMFCs
Direct applicability to 
PEMFCs

Mitra et al.20 Comparative review of parameter 
estimation methods Highlighted key methodological gaps Limited addressing of implementation 

challenges in real-world scenarios
Real-world 
implementation challenges

Liu et al.21 Hybrid PSO with differential 
evolution

Innovation in PEMFC parameter 
identification

Computational intensity for large-scale 
applications

Scalability to large-scale 
systems

Abdel-Basset 
et al.22 Improved metaheuristic algorithms Detailed comparative study of PEMFC 

parameter selection Lack of experimental validation Experimental validation

Wang et al.23 Improved chicken swarm 
optimization

Effective PEMFC model parameter 
estimation Limited validation against experimental data Extensive experimental 

validation

Rezk et al.24 Recent optimization algorithms High accuracy in PEMFC parameter 
identification Lack of comprehensive scalability analysis Scalability analysis

Zhou et al.25 Improved fish migration 
optimization

Novel potential in PEMFC parameter 
identification

No addressing of long-term performance 
stability

Long-term performance 
stability

Shalaby et al.26 Membrane technologies Indirect implications for PEMFCs Focus on water treatment, limiting direct 
relevance

Direct relevance to 
PEMFCs

Wilberforce 
et al.27

Neural networks for PEMFC power 
and voltage prediction High accuracy in prediction Limited exploration of model adaptability to 

varied operating conditions
Adaptability to varied 
conditions

Li et al.28 Deep reinforcement learning for 
PEMFC control

Promising results in multi-system 
coordination Computational demands as a limitation Computational efficiency

Rezaie et al.29 Modified golden jackal optimization Significant improvements in PEMFC 
parameter modeling

Requires further validation for real-world 
applicability Real-world applicability

Ding et al.30 Review of machine learning 
applications

Comprehensive overview of PEMFC 
optimization No practical implementation examples Practical implementation 

examples

Yang et al.31 Bald Eagle Search Algorithm High efficiency in PEMFC parameter 
identification

Limited exploration of algorithm 
performance under diverse conditions

Performance under 
diverse conditions

Losantos et 
al.32 Genetic algorithms for HTPEMFCs Focus on high-temperature PEMFCs Limited insights into standard PEMFCs Application to standard 

PEMFCs

Liao et al.33 Neural networks for educational 
evaluation Limited relevance to PEMFC modeling Limited relevance to PEMFC modeling Relevance to PEMFC 

modeling

Li et al.34 Multi-objective deep reinforcement 
learning Promising results in PEMFC control Lack of practical implementation examples Practical implementation 

examples
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modeling19,30 is still in its infancy and needs to be more seamlessly integrated with traditional optimization 
techniques. Also, there is little investigation of algorithms that can solve multiple conflicting objectives (e.g., 
accuracy, speed, and computational resource constraints) simultaneously. The existence of these gaps highlights 
the necessity for a new, hybrid optimization algorithm which combines the strengths of several algorithms to 
offer a robust, efficient, and scalable solution for PEMFC parameter optimization, both in theory and in practice.

The applications of PEMFCs in sustainable energy systems become essential because of their capacity to 
operate efficiently while producing minimal emissions at near-silent levels. PEMFCs are highly suitable for 
transportation needs and portable power systems and stationary power generation applications because of their 
distinctive attributes. Recent market studies indicate that PEMFC sales will experience a 26.4% compound annual 
growth rate (CAGR) from 2021 to 2028 until reaching a $13.7 billion market value by 2028. The market expands 
because customers require clean energy solutions while simultaneously working to decrease greenhouse gas 
emissions. PEMFCs face adoption barriers because researchers need to optimize their operational and design 
aspects to achieve maximum performance alongside reliability.

PEMFC performance depends on multiple nonlinear design variables that include activation overpotential 
and concentration overpotential and internal resistance. Effective modeling and optimization techniques for 
these variables serve as crucial elements for improving both PEMFC performance and operational life span 
and production costs. PSO alongside DE along with WOA represent used optimization methods despite their 
known weaknesses regarding slow convergence speed and sensitivity to parameter values and local optimum 
attractions. The performance of PEMFCs suffers greatly from small parameter value deviations in high-
dimensional nonlinear systems because of these limitations.

Metaheuristic optimization algorithms recently developed prove competent in solving these problems. 
The current optimization methods experience difficulties with scaling up the process combined with low 
computational capabilities and insufficient resilience when operating conditions change. The Red-Billed Blue 
Magpie Optimizer together with Manta Ray Foraging Optimization show potential yet they do not exhibit 
sufficient adaptability needed for real-time implementations and massive system applications. Additional 
research must focus on new optimization techniques since advanced methods like machine learning and digital 
twin modeling are developing slowly despite the growing need for new solutions.

The research presents Parrot Optimizer (PO) as a new metaheuristic algorithm which draws its inspiration 
from adaptive behaviors exhibited by Pyrrhura Molinae parrots. PO solves the problems of present-day 
optimization approaches through its distinct implementation of controlled exploration and encouraged search 
methods. The Parrot Optimizer (PO) achieves superior performance than PSO, DE, WOA, ROA, FHO, AOA, 
SCA, MVO, and BA by optimizing six PEMFC stack design variables including BCS 500 W, Nedstack 600 W PS6, 
SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W. PO algorithm minimizes the SSE objective function 
for stack voltage which subsequently leads to validated I–V and V–P characteristic results against experimental 
data across different temperature–pressure settings.

This work holds great importance because it enables PEMFC technology advancement through its 
development of a dependable scalable optimization technique. PO addresses existing algorithm limitations to 
provide engineers with a workable solution for PEMFC design and operational reliability enhancement. The 
research outcome makes important theoretical advancements in nonlinear optimization research as well as 
developing a beneficial instrument for real-world energy and transportation operations. Future research will 
concentrate on time-based optimization methods together with algorithm unification techniques while scaling 
up optimization capabilities to bigger energy system applications to establish PO as an industry standard for 
PEMFC optimization.

Researchers have achieved major advancements regarding proton exchange membrane fuel cells (PEMFCs) 
in recent times by creating optimization algorithms to estimate cell parameters while improving performance 
output. Multiple essential unanswered research questions prevent practical large-scale deployment of PEMFCs 
in their intended applications.

The existing optimization algorithms including PSO, DE and WOA demonstrate limited scalability during 
applications to large-scale PEMFC systems. The algorithms perform costly computational operations that make 
them unfit for real-time optimization tasks particularly in dynamic operating conditions. The current research 
lacks effective algorithms which can solve high-dimensional nonlinear problems with both high efficiency 

References Algorithm/Technique Contribution Limitations Research Gaps

Abdel-Basset 
et al.35

Efficient parameter estimation 
algorithm

High accuracy in PEMFC parameter 
estimation Lack of insights into scalability Scalability to larger 

systems

Li et al.36 Improved deterministic policy 
gradient algorithm Effective results in PEMFC control Limited adaptability to varied operating 

conditions
Adaptability to varied 
conditions

Gouda et al.37 Jellyfish Search Algorithm Significant improvements in PEMFC 
parameter extraction Scalability remains a concern Scalability to larger 

systems

Zhu et al.38 Adaptive Sparrow Search Algorithm Accuracy in PEMFC parameter identification Limited experimental validation Extensive experimental 
validation

Alizadeh et 
al.39 SCCSA optimization algorithm Robustness in PEMFC parameter extraction No exploration of scalability to larger systems Scalability to larger 

systems

Table 1. Provides a comparative analysis of key studies, emphasizing their contributions, limitations, and 
research gaps.
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and accuracy. Their real-world application is restricted by this limitation because PEMFC technology requires 
dependable operation across diverse operating conditions.

The implementation of machine learning with digital twin modeling techniques for PEMFC optimization still 
needs more research to integrate with standard optimization methods. The lack of sufficient exploration exists in 
the combination of these modeling approaches which would lead to improved PEMFC accuracy and efficiency. 
The majority of current optimization algorithms concentrate on single-goal optimization by minimizing voltage 
prediction SSE. PEMFC optimization requires dealing with multiple competing goals which include achieving 
maximum efficiency together with cost reduction and operational reliability maintenance. The research needs 
development of algorithms which possess the capability to solve problems having multiple competing objectives. 
Most available investigations depend on simulations for verifying their models yet demonstrate confined 
validity when tested in actual operating environments. Experimental confirmation of these algorithms remains 
inadequate which creates doubts about their suitability when applied in industrial environments.

Multiple optimization methods exist for PEMFC modeling yet they possess different advantages and 
disadvantages. PSO demonstrates widespread adoption because of its straightforward implementation features 
which allow effective performance in solving non-linear optimization challenges. The algorithm faces two main 
drawbacks because it converges prematurely and depends on specific parameter values when dealing with 
complex problems. The optimization method Differential Evolution (DE) stands out for its powerful global 
search capability because it is frequently used in various applications. The exploration of extensive solution 
spaces by DE remains effective but the method shows poor convergence speed especially when working with 
problems that have many dimensions. When used in complex problems the Whale Optimization Algorithm 
(WOA) succeeds in strike a balance between its exploration and exploitation capabilities yet encounters 
limitations due to sluggish convergence speed together with local optima trapping. Two metaheuristic methods 
named Rabbit Optimization Algorithm (ROA) and Flamingo Herd Optimization (FHO) succeed in solving 
optimization challenges but face two main drawbacks of weak processing speed and dependence on tuning 
their algorithm parameters. Researchers examined the Arithmetic Optimization Algorithm (AOA) along with 
Sine Cosine Algorithm (SCA) and Multi-Verse Optimizer (MVO) and Bat Algorithm (BA) for their specific 
advantages but these methods showed limitations especially during convergence in dynamic settings.

Various optimization research areas still need substantial development work in PEMFC optimization. 
Scalability presents a major problem since numerous current optimization methods fail to function properly in 
large systems that require searching through extensive dimensions. The speed of operations poses a challenge 
especially for time-sensitive applications because they demand swift decision-making processes. The algorithms 
demonstrate insufficient resistance to operational condition changes that include temperature and pressure 
fluctuations. Advanced prediction accuracy with real-time adaptability through machine learning and digital 
twin modeling remains an area for ongoing research development following traditional optimization methods 
integration.

The current limitations make it clear that a new optimization strategy needs immediate development. PO 
represents a promising answer that adopts adaptive behavior strategies of the Pyrrhura Molinae parrots to 
deliver enhanced results regarding speed and accuracy and robustness. PO presents an efficient approach for 
PEMFC design variable optimization through exploratory-exploitative parameter balancing that resolves current 
algorithm limitations to propel fuel cell technology development. The innovative design of this mechanism leads 
to enhanced parameter estimation performance which establishes its value for PEMFC optimization research.

The research presents Parrot Optimizer (PO) as a new metaheuristic algorithm which draws its inspiration 
from the adaptive behaviors of Pyrrhura Molinae parrots. PO operates as an advanced optimization method 
which defeats standard and recent optimization methods through its integration of specialized localization and 
spreading search strategies. The algorithm delivers superior performance than contemporary methods when 
used to optimize PEMFC stack design variables of BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, 
Ballard Mark V, and STD 250 W. Experimental data testing of the simulation results validates the reliability 
of optimized models when subjected to changing pressure and temperature requirements. This study solves 
existing PEMFC parameter optimization limitations through its efficient and scalable solution which provides 
a robust framework that enables better commercial deployment of PEMFC technology for energy applications 
and transportation markets.

In this study, we introduce the Parrot Optimizer (PO)40, a new metaheuristic algorithm based on the adaptive 
behaviors of trained Pyrrhura Molinae parrots. Several advantages of the Parrot Optimizer over existing methods 
are presented. PO is able to overcome the shortcomings of conventional and modern optimization algorithms 
by incorporating a novel combination of intensification and diversification strategies. Even for highly nonlinear 
PEMFC systems, it provides superior convergence speed and accuracy. These capabilities make PO a useful tool 
for advancing PEMFC technology and for optimizing its practical deployment in energy and transportation 
sectors.

The contributions of this research are summarized as follows:

• Development of Parrot Optimizer (PO): A nature-inspired algorithm that leverages key behavioral traits of 
parrots, such as cooperative problem-solving and adaptive exploration, to optimize nonlinear systems effec-
tively.

• Application to PEMFCs: The PO algorithm is applied to optimize design variables for six PEMFC stacks: BCS 
500 W41,42, SR-12 500 W41,42, STD 250 W41,42, Nedstack 600 W PS643, Horizon H-1244, and Ballard Mark V44.

• Comparative Analysis: The performance of PO is benchmarked against nine state-of-the-art algorithms, in-
cluding PSO45, DE46, WOA47, ROA48, FHO49, AOA50, SCA51, MVO52, and BA53, across a range of optimiza-
tion scenarios.
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• Environmental Impact Assessment: The impact of varying temperature and pressure conditions on PEMFC 
performance is evaluated, demonstrating the adaptability and reliability of the optimized models.

• Validation Against Experimental Data: Simulation results are validated against experimental data for each 
PEMFC stack, confirming the robustness and accuracy of the PO-optimized models.

The remainder of this paper is organized as follows: Section “PEMFC mathematical modelling” describes the 
mathematical model of PEMFCs, emphasizing the design variables and optimization objectives. Section “Parrot 
Optimizer (PO)” presents the Parrot Optimizer algorithm, detailing its unique features and implementation. 
Section “Result analysis and discussion” discusses the results of simulations and comparative analysis with other 
optimization algorithms. Finally, Section “Conclusion” provides the conclusion, highlighting the contributions 
and directions for future research.

PEMFC mathematical modelling
Basic concept of PEMFC
The proton exchange membrane fuel cell (PEMFC) structure includes two electrodes, specifically the anode and 
the cathode, and a proton-conducting membrane positioned between these electrodes as the polymer electrolyte. 
The schematic diagram of fuel cell is given in Fig. 1.

This arrangement permits the passage of protons while restricting electron flow54. Additionally, catalyst 
layers are placed between the electrolyte membrane and both electrodes to expedite the chemical reaction. 
Hydrogen gas is supplied to the anode electrode, where, upon reaching the catalytic layer, it dissociates into 
electrons and protons. The protons then migrate through the electrolyte membrane to the catalytic layer at the 
cathode electrode, while the electrons are conducted through an external load. Oxygen or air is supplied to the 
cathode, and upon arrival at the catalytic layer of the cathode electrode, it combines with the protons from the 
membrane and the electrons from the external circuit to produce water. The electrochemical reactions at the 
PEMFC electrodes are expressed as follows:

Anode reaction

 H2 → 2H+ + 2e−  (1)

Cathode reaction

 2H+ + 1
2 O2 → H2O  (2)

Overall reaction:

 H2 + 1
2 O2 → H2O + Energy + Heat  (3)

Fig. 1. Schematic of Fuel cell.
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In Eq. (3), the term “Energy” represents the electrical energy generated as a result of electron flow from hydrogen 
gas traveling from the anode to the cathode through an external load. The equivalent electrical circuit for PEMFC 
stack is shown in Fig. 2. Figure 2 illustrates the equivalent electrical circuit for a proton exchange membrane fuel 
cell (PEMFC) stack, representing the key components that model the electrochemical behavior of the fuel cell. 
The circuit elements are defined as follows: ENernst represents the open-circuit voltage of the cell, determined 
using the Nernst equation, which accounts for the thermodynamic potential of the electrochemical reactions. 
The activation overpotential, denoted as ∆Vact, accounts for the energy loss due to the electrochemical reactions 
occurring at the anode and cathode. The ohmic overpotential, represented by ∆Vohm, models the voltage drop 
caused by the resistance to electron flow in the external circuit and proton transport through the electrolyte 
membrane. The concentration overpotential, ∆Vcon, arises from mass transport limitations of reactants and 
products within the fuel cell, particularly at high current densities. The circuit also includes resistive elements 
that contribute to the total internal resistance of the fuel cell. The membrane resistance, denoted as RM , is a 
function of the membrane specific resistance, thickness, and surface area, affecting proton conductivity.

Mathematical model of PEMFC stacks
The output voltage Vcell of each individual fuel cell can be computed using the following expression55,56:

 Vcell = Enerst − ∆Vact − ∆Vohm − ∆Vcon  (4)

In this equation, Enerst denotes the open-circuit voltage of the cell, ∆Vact represents the activation overpotential 
per cell, ∆Vohm describes the voltage drop caused by ohmic resistance due to electron conduction through 
the external load and the proton movement resistance in the electrolyte membrane, and ∆Vcon indicates the 
concentration overpotential per cell. Amphlett et al.57 proposed a model of a fuel cell electrochemical properties. 
When a series connection of Ncells identical fuel cells is configured for increased voltage output, the total stack 
voltage can be determined as:

 Vstack = Ncells · Vcell  (5)

Here, Ncells refers to the number of cells connected in series, and Vcell is the output voltage for each individual 
fuel cell, as derived from Eq. (4).

The reversible potential, Enerst, is calculated as follows58,59:

 Enerst = 1.229 − 8.5 × 10−4 (Tfc − 298.15) + 4.3085 × 10−5Tfc ·
[
ln (PH2 ) + ln

(√
PO2

)]
 (6)

where Tfc is the cell absolute operating temperature in Kelvin, while PH2  and PO2  denote the partial pressures 
of hydrogen and oxygen in the fuel cell stack input channels (atm). When hydrogen and air serve as the inputs, 
the partial oxygen pressure, PO2 , is determined as follows60,61:

 PO2 = Pc − RHcP sat
H2O − 0.79

0.21 PO2 · exp
(
0.291 Ifc

A
/T 0.832

fc

)
 (7)

where Pc represents the inlet channel pressure at the cathode (atm), RHc is the cathode electrode relative 
humidity, Ifc is the operating current (A), A is the membrane surface area (cm2), and P sat

H2O  is the water vapor 
pressure at saturation, defined by62:

 
log10

(
P sat

H2O

)
= 2.95 × 10−2 (Tfc − 273.15) − 9.18 × 10−5(Tfc − 273.15)2

+1.44 × 10−7(Tfc − 273.15)3 − 2.18  (8)

In cases where hydrogen and pure oxygen are used, the partial oxygen pressure PO2  is calculated as follows:

Fig. 2. Equivalent electrical circuit for PEMFC.
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PO2 = RHcP sat

H2O

[(
exp

(
4.192 1

Ifc
/T 1.334

fc

)
·

RHcP sat
H2O

Pa

)−1

− 1

]
 (9)

In both cases, the partial hydrogen pressure PH2  is given by:

 
PH2 = 0.5RHaP sat

H2O

[(
exp

(
1.635 1

Ifc
/T 1.334

fc

)
·

RHaP sat
H2O

Pa

)−1

− 1

]
 (10)

where Pa is the anode electrode inlet channel pressure (atm), and RHa indicates the relative humidity on the 
anode side.

The activation voltage drop ∆Vact for the electrodes is calculated by:

 ∆Vact = − [ξ1 + ξ2Tfc + ξ3Tfc ln (CO2 ) + ξ4Tfc ln (Ifc)]  (11)

where ξ1, ξ2, ξ3, and ξ4 are empirical coefficients, and CO2  denotes the oxygen concentration at the cathode 
(mol/cm3) as follows:

 CO2 = PO2
5.08×106·exp(−498/ffc)  (12)

The ohmic resistive voltage drop ∆Vohm is determined by:

 ∆Vohm = Ifc (RM + RC)  (13)

where RM  is the membrane resistance (Ω) and RC  is the resistance due to proton movement through the 
membrane. Membrane resistance is calculated as:

 RM = ρM ·l
A

 (14)

with ρM  being specific membrane resistance (Ω·cm),  representing membrane thickness (cm), and the empirical 
formula for ρM  given as:

 

ρM =
181.6

[
1 + 0.03

(
Ifc

A

)
+ 0.062

(
Tfc

303

)2 (
Ifc

A

)2.5
]

[
λ − 0.634 − 3

(
Ifc

A

)]
× exp

[
4.18

(
Tfc−303

Tfc

)]  (15)

where λ is an adjustable parameter connected to membrane preparation.
The concentration voltage drop, ∆Vcon, is determined by:

 ∆Vcon = −b ln
(
1 − J

Jmax

)
 (16)

where b is a parametric coefficient (V); J  and Jmax are the current density and maximum current density (A/
cm2), respectively.

To ensure accurate modeling under simulation and control conditions, precise estimation of these 
parameters is essential. Seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC , and b) are optimized using the CHHO 
optimization technique.

Objective function
To closely align the model output with experimental PEMFC data, the optimization problem is solved by 
employing the SAO-MPSO technique, minimizing the sum of squared errors (SSE) between experimentally 
measured and calculated stack voltages63:

 
OF = min SSE(x) = min

N∑
i=1

[vmeas(i) − vcal(i)]2 (17)

where x represents the unknown parameter vector, N  is the number of data points, i is the iteration index, vmeas 
is the measured PEMFC voltage, and vcal is the estimated voltage. The optimization is subject to the following 
constraints:

 

ξi,min ≤ ξi ≤ ξi,max, i = 1 : 4
RC min ≤ RC ≤ RC max

λmin ≤ λ ≤ λmax

bmin ≤ b ≤ bmax

 (18)
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where ξi,min and ξi,max are the limits for empirical coefficients, RC,min and RC,max are resistance bounds, and 
λmin, λmax, bmin, and bmax define the limits for water content and parametric coefficients. The mean bias error 
for voltage is calculated as per below equation:

 
MBE =

∑N

i=1 |Vmeas (i) − Vcalc (i)|
N

 (19)

Parrot Optimizer (PO)
Mathematical model of PO
This section explained a detailed modelling of Parrot Optimizer including its strategies, behavior, pseudo codes 
and flowchart.

Population Initialization
The initialization formula for the proposed PO algorithm considers a swarm size of N , maximum iterations 
of Maxiter, and search space limits defined by lb (lower bound) and ub (upper bound). The initialization is 
expressed as:

 X0
i = lb + rand (0, 1) · (ub − lb)  (20)

Here, rand(0,1) denotes a random value within the range [0,1], and X0
i  represents the initial position of the ith 

Pyrrhura Molinae.

Foraging Behavior
The foraging behavior of the PO algorithm simulates the birds’ tendency to estimate food locations based on 
the food position or the owner location. The subsequent movement of individuals is governed by the equation:

 X
(t+1)
i =

(
Xt

i − Xbest
)

· Levy (dim) + rand (0, 1) ·
(
1 − t

Maxiter

) 2t
Maxiter · Xt

mean  (21)

In this expression, Xt
i  is the current position, while X

(t+1)
i  represents the updated position. The term 

Xt
mean signifies the average location within the current population. The function Levy(dim) describes the 

Lévy distribution, which models the flight of parrots. The best position discovered from the initialization to 
the current iteration is represented by Xbest. Movement towards the best-known location is influenced by 
(Xt

i − Xbest) · Levy(dim), while global observation is captured by rand(0,1) ·
(
1 − t

Maxiter

) 2t
Maxiter · Xt

mean

.
The average position of the swarm is determined as follows:

 
Xt

mean = 1
N

N∑
k=1

Xt
k  (22)

The Lévy distribution is calculated using the formulation:

 

µ ∼ N (0, dim) ,
v ∼ N (0, dim) ,

Levy (dim) = µ·σ
|v|1/γ where

σ =
(

Γ(1+γ)·sin( πγ
2 )

Γ( 1+γ
2 )·γ·2

1+γ
2

) 1
γ+1

.

 (23)

Staying behavior
During the staying behavior, individuals mimic the act of flying towards a part of their owner body and remaining 
stationary for a brief period. This phase is represented by:

 X
(t+1)
i = Xt

i + Xbest · Levy (dim) + rand (0, 1) · ones (1, dim)  (24)

Here, ones(1, dim) is a vector of ones with dimensions equal to dim. The component Xbest · Levy(dim) 
represents the flight towards the host, while rand(0,1) · ones(1, dim) models random stopping.

Communicating behavior
The social nature of Pyrrhura Molinae parrots involves behaviors such as flying towards the flock and 
communicating or flying away immediately after interaction. The mean position of the population represents 
the center of the flock, and positional updates are determined as follows:

 
X

(t+1)
i =

{
0.2 · rand (0, 1) ·

(
1 − t

Maxiter

)
·
(
Xt

i − Xt
mean

)
, P ≤ 0.5,

0.2 · rand (0, 1) · exp
(

− t
rand(0,1)·Maxiter

)
, P > 0.5.

 (25)
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Here, P  is a random probability in the range [0, 1]. The first case simulates individuals joining a flock, while the 
second case models immediate departure after communication.

Fear of strangers behavior
Pyrrhura Molinae parrots exhibit fear of unfamiliar individuals, resulting in movement patterns that seek safety. 
This behavior is described by:

 

X
(t+1)
i = Xt

i + rand (0, 1) · cos
(

0.5π · t

Maxiter

)
·

(
Xbest − Xt

i

)
− cos (rand (0, 1) · π) ·

(
t

Maxiter

) 2
Maxiter ·

(
Xt

i − Xbest
) (26)

The term rand(0,1) · cos
(
0.5π · t

Maxiter

)
· (Xbest − Xt

i ) represents reorientation towards the owner, while 

cos (rand(0,1) · π) ·
(

t
Maxiter

) 2
Maxiter · (Xt

i − Xbest) indicates movement away from strangers.

Pseudo-code of the PO algorithm

The optimization process begins with the random generation of a predefined set of candidate solutions. 
Through iterative behaviors, the algorithm searches near optimal locations. Positions are dynamically updated, 
influenced by the best solutions identified, until the termination criterion is met. The complete algorithm 
structure is encapsulated in pseudo-code, offering a detailed roadmap for optimization, including exploration 
and exploitation strategies shown in Fig. 3. The Parrot Optimizer (PO) algorithm follows three main steps 
which are depicted through Fig. 3 flowchart including Communication then Exploration followed by Exploita-
tion. The Exploration stage of the algorithm dynamically discovers key search areas to guarantee full solution 
space exploration. The algorithm uses collective insights to improve solution precision through its communi-
cation stage. The Exploitation stage of the search process focuses on promising areas to guarantee the achieve-
ment of optimal solutions. The flowchart demonstrates how positions dynamically update based on identified 
best solutions until the termination criterion completes the optimization process. The defined structure of 
PO maintains exploration and exploitation equilibrium which leads to exceptional performance in resolving 
nonlinear optimization problems.

Fig. 3. Flowchart of PO algorithm.
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Algorithm 1. Pseudo-code of the PO algorithm

Result analysis and discussion
Result analysis
The Parrot Optimizer (PO), inspired by the cooperative behaviors of Pyrrhura Molinae parrots, operates through 
three distinct stages: Communication, exploration and exploitation. In the exploration stage, it also recognizes 
possible search regions adaptively, hence guaranteeing the broad coverage of the solution space. The algorithm 
does a round of sharing and refining potential solutions during communication when it can utilize everyone 
insights to make it more exact. In the final stage, exploitation, the search is further intensified in promising areas 
to ensure convergence to optimal solutions. To evaluate the effectiveness of the PO algorithm, its performance 
is compared to a suite of well known optimization techniques including Particle Swarm Optimization (PSO), 
Differential Evolution (DE), Whale Optimization Algorithm (WOA), Rabbit Optimization Algorithm (ROA), 

Algorithms Default settings

PSO45 c1 = 2; c2 = 2; Vmax = 6
DE46 F ∈ [0.4,0.9]&CR ∈ [0.1,0.9]
WOA47 α: Decreased from 2 to 0,b = 2

ROA48 C = 0.1; α = rand(0,1) · (a − 1) + 1

FHO49 ri ∈ (0,1) ; i = 1 : 6
AOA50

α = 5
SCA51 µ = 0.05
MVO52 W EPmax = 1, W EPmin = 0.2
BA53 A = 0.5, r = 0.5
PO40 γ = 1.5; F : S : C : O = 1 : 1 : 1 : 1;,

Table 2. Default parameter settings of the compared algorithms.
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Flamingo Herd Optimization (FHO), Arithmetic Optimization Algorithm (AOA), Sine Cosine Algorithm 
(SCA), Multi-Verse Optimizer (MVO), and Bat Algorithm (BA). Table 2 shows the default parameter settings 
used for this analysis, which are taken from original literatures. This diverse set of algorithms gave a robust 
framework to evaluate the relative strengths and weaknesses of the PO in optimizing the design variables of 
PEMFCs. This study computational framework consisted of MATLAB for developing and executing optimization 
algorithms, Simulink for modeling the dynamic behavior of PEMFCs, and custom scripts for preprocessing 
experimental data. Experimental current voltage (I–V) and current power (I–P) data were used as inputs to 
the simulations, and initial parameter bounds for design variables were obtained from previous research. We 
used high performance computing resources, including an Intel Xeon 16 core processor, 64 GB of RAM and 
an NVIDIA Tesla GPU for parallel computations to allow for efficient handling of complex simulations. The 
optimization process was validated by a detailed comparison of calculated performance curves to experimental 
data over six PEMFC stacks. Table 3 shows the physical values of PEMFC used here. Simulations under various 
temperature and pressure conditions were performed to ensure robustness of the PO algorithm to capture the 
subtle behaviors of PEMFCs in different operating conditions.

CASE 1: Optimization of BCS 500 W PEMFC using the parrot optimizer
The Parrot Optimizer (PO) exhibits superior performance in optimizing the BCS 500 W PEMFC, delivering 
precise parameter estimations, rapid convergence, and exceptional consistency across multiple runs. According 
to Table 4, PO achieves the lowest Mean SSE (0.025519) and Min SSE (0.025493), outperforming both traditional 
algorithms like PSO (0.113376) and DE (0.028178), as well as newer algorithms like WOA (0.046848) and FHO 
(0.025631). The minimal SD SSE (5.92 × 10−5) further reflects PO ability to consistently achieve optimal 
solutions, making it the most stable algorithm tested. Additionally, PO boasts the shortest RT (0.194797 s), 
significantly faster than BA (8.422956 s) and AOA (4.799885 s), emphasizing its computational efficiency 
for real-time applications. The algorithm ranks highest in FR (1.2), signifying overall dominance across all 
performance metrics.

The effectiveness of PO is visually validated in the provided figures. Figure 4a illustrates the V–I and P–V 
characteristics, showing a close match between measured and estimated values. The error plot clearly shows the 
consistently low absolute error (AE) and Relative Error (RE%), with very small deviations over the entire current 
range. The accuracy of this model demonstrates the robustness of PO in modeling the nonlinear behavior of 
PEMFCs. The boxplot comparison of fitness values in Fig. 4b demonstrates PO tight clustering with no outliers 
and the least spread, indicating unsurpassed stability and reliability over algorithms such as PSO and BA, which 
exhibit larger spreads and variability. Finally, Fig. 4c shows that PO converges rapidly, stabilizing within the first 
50 iterations, while other algorithms such as DE and WOA take more time to stabilize. This smooth and efficient 

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 0.98401 − 1.17707 − 0.8532 − 0.87108 − 1.15643 − 0.95535 − 1.12095 − 1.1723 − 0.96462 − 0.8532

ξ2 0.00301 0.003251 0.003079 0.002331 0.00337 0.002577 0.003231 0.003733 0.002851 0.00218

ξ3 6.45E−05 4.23E−05 9.39E−05 4.23E−05 5.4E−05 4.18E−05 5.19E−05 7.43E−05 5.85E−05 0.000036

ξ4 − 0.00018 − 0.00019 − 0.00019 − 0.00019 − 0.00019 − 0.00019 − 0.00019 − 0.00019 − 0.00018 − 0.00019

λ 20.68135 20.16795 23 21.58818 20.88868 21.55567 20.94073 20.88438 16.61556 20.87724

Rc 0.000751 0.00012 0.000282 0.000217 0.000105 0.000157 0.000106 0.0001 0.000323 0.0001

B 0.0136 0.015599 0.016265 0.015927 0.016108 0.015973 0.016076 0.016131 0.013744 0.016126

Min. SSE 0.055008 0.026139 0.025656 0.025942 0.025505 0.02618 0.025546 0.025493 0.073793 0.025493

Max. SSE 0.19249 0.031945 0.085535 0.033361 0.025796 0.049968 0.026142 0.025646 0.140884 0.025625

Mean SSE 0.113376 0.028178 0.046848 0.029216 0.025631 0.033557 0.025789 0.025532 0.098178 0.025519

S.D 0.053443 0.002446 0.022626 0.003695 0.000119 0.009998 0.000233 6.39E−05 0.028865 5.92E−05

RT 4.448308 4.853599 3.980429 4.195765 8.276519 4.799885 4.827154 5.383871 8.422956 0.194797

FR 9.4 5.8 7.6 6.2 3.2 6.6 3.8 2 9.2 1.2

Table 4. Optimized parameters and optimal function value for CASE 1.

 

S. No PEMFC Type Power (W) Ncells (no) A (cm2) l (um) T (K) Jmax (mA/cm2) PH2 (bar) PO2 (bar)

CASE 1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095

CASE 2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0

CASE 3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095

CASE 4 Horizon H-12 12 13 8.1 25 328.15 246.9 0.4935 1.0

CASE 5 Ballard Mark V 5000 35 232 178 343 1500 1.0 1.0

CASE 6 STD 250 W 250 24 27 127 343 860 1.0 1.0

Table 3. Characteristics of Six PEMFCs used considered in this analysis.
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convergence curve clearly demonstrate a capability of PO to quickly and effectively minimize fitness values, 
which is important for optimization tasks.

Overall, PO exceptional performance in accuracy, consistency, and speed makes it the optimal choice for 
PEMFC parameter estimation in the BCS 500 W case. Its ability to consistently outperform both traditional and 
state-of-the-art optimization algorithms solidifies its position as a powerful tool for energy system modeling. A 
boxplot analysis in Fig. 4b demonstrates how the Parrot Optimizer (PO) performs against other optimization 
algorithms in terms of fitness value outcomes for the BCS 500 W PEMFC case. The boxplot reveals how PO 

Fig. 4. CASE 1 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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maintains its data points in a compact distribution zone with low variance and no outlier values to demonstrate 
high reliability and consistency. The distribution spreads of PSO and BA algorithms along with their significant 
outliers demonstrate higher variability and inferior reliability compared to the algorithms. The modified figure 
demonstrates the precise representation of data which strengthens the evidence of PO ability to find optimal 
solutions.

CASE 2: Optimization of Nedstack 600 W PS6 PEMFC using the parrot optimizer
The Parrot Optimizer (PO) demonstrates exceptional optimization capabilities for the Nedstack 600 W PS6 
PEMFC, achieving the best results in terms of accuracy, consistency, and computational efficiency. As shown in 
Table 5, PO achieves the lowest Mean SSE (0.275211) and Min SSE (0.275211) across all tested algorithms, tied 
with WOA but outperforming traditional methods like PSO (0.494496) and DE (0.292274). The negligible SD 
SSE (5.84 × 10−16) highlights PO stability, ensuring consistent performance across multiple runs. Additionally, 
PO achieves the shortest RT (0.181987 s) compared to significantly higher runtimes for algorithms like BA 
(11.63694 s) and FHO (10.84584 s). PO also secures the highest FR (1), reinforcing its superiority in this case.

The V–I and P–V characteristics in Fig. 5a reveal a strong alignment between the measured and estimated 
values, showcasing PO precision in replicating PEMFC behavior across a wide range of currents. The error plot 
shows consistently low AE and RE% values, with occasional spikes at higher currents, which are still well within 
acceptable limits. This reflects PO capability to maintain high accuracy even under dynamic and high-load 
operating conditions. Figure 5b provides a boxplot comparison of fitness values across all algorithms, where 
PO exhibits the tightest clustering, indicative of minimal variance and unparalleled consistency. In contrast, 
algorithms like PSO and BA display wider spreads and significant outliers, highlighting their variability and 
reduced reliability. PO compact and stable distribution demonstrates its robustness in achieving optimal 
solutions. The convergence curves in Fig. 5c illustrate PO rapid optimization capabilities, with the algorithm 
stabilizing within the first 50 iterations. This rapid convergence outpaces traditional algorithms like DE, which 
show delayed stabilization, and highlights PO efficiency in minimizing fitness values. The smooth and steady 
decline of the fitness value further reinforces PO reliability, with no oscillations or instability observed during 
the optimization process. Overall, PO emerges as the most effective optimization algorithm for the Nedstack 
600 W PS6 PEMFC, excelling in terms of speed, accuracy, and consistency, as evident from the table and figures.

CASE 3: Optimization of SR-12 W PEMFC using the parrot optimizer
The Parrot Optimizer (PO) demonstrates remarkable performance in optimizing the SR-12 W PEMFC case. 
As shown in Table 6, PO achieves the lowest Mean SSE (0.242413) and Min SSE (0.242284), outperforming 
both traditional algorithms like PSO (0.395458) and DE (0.243985) and newer ones like BA (0.438272). PO 
also shows exceptional stability, with an SD SSE of only 0.000288, indicating consistent results across runs. 
Additionally, PO runtime (0.166356 s) is significantly shorter compared to competitors such as BA (8.905778 s) 
and FHO (8.190573 s), highlighting its computational efficiency. The algorithm ranks highly with an FR of 2.2, 
signifying its superior overall performance.

Figure 6a: The V–I and P–V curves illustrate a strong match between measured and estimated values, with 
minimal deviations observed. The error characteristics confirm consistently low AE and RE%, reflecting the 
accuracy of PO predictions across varying current levels. Figure  6b: The boxplot of fitness values highlights 
PO tight clustering with minimal variance, indicating superior consistency compared to PSO and BA, which 
exhibit larger spreads and outliers. Figure 6c: The convergence curve shows that PO stabilizes rapidly within the 
first 50 iterations, outperforming algorithms like DE and WOA in convergence speed and achieving smooth, 
steady optimization without oscillations. PO emerges as a highly effective optimization method for the SR-12 W 
PEMFC case, delivering outstanding results in terms of accuracy, speed, and stability.

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 1.10315 − 0.8532 − 1.15235 − 0.96635 − 0.87151 − 0.8532 − 0.88116 − 1.08097 − 0.8968 − 0.85498

ξ2 0.003835 0.002397 0.00327 0.002858 0.002482 0.002532 0.003005 0.003235 0.002763 0.002438

ξ3 8.64E−05 3.6E−05 0.000036 4.54E−05 3.82E−05 4.55E−05 7.35E−05 4.84E−05 5.21E−05 3.85E−05

ξ4 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05

λ 15.53654 14 14 14 14.00135 14 14 14.00281 21.81007 14

Rc 0.0001 0.000103 0.00012 0.000106 0.00012 0.000121 0.000123 0.000108 0.000399 0.00012

B 0.03593 0.019297 0.016788 0.018753 0.01698 0.016909 0.016248 0.018615 0.026352 0.016788

Min. SSE 0.29739 0.275746 0.275211 0.275581 0.275228 0.275346 0.275305 0.275762 0.334858 0.275211

Max. SSE 0.837166 0.319379 0.320685 0.295621 0.286627 0.300545 0.276626 0.285955 0.467356 0.275211

Mean SSE 0.494496 0.292274 0.284815 0.281789 0.281106 0.281489 0.275946 0.278785 0.416984 0.275211

S.D 0.215484 0.017628 0.020055 0.008152 0.004777 0.010691 0.000477 0.004319 0.05035 5.84E−16

RT 5.576336 5.976248 5.623344 5.38313 10.84584 5.982563 6.194354 7.04729 11.63694 0.181987

FR 9.6 6.8 4 5.2 5.2 5.4 3.8 4.6 9.4 1

Table 5. Optimized parameters and optimal function value for CASE 2.
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CASE 4: Optimization of Horizon H-12 PEMFC using the parrot optimizer
The Parrot Optimizer (PO) continues to demonstrate exceptional optimization capabilities in the Horizon H-12 
PEMFC case. As per Table 7, PO achieves the lowest Mean SSE (0.102915) and Min SSE (0.102915), outperforming 
all other algorithms. Its SD SSE is negligible (3.8 × 10−17), indicating high stability across optimization runs. 
Additionally, PO records the shortest RT (0.116855 s), which is significantly lower than competing methods like 
BA (8.97243 s) and FHO (9.01919 s). PO achieves an FR of 1, further reinforcing its superiority.

Fig. 5. CASE 2 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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Figure  7a: The V–I and P–V plots confirm an excellent match between measured and estimated values. 
The error plot shows consistently low AE and RE%, with no significant deviations, highlighting PO precision 
in modeling PEMFC behavior under various current levels. Figure 7b: The boxplot emphasizes PO minimal 
variance in fitness values, as evidenced by the narrow spread and absence of outliers. In contrast, algorithms 
like PSO and BA exhibit higher variability, with wider spreads and outliers. Figure 7c: The convergence curve 
for PO shows rapid stabilization within the first 50 iterations, outperforming algorithms like DE and WOA, 
which require more iterations to converge. PO maintains smooth and steady optimization, indicating robust 
performance without oscillations. PO proves to be the most efficient and reliable optimization algorithm for the 
Horizon H-12 PEMFC case, maintaining its edge in accuracy, speed, and stability.

CASE 5: Optimization of Ballard Mark V PEMFC using the parrot optimizer
The Parrot Optimizer (PO) demonstrates excellent optimization performance for the Ballard Mark V PEMFC. 
As shown in Table 8, PO achieves the lowest Mean SSE (0.148632) and Min SSE (0.148632), tied with WOA 
but outperforming algorithms like PSO (0.152059) and DE (0.152596). PO SD SSE is minimal (4.2 × 10−16

), reflecting consistent optimization results across runs. Additionally, PO achieves the fastest RT (0.130232 s), 
which is significantly faster than BA (5.893922 s) and FHO (5.874117 s). PO also secures the highest FR (1), 
underscoring its robustness and efficiency. 

Figure 8a: The V–I and P–V plots show a strong match between measured and estimated values, confirming 
PO accuracy in replicating the PEMFC operational behavior. The error characteristics display consistently low 
AE and RE%, indicating minimal deviation across varying current levels. Figure  8b: The boxplot highlights 
PO outstanding performance with tightly clustered fitness values and no outliers, demonstrating its reliability. 
In contrast, algorithms like PSO and BA exhibit wider spreads and variability, indicating less consistent 
performance. Figure 8c: The convergence curve illustrates PO rapid stabilization within the first 50 iterations, 
outperforming slower algorithms like DE and WOA. PO achieves smooth optimization with no oscillations, 
confirming its efficiency and stability in minimizing the objective function. PO proves to be a top-performing 
algorithm for optimizing the Ballard Mark V PEMFC, maintaining its edge in accuracy, speed, and consistency.

CASE 6: Optimization of STD 250 W Stack PEMFC using the parrot optimizer
The Parrot Optimizer (PO) showcases its superiority in optimizing the STD 250 W Stack PEMFC. As presented 
in Table 9, PO achieves the lowest Mean SSE (0.283774) and ties for Min SSE (0.283774) with multiple algorithms 
like DE and WOA. PO SD SSE is negligible (8.33 × 10−17), indicating exceptional stability and minimal 
deviation across optimization runs. Additionally, PO records the fastest RT (0.117132 s), which is significantly 
faster than BA (5.674676 s) and FHO (5.444111 s). PO maintains the best FR (1), reinforcing its robustness. 

Figure  9a: The V–I and P–V characteristics exhibit an almost perfect overlap between measured and 
estimated values. Error analysis further confirms low AE and RE%, with only minor fluctuations, indicating 
high accuracy in modeling the PEMFC performance across varying currents. Figure 9b: The boxplot vividly 
illustrates PO exceptional performance with a tightly clustered distribution of fitness values and no outliers. 
In comparison, algorithms like PSO and FHO demonstrate wider variability, indicating less consistent results. 
Figure 9c: The convergence curve reveals PO rapid stabilization within 50 iterations, far outpacing algorithms 
such as DE and WOA. PO demonstrates a smooth and steady convergence trajectory, emphasizing its efficiency 
in solving optimization problems without oscillatory behavior. PO continues to validate its capability as a reliable 
and efficient optimization algorithm for PEMFC modeling, delivering superior results in accuracy, speed, and 
stability.

Result discussion
Six PEMFC cases are analysed to show that the Parrot Optimizer (PO) is superior to other optimization 
algorithms, including PSO, DE, WOA, ROA, FHO, AOA, SCA, MVO, and BA in terms of multiple performance 

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 1.19268 − 0.86141 − 0.8532 − 1.03159 − 0.88797 − 0.9303 − 1.02158 − 0.94242 − 0.91562 − 0.89596

ξ2 0.003894 0.003273 0.003251 0.003157 0.003026 0.002725 0.003539 0.00283 0.002571 0.002421

ξ3 7.19E−05 9.78E−05 0.000098 5.65E−05 7.67E−05 4.86E−05 8.31E−05 5.31E−05 4.13E−05 3.6E−05

ξ4 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.5E−05 − 9.6E−05 − 9.5E−05

λ 23 22.69424 23 19.66628 22.97157 14.84181 22.79868 22.81813 18.93848 23

Rc 0.0001 0.000783 0.0008 0.000603 0.000671 0.000733 0.000646 0.000666 0.000541 0.000673

B 0.189474 0.173043 0.172796 0.175583 0.17533 0.170209 0.175742 0.175405 0.177995 0.17532

Min. SSE 0.260359 0.242641 0.242716 0.242443 0.242286 0.243937 0.242365 0.242293 0.25835 0.242284

Max. SSE 0.666933 0.245315 0.246387 0.245921 0.242614 0.248789 0.242628 0.242529 0.57641 0.242927

Mean SSE 0.395458 0.243985 0.244869 0.243497 0.242418 0.245324 0.242493 0.242421 0.438272 0.242413

S.D 0.171831 0.001088 0.00133 0.001408 0.000136 0.001984 0.000111 8.47E−05 0.15043 0.000288

RT 4.287496 4.405956 3.970953 4.070333 8.190573 5.53 4.906272 5.705091 8.905778 0.166356

FR 9.4 5.8 7 5.4 2.6 7.2 3.2 2.6 9.6 2.2

Table 6. Optimized parameters and optimal function value for CASE 3.
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metrics. It was observed that PO consistently obtained the lowest Mean SSE values of all cases, demonstrating its 
high accuracy in predicting parameters and replicating the PEMFC behavior. Additionally, the small standard 
deviations for all cases show a good robustness and stability of PO to provide repeatable results with minimal 
variations even in harsh scenarios.

With respect to the convergence performance, PO stabilized faster and in general within the first 50 
iterations, which suggests its efficiency to converge to the optimal solutions much faster than other algorithms. 
In particular, the DE and PSO algorithms showed lower convergence and their behavior was oscillatory that does 

Fig. 6. CASE 3 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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not contribute to their reliability. Further validation of PO capability was obtained through boxplot analyses, 
which showed tightly clustered distributions with no outliers, in contrast to the wide variability of PSO and BA.

From a computational standpoint, PO was the fastest runtime (RT) recorded in all cases, indicating its 
computational efficiency and applicability to real time applications. In contrast, algorithms such as BA, FHO, 
and DE were competitive in some aspects, but ran much slower than the proposed algorithm, making them less 
attractive for rapid optimization tasks.

In all cases, error analysis further supported PO capability with consistently low absolute and relative errors 
(AE and RE%, respectively) implying minimal deviation between estimated and measured values. PO was able 
to balance exploration and exploitation capabilities, as it was able to accurately estimate both the voltage and 
power characteristics.

In general, the analysis shows that PO is a most consistent and a versatile algorithm being able to adapt across 
a range of various stack configurations and power ratings. Other algorithms performed well in isolated cases, but 
PO was the best performer in cumulative metrics of accuracy, runtime and robustness. Based on these findings, 
we position PO as a superior algorithm for PEMFC parameter optimization and a potential benchmark for 
future research in optimization tasks.

The experimental findings show that PO delivers superior performance than other algorithms in all aspects 
including accuracy and speed of convergence and computational efficiency. The BCS 500 W PEMFC case 
demonstrates that PO delivers an SSE of 0.025519 which surpasses the SSE values of PSO at 0.113376 and DE 
at 0.028178. The Nedstack 600 W PS6 PEMFC case demonstrates how PO reaches a Mean SSE of 0.275211 
which exceeds WOA (0.284815) and FHO (0.281106). The results demonstrate that PO effectively reduces the 
objective function and effectively simulates PEMFC operation. The stability of PO becomes evident through its 
consistently low standard deviation (SD) values which appear in all cases. The standard deviation of SSE in the 
SR-12 W PEMFC case using PO amounts to 0.000288 which surpasses the values from PSO (0.171831) and BA 
(0.15043). Repeated execution of PO delivers dependable and consistent results because of its stable performance 
under different operational parameters. The computational performance of PO demonstrates the fastest runtime 
(RT) values in every optimization scenario. The PEMFC case with Horizon H-12 shows that PO delivers results 
in 0.116855 s while BA takes 8.97243 s and FHO requires 9.01919 s. The computational superiority of PO makes 
it an ideal algorithm for real-time PEMFC optimization tasks because of its high efficiency. PO stands apart 
from alternative algorithms because of its ability to reach convergence quickly. PO reaches stable performance 
during its first 50 iterations which indicates its quick ability to find optimal solutions. The convergence patterns 
of DE and PSO show slower rates with oscillatory behavior that reduces their practical application potential. 
A thorough examination of contemporary optimization methods demonstrates that PO stands out as the best 
solution for PEMFC parameter optimization needs. PO proves to be the most effective algorithm across all 
metrics as it outperforms WOA and FHO and other algorithms in specific cases. The solid performance of 
PO makes it an optimal choice for PEMFC optimization while opening possibilities for its use in other energy 
systems and general optimization problems. The research validates the Parrot Optimizer (PO) by showing its 
superiority over current methods through extensive testing which proves its accuracy alongside stability and 
computational efficiency. The obtained results demonstrate that PO represents a strong optimization method for 
advancing PEMFC technology while solving complex optimization challenges in energy systems. Researchers 
will evaluate PO scalability with dimensional growth while expanding its spectrum to additional fuel cell types 
to strengthen its position as a top optimisation algorithm.

Additional evaluations of Parrot Optimizer (PO) superiority were carried out through multi-dimensional 
performance testing of accuracy alongside convergence speed and computational efficiency and robustness. The 
analysis of six PEMFC cases used PO to compete with nine state-of-the-art optimization algorithms including 
PSO, DE, WOA, ROA, FHO, AOA, SCA, MVO, and BA.

The Mean Sum of Squared Errors (Mean SSE) and Minimum SSE (Min SSE) provided the accuracy assessment 
for all PEMFC cases. PO demonstrated the best performance by producing the smallest Mean SSE and Min SSE 

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 1.1991 − 0.85741 − 1.19969 − 0.99876 − 0.98961 − 0.87395 − 0.86989 − 1.10522 − 1.19969 − 1.0506

ξ2 0.002579 0.00188 0.003445 0.002693 0.002003 0.002408 0.002133 0.00302 0.002736 0.002454

ξ3 3.6E−05 6.17E−05 0.000098 8.87E−05 4.12E−05 9.6E−05 7.72E−05 8.85E−05 4.72E−05 6E−05

ξ4 − 0.00011 − 0.00011 − 0.00011 − 0.00011 − 0.00011 − 0.00011 − 0.00011 − 0.00011 − 0.00012 − 0.00011

λ 14 14 14 14.05763 14 14 14 14.00338 14.61221 14

Rc 0.0008 0.0008 0.0008 0.000661 0.0008 0.000509 0.0008 0.0008 0.000798 0.0008

B 0.0136 0.0136 0.0136 0.013616 0.0136 0.013865 0.0136 0.013601 0.013759 0.0136

Min. SSE 0.102915 0.102915 0.102915 0.103076 0.102915 0.103278 0.102915 0.102916 0.103973 0.102915

Max. SSE 0.107645 0.103578 0.104428 0.103905 0.10345 0.104292 0.102915 0.102919 0.108593 0.102915

Mean SSE 0.104622 0.103245 0.103665 0.103397 0.103069 0.103677 0.102915 0.102918 0.106491 0.102915

S.D 0.001938 0.000314 0.000757 0.000334 0.00023 0.000402 2.72E−07 1E−06 0.002025 3.8E−17

RT 4.425665 4.529723 4.042082 5.249036 9.01919 4.669704 5.068996 5.593937 8.97243 0.116855

FR 7.4 5 5.6 7 5.2 7 2.8 4.2 9.8 1

Table 7. Optimized parameters and optimal function value for CASE 4.
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values in every one of the six PEMFC tests which proved its exceptional ability to reduce experimental and 
estimated voltage–current (I–V) and power–voltage (P–V) characteristic error. The BCS 500 W case showed 
PO produced Mean SSE results of 0.025519 which surpassed the values of PSO at 0.113376 and DE at 0.028178. 
The Nedstack 600 W PS6 case revealed that PO generated a Mean SSE value of 0.275211 which surpassed the 
results of WOA (0.284815) and FHO (0.281106). The exceptional precision of the parameter estimation process 
emerges from the performance of PO in these results.

Fig. 7. CASE 4 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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The evaluation of convergence speed focused on counting the number of iterations needed for each algorithm 
to reach stable optimal solutions. The optimization process through PO reached stable convergence in all cases 
during the first 50 iterations. The convergence process of algorithms DE and PSO took longer than 100 iterations 
before reaching stability. In the SR-12 W scenario PO needed only 50 iterations to converge but WOA needed 120 
iterations and DE needed 100 iterations. We observe fast solution attainment because of PO efficient approach to 
deal with complex optimization problems.

The optimization process completion time served as the main metric to evaluate computational efficiency 
through runtime (RT). PO demonstrated the fastest runtime across all optimization cases which made it the 
most efficient algorithm for computation. The optimization process completed by PO took 0.116855 s in the 
Horizon H-12 case while BA required 8.97243 s and FHO needed 9.01919 s. The practical nature of PO makes 
it suitable for real-time optimization tasks within PEMFC applications because of its efficient computational 
speed.

The robustness evaluation used standard deviation (SD) measurements of SSE values from multiple 
optimization runs. The stability and consistency of PO remained high because its standard deviation values 
were negligible in every scenario. The standard deviation of SSE for PO in the Ballard Mark V case reached 
4.2 × 10^(-16) while PSO had 0.003012 and BA had 0.025611. The minimal variability demonstrates that PO 
delivers dependable results which remain stable during different operating conditions.

Error analysis determined the error results through absolute error (AE) and relative error (RE%) between 
experimental results and estimation values. The accuracy of PO was confirmed through its consistent achievement 
of the lowest absolute error and relative error percentage in all tested cases. The STD 250 W case demonstrated 
that PO kept its AE and RE% below 1% while surpassing PSO and BA since these algorithms showed increased 
deviations at elevated current levels.

A boxplot evaluation of fitness values from all algorithms demonstrated that PO produced the most condensed 
and outlier-free distribution indicating exceptional consistency and low deviation. The algorithms PSO and BA 
demonstrated broader dispersion together with prominent outliers thus proving their lower reliability status. 
The boxplot of PO in the Nedstack 600 W PS6 case demonstrated a tight interquartile range without any outliers 
yet PSO and BA presented broader IQRs with multiple outliers.

A Freidman Ranking (FR) metric was developed to offer complete algorithm ranking through integration of 
accuracy performance alongside convergence speed and computational efficiency alongside robustness. The FR 
values of PO remained the highest throughout all experimental cases which confirmed its superior performance. 
The BCS 500 W case demonstrated that PO obtained an FR value of 1.2 which surpassed PSO (9.4) and BA (9.2).

The expanded evaluation shows that PO achieves better results than both traditional and cutting-edge 
optimization methods in every performance evaluation category. The PEMFC parameter optimization benefits 
from PO through its exceptional combination of superior precision with quick convergence speed and efficient 
computation and solid reliability. Research on energy system optimization should use PO as the benchmark 
algorithm because of its established performance.

Non-parametric statistical tests including Wilcoxon and Quade and Friedman and t-test must be implemented 
to validate the significance of Parrot Optimizer (PO) results when compared against other optimization 
methods. These tests establish a comprehensive method to verify that performance differences between PO and 
its competitors represent meaningful statistical results instead of random fluctuations.

The Wilcoxon signed-rank test functions as a non-parametric statistical method for evaluating two linked 
measurement sets or multiple trials of one sample. The Wilcoxon test enables performance metric evaluation 
(Mean SSE and runtime and convergence speed) of PO versus each of the other algorithms across multiple 
experimental runs. The null hypothesis for this test asserts that PO shows no statistically significant performance 
differences compared to the examined algorithm. The rejection of the null hypothesis shows that PO performs 
either better or worse than the alternative algorithm statistically. The statistical test produces p-values which help 
quantify the importance of the obtained results.

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 1.04515 − 1.03065 − 1.19969 − 0.87553 − 0.90709 − 0.87803 − 1.09292 − 1.09967 − 0.87362 − 0.93829

ξ2 0.003144 0.003174 0.004138 0.002598 0.002705 0.002581 0.003587 0.003165 0.002645 0.003169

ξ3 5.96E−05 6.43E−05 0.000098 5.55E−05 5.66E−05 5.38E−05 8.09E−05 4.94E−05 6.01E−05 8.32E−05

ξ4 − 0.00017 − 0.00018 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00016 − 0.00017

λ 14.16512 16.28909 14.43912 14.63427 14.55899 14.68897 14.67389 14.462 14 14.43913

Rc 0.00011 0.000289 0.0001 0.000154 0.000144 0.000124 0.000125 0.0001 0.000575 0.0001

B 0.0136 0.016091 0.013795 0.013997 0.013816 0.014246 0.014071 0.01383 0.0136 0.013795

Min. SSE 0.149733 0.150516 0.148632 0.148744 0.148718 0.148733 0.148727 0.148633 0.168511 0.148632

Max. SSE 0.155617 0.155266 0.149959 0.151388 0.149417 0.151125 0.148811 0.148692 0.232626 0.148632

Mean SSE 0.152059 0.152596 0.149069 0.149644 0.149067 0.150006 0.14876 0.148646 0.196065 0.148632

S.D 0.003012 0.001963 0.000602 0.001029 0.000293 0.000883 3.98E−05 2.56E−05 0.025611 4.2E−16

RT 3.004507 3.265973 2.689325 2.852755 5.874117 3.396935 3.658688 4.231083 5.893922 0.130232

FR 8 8.6 3.6 6 4.8 6.8 3.8 2.4 10 1

Table 8. Optimized parameters and optimal function value for CASE 5.
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The Friedman test operates as a non-parametric statistical approach that substitutes the repeated measures 
ANOVA for multiple algorithm comparisons across different cases or datasets. The Friedman test can provide 
rankings for all algorithms including PO based on Mean SSE and runtime performance and convergence 
behavior across the six PEMFC cases. The ranking output from the test enables post-hoc analysis (e.g., Nemenyi 
test) to detect specific differences between pairs of algorithms. The Friedman test results with a low p-value 
would demonstrate significant algorithm performance changes and the ranking system would show PO standing 
against other competitors.

Fig. 8. CASE 5 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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The Quade test builds upon the Friedman test by measuring the differences in case or dataset difficulty levels. 
The test shows particular value when performance metrics demonstrate substantial variations between the six 
PEMFC cases. Through the Quade test the study establishes if PO maintains its superior performance across all 
cases while considering different problem complexity levels. Test results containing both rankings and p-values 
will strengthen the evidence that demonstrates PO ability to adapt to different conditions.

The t-test functions as a parametric statistical procedure which enables researchers to evaluate the average 
values between two distinct groups. The t-test can be used for this study results provided that Mean SSE and 
other performance metrics show approximate normal distribution. The paired t-test enables performance 
evaluation of PO against each competing algorithm across multiple run experiments. The t-test analysis along 
with its t-values and p-values will serve as additional evidence to demonstrate the statistical importance of PO 
improved performance.

The proposed Parrot Optimizer (PO) serves practical purposes in optimizing proton exchange membrane 
fuel cells (PEMFCs) while delivering crucial functionality to sustainable energy systems. PO improves PEMFC 
operational reliability and efficiency for the progression of clean energy technologies in stationary applications 
and portable power systems and electric vehicle fields. The optimization of fuel cell parameters through 
dynamic conditions allows the algorithm to enhance both performance and operational life thus enabling its 
application in industrial backup power systems and remote power generation and combined heat and power 
(CHP) applications. The combination of PEMFCs and renewable energy systems including solar and wind 
power needs effective optimization methods for seamless energy management because PO implementations 
improve the operational efficiency of hybrid renewable energy systems. PEMFC control becomes possible in 
real-time through its efficient computational capabilities that benefit electric vehicle and drone systems and 
other applications needing dynamic operational adjustments. PO functions as an optimization benchmark in 
research development to create new PEMFC designs while speeding up experimental testing procedures.

The use of PO in complex energy systems encounters implementation barriers as part of its deployment 
process. The application of PO to extensive fuel cell arrays and hybrid systems faces scalability issues because 
researchers need to study the computational requirements for these systems. The research primarily investigates 
PEMFCs yet fails to demonstrate performance with Solid Oxide Fuel Cells (SOFCs) and Direct Methanol Fuel 
Cells (DMFCs) because it lacks exploration of these cell types. The effectiveness of PO needs to be verified 
through real-world experimental testing because PEMFC performance can be affected by various practical factors 
including environmental changes and system deterioration and manufacturing variations. The integration of PO 
with existing fuel cell systems demands modifications to control hardware and software components that might 
lead to compatibility and cost-related issues. PO shows better computational efficiency than other optimization 
algorithms but large-scale application requirements need complete resource evaluation particularly when real-
time optimization with multiple objectives is needed. The algorithm requires additional research to determine 
proper parameter settings including Lévy flight constants and population size because these settings directly 
impact its performance.

The practical utilization of the PO algorithm provides substantial results through its ability to advance PEMFC 
system efficiency alongside reliability and scalability characteristics. Fuel cell parameter optimization through PO 
enables strong operational capabilities in both electric vehicle and industrial power uses. The algorithm achieves 
both energy loss reduction and operational stability improvements which support worldwide sustainable energy 
transition initiatives. The technology capacity to optimize PEMFCs in real time enables immediate performance 
controllership during dynamic situations where system performance needs maintenance and fuel cell duration 
needs extension. The Parrot Optimizer stands as a major breakthrough in PEMFC optimization because it 
provides extensive energy system applications. Future improvements will come from implementing solutions to 
implementation barriers while scaling up the system and testing its compatibility with different fuel cells. Future 
research needs to validate PO through experiments while integrating it with current technologies and develop 
optimization guidelines to maximize its potential for PEMFC technology advancement.

Algorithm PSO DE WOA ROA FHO AOA SCA MVO BA PO

ξ1 − 0.99852 − 1.16337 − 0.8532 − 1.05312 − 1.0607 − 1.14097 − 0.92833 − 1.06531 − 1.10293 − 0.86344

ξ2 0.002573 0.002951 0.002063 0.003216 0.002942 0.003056 0.002843 0.0032 0.002651 0.001914

ξ3 5.48E−05 4.72E−05 4.93E−05 8.94E−05 6.83E−05 5.94E−05 8.92E−05 8.57E−05 3.82E−05 3.65E−05

ξ4 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00017 − 0.00018 − 0.00017

λ 14 14 14 14 14.00001 15.90356 14 14.00036 14 14

Rc 0.0008 0.0008 0.0008 0.000799 0.0008 0.0008 0.0008 0.0008 0.000421 0.0008

B 0.016912 0.017314 0.017317 0.017211 0.017322 0.017493 0.01731 0.017287 0.015106 0.017317

Min 0.284619 0.283774 0.283774 0.283864 0.283774 0.288423 0.283807 0.283779 0.337645 0.283774

Max 0.344437 0.287801 0.297691 0.324159 0.283836 0.330287 0.283913 0.283806 0.353931 0.283774

Mean 0.304319 0.285126 0.294908 0.296998 0.283795 0.319987 0.283854 0.28379 0.346696 0.283774

Std 0.026932 0.001742 0.006224 0.018609 2.77E−05 0.017708 4.55E−05 1.11E−05 0.006794 8.33E−17

RT 2.767369 3.062332 2.422776 2.678952 5.444111 3.226603 3.422277 3.979858 5.674676 0.117132

FR 7.6 4.6 6.4 6.2 3.2 8.6 4.4 3.2 9.8 1

Table 9. Optimized parameters and optimal function value for CASE 6.
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The future of fuel cell-based hybrid electric vehicles (FCHEVs) lies in advancements in fuel cell technology, 
energy management, infrastructure, and AI-driven optimization. Enhancing the efficiency and durability 
of polymer electrolyte membrane fuel cells (PEMFCs) through predictive modeling and machine learning 
algorithms can significantly improve performance and longevity64,65. Optimizing energy management strategies, 
such as improved hierarchical model predictive control (HMPC), will help co-optimize fuel consumption 
and eco-driving while minimizing degradation66. Additionally, widespread adoption requires infrastructure 
development, including government incentives and investments in hydrogen refueling stations67. Machine 

Fig. 9. CASE 6 (a) V–I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.

 

Scientific Reports |        (2025) 15:11625 24| https://doi.org/10.1038/s41598-025-94730-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


learning and artificial intelligence applications can further revolutionize FCHEVs by predicting degradation 
patterns and enabling real-time control adjustments65. Continued interdisciplinary research in these areas will 
be crucial for achieving sustainable and efficient transportation.

Conclusion
The research provides an extensive analysis of the Parrot Optimizer (PO) which optimizes proton exchange 
membrane fuel cell (PEMFC) design variables through comparison with nine state-of-the-art algorithms 
such as PSO, DE, WOA, ROA, FHO, AOA, SCA, MVO, and BA. PO delivers superior performance than other 
algorithms according to four key evaluation criteria which include precision and speed of convergence as well 
as computational performance and operational stability. The Mean Sum of Squared Error (SSE) measurements 
obtained by PO stayed the lowest throughout all six PEMFC tests while maintaining very small standard 
deviation values that showcase excellent stability and repeatability. During the first 50 iterations the algorithm 
achieved quick convergence which surpassed traditional methods PSO and DE because they displayed delayed 
and oscillating convergence patterns. The precision of PO was confirmed through error analysis which showed 
minimal absolute and relative error percentages at different current levels indicating its ability to emulate 
experimental PEMFC operations. The computational efficiency of PO proved superior because it achieved the 
fastest runtime (RT) in all cases which enables it to perform well in real-time optimization tasks and large-scale 
industrial applications. The fitness value distributions of PO exhibited tight clusters and no outliers in reliability 
analyses through boxplot assessments while PSO and BA displayed more variable data points. The analysis 
positions PO as an exemplary benchmark for PEMFC parameter estimation because it shows exceptional 
accuracy combined with stability together with computational efficiency. The forthcoming research agenda 
includes two main goals: first evaluating the use of PO for SOFC optimization and second developing methods 
to apply it at higher complexity optimization tasks. The research will investigate optimizations run in real-time 
along with algorithm hybridization schemes to improve the practical application of PO in energy systems. PO 
emerges as a powerful optimization method which enables sustainable energy system development through its 
ability to address various optimization challenges in PEMFC technology.

The research examines multiple constraints which help define the Parrot Optimizer (PO) effectiveness when 
optimizing proton exchange membrane fuel cells (PEMFCs). The six PEMFC cases show that PO achieves 
better accuracy and faster convergence and higher computational efficiency yet some aspects need additional 
investigation to extend its general use. The main drawback of this approach exists in its ability to scale up for 
higher-dimensional system applications. The study demonstrates PO effectiveness with preselected design 
variables yet fails to evaluate its performance for optimizing bigger PEMFC stacks or advanced fuel cell systems 
like Solid Oxide Fuel Cells (SOFCs). The evaluation of PO needs to expand to check its ability as a numerical tool 
for optimizing large-scale and high-dimensional energy systems in actual use scenarios.

The findings from this study may not be applicable to optimization of different fuel cell technologies beyond 
PEMFCs. The study exclusively examines PEMFCs so there remains uncertainty regarding the application of 
PO to electrochemical systems with different operational characteristics such as SOFCs and Direct Methanol 
Fuel Cells (DMFCs). Research conducted with various fuel cell types would show whether the optimization tool 
can work for all fuel cells. The study lacks an extensive optimization process because it uses default parameter 
settings without performing parameter sensitivity and tuning. A thorough investigation of PO parameter 
sensitivity needs execution to both boost its suitability across different situations and improve its reliability since 
metaheuristic methods demand specific parameter adjustments for peak results.

Future research of the Parrot Optimizer (PO) should prioritize its implementation in real-time PEMFC 
system optimization to examine its industrial capabilities and dynamic performance assessment. Real-world 
PO implementation will demonstrate its capability to execute quick decisions and adaptions through testing in 
systems which need continuous optimization. The combination of PO with machine learning and deep learning 
techniques should be investigated because this approach would strongly improve its ability to solve challenging 
problems with many dimensions. The incorporation of data-driven methods would improve both adaptability 
and predictive features so applications of this method become more successful.

The scalability of PO requires future research because it effectively optimizes PEMFCs while its performance 
in larger energy systems such as SOFCs and hybrid systems remains unexplored. Research on scalability will 
show how PO functions with diverse energy technologies while establishing its practicality for utilization in 
power grid systems. Research should focus on using PO for multi-objective optimization to find solutions when 
accuracy and computational speed and resource efficiency need balancing. A comprehensive multi-objective 
optimization framework development will boost the practical use of PO methods in engineering problem 
solutions.

Data availability
The data presented in this study are available through email upon request to the corresponding author.
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