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Rapid advancements in healthcare technologies necessitate efficient and secure remote patient 
monitoring systems. This research develops an intelligent system that combines ANN technology 
and 5G infrastructure with MCDM methods based on Choquet Integral Fuzzy VIKOR to improve 
medical data acquisition processes. Physical Layer Security (PLS) is a main emphasis point since it 
protects transmitted healthcare data from eavesdroppers and cyber intruders. The proposed model 
implements Reinforcement Learning with Hyper-parameter tuning and Lasso regression to obtain a 
97.25% accuracy level, which exceeds Physical-Layer Authentication with Superimposed Independent 
authentication Tags PLA-SIT (97%), Flexible Physical Layer Authentication FPLA (96.8%) and Privacy-
Embedded Lightweight and Efficient Automated PLA (95.3%). The proposed model surpasses both 
CNN-based mechanisms by 94.7%, Shamir’s Secret Sharing Algorithm by 90.7%, and the Blowfish 
Algorithm by 82.3%. The enhanced quality of service alongside reliability produces the model as a 
dependable solution for MIoT applications that will exist in the next generation.
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Securing and enabling efficient remote patient monitoring during the 5G era will be an emphasis challenge given 
the sensitivity of medical information and the constantly changing conditions within health administration. 
A comprehensive framework combining 5G, LiteNet, AI, and Choquet Integral Fuzzy VIKOR is presented 
in this paper to offer secured adaptivity and resource conservation in remote healthcare monitoring. A two-
fold authentication mechanism based on user credentials and biometrics is imposed to safeguard the patient’s 
data. In contrast, the security of the Physical Layer strengthens the transmission channel from unauthorized 
access. Improvements in the transfer of bits are made by applying Reinforcement Learning technology that 
optimizes the moving nature of health information. Multiple evaluations, such as performance benchmarks and 
security audits, validated the viability of our system for secure, adaptive, and efficient remote patient monitoring. 
Its suitability for next-generation healthcare solutions is evident in the results. Hoque et al. (2024) critically 
review the technological trends in 5G networks for IoT-enabled smart healthcare. The paper demonstrates 
technological developments and their potential advantages by presenting important information to enhance 
healthcare delivery with novel technology applications. The research delivers vital information that stakeholders 
need to use 5G technology effectively for patient care improvement and healthcare efficiency enhancement1.

The research from Rahman et al. (2024) investigates how IoMT and blockchain technology operate within 
an SDN framework for remote patient monitoring in a 5G network. The presented investigation explores how 
smart health systems can achieve extraordinary security measures, efficiency, and patient-focused care. New 
remote healthcare solutions and advanced technological advancements require this essential research to improve 
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patient health outcomes2. Srivastava et al. (2024) present an analysis of applying Artificial Intelligence of Medical 
Things (AIoMT) technology in remote patient care delivery. Research findings demonstrate that AIoMT creates 
opportunities to expand health service reach while improving system speed and generating superior patient 
treatment results during remote care delivery. The research is a fundamental requirement for developing AI 
healthcare technologies through its dual responsibilities for securing and protecting remote medical services3. 
Bala et al. (2024) evaluate the security and privacy solutions to healthcare systems while addressing the role 
of artificial intelligence systems. The study predicts AI applications while demonstrating how these healthcare 
trends will enhance hospital security mechanisms.

The research establishes critical knowledge about AI integration in healthcare through comprehensive 
investigation of complex integration problems, which guides stakeholders with valuable information4. Pandey 
et al. (2024) examined the healthcare management models that implement cloud computing combined with 5G 
technology. The research demonstrates how advanced technologies enhance healthcare services, productivity 
measures, and treatment results for patients. The research holds value for creating future healthcare solutions 
that maximize the advantages of cloud and 5G technology5. The research by Mantri et al. (2024) explains how 
6G technology will transform telemedicine through improved security systems. Research demonstrates that 
healthcare delivery will experience fundamental transformation through 6G, which provides safe and efficient 
high-speed connectivity for distant patient treatment. Research investigations are fundamental for improving 
telemedicine procedures while developing robust security protocols in upcoming healthcare networks6. The 
research by Singh et al. (2024) provides an extensive interpretation of the legal aspects of implementing IoT and 
5G systems in health monitoring solutions. The authors demonstrate that these healthcare innovations create 
future obstacles and legal issues during their research. The research provides vital information to policymakers 
and industry stakeholders who must understand the legal aspects of health monitoring system development 
through advanced technology applications7. Patil et al. (2024) investigate how security is affected when 5G enters 
the operational framework of present-day healthcare management systems. The study outlines security risks 
with recommended safety measures to provide both efficient and safe healthcare services in the 5G technological 
framework. To develop robust security frameworks and reliable health management systems, the present work 
establishes its essential nature8.

The main research contributions are.

• The system ensures the capability of instant medical data analysis, which allows quick decision-making pro-
cedures to improve healthcare performance.

• Through this framework, medical data remains intact and confidential when being transmitted.
• Dynamic optimization and data transmission operation modification are achieved by implementing Deep 

Reinforcement Learning techniques.

Research by Ravi et al. (2024) investigates how beyond 5G technology allows hospitals to merge connectivity 
with intelligence in their facilities. The study observes advancements in 6G and describes how these technologies 
boost medical facility management and treatment delivery. Researching future smart healthcare systems and 
advanced connectivity roles in delivering better healthcare remains essential9. Humayun et al. (2024) present 
Smart, Secure, and Energy-efficient Health Care Edge Technology (SSEHCET) as an integrated AI and mobile 
edge computing solution to boost eHealth security and efficiency. The research demonstrates that these 
technologies provide enormous power to upgrade healthcare management capabilities. Cognitive health 
development depends on this research to create cutting-edge eHealth solutions with secure operations and 
reliable functionality10.

The project combines established and modern technologies to develop a framework that will reshape current 
remote outpatient monitoring practices by offering precise real-time assessment of relevant patient health metrics. 
LiteNet functions as the fundamental system architecture that makes use of a highly efficient Convolutional 
Neural Network design to deliver real-time data analysis. This is complemented by a 5G network offering fast and 
efficient data transfer. To utilize the data transmission resource efficiently, they implement deep reinforcement 
learning that deals diligently with the characteristics of non-stationary healthcare data. Furthermore, in this 
system, the Medical Internet of Things (MIoT) enables obtaining real-time medical data, and a reliable two-
factor intelligent identification system based on biometrics markers and user identifiers guarantees high medical 
information protection and personal confidentiality. Also, Physical Layer Security is incorporated to protect data 
delivery from interception and interference by unauthorized parties. For the complex multiple criteria decision-
making, the system applies Choquet Integral Fuzzy VIKOR, which increases the performance of data analysis. 
Most importantly, the proposed model achieves an accuracy of 97.25%, outperforming similar models and 
improving data privacy, reliability and healthcare resources. Through the implementation of these progressive 
technologies, this study establishes the basis for complex, secure and dependable remote healthcare solutions 
that are expected to revolutionize patient tracking with demonstrative positive health results.

Regarding claims like ‘’guarantees quick and low-latency connectivity’’ and ‘’ensures safe, flexible and effective, 
remote healthcare monitoring,’’ the evidence and results captured in Figs. 6, 7, 8, 9 and 10; Tables 8, 9, 10, 11, 12 
and 13 give complete responses. These figures and tables present the Key Performance Indicators (KPIs), which 
show the superiority of incorporating LiteNet, 5G, deep reinforcement learning, and MIoT in Remote Patient 
Monitoring (RPM). Concerning the proposed system, the results of the obtained data in terms of the speed of 
the connectivity, latency, reliability, and accuracy of the health monitoring call for the effectiveness and safety of 
the proposed system.
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Novel challenges and opportunities
The proposed system integrates LiteNet, 5G network, deep reinforcement learning, MIoT, and Choquet Integral 
Fuzzy VIKOR; it is a complete solution for operating medical data in real-time and remote patient monitoring. 
LiteNet, together with 5G, guarantees low latency and high bandwidth data transmission, which is very important 
in matters concerning timely medical treatment. Two-factor authentication, along with the high reliability of 
Physical Layer Security, is reliable in protecting medical data. With Choquet Integral Fuzzy VIKOR, valuable 
decisions are made in comprehensiveness in the healthcare field while preserving individuality.

Key technologies for ensuring security in remote patient monitoring systems
The technologies play a vital role in exchanging data without security flaws. 5G traffic allows real-time monitoring 
of patient health indicators, facilitating quick data transmission and enhancing remote medical care. With its 
low latency, the critical delivery of information is ensured, allowing for more rapid transmission in emergencies 
and promoting the speed of response. Physical layer authentication at remote patient monitoring takes a step 
further by verifying the authenticity of device identities on the network right down to its initial layer. This 
approach makes data accurate and safeguards the integrity and confidentiality of sensitive patient information, 
thereby increasing protection against unauthorized access to confidential patient information. Twine LiteNet is 
a good integration with the event of networks, which provides the lightest solution for communicating within 
a network. Aside from the streamlined architecture, where resource productivity is maximum, and network 
performance and reliability levels are enhanced, artificial intelligence also backs it. Reinforcement learning 
in patient monitoring helps modify algorithms for correct decision-making based on the patient’s conditions 
developing over time. It increases the predictive power of models for early diagnostics of Health problems 
through data analysis of patterns. Another fuzzy system is the optimal relay base station in communication for 
a better predictive hyperlink. This measure of Shannon entropy in medical health data permits ascertaining the 
complexity of physiological signals and patients’ medical records. It facilitates the evaluation of information 
content and can help recognize deviations or patterns of great importance during diagnosis or therapy decision-
making processes.

Synergistic integration of LiteNet, 5G, deep reinforcement learning, and MIoT

LiteNet, 5G, and MIoT integration in the proposed model guarantees optimal performance of remote 
patient monitoring. It was chosen for its lightweight design, which makes it possible to implement it 
on limited resources and power-effective and reliable gadgets. For the latency and bandwidth problems, 
this 5G network is integrated with solutions for real-time data transfer, which is important in healthcare 
data. MIoT offers a solid foundation by which different medical devices can be connected, leading to a 
convenient solution to collect and share vital data across multiple branches. Deep Reinforcement Learning 
(DRL) is selected because of its learning capacity in a dynamic environment with theoretical guarantees 
of convergence and adaptability. DRL has proven effective in healthcare systems by enhancing decision-
making and tailoring responses to patient needs. Research indicates that DRL improves both patient care 
and the system’s overall performance by optimizing data processing and resource allocation across the 
healthcare setup. This integration, as a whole, improves the extent of disclosure, sizing, and dependability 
of the system.

 Contributions to the future of secure and efficient remote patient monitoring
The proposed model is a fusion of LiteNet, 5G, deep reinforcement learning, MIoT, and Choquet Integral Fuzzy 
VIKOR to transform the RPM field. LiteNet guarantees efficient processing for the overall consumption of low-
power devices, which is characteristic of IoT applications; on the other hand, 5G guarantees high-speed, real-
time communication, which is essential in monitoring IoT devices. Reinforcement learning at a deeper level 
augments adaptive decision-making by processing patient data in real-time for timely actions. MIoT enables 
the development of a strong network of interconnected medical products that can support the availability of all 
essential information. The Choquet Integral Fuzzy VIKOR method enhances the quality of decision-making 
processes by integrating diverse and intricate patient data. It has been known that some limitations like latency, 
scalability, and customization have been experienced in remote monitoring; thus, integration has initiated an 
improved approach. Altogether, these technologies provide better patient care and a more patient-oriented 
model of health care provision than traditional systems.

Enhancing PLS security in remote patient monitoring with 5G and AI integration
Many IoT applications, such as Vehicle-to-everything (V2X), Unmanned Aerial Vehicles (UAVs), and e-health, 
require solutions with large ranges, low latency, high dependability, and low energy consumption. Robust security 
mechanisms are essential to 5G’s success. High processing power is frequently needed for traditional approaches, 
which might be a limitation for devices with minimal resources. Because Physical Layer Security (PLS) uses the 
physical channel’s inherent randomness for security, it does not require computationally demanding encryption, 
making it perfect for devices with limited resources for remote health monitoring. Physical Unclonable 
Functions (PUFs) and Secret Key Generation (SKG) can provide devices and communication channels with 
distinct hardware fingerprints to improve security.sub-6 GHz (3.3–4.2 GHz) and millimeter wave (mmWave) 
frequencies more than 24 GHz. 5G makes it possible to provide specialized resources for particular uses, such as 
remote health, guaranteeing dependable and high-priority connectivity. Effective methods, such as orthogonal 
frequency-division multiple access (OFDMA), enhance network adaptability and resource allocation, which are 
essential for handling a variety of applications and guaranteeing the quality of service for transmitting distant 
health data.
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Integrating AI with 5G networks, therefore, makes a remotely monitored patient’s care a safer endeavor and, 
as such, offers the ability to execute an instant response to perceived or known threats. These 5G networks may 
permit ultra-low latency, and even so, AI predictive algorithms determine real-time threats within which AI 
ensures immediate and automated protection measures on a network. The protection of transferred patient 
data can be achieved through AI-based encryption and authentication mechanisms. This 5G and AI technology 
combination creates a framework that enhances RPM system resilience against dynamic cybersecurity threats.

Related work
Secure health data protection is essential for wireless medical sensor networks that provide remote patient care 
and authentication processes. The system utilizes advanced authentication protocols, distinct IDs, and encryption 
to protect data validity from medical sensors while verifying data authenticity11. The research extensively 
analyzes IoT-cloud-based e-health security and privacy elements as its core objective. Security requirements are 
becoming increasingly important because healthcare depends on cloud-based solutions connected with medical 
equipment. The paper investigates the complexity behind how cloud infrastructure upholds e-health systems 
through data defense protocols, encryption standards, and Internet of Things (IoT) access management 
mechanisms12. This work implements attack detection within healthcare monitoring systems through a Virtual 
Private Network VPN-based Optical Transport Layer architecture that enhances protection against cyber 
attacks. The system increases its detection and blocking capabilities for threat attempts targeting healthcare data 
by implementing machine learning methods13. The Secure Monitoring System safeguards sensitive information 
from beginning to end during its digital movement. The system implements powerful encryption methods that 
protect data during transfer and storage. The system allows authorized personnel to see some information while 
preventing other users from accessing it. Machine learning algorithms perform continuous environmental scans 
to detect security threats, which they then swiftly prevent from happening14. Researchers developed this idea as 
a special security protocol adapted to Wireless Healthcare Sensor Networks (WHSNs), which maintains a 
minimal implementation footprint. Three security elements- passwords, fingerprint analysis, and protected 
tokens- work together inside the system to deliver dependable authentication functionality. The methodology 
maintains resource efficiency while providing protection features that strengthen security in WHSNs, thus 
supporting healthcare sensor network operations15. The real-time health data acquisition and analysis process 
occurs through agent-based medical health monitoring systems that employ autonomous software agents. 
Through wearable devices, these monitoring agents operate 24/7 to deliver specific medical information about 
individual health parameters and vital signs. Combining user notification procedures with urgency management 
features helps the system provide an easy platform for proactive healthcare16. The data transfer method uses 
encryption and security protocols to provide safe cloud transmission of IoMT information. Healthcare providers 
receive essential clinical data through machine learning keystroke protection, enabling patients to guarantee the 
privacy of their treatment information. Healthcare will proceed toward a safe, data-centric future17. Integrating 
IoT devices and 5G networks enables smart healthcare initiatives, constituting a dominant technological 
movement. The detailed examination shows that healthcare will transform with 5G technology through fast, 
secure networking, which unites medical devices and achieves precise remote care monitoring18. As a solution 
for Constrained Application Protocol CoAP-based IoT network security threats, Nathi et al. presented a slim 
authentication method with key agreement mechanisms. Elliptic curve public key cryptography and shared 
secrets function within this protocol to create secure communication, which does not reduce anonymity or 
performance19.Researchers developed this idea as a special security protocol adapted to Wireless Healthcare 
Sensor Networks (WHSNs), which maintains a minimal implementation footprint. Three security elements- 
passwords, fingerprint analysis, and protected tokens- work together inside the system to deliver dependable 
authentication functionality. The methodology maintains resource efficiency while providing protection features 
that strengthen security in WHSNs, thus supporting healthcare sensor network operations15. The real-time 
health data acquisition and analysis process occurs through agent-based medical health monitoring systems that 
employ autonomous software agents. Through wearable devices, these monitoring agents operate 24/7 to deliver 
specific medical information about individual health parameters and vital signs. Combining user notification 
procedures with urgency management features helps the system serve as an easy platform for proactive 
healthcare16. The data transfer method uses encryption and security protocols to provide safe cloud transmission 
of IoMT information. Healthcare providers receive essential clinical data through machine learning keystroke 
protection, enabling patients to guarantee the privacy of their treatment information. Healthcare will proceed 
toward a safe, data-centric future17. Integrating IoT devices and 5G networks enables smart healthcare initiatives, 
constituting a dominant technological movement. The detailed examination shows that healthcare will transform 
with 5G technology through fast, secure networking, which unites medical devices and achieves precise remote 
care monitoring18. As a solution for CoAP-based IoT network security threats, Nathi et al. presented a slim 
authentication method with key agreement mechanisms. Elliptic curve public key cryptography and shared 
secrets function within this protocol to create secure communication, which does not reduce anonymity or 
performance19.In their approach to managing security issues of IoT-enabled cloud computing environments, 
Liu et al. developed a lightweight authentication protocol that combines fuzzy extractors with physically 
unclonable functions (PUFs). The method authorizes users through decentralized biometric measures while 
avoiding cloud server infrastructure information breaches20. The researchers An et al. developed a pragmatic, 
lightweight authentication protocol that used Bit-Self-Test Physical Unclonable Functions (BST-PUFs). Through 
the exploitation of BST-PUF security characteristics, the protocol enables users to establish secure sessions while 
maintaining their identity and privacy. The system demonstrates effective performance and scalability, which 
allows it to be used in resource-limited IoT devices21. Sen et al. presented a established secure authentication 
method for wireless body area networks (WBANs) that uses PUFs with lightweight security features. Through 
PUFs, the scheme provides original challenge-response authentication pairs that create secure and resistant 
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systems against numerous attacks. The security platform demonstrates both efficiency and lightness, which 
makes it appropriate for resource-limited WBAN devices22. Sen et al. established a new server-less mutual 
authentication protocol that functions within edge networks. Security Utilities (SECUtils) establishes secure 
autonomous device connections through public-key crypto, challenge-response, and time stamp technologies 
instead of external servers. The authentication system in edge networks has become more private, secure, and 
scalable through these improvements23. Nyangaresi et al. introduced an adaptable cryptographic key system to 
secure data transmission as they tackled the security and power consumption problems of smart residences. 
High security and high energy efficiency result from the protocol’s combination of lightweight cryptographic 
primitives and dynamic key management schemes. This system enables authentication between parties, provides 
confidentiality and integrity, and prevents denial of action24. The authors presented a lightweight authentication 
process and a privacy protection strategy for the Message Queuing Telemetry Transport (MQTT) messaging 
protocol widely used in IoT systems. The scheme implements Ciphertext-Policy Attribute-Based Encryption 
(CP-ABE) and present lightweight symmetric encryption for private, secure message transmission between IoT 
devices and MQTT servers25. The work of Sen et al. brings forward an adaptive Zero-Knowledge Authentication 
Protocol (ZKAP) that uses adjustable security parameters based on risk assessment levels. Through its challenge-
response system and fuzzy extractors, the protocol creates mutual authentication, builds session keys, and 
protects user identities and secret parameters26. A complete explanation of essential Internet of Things (IoT) 
agreement and authentication methods exists within this survey despite IoT devices’ restricted security 
capabilities and resource availability. The survey investigates different protocols through security analyses and 
performance evaluations to determine appropriate usage for IoT applications27. The examination by Marhoon et 
al. (2024) presents an innovative network framework in the virtual world for conducting virtual consultations 
with remote patient monitoring through IoT devices. The system implements Internet of Things (IoT) devices to 
collect data by using Advanced Encryption Standard AES-256 encryption for secure patient data communication28. 
Safety issues in remote patient monitoring receive attention through Cheikhrouhou et al.‘s system, which utilizes 
fog computing and lightweight blockchain technology. The method supports secure data protection and quick 
response durations, making it appropriate for IoT devices with limited resources29. The paper published in 
Computers and Electrical Engineering explains remote patient monitoring limitations of battery life and then 
offers a solution. The system depends on IoT sensors that minimize energy consumption during data retrieval 
while achieving accurate patient healthcare observation30. Chen et al. propose a secure key agreement protocol 
specifically designed for remote patient monitoring through the Internet of Medical Things (IoMT). This 
protocol prioritizes established security to ensure patient data remains confidential during communication31. 
Imon Chakraborty, Sisira Edirippulige, and P. Vigneswara Ilavarasan published a systematic review in the 
International Journal of Medical Informatics examining the evolving role of telehealth startups in healthcare 
delivery. Their analysis explores these startups’ impact, challenges, and business models, emphasizing the 
potential for sustainable innovation in this growing field32.Butt et al. (2024) published a comprehensive analysis 
of Engineering Applications of Artificial Intelligence. They categorize various remote mobile health monitoring 
frameworks and mobile applications. Their work identifies ongoing challenges, explores the motivations behind 
this technology, and offers valuable recommendations for future development33.A recent study by Komal et al. 
(2024) investigated remote seizure detection devices for epilepsy. Published in Epilepsy Research, their systematic 
review analyzes the existing literature on these devices. Their findings explore the advantages and limitations of 
current technology, highlighting the need for improved user comfort and affordability to promote wider 
adoption34. The analysis of related works and their significance is depicted in Table 1.

Critical flaws in the research work
The presented research offers a generous set of security and authentication protocols for IoT healthcare. Still, 
one needs help finding a profound analysis of the protocols and comparing the presented protocols to others. 
Unfortunately, the research does not provide a clear procedure for evaluating the effectiveness and applicability 
of the protocols in managing various contexts in the health field. Furthermore, the work must consider the 
barriers and feasibility of utilizing these protocols in a real-world healthcare environment, such as computational 
complexity, energy cost, and user satisfaction. Similarly, the study does not address ethical aspects such as 
consent, privacy, and ownership of the collected and analyzed healthcare data.

Significant advancement over the existing research work
MIoT handling in the past year has centered on ultra-low latency and high speed of 5G in MIoT frameworks. 
This advancement means that new ways of constant monitoring and near-instantaneous processes of the 
gathered data are possible, thus enhancing the effectiveness and accuracy of remote healthcare systems. For 
example, new methods of network slicing allow dedicated portions of the communications infrastructure that 
are optimized for healthcare applications and provide unrestrained network resources in periods when the 
healthcare applications are usually most congested. One key emerging aspect has been the focused design of 
low-power neural networks for MIoT-restricted devices. Such neural networks are designed to consume as little 
power and time as possible, thereby permitting the analysis of health data on the devices. This cuts down on the 
frequency of data transfer to cloud servers, making the data more secure and with fewer delays.

Another advantage has been yielded from incorporating sophisticated MIoT systems, including AI forecast 
analytics, to enable early detection of health complications. These systems learn and adapt from the gathered 
data, making it possible to predict when a patient’s health status is likely to worsen and prevent this from getting 
out of hand. Even better, they enhance the quality of patient care while simultaneously relieving the pressure 
of working with patients on healthcare providers. Concerning the security aspect, the emergence of efficient 
encryption and secure key management procedures was initiated and supplemented to fit the 5G-MIoT context. 
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Measures such as homomorphic encryption and blockchain secure data sharing have been used in managing 
patients’ health information to keep them secure and the integrity of the data intact.

New low-energy-consuming communication paradigms have been proposed to reduce energy consumption 
and thus prolong the life of the batteries in MIoT devices. These protocols reduce wireless vitality emissions by 
incorporating superior vivid power procedures and data forecast frequency of emission, which is very important 
in long-term patient monitoring. Another great step has been the integration of edge computing with MIoT 
systems. Using edge computing for data processing reduces the reliance on centralized clouds, lowers latencies, 
and improves the response time for healthcare monitoring applications.

Our research work differs from the existing research work
Prior studies have explored different architectures regarding neural networks; however, the choice of LiteNet, 
a lightweight CNN, is especially suitable for establishing a rapid connection. This makes your framework even 
more useful for real-time data exchange in healthcare organizations when combined with 5G, giving a perfect 
interface between patients and physicians.

The work is complex data management, using deep reinforcement learning for data transmission optimization 
and adaptation. This is important in the health care setting since the data loads may vary from time to time; thus, 
there is a need to optimize the use of the available resources to enable the system to provide data transfer speeds 
while at the same time maintaining quality data transfer.

The research presents a two-factor authentication where user biometric features and idiosyncratic features 
are incorporated, and this model is only sometimes used in similar works. This, coupled with the robust PLS 
protocols, means that the system is less likely to be vulnerable to hacking and other break-ins, especially during 
data transmission.

Implementing Choquet Integral Fuzzy VIKOR to handle multiple criteria has enriched our work. In decision-
making, more options are structurally incorporated. They can accommodate multiple criteria, which are essential 
prerequisites in the case of healthcare, where often the healthcare decisions involve trade-offs between multiple 
criteria while staying unique and compelling.

Where many current solutions are implemented concerning security at the Network and Device layers, the 
work’s focus on Physical Layer Security (PLS) is novel and necessary. This way, the research improves the general 
reliability of the communication against eavesdropping and data fiddling at the physical layer of transmitting 
information, making it a more holistic approach to the problem of security.

Methods and materials
Some of the requirements that the implementation of reinforcement learning in the healthcare industry requires 
are: Depending on the chosen problem, the identification of a specific healthcare problem, understanding of 
the specifics of the problem domain, acquisition and preprocessing of relevant health data, identification of 
the general structure of reinforcement learning including the states, actions, rewards, and transition dynamics, 
choosing an appropriate algorithm (for example, Q-Learning or Deep Q-Networks), coding of the algorithm.

This study uses a Choquet Integral Fuzzy VIKOR to determine which base station provides the best coverage 
for an efficient communication relay. This hesitant fuzzy contributes significantly to the optimal selection.

The proposed algorithm considers fuzzy variables such as high, medium, and low. The member of fuzzy is 
defined as below,

Ref Title Methodology Outcomes
35 Stochastic analysis of fog computing and machine learning for scalable low-latency healthcare monitoring Stochastic Analysis Reduced Latency

36 Mobile-fog‐cloud assisted deep reinforcement learning and blockchain-enabled IoMT system for 
healthcare workflows.

Deep Reinforcement Learning, 
Blockchain

Enhanced Security and 
Privacy

37 Modified artificial bee colony-based feature optimized federated learning for heart disease diagnosis in 
healthcare.

Modified Artificial Bee Colony, 
Federated Learning Heart disease diagnosis

38 HealthEdge: a machine learning-based smart healthcare framework for the prediction of type 2 diabetes in 
an integrated IoT, edge, and cloud computing system Machine Learning Type 2 diabetes prediction

39 Asynchronous federated learning for improved cardiovascular disease prediction using artificial 
intelligence

Asynchronous Federated 
Learning, Artificial Intelligence

Cardiovascular disease 
prediction

40 Integrating IoT and Machine Learning for Real-Time Patient Health Monitoring with Sensor Networks IoT, Machine Learning Real-time patient health 
monitoring

41 Fog-cloud architecture-driven Internet of Medical Things framework for healthcare monitoring Fog-cloud architecture Healthcare monitoring

42 Adaptive multi-cost routing protocol to enhance lifetime for wireless body area network Adaptive multi-cost routing 
protocol

Enhanced lifetime for 
wireless body area network

43 Anomaly detection in IoT-based healthcare: machine learning for enhanced security Machine Learning Enhanced security in IoT-
based healthcare

44 Healthcare 5.0: From the perspective of consumer internet-of-things-based fog/cloud computing Integration of CIoT with Fog/
Cloud Computing Enhanced Data Security

45 Secure and robust machine learning for healthcare: A survey Machine Learning Secure and robust machine 
learning for healthcare

46 From cloud down to things: An overview of machine learning in the internet of things Machine Learning Machine learning in the 
internet of things

Table 1. The Analysis of related work.
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∼
F= {a1, a2, a3, a4 ∈ R}  (1)

Where a1 represents the probable minimum , a4 represents the probable maximum, and a3 represents 
the possible values between a1 and a4. The fuzzy membership function is expressed as follows,

 

δ ∼
F

(n) =





n−a1
a2−a1

, n ∈ [a1, a2]
1, n ∈ [a2, a3]
a4−n
a4−a3

, n ∈ [a3, a4]
0 otherwise

 (2)

The decision-maker offers the fuzzy ratings according to the following criteria,

 FRijk = {FRijk1; FRijk2; FRijk3; FRijk4} (3)

The formula for calculating each criteria weight value is as follows,

 WCjk = {WCjk1; WCjk2; WCjk3; WCjk4} (4)

The aggregate fuzzy value of each criterion is determined as follows,

 WCj = {WCj1; WCj2; WCj3; WCj4} (5)

Where

 
WCj1 = {WCjk1} WCj2 = 1

k

∑
WCjk2  (6)

 WCj1 = {WCjk1} (7)

 
WCj2 = 1

k

∑
WCjk2 (8)

 
WCj3 = 1

k

∑
WCjk3 (9)

 WCj4 = max {WCjk4}  (10)

The aggregate fuzzy rating of each choice is generated using the criterion described below,

 FRij = {FRij1; FRij2; FRij3; FRij4} (11)

Where

 FRij1 = min {FRijk1} (12)

 
FRij2 = 1

k

∑
FRijk2  (13)

 
FRij3 = 1

k

∑
FRijk3  (14)

 FRij4 = max {FRijk4} (15)

Direct normalization is used to decrease the criterion dimensions. The advantageous metric Beneficial Criterion 
(BC) has the highest value divided by the greatest decision matrix value. Temporary, the price metric is expressed 
as the metric with the lowest values divided by the decision matrices’ smallest values, which are defined as 
follows,

 

FR′ ij =




(
FRij1
FR+

ij4
,

FRij2
FR+

ij4
,

FRij3
FR+

ij4
,

FRij4
FR+

ij4

)
, Cj ∈ BC

(
FRij1
FR−

ij1
,

FRij2
FR−

ij1
,

FRij3
FR−

ij1
,

FRij4
FR−

ij1

)
, Cj ∈ CC

 (16)

Where

 
FR+

ij4 = max
i{decision matrix}

, Cj ∈ BC (17)

 
FR−

ij1 = min
i{decision matrix}

, Cj ∈ CC  (18)
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During the defuzzification method, which is explained below, the normalized mean mass of the measures and 
alternatives for each measure is computed,

 
FZij = Deffuz

(
FR′

ij
)

=
(

FR′
ij1 + FR′

ij2 + FR′
ij3 + FR′

ij4

4

)
 (19)

Figure 5 shows the flowchart for the Fuzzy VIKOR method. The VIKOR alternatives index ( Ti), utility ( Gi) and 
regret ( Si) the following functions are stated,

 
Gi =

∑
n
j=1

WC0
j

(
FZ* − FZij

)

FZ* − FZ−
 (20)

 
Si = max

i

(
WC0

j

(
FZ* − FZij

)

FZ* − FZ−

)
 (21)

 
Ti = γ (Gi − G*)

G− − G* + (1 − γ )(Si − S*)
S− − S*

 (22)

Where i = 1, 2, . . . m the negative and positive aspects FZij is defined as FZ− and FZ*, as well as the metric 
weight value (Cj)is referred to as WC0

j , γ  indicates the decision-making coefficient, and (1- γ ) the weight 
value of regret. Additionally,

 G* = miniGi, G− = maxiGi; S* = miniSi , and S* = maxiSi (23)

Here, the Shannon entropy, which is expressed as follows, is used to generate thresholds to provide a better 
solution,

 
Th (Y) = −

∑
n
i=1P (yi) logbP (yi)  (24)

Every objective metric’s threshold is determined using the formula below,

 
Th (LOS) = −

∑
n
i=1P (losi) logbP (losi)  (25)

 
Th (LOAD) = −

∑
n
i=1P (loadi) logbP (loadi)  (26)

 
Th (QOS) = −

∑
n
i=1P (qosi) logbP (qosi)  (27)

The following sets forth the general threshold level for RELAY selection,

 TH (Relay) = Th (LOS) + Th (LOAD) + Th (QOS) (28)

Remote patient monitoring devices provide major benefits in healthcare delivery by enabling constant 
monitoring of patient health indicators without requiring frequent hospital visits. RPM systems must include 
authentication procedures to provide secure access and safeguard patient privacy. This research examines two 
different approaches to authentication implementation in RPM systems: To ensure effective communication 
during coverage, The Choquet Integral Fuzzy VIKOR method ranks and selects the most suitable base station by 
evaluating multiple interdependent criteria and through trial and error, an agent learns how to interact with its 
environment via reinforcement learning (RL).

Experimental setup
The experiment used a dataset that had real health info from people and made-up data. This dataset included 
important health signs like heart rate, oxygen levels, and blood pressure to mimic real-world remote patient 
monitoring situations. This is because, to evaluate system resilience and viability of the distinct architecture and 
models employed, different network conditions like latency, packet loss rates and device constraints like power 
consumption and memory were included to stress the system. The evaluation process examined numerous 
performance metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), computation 
time, R-squared, packet delivery ratio (PDR), encryption latency, and energy consumption per transaction to 
determine system efficiency and reliability. Researchers utilized NS3 for network modeling alongside MATLAB 
to apply the Choquet Integral Fuzzy VIKOR method across diverse scenarios, including 5G networks and device 
energy levels starting from zero. 5 to 2. 0 Joules, and packet sizes between 64 and 1500 bytes. The tested novel 
Physical Layer Authentication (PLA) methods included a key size of 128 bits and 256 bits in testing for both 
encryption effectiveness and power conservation. The scalability issues were reflected, like the workload on 
the system and the responses of different devices used in the experiment. Sensor Network (SN) Practicality 
was maintained through tuning PLA algorithms for low-power devices, thus making networks energy efficient 
without necessarily compromising the data. The Choquet Integral Fuzzy VIKOR method was found relevant in 
approaching the problem of identifying the most eligible relay station and addressing the interdependent and 
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vague nature of the criteria, which is beneficial in addressing scalability issues in a high dynamic RPM context. 
Consequently, these outcomes demonstrate that the proposed system can provide both privacy-preserving and 
reliable, high-performance and easily scalable services expected from actual healthcare applications.

System model
The Architecture of the System model
We examine the transmission dynamics between M devices (Di for i = 1 to m) and an access point (AP) within 
an edge computing-based remote patient monitoring system. Our analysis includes security threats where an 
attacker (Eve) uses identity-forging techniques to spoof legitimate devices that authentication protocols can 
detect. Eve, who could try to pose as a legitimate device. This situation is especially pertinent in public spaces 
with prevalent fixed device installations and APs.

Our work focuses on single-antenna fading channels for narrowband signals carried by single-antenna 
transceivers, as shown in Fig. 1 in a 5G scenario. We set up a baseline communications infrastructure to which 
our suggested method may be compared.

Signal Model: Senders encode and shape messages to reduce mistakes during sending. The person getting 
the message decodes and works with the signals they receive. They then send feedback to the sender to make 
talking back and forth more effective. The sender uses various methods, including coding, modulation, and 
pulse shaping, to encode and modulate the message to reduce mistakes during transmission across random 
channels. We take message symbols to be independently distributed random variables (.i.d.), represented as a 
block of text M symbols (indicated F ̃={a1,a2,a3,a4∈R}.

by = {b1,…,bM}). Through the use of packet processing and the encoding functions fc (b), the message symbols 
are converted into a message signal denoted by fe (b). The sent signal, represented as x={x1,…, xL}, only contains 
messages if the sender’s only task is transmission.

The definition F~={a1,a2,a3,a4∈R} represents the set of message symbols, where a1,a2,a3, and a4  are real 
numbers. This specific choice of defining the message symbols allows for certain mathematical and practical 
benefits in the context of communication systems.

Representing message symbols as real numbers R allows straightforward mathematical operations and 
analysis. It simplifies the process of encoding and decoding messages. Many signal-processing techniques and 
algorithms are designed to work with real numbers. This compatibility makes the implementation more efficient 
and less prone to errors. Using real numbers allows for a wide range of values, providing more flexibility in 
encoding different data types.

A triangular membership function is often used in fuzzy logic systems and is defined by three parameters: 
the left endpoint, the peak, and the right endpoint. If the message symbols are defined using a triangular 
membership function, the following implications can arise: Complexity in Encoding and Decoding, Fuzzy Logic 
Interpretations, Error Handling, and Signal Representation.

Fig. 1. Overall, remote patient monitoring.
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In the following study, we contrast the tagged signal with the reference signal, highlighting its significance 
in situations like remote patients. With the help of edge computing technologies, this model allows for a deeper 
understanding of the communication dynamics critical for applications such as remote patient monitoring, 
where the reliable transmission of healthcare data between devices and access points is necessary for prompt 
and accurate healthcare interventions. We protect the confidentiality and integrity of private patient data by 
responding to security threats like Eve, which improves healthcare delivery efficiency in various contexts.

In Fig.  1, the system uses advanced technologies, such as 5G and edge computing, to support remote 
patient monitoring. 5G offers high-speed, low-latency connectivity for real-time data transmission, while 
edge computing allows an analysis to be made within a few milliseconds close to the data source, minimizing 
latency and bandwidth usage. A strong security center protects patient data with encryption and intrusion 
detection. Collected data is stored in a centralized database, which could help healthcare providers access and 
analyze patient information from anywhere. This system helps healthcare professionals monitor their patients 
constantly, identify potential health risks well in advance, provide timely interventions to alleviate them, and 
thereby enhance patient outcomes as well as access, particularly in geographically disparate locations.

Channel Model: This study assumes that the fading channel is a Rayleigh block fading channel where every 
block of messages experiences a separate fade. To access the channel, please follow the instructions below i The 
block is hi, and Variables with a zero-mean Gaussian distribution with variances are complex. σ 2

h. The receiver 
detects the block.

 yi = hi · xi + wi

Where w = {w1, . . . wL} and uk ∼ N
(
0,σ 2

w
)

 White Gaussian noise is a white form of noise. Signal-to-
noise ratio (SNR) is defined as the ratio between signals and noise 

↼
γ = σ 2

h/; Each block experiences SNR 
with a Rayleigh distribution with a different density for each block.

 
p (γ ) = 1

π
e−γ /γ

When the SNR γ i Falls below a certain threshold, say γ 0, the ith Message blocks become corrupted to the 
extent that they cannot be accepted. In other words, the outage probability is the probability that it will happen 
at some point in the future. There is a probability of an outage occurring. POut is fixed by setting 

↼
γ

 

PGit =
∫ γ 0

0 p (γ ) dγ = 1 − e−γ 0/γ

π = −γ 0

ln(1−Pout )

 Physical layer authentication (PLA)
This information from devices to central servers needs legitimate data to ensure the privacy and integrity of 
patient data. Thus, ensuring the legitimacy of data received within the medical device and forwarded to the 
central server calls for authentication, which makes explicit the identity of the origin of data. Methods commonly 
used are spread-spectrum communications and digital signatures, although they consume much bandwidth. A 
new approach proposed recently integrates authentication directly at the physical layer (PL) and enhances data 
security without additional bandwidth. Authentication information is embedded in a signal sent via specific 
waveforms with spread spectrum modulation and frequency hopping to guarantee that a signal cannot be 
intercepted.LiteNet is a lightweight Convolutional Neural Network in the proposed framework that enables rapid 
and low-latency data processing with good security connectivity between patients and healthcare providers. The 
system utilizes 5G networks to operate with speed and reliability for data transfer. Deep reinforcement learning 
technology achieves optimal resource use for data transmission while performing this function. The combined 
application of PLA enhances system security by lowering latency, resulting in an improved responsive remote 
patient monitoring framework (Fig. 2). The proposed model uses PLS in a two-tier architecture with a depth 
concept in Fig 2.

 PLS in a two-tier architecture in-depth concept
Security measures at the physical layer used within a two-tier remote patient monitoring system can be enhanced 
with cooperative jamming and artificial noise generators. A primary device is the patient data collector, to sends 
data through a gateway or secondary hub. Reputable devices nearby generate cooperating jamming signals, 
which mask potential intruders from the communication channel while maintaining normal communication 
flow. Hub-to-gateway data transmission becomes harder for unauthorized access when fake noise is added to the 
communication pathway. The RPM system strength can be maintained through dynamic adjustments of security 
techniques based on environmental changes and threat risk levels.

Results and discussions
The proposed research presents a new method for IoT node authentication based on a physical layer authentication 
mechanism enabled by Deep Reinforcement Learning (DRL). The authentication method maintains resource 
efficiency in addition to constructive intruder detection throughout regions and secure access authentication 
procedures. Channel state information combined with this authentication technique enables nodes transmitting 
from different global locations to be identified.
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Wireless communication technology uses channel state information (CSI) to evaluate three critical properties, 
including gain or loss measurements, the degree of distribution, and spatial correlation measurements that 
explain how signals propagate. The study examines slow-changing fading channels to explore how Alice, the real 
user, can get reliable feedback about the main channel’s condition. The system preserves message confidentiality 
from Alice even though she observes previous broadcasts, which allows her to determine Eve’s communication 
channels.

The approach distinguishes between real-time channel gain data of the primary channel while analyzing 
statistical CSI information from both channels, particularly when Alice has CSI knowledge beforehand. For IDS 
systems to identify packets, they must perform content-scanning operations to recognize normal and abnormal 
packets. The encryption method LiteNet (CNN type) operates before packet transmission to provide data security 
through confidentiality and integrity protection. The implemented approach brings significant consequences for 
edge computing and healthcare and remote patient monitoring frameworks. This authentication technology 
finds its specific application in 5G authentication processes. The integration of DRL and CSI analysis ensures 
security advancement through contemporary technologies that provide wireless network confidentiality and 
protect the integrity of private medical data.

The wireless communication system’s essential component of channel estimate appears in Fig. 3 for networks 
experiencing changing channel characteristics. Secret keys used for encryption tasks depend on key generation 
processes, while channel estimation remains essential for wireless communication security.

Feature extraction of dataset
Feature extraction is performed based on a nonlinear algorithm known as Soft Actor-Critic (SAC), in which 
the optimal action is determined by the current state and implemented accordingly. As a beginning, a Markov 
decision technique involves the consideration of action in the development process (F), state (G) , and 
reward (K). The SAC feature is denoted as P\∅ (G|F). The SAC Q function is denoted as Qϑ (G, ) F, and the 
state value is expressed as Vτ (F). The parameters of the SAC network are θ ,ϑ ,τ . In this case, we looked 
at two states: Ua and Aa. SAC performs feature development and verification activities according to the 
present condition. The SAC offers incentives such as approval and restriction. The leftover errors are reduced by 
employing a soft value function, which is seen below,

 
FV (τ ) = EG∼d

[1
2Vτ (G) − EF∼P\∅

[
Qϑ (G,F ) − logP\∅ (F|G)

]2
]

 (29)

Where d denotes the existing state distribution and the gradients function evaluations are specified as follows,

 ∇ τ FV (τ ) = ∇ τ Vτ (G) −
(
Vτ (G) − Qϑ (G,F) + logP\∅ (F|G)

)
 (30)

Based on the current feature, SAC takes action and then adjusts the soft Q value to optimize the stochastic 
gradient function, which is expressed as follows,

Fig. 2. Construction of the proposed model.
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 ∇ ϑ FQ (ϑ ) = ∇ ϑ Qϑ (F,G)(Qϑ (G,F) − K (G,F) − β Vτ (+1)) (31)

The feature variable learning method is used to produce the best feature, which is defined as follows,

 FP\ (∅ ) = EG∼d, bt∼m
[
logP\∅ (l∅ (bt; St) |St) − Qθ (St, P\∅ (bt;G))

]
 (32)

Where l∅ (bt; G) We can enforce features by representing the current network’s actions. The Automated feature 
enforcement utilizing the SAC algorithm is depicted in Fig. 4, where the ideal reward is created depending on the 
actions. SAC provides the pseudocode for automated feature enforcement. Received Signal Strength Indicator 
(RSSI) can be calculated as follows

 RSSI (d) [dB] = 10logPr (d) (33)

where Pr (d) =∥ y∥ 2. Its value measures how powerful the signal received is and ∥ y ∥ . As the name 
implies, it is the norm of Frobenius. As can be seen from the computation, RSSI is impacted by both path loss 
and Additive White Gaussian Noise (AWGN), except because noise has a lesser effect on RSSI than path loss.

LiteNet is a lightweight technique with six layers: a convolutional, a LiteModule pooling layers, thick layers 
1 and 2, and a softmax layer. We cipher the aggregate sensory information parallel to decrease the encryption 
process time. The suggested LiteNet model’s convolution layer incorporates a linear filter, which is utilized to 
lower the computation complexity of the convolution during encryption. S-shuffle Box’s and hexadecimal values 
are described in Table 1. The values are employed in the encryption and decryption of the input blocks.

The suggested convolutional layers’ computation is as follows,

 X (n) = Y (n) × H (n) (34)

 

∑ s−1

m=0
X (m) H (n − m) (35)

Where X(n) is the duration of the incoming data packets, H(n) is the kernel selection, and Y(n) is the output 
value. The detected packets of data are encrypted in this layer. The suggested TWINE method converts plaintext 
into ciphertext (encrypted data) using 64 bits by implementing a round function. The ciphertext is generated 
in 36 cycles. Table 2 defines the S-box permutation values. The indices of permutation blocks are defined as 
ρ : {0,1, . . . 15}, and it is mapped to ρ[j] sub-block, which is illustrated in Table 1. The LiteNet with twine 
model is given in Fig. 5.

Then, the lite module includes 1 × 1. The current light module’s convolutional layer and filter size 
are 1 × 2 and 1 × 3. The primary goal of this module is to lower the computational complexity among 
convolutional layers. The light modules are also used to minimize parameter volume efficiency. The 1 × 1 The 
convolution is used to enhance the representation of local & cluster feature maps. The sensing data packets

Are treated as input by the LiteNet. It also has one lite module, two thick layers, and one softmax layer, with 
a total of five units, as stated below,

 

∑
5
i Si = 1  (36)

Fig. 3. Channel estimate key generation.
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Shuffle values of 
block

Hexadecimal 
values of 
S-box

j ρ [j] ρ −1 [j] y S(y)

0 5 1 0 C

1 0 2 1 0

2 1 11 2 F

3 4 6 3 A

4 7 3 4 2

5 12 0 5 B

6 3 9 6 9

7 8 4 7 5

8 13 7 8 8

9 6 10 9 3

10 9 13 A D

11 2 14 B 7

12 15 5 C 1

13 10 8 D E

14 11 15 E 6

15 14 12 F 4

Table 2. Shuffle and S-Box hexadecimal values.

 

Fig. 4. Automatic feature creation based on SAC.
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Where i = 1,2 . . . 5 and Si denotes the probability distribution.

 
Yi =

∑
nXnwni  (37)

Pseudocode 1: Twine-LiteNet

INPUT: DP
OUTPUT: ED
Begin {
Initialize DP
// convolutional layer
for i from 1 to n, do
for j from 1 to n do{
encrypt the data packets DP  using TWINE
Y1

64 ← DP
for i ← 1 to 35 do
Y36

2j+1 ← S(Y36
2j ⊕ Rk

36
j ) ⊕ Y36

2j+1
ED ← Y36  }

// Fully connected layer (Lite module, 2 dense layers and softmax layer)
for i from t to n do
temp = 0
For J from 1 to n, do
temp = temp + wij × X [j]

end for
Yi = temp

end for
end for
end for
end

 

It is used to measure the channel efficiency for data transmission. The channel capacity is affected by 
bandwidth and data rate. It is calculated based on CSI prediction. The formulation of channel capacity is defined 
as follows,

 
cap = B log

(
1 + sp

np

)
 (38)

Where B represents the bandwidth , sp shows the strength of the signal, and np reflects the strength of the 
channel noise.

The model uses a reinforcement learning approach that explores and exploits (γ = 0.95 to optimize long-term 
efficiency) the entire process. The LiteNet architecture is lightweight and convex with a kernel of 3 × 3 and Leaky 

Fig. 5. A LiteNet model using twine.
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ReLU activation. It ensures encryption with low latency and real-time processing on resource-poor IoT devices. 
These choices enhance adaptability, scalability, and energy efficiency, so the performance of the proposed system 
is sturdy enough to be valid for a real-world healthcare application.

Reinforcement learning
In this research, the Proposed model consisting of Reinforcement learning with Hyper-parameter and Lasso 
regression provides 97.23% accuracy for our dataset. Where w represents the weight values of the softmax layer 
and X represents the output of the upper layer. The final calculation of the softmax layer is defined as follows,

 
Si = exp (Yi)∑ 5

j exp (Yj)
 (39)

The output values are then transformed into probability distributions at the softmax layer, commonly used for 
classification tasks.

In Table 3, the Proposed Model outperforms Policy-Based RL and Value-Based RL in terms of all metrics 
(accuracy, precision, recall, and F1-measure). Value-based RL performs better than Policy-Based RL across 
the board, indicating the superiority of using value estimates in decision-making. The Proposed Method 
demonstrates strong performance in decision-making accuracy because its precision, recall and F1-measure 
values are very high. The obtained results may differ based on the selected problem domain and dataset type 
alongside implementation-specific factors.

Leaky ReLU: A modified ReLU function with a non-zero negative slope can solve the dying ReLU problem; 
leaky ReLU allows a slight gradient when the unit is not activated. It is defined as f(x) = x if x > 0, and f(x) = αx 
if x ≤ 0, where α is a small positive constant. The softmax function is used in the output layer of classification 
models to convert raw scores into probabilities. It exponentiates each score and normalizes them to obtain a 
probability distribution over classes in Table 4.

In Table  5, statistical measures and models are foundational to machine learning. They enable data 
understanding, hypothesis testing, prediction, and decision-making. By leveraging statistical principles, machine 
learning achieves impressive capabilities across diverse applications.

Compared to Policy-Based and Value-Based reinforcement learning models, the statistics in Table 5 show the 
efficacy of the proposed system. The proposed model takes a slightly longer time of computation (29.601s) but has 
a higher MSE (-0.125) and lower RMSE (-0.258), indicating that the proposed model is more accurate and precise 
in terms of error variability. The R² value of the model is equal to 0.577, which suggests the moderate accuracy of 
the model and its compatibility with the works of other authors focusing on similar models’ construction, with 
priority given to stability and adaptability at the same time. The analysis results of paired t-tests also showed 
that the system has significantly higher MSE and RMSE accuracy (p < 0.05). Sensitivity analysis supported this 
finding, showing that it performed well regardless of the type of data involved and exhibited stability even in high-
complexity data, consistent with our hypothesis regarding deep reinforcement learning. These findings resonate 
with other findings in the model and suggest the potential of real-time decision-making in patient observation. 
The increase in computational time is minute to require the above advantages of reliability, modularity, and 
strength to make the system perform in complex and dynamic healthcare facilities.

Models Computational time (s) MSE RMSE R2

Policy-Based RL 27.743 0.371 -0.266 0.678

Value-Based RL 23.269 0.119 -0.199 0.614

Proposed 29.601 -0.125 -0.258 0.577

Table 5. Statistical measures and models.

 

Activation function Policy-Based RL % Value-Based RL % Proposed %

Leaky Relu 94.5 97 98

Softmax 92.23 94.56 92.43

Table 4. Activation functions and models.

 

Methods Avg. Accuracy % Avg. Precision % Avg. Recall % Avg. F1-score Measure %

Policy-Based RL 93.5 90 90 90

Value-Based RL 96 91 91.5 93.5

Proposed Model 97.23 96 97.5 97.6

Table 3. Comparison of different models with their metrics.
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In this paper, Yang et al. propose a secure and traceable multikey image retrieval method in cloud-based IoT 
systems and services, which effectively improves security and traceability while ensuring the effectiveness and 
accuracy of image retrieval in IoT cloud systems and services. This advancement is essential for the security and 
enhancement of smart IoT devices52. Similarly, in future work, Miao et al. (2024) consider an efficient and secure 
federated learning scheme to prevent backdoor attacks using adaptive local differential privacy and compressive 
sensing., their research guarantees strong privacy preservation and model performance, eliminating the main 
issues affecting conventional federated learning systems. All these improvements are essential for improving 
the security and reliability of federated learning applications53. Furthermore, Miao et al. (2023) describe a 
time-controllable keyword search scheme with efficient revocation for a mobile e-health cloud to improve the 
privacy and security of data through access permissions management and proper user revocation technique. 
This research responds to critical open problems of existing searchable encryption schemes, which is why it is 
crucial for enhancing the security and functionality of e-health systems54.

In Table 6, balancing training and testing accuracy is crucial in machine learning. While a high training 
accuracy is desirable to ensure that the model captures the training data’s patterns, it’s equally important that 
the testing accuracy is high as well. A significant gap between training and testing accuracy, with the training 
accuracy being much higher, could indicate overfitting.

Monitoring.
Figure 6, within the domain of frame-relative time, emphasizes the packet transfer time between patients’ 

wearable IoT devices to the doctors’ monitoring equipment. A careful analysis of the relevant variables shows 
that the message parameter’s type is one of the most important. Analysis has shown that, in comparison to large 
or complex datasets, simplified data yields faster transmission rates. This emphasizes how important it is to 
prioritize data optimization to increase the efficiency of information sharing within the healthcare monitoring 
infrastructure.

Figure 7 shows the dynamics of message transport concerning relative time in the hex-bin diagram that was 
previously mentioned. Specifically, the darker region in the lower left quadrant indicates that packets less than 65 
are sent more quickly than packets larger than 65. This intelligent analysis, made possible by our model, suggests 
using a packet size of 65 to achieve the highest possible level of data transmission efficiency. By implementing 
this recommended packet size, the system’s overall performance and data transmission speed will be improved.

Figure 8 demonstrates rapid transmission effectiveness by the signals coming from vital sources like ECG, 
EMG, Airflow, and Pulse oximeter using our suggested model. Acknowledging their crucial function in patient 
surveillance, our approach prioritizes and maximizes the data flow from these essential sources. This emphasis 

Fig. 6. Optimized way of data transfer from edge computing to remote patient.

 

Models Policy-Based RL % Value-Based RL % Proposed %

Accuracy for training data 0.901 0.954 0.968

Accuracy for testing data 0.913 0.939 0.965

Table 6. Training and testing accuracy.
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helps create a more effective and efficient healthcare monitoring system by guaranteeing that the crucial ECG, 
EMG, airflow, and pulse oximeter data is sent immediately and reliably.

Table 7, following the recommended packet size limit and data transfer, is the most important thing we do 
when sending data since it may significantly reduce the time it takes for the data to get to the recipient. Data loss 
occurs when a packet is resized after the sender’s original transmission. To overcome this difficulty, a calculated 

Index Frame.time_delta Frame.time_relative

frame.time_delta 1.0 0.97

frame.time_relative 0.97 1.0

Table 7. Data optimization of remote patient reports.

 

Fig. 8. Remote patient reports are transferred in equal intervals.

 

Fig. 7. Patients message transfer over the packet.
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approach was used, in which data was divided into segments according to the input, each of which made up 
the first frame. The time difference (frame time delta) will enable transportation to be within the packet time; 
usually, in frame segmentation, the data will be divided into several packets, increasing transportation efficiency.

Below is a full explanation of how we measured the message passing from MIoT devices to the original frame 
network, which helps to clarify the fine distinctions of our data transmission optimization strategy. The relative 
time depends entirely on the delta time or the time difference between the current frame and the prior frame in 
the packet capture because the relative data and delta time have a strong correlation.

“frame.time_delta”: This parameter indicates how much time has passed from the packet capture’s previous 
and current frames. It is frequently used to analyze the timing of network events and shows the time that passes 
between the two frames. The time difference between the current frame and the beginning of the capture or a 
user-defined reference point is represented by the variable “frame.time_relative,” which functions similarly to 
“frame.time_delta.” Because it offers a relative timestamp, analyzing the time between frames is much simpler.

Table 8, frame lengths between 68 and 100 show a significant trend in data transport. By using our knowledge 
of the assigned packet size restriction, this data concentration inside specific frame durations is crucial in 
reducing the total amount of time needed for smooth data transfer between Internet of Things devices. Our 
method optimizes data transmission efficiency by adhering to the recommended packet size, facilitating a more 
efficient and rapid flow of information between IoT devices.

“frame. Len”: This argument provides the current frame’s bytes-long length. It shows the size of the packet 
that is being sent across the network. It is possible to find trends in the data transmission, probable abnormalities, 
and variances in packet size by analyzing ‘frame. Len’. Contrast the packet that transports more bytes with the 
packet that transfers less.

Figure 9, our present research aims to determine if message transmission and relative time are correlated. 
Although it makes sense that fewer message bytes will result in faster data transmission to the recipient, our 
research reveals an unanticipated but significant component: the TCP port number. With skill, our model 
determines which TCP port has the most data transfer capacity. The significant significance of the TCP source 
port is attributed to its essential function in facilitating efficient data routing and communication within the 

Fig. 9. Remote patient’s message transferred concerning relative time.

 

Range of Frame Length No data transfers

68.303–100.286 70,311

100.286–130.571 79

342.571–372.857 2

1493.429–1523.714 2

1130.0–1160.286 2

1735.714–1766.0 2

1251.143–1281.429 1

Table 8. Remote patients range versus data transfers.
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network. This indirect effect highlights the complex nature of elements influencing message transmission speed 
and substantially contributes to the overall efficiency of the data transfer process.

Table 9, the use of the TCP source port 38197 is linked to a fascinating finding: data transmission is still very 
low, even at frame lengths greater than hundreds. This particular TCP port number shows up as a wise decision 
when sending patient data about their ECG, EMG, and airflow. Our model suggests an optimized data transfer 
strategy by assigning ‘38197’ for these crucial characteristics to improve the effectiveness and dependability of 
transmitting crucial patient monitoring data.

Table  10 shows the most powerful data transmission capacity in our network, TCP port number 1883, 
which is easily reachable and prefers a frequent frame length of 72 while transferring data. When compared to 
other options, this port number shows itself to be a dependable option, offering an average data transfer speed. 
Determining which information has to be transmitted quickly is made easier by the perceptive study of the bar 
graph in Fig. 7 about patient data transfer. Our model suggests explicitly allocating the TCP port number ‘1883’ 
to the temperature, blood pressure, and Glucometer data to deliver vital patient information rapidly. By utilizing 
the port’s strong data transmission capabilities, this strategic allocation seeks to ensure the timely and effective 
delivery of critical health measurements.

Table  11, across our large dataset of almost 40,000 communication events, these particular ports are 
critical conduits that patients and healthcare providers frequently use to communicate effectively. Our next 
urgent task is to carefully investigate whether there have been any possible security lapses on these vital lines of 
communication.

Figure 10: The devices have experienced data transfer throughout time, which have caused data transmission 
delays that are far longer than expected. It is important to acknowledge that the length of time is not the exclusive 
predictor of a prospective data breach. Our advanced model is built to examine many characteristics, one of 
which is the payload length. The analysis requires additional investigation of extra protocols because their 
addition might cause Transmission Control Protocol (TCP) payload lengths to grow longer. One instance of 
Fig. 11 illustrates the periodic assaults causing an attack.

The data in Table  12 evidences notable variations within payload lengths because this statistic enables 
investigation of transfer irregularities. The diverse payload lengths reveal an essential reason for our research 
since such irregularities could indicate security issues or problematic communication paths. Due to its 
significance, network security requires persistent evaluation and interpretation of these differences between the 
control and attack traffic.

Table 13 demonstrates that our research model delivers predictions that extend from payload-based assault 
detection capabilities to identifying hacked port numbers and source and destination IP addresses associated 
with security events. Based on skill level, the model predicts hacked port numbers and reveals the respective 

TCP support TCP support mqtt msg MQTT topic Tcp.time_delta Tcp. payload

38,197 1883 185 ECG 2.000445 30:08:00:03:45:43:47:31:38:35

38,197 1883 167 ECG 1.999459 30:08:00:03:45:43:47:31:36:37

38,197 1883 178 ECG 1.995659 30:08:00:03:45:43:47:31:37:38

38,197 1883 174 ECG 1.032102 30:08:00:03:45:43:47:31:37:34

38,197 1883 61 Blood Pressure 1.054174 30:12:00:0d:42:6c:6f:6f:64:50:72:65:73:73:75:72:65:2d:36:31

Table 11. Analysis of TCP packet traffic for ECG and blood pressure data.

 

Frame.time_relative Frame.len Tcp. support Tcp.time_delta Tcp. len

0.036971 72 1883 0.037479 4

0.000232 72 1883 0.037308 4

2.1e-05 72 1883 0.037483 4

1.8e-05 72 1883 0.037291 4

1.7e-05 72 1883 0.037481 4

Table 10. TCP packet analysis: source Port 1883.

 

Frame.time_relative Frame. Len Tcp. support Tcp.time_delta Tcp. len

0.000018 105 38,197 1.507 37

0.000122 88 38,197 1.054174 20

0.000016 105 38,197 1.566 37

0.000086 78 38,197 1.032102 10

0.00015 78 38,197 1.995659 10

Table 9. TCP packet analysis: source Port 38197.
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Fig. 11. Attack caused while transferring data.

 

Fig. 10. Time taken for data transfer.
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source and destination IP addresses behind such security incidents. This extensive research provides patients 
and healthcare professionals with better network security defense capabilities through proactive threat detection 
and response capabilities. The healthcare network monitoring solution helps defend communications security 
across all system components by revealing which parts of the network experience impact.

Choquet integral fuzzy VIKOR for identifying the best base station
 Figure 12 The proposed Choquet Integral Fuzzy VIKOR method is a very efficient approach within MCDM, 
and its superior capacity to solve problems with criteria interdependence and reasoning vagueness, as well 
as to execute in loosely defined decision environments such as the identification of the best relay station for 
communication packets. However, unlike the reliance on the method that does not recognize interactions 
between the criteria, the Choquet Integral considers interactions between the criteria and how they jointly work. 
Moreover, the fuzzy aspect of the method successfully tackles uncertainty and imprecision of the decision data; 
these characteristics closely mimic reality. This offers a more sophisticated and reliable rank of the relay stations 
to enhance package communication and reduce such challenges as interferences and loss of data, making it quite 
distinct from the conventional and more structured MCDM methods.

In Table 14, relay 5 has the lowest load and the highest QoS, earning it the highest ranking. On the other 
hand, Relay 3 has the highest load and lower QoS, resulting in the lowest ranking. The rankings are determined 
by considering both load and QoS attributes, with higher-ranked relays exhibiting better performance in terms 
of load and QoS. This is for effective communication in the 5G relay.

The proposed model demonstrates the highest accuracy at 97.25%, surpassing other models such as PLA-
SIT at 97%, FPLA at 96.8%, and PLA at 95.3% in Table 15. This indicates a marginal yet notable improvement 
in performance. It also significantly outperforms models like the CNN-based mechanism at 94.7%, Shamir’s 
Secret Sharing Algorithm at 90.7%, and the Blowfish Algorithm at 82.3%. The higher accuracy of the proposed 
model suggests it could offer better reliability and effectiveness in its application, making it a superior choice for 
scenarios where accuracy is critical.

Table 15 depicts the proposed model analysis with the existing models discussed. The significance of the 
model and its accuracy, diversity in methodologies, and relevance to the domain and performance spectrum are 
also narrated.

The Choquet integral fuzzy VIKOR method is employed to choose the optimal relay stations for RPM so that 
interdependencies between criteria like network load, QoS, and latency can be resolved, unlike the traditional 
VIKOR, which fails to manage them. Fuzzy membership functions assign linguistic values for these criteria 
before ranking is done using VIKOR after applying the Choquet integral in aggregation. This improves decision-
making under uncertainty and joint dependencies in 5G-driven healthcare settings.

PLA versus intrusion detection system (IDS) for secured authentication
In two kinds of scenarios, PLA and IDS, it is important to select specific indicators to quantify the errors associated 
with PLA performance and facilitate the analysis. To quantify the error between the estimated attribute and the 
actual value, the mean squared error (MSE) is typically used, which is calculated by multiplying the estimated 
attribute by the actual value.

 MSE (x̂) = E(x̂ − x)2 (40)

Where x̂ represents the estimation value of true value x.E(· ), in this case, we calculate the expectation. The 
presence of significant estimation errors harms the verification process for genuine receivers and complicates 
attackers’ efforts to defeat security systems. By measuring the probability of miss detection (MD) and false alarm 
(FA) of the proposed method, we can determine the performance of our system. Typically, MD refers to the 
number of times Bob has accepted physical layer attributes as legal from Eve by marking them as legal. There 

ip.src ip.dst TCP.srcport TCP.dstport TCP.time_delta TCP.len payload_length

192.168.1.90 192.168.1.91 54,546 1883 3.36 1460 4379

192.168.1.90 192.168.1.91 54,546 1883 3.64 1460 4379

192.168.1.90 192.168.1.91 54,546 1883 4.02 866 2597

192.168.1.90 192.168.1.91 54,546 1883 4.26 517 1550

192.168.1.90 192.168.1.91 54,546 1883 4.28 1460 4379

Table 13. Potential attacks solely on payload metrics.

 

TCP payload lengths Normal data Attacked data

Average TCP payload length 12.37 224

MaximumTCP payload length 290 1460

MinimumTCP payload length 3 0

Table 12. Payload versus attacked data.
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is a way to determine how many times Bob has flagged physical layer information from Alice as being illegal, 
thus causing a spoof warning to be issued. It appears that signal samples from Alice are correctly classified as 
true positives (TP) in the test data, while false negatives (FN) are generally classified as false positives (FP). Eve’s 
true negative message sample is classified as a true negative (TN); otherwise, a false positive is labeled as a false 
positive (FP).

The miss rate of detection (Pm), As a result, we can describe the FP rate in the following way.

Fig. 12. Choquet Integral Fuzzy VIKOR Method flowchart.
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Pm = FP

FP + TN
. (41)

The false alarm rate (Pf), that is, the FN rate, can be described as

 
Pf = FN

FN + TP
. (42)

Figures  13 and 14, and 15 show the performance of authentication of the physical layer given for overall 
classification accuracy, false alarm rate, and miss detection rate, respectively. As a result of learning user and 
channel attributes, authentication is implemented successfully. Hence, it obtained a better performance.

Figures 16 and 17, and 18 show the performance of IDS for physical layer security for overall classification 
accuracy, false alarm rate, and miss detection rate, respectively. As a result of learning channel attributes and 
packet attributes, IDS is implemented successfully. Hence, it obtained a better performance.

The suggested methods are designed to achieve quick authentication and reduce data packet overhead 
without sacrificing security requirements. Our systems are resilient. An adversary who penetrates any unit and 
extracts the user’s channel response won’t jeopardize the safety of the whole system since the received signals 
that the entity extracts rely on the state in which the entity is positioned. Based on experimental results, it is clear 
that attribute estimates obtained from the physical layer are sufficient for the provision of a reliable source of 
authentication data. The proposed multi-attribute physical layer authentication and IDS schemes are effective in 
improving authentication accuracy and attack detection accuracy, with false alarm rates reduced to 0.063% and 
miss detection rates reduced to 0.2466%.

Ethical considerations
The research uses publicly accessible data from Kaggle for its experimental assessment without acquiring any 
actual patient information. The datasets obtained from Kaggle support ethical requirements because they do 
not contain any information identifying individuals. Strict data privacy standards apply to this study through 
encryption combined with anonymization techniques because real-world patient consent must be obtained for 
implementation. Implementing this system for clinical use needs review and approval from Institutional Review 
Boards (IRBs) and patient consent requirements to fulfill Health Insurance Portability and Accountability Act 
(HIPAA) and General Data Protection Regulation (GDPR) ethical regulations.

Evaluation results
To thoroughly evaluate the two-tier authentication method and physical layer security protocols, we will provide 
detailed information on potential vulnerabilities, robustness against attacks, and handling of false positives/
negatives. Specific protocols and standards should be clearly stated in the physical layer security. A transparent 

Ref Models Accuracy Diversity in methodologies Relevance to the domain Performance spectrum

47
Physical-Layer Authentication with 
Superimposed Independent authentication 
Tags (PLA-SIT)

97% Statistical-based method High relevance: Addresses physical-layer 
authentication

High: Top-tier accuracy for 
its category

48 Flexible Physical Layer Authentication 
(FPLA) 96.80% Statistical approach with 

flexibility enhancements
High relevance: Focused on physical-layer 
authentication High: Competitive accuracy

49 Privacy-Embedded Lightweight and 
Efficient Automated (PLA) 95.30% Lightweight cryptographic 

approach
Medium relevance: Lightweight, less focus on 
flexibility

Medium: Moderate 
performance

50 CNN-based physical layer authentication 
mechanism 94.70% Deep learning-based High relevance: Integrates modern AI for 

authentication
Medium: Shows promise but 
below statistical methods

51 Shamir’s Secret Sharing Algorithm (SSSA) 90.70% Cryptographic secret-sharing 
mechanism

Medium relevance: Cryptography rather than 
a physical layer

Low: Decent but not 
competitive

51 Blowfish Algorithm (BA) 82.30% Symmetric key cryptographic 
algorithm Low relevance: Focused more on encryption Low: Outperformed by 

other models

# Proposed Model 97.25% Statistical approach with 
flexibility enhancements

High relevance: Focused on physical-layer 
authentication

High: Competitive 
accuracy

Table 15. Proposed model analysis with existing models.

 

RELAYs Load QoS Rank

1 Average Average 4

2 Average Average 2

3 High Lower 5

4 Higher Higher 3

5 Lower Higher 1

Table 14. Best RELAY choice.
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evaluation methodology and comprehensive results presented in Tables 16, 17 and 18 will strengthen the validity 
of the security claims and the overall system assessment.

Figures and tables indicating packet size and TCP port selection bear immense importance for data 
transmission optimization in remote patient monitoring. As indicated by Table 7, an optimal range between 68 
and 100 bytes provides an advantage in throughput and delay performance, as packet loss and latency rise every 
time packets are resized midway through transmission. The aggregation approach employed ensures the efficient 
transmission of data without fragmentation. Also, Table 9 depicts the choice of the TCP port; port 38197 shows 
failure transmission rates for ECG, EMG, and airflow data, and port 1883 is optimized for temperature, blood 
pressure, and glucometer readings. The targeted assignment of TCP ports leads to the efficient routing of said 
communication without congestion and excellent reliability for real-time patient monitoring. Findings suggest 
that optimizing packet sizes and brilliant TCP port selection are the key factors in improving data transfer 
efficiency in 5G-based healthcare networks.

The Proposed Model outperforms Policy-Based RL and Value-Based RL regarding MSE and RMSE, 
indicating lower error variance and greater precision in Table 19. The performance differences proved statistically 
significant, with the p-value (p < 0.05) following a paired t-test. Computational time is more for the proposed 
model, and this trade-off is justified in exchange for greater accuracy and stability in real-world applications.

Scalability and practicality in healthcare environments
The proposed system demonstrates scalability over different healthcare environments by integrating a modular 
structure supporting resource-intensive systems and minimal power devices. Many obstacles require resolution 
to enable this system’s broad acceptance, such as infrastructure expenses, device interoperability, and network 
connectivity problems. 5G-enabled RPM system deployment demands substantial financial commitment because 
significant spending on network infrastructure and cloud and edge computing assets is needed. Urban hospitals 
with well-established IT systems need distinctive infrastructure solutions, unlike rural medical facilities, which 
must establish adaptive deployment methods because of their constrained connectivity abilities. Incorporating 
diverse IoT sensors and their interoperation with different platforms becomes challenging because device 
compatibility issues need standardization initiatives. These hurdles need stepwise deployment, economical cloud 
systems, and structured communication protocols for better system connectivity.

Conclusion
This study analyzed the integration of deep reinforcement learning, cognitive 5G technology, channel state 
information, the physical layer security, and the Choquet Integral Fuzzy VIKOR on multiple criteria decision-
making to advance patient care in the healthcare sector. This study demonstrates how real-time data availability 
in RPM can be achieved through advancements in 5G technology. Resource control brought by Cognitive 5G 
goes further to improve this by providing uninterrupted communication. These security techniques protect 
patient data and ensure confidentiality at the physical layer level. Deep reinforcement learning makes the 
overall processes of healthcare more efficient by improving the distribution of resources and patients’ treatment 

Fig. 13. Overall Classification Accuracy vs. SNR Values.
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strategies. Channel State is an essential requirement in the wireless communication system as it facilitates 
the fight for the appropriate allocation of resources. This integrated approach can break the barriers of health 
inequality and make health more accessible to people. For Secure Communication to be appropriately deployed 
and integrated with other systems, four areas of consideration are privacy, interoperability, and ethical issues. 
The incorporation of Channel estimate key generation, Automatic feature creation, A LiteNet model, the time 
taken to transfer data, and the analyzed attack show that this method works well. Finally, this research offers 
a framework for patient-oriented and heterogeneous healthcare facilities that use technological innovations 
properly. LiteNet is a 5G-enabling framework for RPM that faces challenges in data communication, network 
availability, bandwidth, and resource management. To improve it, I propose enhancing RPM data handling, 
prioritizing and transfer by applying Deep Reinforcement Learning algorithms. Real-time scheduling in the 
transmission of data to regularly update vital signs; intelligent methods for recognizing danger signs of health 
risks; network slicing to prioritize the most urgent patient data; and additional precautionary features to protect 
the privacy of patients’ personal information. Enhancements include adaptive data transmission scheduling 
to ensure timely vital sign updates, intelligent anomaly detection for early health risk identification, dynamic 
network slicing for prioritized transmission of critical patient data, and enhanced security measures safeguarding 
sensitive patient information. If these drawbacks are eliminated, then the enhanced LiteNet framework will offer 
timely and efficient communication for RPM applications and allow timely, effective interventions, better patient 
results, and effective telehealth potential.

Future work
Future research by young scientists should focus on two main areas: disease-specific applications of the proposed 
framework and AI algorithm improvement for particular decision processes, as well as a practical assessment 
of the Choquet Integral Fuzzy VIKOR method. The focus of future research needs to shift towards creating 
secure communication protocols between robots and providers while advancing privacy-preserving methods 
and examining both economic impacts and ethical considerations related to this technology. 6G networks and 
quantum computing technology would enhance the suggested framework immensely, facilitating more rapid, 
reliable smart data transfers for tele-patient care. Quantum computing-based medical real-time decision-making 

Fig. 14. False Alarm Rate vs. SNR Values.
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and AI diagnosis would perform optimally due to these technologies. Quantum computing can secure data 
encryption and process data at incredible speeds, empowering healthcare organizations to protect their patient 
data and perform efficient multi-factor decision-making processes. Future research should aim to develop an 
advanced, secure, and resilient remote healthcare monitoring system by integrating quantum-safe encryption 
techniques with AI-managed 6G network infrastructure.

Fig. 15. Overall Classification Accuracy vs. SNR Values.
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Fig. 16. Overall Classification Accuracy vs. SNR Values.
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Fig. 17. False Alarm Rate vs. SNR Values.
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Metric Value

Average Login Time 2 s

Phishing Resistance Moderate (enhanced with multi-factor authentication)

Brute-Force Resistance High (with strong password policies)

Table 17. Biometric system performance.

 

Metric Value

False Acceptance Rate (FAR) 0.10%

False Rejection Rate (FRR) 0.20%

Environmental Impact Minimal

Spoofing Resistance High (with liveness detection)

Table 16.  Biometric system performance.

 

Fig. 18. Overall Classification Accuracy vs. SNR Values.
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Data availability
Data is provided within the manuscripthttps://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cy-
ber-security-dataset-of-iot-iiot? select=Edge-IIoTset+dataset.
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Model Computational Time (s) MSE RMSE R² p-value (Paired t-test)

Policy-Based RL 27.743 0.371 -0.266 0.678 p < 0.05

Value-Based RL 23.269 0.119 -0.199 0.614 p < 0.05

Proposed Model 29.601 -0.125 -0.258 0.577 p < 0.05

Table 19. Statistical significance testing of the proposed model.

 

Protocol/Standard Description

AES-256 Encryption standard for data security

WPA3 Wi-Fi security protocol

TLS 1.3 Secure data transmission protocol

Spread Spectrum Technique to secure the physical layer

Frequency Hopping Frequency Hopping

Table 18. Physical layer security protocols.
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