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A B S T R A C T

This research paper focuses on the analysis of a discrete FitzHugh–Nagumo reaction–diffusion system.
We begin by discretizing the FitzHugh–Nagumo reaction–diffusion model using the second-order and L1-
difference approximations. Our study examines the local stability of the equilibrium points of the system.
To identify conditions that ensure the global asymptotic stability of the steady-state solution, we employ
various techniques, with a primary focus on the direct Lyapunov method. Theoretical results are supported
by numerical simulations that demonstrate the practical validity of the asymptotic stability conclusions. Our
findings provide new insights into the stability characteristics of discrete FitzHugh–Nagumo reaction–diffusion
systems and contribute to the broader understanding of such systems in mathematical biology.
1. Introduction

With the aim of simplifying the Hodgkin–Huxley model, certain
local dynamics were employed by FitzHugh and Nagumo et al.1,2 There
are four ordinary differential equations (ODEs) that forms the Hodgkin–
Huxley model, which were established to identify the potential’s change
in the giant axon of the squid across the membrane of a nerve cell.3–7

The FitzHugh–Nagumo (FHN) system, which comprises of two partial
differential equations (PDEs), can be yielded by reducing the Hodgkin–
Huxley model. For a long period of time, many implementations have
employed this kind of equations, see Refs. 3, 8–20. For instance, the
FHN system can be employed to describe the reentry analysis within
heart tissue,21 Medaka eggs,4 the Ca+2 waves on Xenopus oocytes,3 and
the C O oxidation on 𝑃 𝑡(110).cite3 For further implementations of this
system and its relevance for the discretization, the reader mat refer to
the Refs. 22–29.

Many researchers have recently carried out numerous studies for
addressing the analysis of the FHN reaction–diffusion model. For in-
stance, with the use of the nonstandard finite difference approach, a
numerical approximation of the FHN model was proposed in Ref. 30.
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For the Nagumo equation, a boundedness preserving finite volume
approach was established in Ref. 31. In the same regard, several
methods were also used to deal with the conventional FHN equation
that were formulated in accordance with certain boundary and initial
conditions.32 The FHN model in terms of its positivity and boundedness
was also handled in Ref. 33 with the aid of four nonstandard versions of
finite difference methods under three different regimes and according
to certain boundary and initial conditions. Furthermore, the Newell–
Whitehead and FHN models were addressed in Ref. 34, and then a novel
improvement of the finite difference approach in its explicit exponential
version with its analytical scheme were consequently discussed in the
same reference. More recently, the FHN reaction–diffusion model was
approximated by means of applying the piecewise-linear finite element
method for the purpose of describing the action potentials’ propagation
in the cells of cardiac muscle.35

A great deal of investigations has convincingly outlined the FHN
reaction–diffusion model, but these investigations do not incorporate
an attentive analytical examination for the discrete type of such a
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model with studying its stability. For this reason, the primary objective
of this research paper is to analyze the discrete FHN reaction–diffusion
system. In this connection, the 2nd- and 𝐿1-difference approximations
will be utilized to first discretize the FHN reaction–diffusion model.
Then, the direct Lyapunov method will be implemented with the aim
of identifying certain conditions that guarantee the global asymptotic
stability of the steady-state solution. Also, in order to reinforce the cred-
ibility of our theoretical framework, several numerical simulations will
be provided drawn regarding asymptotic stability. The remainder parts
of this article are coordinated in the following manner: In Section 2, we
apply a discretization technique to the reaction–diffusion equations to
formulate the discrete FHN system. In Section 3, the stability analysis
of the discrete FHN system is discussed with the use of its equilibrium
points. In Section 4, the global stability of the system at hand is
additionally examined. In Section 5, several simulations are performed
to validate the conclusions drawn regarding asymptotic stability. At the
end of this article, we state the conclusion of our generated results.

2. The discrete FHN model

In this segment, we employ two widely recognized methods to
approximate the model under examination. As far as our understanding
goes, these discrete models constitute an innovative addition to the
current body of literature. In our study, we employed two discretization
techniques: the second-order difference approximation and the 𝐿1-
difference approximation. These methods were chosen due to their es-
tablished effectiveness and reliability in discretizing reaction–diffusion
models, ensuring a balance between accuracy and computational ef-
ficiency. The second-order difference approximation is a well-known
technique that approximates derivatives by using a central difference
scheme. This method provides a higher accuracy compared to first-
order differences by considering the function values at adjacent grid
points. For a comprehensive understanding of these techniques, we
refer readers to the following established literature.36,37

Incorporating these methods into our study provided a robust frame-
work for discretizing the FitzHugh–Nagumo reaction–diffusion model.
To accomplish this, we apply the discretization techniques to the
following reaction–diffusion equation:

⎧

⎪

⎨

⎪

⎩

𝜕u
𝜕𝑡

= 𝑘𝛥u, 𝑡 > 0, x ∈ 𝛺,

𝜕xu = 0, 𝑡 > 0, x ∈ 𝜕𝛺,
u(0, x) = u0(x), x ∈ 𝛺.

(1)

Utilizing the structure delineated in Eq. (1) and the discretization
method expounded in citations,38,39 we contemplate the situation
where x resides within the interval [0, 𝐿]. This gives rise to the relation-
ship x𝑖+1 = x𝑖 + 𝑘 for 𝑖 = 0,… , 𝑚. With the use of the central difference
formula to x, we derive the estimation for 𝜕2u(x,𝑡)

𝜕x2
as follows:

{

𝜕2u𝑛(x, 𝑡)
𝜕x2

≈
u𝑛𝑖+1 − 2u𝑛𝑖 + u𝑛𝑖−1

𝑘2
. (2)

With the use of the description of the 2nd- and 𝐿1- difference approxi-
mations for u𝑛𝑖 as outlined in the Ref. 40, we get

𝛥2𝜒(𝓁) = 𝜒(𝓁 + 2) − 2𝜒(𝓁 + 1) + 𝜒(𝓁), 𝓁 ∈ N. (3)

Thus, we can obtain the subsequent approximations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕2u(x, 𝑡)
𝜕x2

≈
𝛥2u𝑛𝑖−1

𝑘2
,

𝜕u(x, 𝑡)
𝜕x

≈
𝛥u𝑛𝑖
ℏ

.
(4)

At long last, we reach the following discrete reaction–diffusion equa-
tion:

𝛥 u𝑛 = 𝜅 𝛥2u𝑛 , (5)
2

ℏ 𝑖 𝑘2 𝑖−1 A
under the following conditions of periodic boundaries:

u𝑛0 = u𝑛𝑚, u𝑛1 = u𝑛𝑚+1. (6)

The FHN reaction–diffusion system, as commonly recognized in
Ref. 41, was formulated as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕u
𝜕𝑡

= 𝑑1𝛥u − u3 + (r + 1)u2 − ru − v, x ∈ 𝛺, 𝑡 > 0,
𝜕v
𝜕𝑡

= 𝑑2𝛥v + e}u𝑛 − erv, x ∈ 𝛺, 𝑡 > 0,

𝜕u = 𝜕v = 0 , x ∈ 𝜕𝛺, 𝑡 > 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ 𝛺.

(7)

erein, 𝛺 represents a bounded domain in R𝑛 such that 𝑛 = 1, and it
ossesses a sufficiently smooth boundary 𝜕𝛺. The operator 𝛥 is defined
s 𝛥 =

∑𝑛
𝑖=1

𝜕2

𝜕x2𝑖
. In this spatially extended system, the variable u

ignifies the membrane potential, while v characterizes a combination
of sodium inactivation and potassium activation at any point (x, 𝑡) ∈
𝛺 × (0,∞). Herein, r, e and r are all positive parameters such that r

satisfies the condition 0 < r < 1
2

, and e being significantly smaller than
1.

The model under investigation in this study is based on the foun-
dational model denoted as (7). Our analysis primarily relies on the
discretization method introduced in previous sections. This model,
which forms the core of our research, is precisely defined as follows:

⎧

⎪

⎨

⎪

⎩

𝛥ℏu
𝑛
𝑖 =

𝑑1
𝑘2

𝛥𝑖−1u
𝑛
𝑖 − u𝑛𝑖

3 + (r + 1)u𝑛𝑖
2 − ru𝑛𝑖 − v𝑛𝑖 ,

𝛥ℏv
𝑛
𝑖 =

𝑑2
𝑘2

𝛥𝑖−1v
𝑛
𝑖 + eu𝑛𝑖 − erv𝑛𝑖 ,

(8)

ith the periodic boundary conditions

u𝑛0 = u𝑛𝑚, _𝑢1 = §𝑚+1,
v𝑛0 = v𝑛𝑚, v𝑛1 = v𝑛𝑚+1,

(9)

nd the initial condition
0
𝑖 = H1

(

x𝑖
)

≥ 0, v0𝑖 = H2
(

x𝑖
)

≥ 0.

. Local stability

To assess the asymptotic stability of the discrete FHN model men-
ioned earlier, we focus on the equilibrium points as discussed in Refs. 16
2. The stability analysis depends on the sign of c, which can be
etermined using the following expression:

= (1 − r)2 − 4
r
. (10)

Hence, we can consider the three cases listed below:

• In the case where c < 0, the origin (u∗0 , v
∗
0) = (0, 0) is the unique

fixed point of system (3).

• When c = 0, the origin and (u∗1 , v
∗
1) =

(

− r + 1
2

,
𝑢∗1
r

)

are two fixed
points for system (3).

• In the case where c > 0, system (3) possesses three fixed points;
the origin,

(u∗2 , v
∗
2) =

(

− r

2
−
√

c,
𝑢∗2
r

)

and (u∗3 , v
∗
3) =

(

− r

2
+
√

c,
𝑢∗3
r

)

.

3.1. Local stability of the free diffusions system

The aim of this subsection is to establish the necessary conditions
for the local asymptotic stability of the system which has the form
{

𝛥ℏu(𝑡) = −u3(𝑡) + (r + 1)u2(𝑡) − ru(𝑡) − v(𝑡),
𝛥ℏv(𝑡) = eu(𝑡) − erv(𝑡).

(11)

ccordingly, the following result can be hold.



Partial Differential Equations in Applied Mathematics 11 (2024) 100870I.M. Batiha et al.

P
c
s

J

S
o

H

3

Theorem 1. System (11) exhibits local asymptotic stability at the equi-
librium points under the following conditions:

• When c = 0, the equilibrium point (u∗0 , v
∗
0) demonstrates local asymp-

totic stability.
• When c = 0, both equilibrium points (u∗0 , v

∗
0) and (u∗1 , v

∗
1) exhibit local

asymptotic stability.
• For c > 0, both equilibrium points (u∗0 , v

∗
0) and (u∗2 , v

∗
2) are locally

asymptotically stable. Additionally, the equilibrium point (u∗3 , v
∗
3) is

stable if the condition

r
( 7
4
r + 2

)

−
√

c(5r + 2) + 3c > 0,

is met.

roof. For the eigenvalues of system (11), the characteristic equation
an be found by performing a linear stability analysis about the stable
tates, i.e.,

=
(

−3𝑢2 + 2(r + 1)𝑢 − r − 1
er − e

)

. (12)

ince system (11) may exhibit multiple equilibria depending on the sign
f c, we will individually examine each case.

• By considering that (u∗0 , v
∗
0) serves as an equilibrium point, we can

then analyze the stability of system (11) irrespective of the sign
of c. To do so, we note that J(u∗0 ,v∗0 ) can be represented in the form

J(u∗0 ,v
∗
0 )
=
(

−r − 1
er − e

)

, (13)

The characteristic equation for J(u∗0 ,v
∗
0 )

is then as follows:

A2 − tr(J(u∗0 ,v∗0 ))A + det(J(u∗0 ,v∗0 )) = 0, (14)

where

tr(J(u∗0 ,v∗0 )) = −r − e and det(𝐽(u∗0 ,v∗0 )) = re + er. (15)

This can potentially result in the following discriminant:

DA = tr2(J(u∗0 ,v∗0 ))−4det(J(u∗0 ,v∗0 )) = (r+e)2−4 (re + er) = (r−e)2−4er.

As det(J(u∗0 ,v∗0 )) > 0, it is evident that the solutions of (14) depend
on the sign of tr(J(u∗0 ,v∗0 )), and given that tr(J(u∗0 ,v∗0 )) < 0, it follows
that (u∗0 , v

∗
0) is asymptotically stable.

• Now, by assuming c = 0, we have already established the stability
of the origin. Let us now examine the stability of the equilibrium
point (𝑢∗1 , 𝑣

∗
1). To achieve this goal, we should note that J(u∗1 ,v

∗
1 )

can be defined by

J(u∗1 ,v
∗
1 )
=
⎛

⎜

⎜

⎝

−3
(

r + 1
2

)2
− 2

(r + 1)2

2
− r − 1

er − e

⎞

⎟

⎟

⎠

. (16)

Furthermore, we can deduce

tr(J(u∗1 ,v∗1 )) =
−7(r + 1)2

4
−r−e and det(J(u∗1 ,v∗1 )) =

(

7(r + 1)2

4
+ r

)

e+er.

(17)

This brings us to the discriminant of the eigenvalue problem (14),
i.e.,

DA = 7
2
(r + 1)2

( 7
8
(r + 1)2 − e + r

)

− 4e(r + r) + (r + e)2.

We observe that tr(J(u∗1 ,v∗1 )) < 0 and det(J(u∗1 ,v∗1 )) > 0. This
assertion along with considering the conclusions drawn regarding
the stability of the equilibrium point (u∗0 , v

∗
0) confirms that (u∗1 , v

∗
1)

is asymptotically stable.
• In the final scenario, let us assume that c > 0. In this case, the

equilibrium point (u∗0 , v
∗
0) stills stable. This leads us to analyze the

stability of two additional equilibriums.
3

c

– Regarding the equilibrium (u∗2 , v
∗
2), we find the following

assertion:

J(u∗2 ,v
∗
2 )
=
⎛

⎜

⎜

⎝

−3
(

− r

2
−
√

c
)2

+ 2(r + 1)
(

− r

2
−
√

c
)

− r − 1
er − e

⎞

⎟

⎟

⎠

.

(18)

This results in

tr(J(u∗2 ,v∗2 )) = −r
( 7
4
r + 2

)

−
√

c(5r + 2) − 3c − e,

and

det(J(u∗2 ,v∗2 )) = e
(

r
( 7
4
r + 2

)

+
√

c(5r + 2) + 3c + r
)

.

The discriminant of the eigenvalue problem (14) is given by

DA =
(

−r
(7
4
r + 2

)

+
√

c(−3r + 2) − 3c + e
)2

− 4er.

This case is analogous to the situation discussed for the equi-
librium point (u∗1 , v

∗
1) since tr(J(u∗2 ,v∗2 )) < 0 and det(J(u∗2 ,v∗2 )) >

0. Consequently, (u∗2 , v
∗
2) is locally asymptotically stable.

– Once more, delving into the stability analysis of the equilib-
rium (u∗3 , v

∗
3) yields the following expressions:

J(u∗3 ,v
∗
3 )
=
⎛

⎜

⎜

⎝

−3
(

− r

2
+
√

c
)2

+ 2(r + 1)
(

− r

2
+
√

c
)

− r − 1
er − e

⎞

⎟

⎟

⎠

.

(19)

Based on the above Jacobian matrix, we can observe

tr(J(u∗3 ,v∗3 )) = −r
( 7
4
r + 2

)

+
√

c(5r + 2) − 3c − e,

det(J(u∗3 ,v∗3 )) = e
(

r
( 7
4
r + 2

)

−
√

c(5r + 2) + 3c + r
)

.

Consequently, we can obtain the following discriminant:

DA =
(

−r
(7
4
r + 2

)

+
√

c(5r + 2) − 3c + e
)2

− 4er. (20)

Based on (20), the following cases should be separately
analyzed:

∗ If DA > 0 and det(J(u∗3 ,v∗3 )) > 0, then the negativity
of the eigenvalues depends on the sign of tr(J(u∗3 , v

∗
3)).

The eigenvalues A1 and A2 are real and negative if
and only if tr(J(u∗3 , v

∗
3)) < 0. This implies that (𝑢∗3 , 𝑣

∗
3) is

asymptotically stable.
∗ If DA < 0 and det(J(u∗3 ,v∗3 )) > 0, then

A1 =
tr(J(u∗3 ,v∗3 )) − 𝑖

√

−DA

2
and A2 =

tr(J(u∗3 ,v∗3 )) + 𝑖
√

−DA

2
.

(21)

Thus, the solutions can be analyzed on the basis of
the sign of tr(𝐽(u∗3 ,v∗3 )). In the other words, we can
notice that if tr(J(u∗3 , v

∗
3)) > 0 or tr(J(u∗3 ,v∗3 )) < 0, then

based on the previous analyzed cases, system (11) is
asymptotically stable.

∗ If DA = 0 and det(J(u∗3 ,v∗3 )) > 0, then tr(J(u∗3 , v
∗
3))

could not be zero. The eigenvalues’ sign depends on
the sign of tr(J(u∗3 , v

∗
3)). Therefore, (u∗3 , v

∗
3) is asymptot-

ically stable if tr(J(u∗3 , v
∗
3)) < 0, and it is unstable if

tr(J(u∗3 , v
∗
3)) > 0.

ence, the proof of this result is finished. ■

.2. Local stability of the diffusion system

In this part, we intend to demonstrate, under specific parameter
onditions, that the steady-state (u∗, v∗) can become stable with the
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presence of diffusion. For this purpose, we should follow a similar
scheme to that used in Ref. 43, starting with the analysis of the
eigenvalues of the equation

𝛥2𝜅𝑛
𝑖−1 + A𝑖𝜅

𝑛
𝑖 = 0. (22)

This analysis considers the following periodic boundary conditions:

𝜅𝑛
0 = 𝜅𝑛

𝑚, 𝜅𝑛1 = 𝜅𝑛
𝑚+1. (23)

To go forward in our examination, we establish the following system:

⎧

⎪

⎨

⎪

⎩

𝛥ℏu
𝑛
𝑖 = −

𝑑1
𝑘2

A𝑖u
𝑛
𝑖 − u𝑛𝑖

3 + (r + 1)u𝑛𝑖
2 − ru𝑛𝑖 − v𝑛𝑖 ,

𝛥ℏv
𝑛
𝑖 = −

𝑑2
𝑘2

A𝑖v
𝑛
𝑖 + eu𝑛𝑖 − erv𝑛𝑖 .

(24)

s a result, we can immediately derive the following result.

heorem 2. System (3) is asymptotically stable if the following conditions
re met:

• Consider c < 0 and (r − e)2 > 4er. System (3) is asymptotically stable
at the steady state (u∗0 , v

∗
0) if the following conditions are met:

– 𝑑1 < 𝑑2 and
𝑑1
𝑘2
A𝑖 ≤ −r.

– 𝑑1 > 𝑑2,
𝑑1
𝑘2
A𝑖 ≤ −r, and

|𝜇𝑗 (A𝑖)| < 1, 𝑗 = 1, 2. (25)

• If c = 0 and the following condition
7
2
(r + 1)2

( 7
8
(r + 1)2 − e + r

)

> 4e(r + r) − (r + e)2,

is satisfied, then system (3) is asymptotically stable at the steady state
(u∗1 , v

∗
1) if the following conditions are met:

– 𝑑1 < 𝑑2 and − 𝑑1
𝑘2
A𝑖 ≥

7
4
(r + 1)2 + r.

– 𝑑1 > 𝑑2, −
𝑑1
𝑘2
A𝑖 ≥ 7

4
(r + 1)2 + r, and the eigenvalues satisfy

condition (27).

• Considering the case where c > 0 makes us to examine the following
two situations:

– If
(

−r
(7
4
r + 2

)

−
√

c(3r + 2) − 3c + e
)2

> 4er, then system
(3) is asymptotically stable at the steady state (u∗2 , v

∗
2) if the

following conditions are met:

∗ 𝑑1 < 𝑑2 and − 𝑑1
𝑘2
A𝑖 ≥ r

( 7
4
r + 2

)

+
√

c(5r + 2) + 3c.

∗ 𝑑1 > 𝑑2, −
𝑑1
𝑘2
A𝑖 ≥ r

( 7
4
r + 2

)

+
√

c(5r + 2) + 3c, and the
eigenvalues satisfy condition (27).

– If
(

−r
(7
4
r + 2

)

+
√

c(3r + 2) − 3c + e
)2

> 4er, then system
(3) is asymptotically stable at the steady state (u∗3 , v

∗
3) if the

following conditions are met:

∗ 𝑑1 < 𝑑2 and − 𝑑1
𝑘2
A𝑖 ≥ r

( 7
4
r + 2

)

−
√

c(5r + 2) + 3c.

∗ 𝑑1 > 𝑑2, −
𝑑1
𝑘2
A𝑖 ≥ r

( 7
4
r + 2

)

−
√

c(5r + 2) + 3c, and the
eigenvalues satisfy (27).

Proof. To examine the local asymptotic stability of the system at hand,
we should make a proper linearization. To do so, we should note that if
the eigenvalues of the linearized system have negative real parts, then
we can conclude that (u∗, v∗) is asymptotically stable. So, we linearize
he reaction–diffusion system (24) around the steady state to obtain the
ollowing linear system:

𝑖 =

⎛

⎜

⎜

⎜

−
𝑑1
𝑘2

A𝑖 − 3u𝑛𝑖
2 + 2(r + 1)u𝑛𝑖 − r − 1

er −
𝑑2 A𝑖 − e

⎞

⎟

⎟

⎟

. (26)
4

⎝ 𝑘2 ⎠
erein, we intend to follow the same cases as examined in the free
iffusion part as follows:

• We will begin with the origin (𝑢∗0 , 𝑣
∗
0). In this case, we have

(

− 𝑑1
𝑘2
A𝑖 − r − 1

er − 𝑑2
𝑘2
A𝑖 − e

)

= J𝑖(u∗0 ,v
∗
0 )
− 𝜆(A𝑖)𝐼.

This leads to the following eigenvalue equation:

𝜇2(A𝑖) − tr(J𝑖(u∗0 ,v∗0 ))𝜇(A𝑖) + det(J𝑖(u∗0 ,v∗0 )) = 0, (27)

where

tr(J𝑖(u∗0 ,v∗0 )) = −
(

𝑑1
𝑘2

+
𝑑2
𝑘2

)

A𝑖 + tr(J(u∗0 ,v∗0 )),

det(J𝑖(u∗0 ,v∗0 )) =
𝑑1
𝑘2

𝑑2
𝑘2

A2
𝑖 +

(

𝑑1
𝑘2

e +
𝑑2
𝑘2

r

)

A𝑖 + det(J(u∗0 ,v∗0 )).

Immediately, the discriminant can be expressed as

D𝑖 =
(

𝑑1
𝑘2

−
𝑑2
𝑘2

)2
A2
𝑖 + 2

(

𝑑1
𝑘2

−
𝑑2
𝑘2

)

(r − e)A𝑖 + 𝛥A.

The discriminant of D𝑖 with respect to A𝑖 can be given as

DA𝑖
=
((

𝑑1
𝑘2

−
𝑑2
𝑘2

)

(r − e)A𝑖

)2

−
(

𝑑1
𝑘2

−
𝑑2
𝑘2

)2

A2
𝑖 𝛥A = 4

(

𝑑1
𝑘2

−
𝑑2
𝑘2

)2

er.

Clearly, since DA𝑖
> 0, we can distinguish between two cases due

to the fact that 𝑑1 ≠ 𝑑2. These cases are as follows:

– If 𝑑1 < 𝑑2, then (r−e)2 > 4er, and both solutions of the equa-
tion DA𝑖

= 0 are negative. Thus, D𝑖 > 0 with significantly
noting that these solutions are real. Additionally, 𝜇(A𝑖)1 < 0.
Moreover, if − 𝑑1

𝑘2
A1 ≥ r, then 𝜇(A𝑖)2 < 0. These conditions

collectively imply that (u∗0 , v
∗
0) is asymptotically stable.

– If 𝑑1 > 𝑑2, then we still have (r − e)2 > 4er, which brings us
back to the previous scenario. Once again, if 𝑑1

𝑘2
A1 ≥ r, then

𝑑𝑒𝑡(J𝑖(u∗0 ,v∗0 )) > 0. Consequently, 𝜇1(A𝑖) and 𝜇2(A𝑖) are both
negative and must satisfy the conditions |𝜇𝑗 (A𝑖)| < 1.

• Regarding the equilibriums (u∗1 , v
∗
1), (u

∗
2 , v

∗
2) and (u∗3 , v

∗
3), it is worth

noting that some straightforward calculations of the Jacobian
matrices have led us to the same discriminant DA𝑖

. To avoid re-
dundancy, we have consolidated the results of these calculations
in Theorem 2. ■

. Global stability

The main aim of this part is to show the global asymptotic stability
f the constant steady-state solution of the considered system. For this
urpose, we state and prove the following result.

heorem 3. If
∗(r + 1 − u∗) < e, (28)

hen system (3) achieves consequently global asymptotic stability.

roof. To illustrate this outcome, the same Lyapunov function is
tilized as described in Ref. 44. For see this, we take into consideration
he following function:

(𝑧) = 𝑧 − 1 − ln(𝑧). (29)

he above function exhibits a strict global minimum, namely, l(1) = 0.
ow, we consider the non-negative function:

(𝑡) = Ł1(𝑡) + Ł2(𝑡),

here

1(𝑡) =
𝑚
∑

u∗l

(

u𝑛𝑖
∗

)

, Ł2(𝑡) =
𝑚
∑

v∗l

(

v𝑛𝑖
∗

)

.

𝑖=1 u 𝑖=1 v



Partial Differential Equations in Applied Mathematics 11 (2024) 100870I.M. Batiha et al.

U

𝛥

O

𝛥

N

u

t

a

5

c
t
p
w
d
s

⎧

⎪
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⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

I

C

Initially, we estimate 𝛥ℏŁ1(𝑡) as follows:

𝛥ℏŁ1(𝑡) =
𝑚
∑

𝑖=1
𝛥ℏu

𝑛∗l

(

u𝑛
𝑖 (𝑡)
u𝑛∗

)

,

≤
𝑚
∑

𝑖=1

(

1 − u∗

u𝑛
𝑖

)

𝛥ℏu
𝑛
𝑖 ,

≤
𝑚
∑

𝑖=1

(

1 − u∗

u𝑛
𝑖

)

𝑑1
𝑘2

𝛥2u𝑛
𝑖−1 − u𝑛

𝑖
3 + (r + 1)u𝑛

𝑖
2 − ru𝑛

𝑖 − v𝑛
𝑖 ,

≤
𝑚
∑

𝑖=1

(

1 − u∗

u𝑛
𝑖

)

u𝑛
𝑖
3 − (u∗)3 + (r + 1)(u𝑛

𝑖
2 − (u∗)2 − r(u𝑛

𝑖 − u∗) − v𝑛
𝑖 + v∗)

+
𝑑1
𝑘2

(

1 − u∗

u𝑛
𝑖

)

(u𝑛
𝑖+1 − 2u𝑛

𝑖 + u𝑛
𝑖−1).

tilizing (29) yields

ℏŁ1(𝑡) ≤
𝑚
∑

𝑖=1
−(u∗)3

(

1 − u∗

u𝑛𝑖

)

(

1 −
u𝑛𝑖

3

(u∗)3

)

− (u∗)2(r + 1)
(

1 − u∗

u𝑛𝑖

)

(

1 −
u𝑛𝑖

2

(u∗)2

)

+ ru∗
(

1 − u∗

u𝑛𝑖

)(

1 −
u𝑛𝑖
u∗

)

+ v∗
(

1 − u∗

u𝑛𝑖

)(

1 −
v𝑛𝑖
v∗

)

+
𝑚
∑

𝑖=1

𝑑1
𝑘2

(u𝑛𝑖+1 − 2u𝑛𝑖 + u𝑛𝑖−1) −
𝑑1
𝑘2

u∗

(

u𝑛𝑖+1
u𝑛𝑖

+
u𝑛𝑖−1
u𝑛𝑖

− 2

)

,

≤
𝑚
∑

𝑖=1
−(u∗)3

(

−l
(

u∗

u𝑛𝑖

)

− l

(

u𝑛𝑖
3

(u∗)3

)

+ l

(

u𝑛𝑖
2

(u∗)2

))

− (u∗)2(r + 1)

(

−l
(

u∗

u𝑛𝑖

)

− l

(

u𝑛𝑖
2

(u∗)2

)

+ l

(

u𝑛𝑖
u∗

)

)

+ ru∗
(

−l
(

u∗

u𝑛𝑖

)

− l

(

u𝑛𝑖
u∗

))

+ v∗
(

−l
(

u∗

u𝑛𝑖

)

− l

(

v𝑛𝑖
v∗

)

+ l

(

u𝑛𝑖 v
𝑛
𝑖

u∗v∗

))

+
𝑑1
𝑘2

(

u𝑛𝑚+1 − 2u𝑛𝑚 + u𝑛0 − u𝑛1
)

− u∗
𝑑1
𝑘2

(

u𝑛𝑖+1
u𝑛𝑖

− 2 +
u𝑛𝑖−1
u𝑛𝑖

)

.

nce more, we can have

ℏŁ2(𝑡) =
𝑚
∑

𝑖=1
𝛥ℏv

∗l

(

v𝑛𝑖
v∗

)

,

≤
𝑚
∑

𝑖=1

(

1 − v∗

v𝑛𝑖

)

𝛥ℏv
𝑛
𝑖 ,

≤
𝑚
∑

𝑖=1

(

1 − v∗

v𝑛𝑖

)(

𝑑2
𝑘2

𝛥2v𝑛𝑖−1 + eu𝑛𝑖 − erv𝑛𝑖

)

,

≤
𝑚
∑

𝑖=1

(

1 − v∗

v𝑛𝑖

)

(

e(u𝑛𝑖 − u∗) − er(v𝑛𝑖 − v∗)
)

+
𝑑2
𝑘2

𝑚
∑

𝑖=1

(

1 − v∗

v𝑛𝑖

)

u𝑛𝑖+1 − 2u𝑛𝑖 + u𝑛𝑖−1 + 𝑜(1),

≤
𝑚
∑

𝑖=1
−eu∗

(

1 − v∗

v𝑛𝑖

)(

1 −
u𝑛𝑖
u∗

)

− erv∗
(

1 − v∗

v𝑛𝑖

)(

1 −
v𝑛𝑖
v∗

)

+
𝑚
∑

𝑖=1

𝑑2
𝑘2

(

v𝑛𝑖+1 − 2v𝑛𝑖 + v𝑛𝑖−1
)

−
𝑑2
𝑘2

v∗

(

v𝑛𝑖+1
v𝑛𝑖

+
v𝑛𝑖−1
v𝑛𝑖

− 2

)

,

≤
𝑚
∑

𝑖=1
−eu∗

(

−l
(

v∗

v𝑛𝑖

)

− l

(

u𝑛𝑖
u∗

)

+ l

(

v∗u𝑛𝑖
𝑤∗v𝑛𝑖

))

− erv∗
(

−l
(

v∗

v𝑛𝑖

)

− l

(

v𝑛𝑖
v∗

))

+
𝑑2
𝑘2

(

v𝑛𝑚+1 − 2v𝑛𝑚 + v𝑛0 − v𝑛1
)

− v∗
𝑑2
𝑘2

(

v𝑛𝑖+1
v𝑛𝑖

− 2 +
v𝑛𝑖−1
v𝑛𝑖

)

.

5

In accordance with the Ref. 44, we can obtain
u𝑛𝑖+1
u𝑛𝑖

− 2 +
u𝑛𝑖−1
u𝑛𝑖

≥ 0,

v𝑛𝑖+1
v𝑛𝑖

− 2 +
v𝑛𝑖−1
v𝑛𝑖

≥ 0.

In conclusion, we can consequently deduce

𝛥ℏŁ(𝑡) = 𝛥ℏŁ1(𝑡) + 𝛥ℏŁ2(𝑡),

≤
𝑚
∑

𝑖=1
(u∗)3

(

−l
(

u∗

u𝑛𝑖

)

− l

(

u𝑛𝑖
3

(u∗)3

)

+ l

(

u𝑛𝑖
2

(u∗)2

))

+ (u∗)2(r + 1)

(

−l
(

u∗

u𝑛𝑖

)

+ l

(

u𝑛𝑖
2

(u∗)2

)

− l

(

u𝑛𝑖
u∗

)

)

+ ru∗
(

−l
(

u∗

u𝑛𝑖

)

− l

(

u𝑛𝑖
u∗

))

+ v∗
(

−l
(

u∗

u𝑛𝑖

)

− l

(

v𝑛𝑖
v∗

)

+ l

(

u𝑛𝑖 v
𝑛
𝑖

u∗v∗

))

+ eu∗
(

−l
(

v∗

v𝑛𝑖

)

+ l

(

u𝑛𝑖
u∗

)

− l

(

v∗u𝑛𝑖
𝑤∗v𝑛𝑖

))

+ erv∗
(

−l
(

v∗

v𝑛𝑖

)

− l

(

v𝑛𝑖
v∗

))

.

ow, since
∗(r + 1 − u∗) < e, (30)

we can draw the conclusion that asserts when 𝛥ℏŁ(𝑡) ≤ 0 and 𝛥ℏŁ(𝑡) = 0,
hen the only possible equilibrium is (u𝑖, v𝑖) = (0, 0). Therefore, under

condition (28) stated in Theorem 1, (u∗, v∗) is proven to be globally
symptotically stable. ■

. Numerical simulations

This section aims to offer a series of numerical simulations to
larify the gained attributes from our theoretical results associated with
he stability of the discrete FHN reaction–diffusion system. With the
urpose of obtaining a deeper knowledge of the system’s behavior,
e investigate how changes in system parameters and order affect its
ynamics. To do so, we should mention that the numerical solutions of
ystem (3) has the form

u𝑖(𝑛ℏ) = 𝜙1(x𝑖) + ℏ
∑𝑛

𝑗=1

[

u𝑖+1((𝑗 − 1)ℏ) − 2u𝑖((𝑗 − 1)ℏ) + u𝑖−1((𝑗 − 1)ℏ)
𝑘2

−u3((𝑗 − 1)ℏ) + (r + 1)u2((𝑗 − 1)ℏ) − ru((𝑗 − 1)ℏ) − v𝑖((𝑗 − 1)ℏ)
]

,

v𝑖(𝑛ℏ) = 𝜙2(x𝑖) + ℏ
∑𝑛

𝑗=1

[

v𝑖+1((𝑗 − 1)ℏ) − 2v𝑖((𝑗 − 1)ℏ) + v𝑖−1((𝑗 − 1)ℏ)
𝑘2

+eu𝑖((𝑗 − 1)ℏ) − erv𝑖((𝑗 − 1)ℏ)
]

, 1 ≤ 𝑖 ≤ 𝑚, 𝑛 > 0.

(31)

n this connection, we should concern with the following two cases:

ase 1. To illustrate our point here, we take the values of the param-
eters as

(𝑑1, 𝑑2, r, e) = (1, 2, 0.2, 0.4), 𝑁 = 100, ℏ = 0.3, 𝑡 ∈ [0, 100], 𝜅 ∈ [0, 20],

(32)

along with the boundary conditions (u0, v0) = (0.1, 0.15) and
(u1, v1) = (0.1, 0.15). We also provide the following initial con-
ditions for the simulation:
⎧

⎪

⎨

⎪

𝜙1(x𝑖) = 1 +
cos(𝜋x𝑖)

2
,

𝜙2(x𝑖) = 2.5 +
cos(𝜋x𝑖) .
⎩ 2
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Fig. 1. The one-dimensional concentration profiles of u𝑖(𝑡) and v𝑖(𝑡) as solutions to Eq. (8) with the set of parameters (32).
Fig. 2. The time-evolving patterns of u𝑖(𝑡) and v𝑖(𝑡) in system (8) with the parameter set (32).
C

With the help of a prepared MATLAB code, the findings pre-
sented in Figs. 1 and 2 visually illustrate the dynamic behavior
of system (3). These figures play a crucial role in providing a
comprehensive understanding of the system’s stability proper-
ties. By observing the model’s behavior over time, it becomes
evident that all solutions ultimately converge to a single unique
positive equilibrium, which is denoted as (u𝑛 , v𝑛 ) = (0.2, 0.6).
Furthermore, this equilibrium is characterized as asymptoti-
cally stable, indicating that the system will settle into this state
regardless of the initial conditions within a certain range.
The graphical representations in Figs. 1 and 2 not only validate
the theoretical findings but also offer a deeper insight into the
dynamic behavior of the discrete FitzHugh–Nagumo reaction–
diffusion system. The time evolution plots in Fig. 1 show that
perturbations from the equilibrium decay over time, demonstrat-
ing the system’s resilience and its ability to return to a stable
state. This is a key aspect of asymptotic stability, indicating that
the system can maintain its equilibrium even in the face of small
disturbances.
The phase plane analysis in Fig. 2 complements this by illus-
trating the trajectories in the state space. The spiral and direct
paths towards the equilibrium highlight the system’s global
stability properties, indicating that the equilibrium point acts
as an attractor for all nearby trajectories. This geometric inter-
pretation helps in understanding the comprehensive behavior of
the system, providing a visual confirmation of the theoretical
stability analysis.
6

Conclusion

ase 2. Herein, we take into account the parameter values of model
(3) as follows:

𝑁 = 100, (r, e, 𝑑1, 𝑑2) = (0.1, 0.7, 2, 3), ℏ = 0.18, 𝑡 ∈ [0, 100], x ∈ [0, 20],

(33)

along with the boundary conditions (u0(𝑡), v0(𝑡)) = (1, 3), (u1(𝑡),
v1(𝑡)) = (1, 3), and with the initial conditions:
{

𝜙1(x𝑖) = 1.5 − cos(𝜋x𝑖),
𝜙2(x𝑖) = 2 − cos(𝜋x𝑖).

Similarly to the aforementioned case, Figs. 3 and 4 effectively
illustrate the dynamic behavior of the system and confirm our
theoretical findings. These figures play a crucial role in demon-
strating the convergence of the model’s solutions to the equi-
librium point (u, v) = (0, 0). This equilibrium is shown to be
asymptotically stable, reinforcing the validity of our stability
analysis.

The graphical representations in Figs. 3 and 4 not only validate
the theoretical findings but also offer deeper insights into the
dynamic behavior of the system. The time evolution plots in
Fig. 3 show that perturbations from the equilibrium decay over
time, demonstrating the system’s resilience and its ability to
return to a stable state. This is a key aspect of asymptotic
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Fig. 3. The one-dimensional concentration profiles of u𝑖(𝑡) and v𝑖(𝑡) as solutions to Eq. (8) with the set of parameters (33).
Fig. 4. The time-evolving patterns of u𝑖(𝑡) and v𝑖(𝑡) in system (8) with the parameter set (33).
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stability, indicating that the system can maintain its equilibrium
even in the face of small disturbances.

The phase plane analysis in Fig. 4 complements this by illus-
trating the trajectories in the state space. The spiral and direct
paths towards the equilibrium highlight the system’s global
stability properties, indicating that the equilibrium point acts
as an attractor for all nearby trajectories. This geometric inter-
pretation helps in understanding the comprehensive behavior of
the system, providing a visual confirmation of the theoretical
stability analysis.

. Conclusion

In this paper, we analyzed a discrete FitzHugh–Nagumo reaction–
iffusion system by employing the 2nd- and L1-difference approxima-
ions. Our investigation focused on the local stability of the equilibrium
oints, and we derived conditions for global asymptotic stability using
he direct Lyapunov method. Through rigorous theoretical analysis
nd comprehensive numerical simulations, we validated our findings
nd demonstrated the effectiveness of our approach. Our study makes
everal significant contributions to the field. Firstly, we successfully
pplied the 2nd- and L1-difference approximations to discretize the
itzHugh–Nagumo model, providing a robust framework for analyzing
iscrete reaction–diffusion systems. Secondly, we established criteria
or both local and global asymptotic stability of the equilibrium points,
ontributing to the understanding of the stability properties of discrete
onlinear systems. Thirdly, our numerical simulations corroborate the
heoretical results, illustrating the dynamic behavior of the system and
einforcing the validity of the proposed stability conditions. Future re-
earch can build upon our findings by exploring the applicability of our
ethods to higher-dimensional reaction–diffusion systems, which could
7

rovide further insights into complex dynamic behaviors. Addition-
lly, incorporating stochastic variations into the model could enhance
he understanding of how random fluctuations influence stability and
attern formation. Applying our theoretical framework to real-world
iological or chemical systems could validate the practical utility of
ur results and potentially uncover new phenomena.
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