
Secure cloud computing:
leveraging GNN and leader
K-means for intrusion detection
optimization
Raman Dugyala1, Premkumar Chithaluru2, M. Ramchander3, Sunil Kumar4,5, Arvind Yadav6,
N. Sudhakar Yadav7, Diaa Salama Abd Elminaam8,9 & Deema Mohammed Alsekait10

Over the past two decades, cloud computing has experienced exponential growth, becoming a
critical resource for organizations and individuals alike. However, this rapid adoption has introduced
significant security challenges, particularly in intrusion detection, where traditional systems often
struggle with low detection accuracy and high processing times. To address these limitations, this
research proposes an optimized Intrusion Detection System (IDS) that leverages Graph Neural
Networks and the Leader K-means clustering algorithm. The primary aim of the study is to enhance
both the accuracy and efficiency of intrusion detection within cloud environments. Key contributions
of this work include the integration of the Leader K-means algorithm for effective data clustering,
improving the IDS’s ability to differentiate between normal and malicious activities. Additionally, the
study introduces an optimized Grasshopper Optimization algorithm, which enhances the performance
of the Optimal Neural Network, further refining detection accuracy. For added data security, the
system incorporates Advanced Encryption Standard encryption and steganography, ensuring robust
protection of sensitive information. The proposed solution has been implemented on the Java
platform with CloudSim support, and the findings demonstrate a significant improvement in both
detection accuracy and processing efficiency compared to existing methods. This research presents
a comprehensive solution to the ongoing security challenges in cloud computing, offering a valuable
contribution to the field.

The rapid growth in cloud computing adoption is driven by its flexibility and cost-effectiveness in service
delivery1. As a model for on-demand IT services, cloud computing depends on distributed computing
technologies2, evolving into a new computational paradigm aimed at providing reliable, scalable, and high-
quality services and infrastructure at reasonable costs3. Cloud computing services are categorized into three
main models: Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS)4.
These technologies have become central to modern computing, particularly with the rise of social networking
and mobile cloud computing, underscoring the importance of IDS in maintaining security.

Cloud computing not only optimizes database performance and speed but also makes IDS and Intrusion
Prevention Systems (IPS) crucial for security management. IDS has been highlighted as an effective tool for
network protection, prompting researchers to explore new methods for identifying and preventing attacks5.
Mechanisms like service retention and security management via infrastructure and software emphasize IDS’s
role in preventing attacks, healing systems post-attack, and diagnosing safety issues to prevent future threats6.
The ethical collection and analysis of data are essential for maintaining control over networks, data centers,

1Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad 500075,
India. 2Department of Information Technology, Mahatma Gandhi Institute of Technology, Telangana 500075, India.
3Department of MCA, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India. 4Department of
Computer Engineering and Applications, GLA University, Noida, India. 5Department of Computer Science, Graphic
Era Hill University, Dehradun 248001, India. 6School of Computer Science and Engineering, Galgotias University,
Mathura, Uttar Pradesh 203201, India. 7Department of Information Technology, Chaitanya Bharathi Institute of
Technology, Hyderabad 500075, India. 8Faculty of Computers and Artificial Intelligence, Benha University, Banha,
Egypt. 9Jadara Research Center, Jadara University, Irbid 21110, Jordan. 10Department of Computer Science ,
Applied College, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia.
email: Dmalsekait@pnu.edu.sa

OPEN

Scientific Reports | (2024) 14:30906 1| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-81442-7&domain=pdf&date_stamp=2024-12-7

or clouds, with firewalls, IDS, and IPS being critical security tools7. Historically, IDS has been a key player in
monitoring and controlling network traffic, adding an extra layer of protection against malicious or unauthorized
use of computer systems8,11,13.

IDSs use versatile search techniques, including monitoring, dissemination, and collaboration, with
evolutionary algorithms and Machine Learning (ML) methods augmenting their control14,16,17. However,
Network-based IDSs (NIDS) and Host-based IDSs (HIDS) can impact cloud performance by consuming CPU
and memory resources, which makes efficient Cloud Intrusion Detection and Prevention Systems (CIDPS)
necessary to maintain service integrity18–20.

In recent years, cloud computing has become the backbone of modern IT infrastructure, offering scalable and
flexible resources. However, with this rise has come an increase in cyber threats, particularly Denial-of-Service
(DoS) and Distributed DoS (DDoS) attacks, posing significant security challenges to cloud environments.
Traditional security measures often prove inadequate in such dynamic and distributed settings. To address these
challenges, this paper focuses on developing and evaluating an IDS tailored specifically for cloud environments,
with a primary focus on detecting and mitigating DoS and DDoS attacks. Additionally, while the primary focus is
on these attacks, the system’s capacity to detect and respond to Man-in-the-Middle (MIM) attacks is also briefly
explored. Given the rise in cyberattacks across computer networks, IDSs are critical for monitoring suspicious
activities. In cloud environments, IDSs are essential for systematically monitoring registers, configurations, and
network traffic to enhance security. However, traditional IDSs face challenges in detecting anomalies within
cloud environments, necessitating novel solutions that are tailored to cloud-specific threats such as DDoS attacks
and trust-related threats. As a result, this work aims to develop IDS solutions designed specifically for cloud
environments.

To overcome these challenges, we propose an optimized IDS that leverages advanced algorithms to improve
both the accuracy and efficiency of attack detection. Central to this system are the Leader K-means algorithm
and GNN, both of which play a critical role in enhancing the system’s detection capabilities.

•	 Leader K-means algorithm This algorithm is used for efficient data clustering, which significantly reduces the
computational complexity of the IDS. By clustering data effectively, the system focus on smaller, more man-
ageable groups of data, facilitating faster and more accurate intrusion detection.

•	 GNN Once the data is clustered, the GNN is employed to meticulously analyze these clusters. The GNN
excels at recognizing patterns and anomalies within the data, enabling it to accurately distinguish between
normal and intrusive activities. This NN is further optimized using the ONN framework, which enhances its
detection precision.

•	 GHO method We integrate tree pod enhancement to optimize the GHO method, which fine-tunes the detec-
tion process by dynamically adjusting parameters to improve the overall performance of the IDS.

•	 AES and steganography To bolster security further, AES algorithm is utilized for encryption, ensuring data
integrity and confidentiality. Steganography is also applied to enhance memory security, protecting sensitive
information from unauthorized access.By incorporating these advanced techniques, the proposed IDS pre-
sents a robust solution that substantially enhances attack detection accuracy and processing efficiency within
cloud environments. This comprehensive approach effectively addresses the limitations of traditional IDS,
offering a more reliable and secure experience for cloud computing users, and contributing to the ongoing
development of more resilient cloud infrastructure.

Motivation
The motivation for this work arises from the escalating cyber threat landscape, where attacks have become
increasingly frequent and sophisticated, particularly in cloud computing environments. As organizations and
individuals increasingly depend on cloud services for data storage and processing, securing these environments
has become crucial. Traditional IDS often fall short in effectively safeguarding cloud environments due to
limitations in detecting network-based anomalies and hidden attack paths. This highlights the urgent need for
innovative security solutions specifically designed to address the unique challenges posed by cloud computing.

Cloud environments, with their distributed nature and accessibility over the internet, are particularly
susceptible to a wide range of attacks from both internal and external sources. The growing reliance on cloud
services to store sensitive data heightens the risk of data breaches, emphasizing the need for advanced security
mechanisms to protect valuable information. While traditional security methods-such as proximity search,
automation, and access control-exist, they often prove inadequate when applied to the dynamic and complex
nature of cloud computing.

One of the major threats to cloud environments is DDoS attacks, which disrupt legitimate access to servers,
compromise network bandwidth, and lead to significant financial losses. Effectively addressing these challenges
requires the development of more advanced IDS that can accurately detect and mitigate both known and
emerging cyber threats within cloud environments.

In response to these critical security concerns, this study proposes an optimized IDS specifically tailored
for cloud environments. The system leverages advanced algorithms such as Leader K-means for efficient
data clustering and GNN for in-depth analysis, enhancing both detection accuracy and processing efficiency.
Additionally, the integration of encryption techniques like AES and steganography strengthens memory security,
ensuring that sensitive data remains protected from unauthorized access and breaches. By addressing the specific
security needs of cloud computing, this research contributes significantly to the field of cloud security, offering a
comprehensive solution to mitigate cyber threats and safeguard critical data and infrastructure.

The proposed study’s contributions are outlined as follows:

Scientific Reports | (2024) 14:30906 2| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 We aim to improve the accuracy and efficiency of IDS in identifying and mitigating security threats, particu-
larly under the conditions of DoS and DDoS attacks.

•	 Proposed work focuses on ensuring the integrity and confidentiality of stored data in environments suscepti-
ble to cyber-attacks, including DDoS, DoS, and MIM attacks.

•	 By leveraging a leader-based k-means clustering algorithm in conjunction with a GNN, we aim to enhance
the precision and speed of clustering processes, which are crucial for the accurate classification and detection
of intrusions.

•	 We assess our proposed solution across various parameters such as clustering accuracy, intrusion detection
frequency, encryption and decryption times, and overall system robustness against cyber threats.

Literature review
The increasing reliance on cloud computing has underscored the need for robust security mechanisms,
particularly in the domain of IDS. Numerous studies have investigated different approaches to bolster cloud
security, focusing on IDS and complementary protective measures.

Gill et al. have made significant strides in Cloud Resource Management (CRM), emphasizing self-protection
mechanisms in cloud environments. Their research highlights the necessity of adaptive security measures for
managing resources efficiently while safeguarding data and services. By employing SNORT, an open-source
network IDS, their study evaluates the effectiveness of real-time intrusion detection and prevention, contributing
to enhanced cloud resource security21,22.

Vieira et al. offer an innovative approach to intrusion detection in grid and cloud computing environments
by merging knowledge-based and behavior-based techniques. Their IDS combines signature-based detection,
which identifies known attack patterns, with anomaly detection, which flags deviations from normal behavior.
This dual method improves detection rates while reducing false positives, making their IDS more reliable for
cloud infrastructure protection23,24.

Lorenz et al. introduce a new approach to enforcing fine-grained security policies in cloud network
architectures through Software Defined Networks (SDN) and Network Function Virtualization (NFV). Their
framework increases the flexibility of cloud networks while reducing operational costs. Virtualized components
like load balancers and firewalls enable dynamic, scalable security measures that adapt to evolving threats,
improving both security and resource utilization in the cloud25,26.

Varadharajan et al. emphasize the role of integrated architectures in ensuring cloud security. Their research
integrates resilient intrusion detection techniques with trusted computing technologies, forming a secure,
resilient system capable of detecting diverse and dynamic threats. This system continuously monitors cloud
environments, allowing timely detection of breaches while leveraging trusted computing to ensure only
authorized entities access critical resources27,28.

Colom et al. investigate distributed IDS in heterogeneous network architectures, introducing advanced
scheduling algorithms that optimize intrusion detection across varied computing environments. By accounting
for fluctuations in resource availability, their distributed IDS approach enhances security, especially in large-
scale cloud environments where demand can vary widely29.

Sultana et al. propose an IDS tailored for SDN, integrating ML to monitor and detect network security
threats. Their system utilizes ML algorithms to analyze traffic patterns, identifying potential risks in real-time.
By leveraging SDN’s adaptability, this IDS offers real-time protection and improves detection of previously
unknown threats, contributing significantly to cloud security30.

Jin et al. focus on intrusion prevention in virtualized cloud environments, introducing VMFence, a security
framework based on the Virtual Machine Manager (VMM). VMFence, implemented on an open-source virtual
machine monitoring platform, optimizes hardware resources while ensuring robust security against intrusions.
By monitoring virtual machine activities and detecting anomalies, VMFence helps prevent unauthorized access,
reinforcing the integrity of cloud environments31–33.

These studies collectively address diverse aspects of cloud security, ranging from resource management to
intrusion detection and prevention, illustrating the critical importance of developing adaptive, scalable, and
efficient security mechanisms for the cloud.

Research gaps identified in the literature
Based on the extensive literature review provided, several research gaps can be identified that offer opportunities
for further exploration and development in the field of cloud security and intrusion detection:

•	 Real-time adaptation and scalability

	– Gap While many studies focus on enhancing security through IDS and resource management, there is a
noticeable gap in the real-time adaptation and scalability of these systems to dynamically changing cloud
environments. For instance, the integration of SNORT in cloud environments by Sukhpal Singh Gill et al.
highlights the potential for self-protection, but the study does not fully address how these systems can scale
and adapt in real-time to handle growing and fluctuating cloud workloads21,22.

	– Opportunity Future research could explore more sophisticated real-time adaptive mechanisms that allow
IDS and security frameworks to automatically adjust their operations based on real-time analysis of cloud
resource usage and threat levels, thereby improving both scalability and responsiveness.

•	 Comprehensive integration of ML with IDS

Scientific Reports | (2024) 14:30906 3| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	– Gap Sultana et al. propose using ML in SDN-based IDS, which shows promise in enhancing detection
accuracy. However, the integration of ML with IDS systems in cloud environments is still in its infancy,
particularly in terms of developing models that can adapt to evolving threats and learn from new types of
attacks over time30.

	– Opportunity There is a significant gap in the comprehensive application of adaptive ML algorithms within
IDS that not only detect anomalies but also continually evolve and improve their accuracy by learning from
new data, thus minimizing false positives and negatives.

•	 Addressing modern and emerging threats

	– Gap Several studies, such as those by Vieira et al. and Jin et al. focus on traditional threat models and older
datasets like KDD CUP 99 for benchmarking IDS34. While these provide a solid foundation, they do not
adequately address the modern and emerging threats that cloud environments face today23,31. The use of
outdated datasets limits the applicability of these studies to current cloud security challenges.

	– Opportunity Future research should focus on using up-to-date datasets and exploring new threat vectors,
such as those related to IoT, AI-driven attacks, and advanced persistent threats (APTs), to develop more
robust and future-proof IDS solutions.

•	 Optimization and resource efficiency

	– Gap The optimization of security frameworks, as discussed by Lorenz et al. often centers around the effi-
ciency of network resources and cost reduction using technologies like SDN and NFV. However, there is a
gap in ensuring that these optimizations do not compromise the overall security and that they can handle
the resource-intensive nature of high-security environments without degradation in performance25,26.

	– Opportunity There is room for research into hybrid optimization strategies that balance resource efficiency
with robust security, ensuring that cost savings and performance enhancements do not come at the ex-
pense of security efficacy.

•	 Lack of comprehensive security frameworks

	– Gap While Varadharajan et al. discuss an integrated architecture combining IDS with trusted computing
technologies, the implementation of truly comprehensive security frameworks that cover the full spectrum
of cloud vulnerabilities, from data encryption to intrusion prevention and beyond, is still lacking27. Exist-
ing solutions often focus on specific aspects of security rather than providing a holistic approach.

	– Opportunity Future studies could aim to develop and validate comprehensive security frameworks that
integrate multiple layers of protection, including IDS, encryption, data integrity verification, and user au-
thentication, into a single cohesive system.

•	 Analysis of computational complexity and resource utilization

	– Gap Despite the detailed exploration of various IDS approaches, studies such as those by Colom et al. often
overlook the analysis of computational complexity and resource utilization, which are critical for practical
deployment in cloud environments29. Understanding the resource demands and processing overhead of
these systems is essential for ensuring their viability in real-world applications.

	– Opportunity Further research is needed to quantify the computational costs and resource requirements of
proposed IDS solutions, enabling better optimization and ensuring that these systems can be effectively
deployed in resource-constrained cloud environments.

•	 Comparative analysis of encryption techniques

	– Gap The work by Jin et al. discusses the integration of AES and steganography for secure storage but does
not provide a comparative analysis against other modern encryption methods. This limits the understand-
ing of how effective these techniques are in various cloud security scenarios31–33.

	– Opportunity Future research should conduct a comparative analysis of different encryption techniques, in-
cluding advanced methods like homomorphic encryption and quantum-resistant algorithms, to determine
the most effective strategies for securing cloud data.

Proposed methodology
Our proposed IDS leverages a combination of GNN and the Leader K-means algorithm to enhance detection
accuracy and efficiency. The system is specifically designed to address the unique characteristics of cloud
environments, ensuring robust performance against various attack vectors. The leader-based K-means algorithm
facilitates efficient data clustering, allowing the IDS to effectively distinguish between normal and intrusive
activities. Additionally, we have integrated tree pod enhancement techniques alongside the GHO algorithm to
further optimize the system’s performance. To bolster data security within the cloud, the AES algorithm and
steganography are employed.

To evaluate secure storage solutions against DDoS and DoS attacks, we outline a detailed encryption and
decryption workflow using AES. The process begins with key generation, creating a 256-bit key to ensure
robust encryption. Next, plaintext data is encrypted using AES in Cipher Block Chaining (CBC) mode, which
incorporates an Initialization Vector (IV) for added security. The encrypted data (ciphertext) and the IV are
stored securely, with the key kept separate to prevent unauthorized access. For decryption, the ciphertext and IV

Scientific Reports | (2024) 14:30906 4| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

are retrieved, allowing the original plaintext to be recovered using the same AES key. This methodology ensures
that data remains confidential and is accessible only to authorized parties, even if the storage system is targeted
by attacks.

The overarching objective of this research is to develop a robust IDS by harnessing leader-based K-means
clustering and a GHO-based neural network. The proposed system is structured around three key modules:
(i) Clustering, (ii) Intrusion Detection, and (iii) Secure Storage. Within the clustering module, input data
undergoes grouping facilitated by an intermediate K-means clustering method with leader nodes. Subsequently,
the Intrusion Detection module processes the clustered data utilizing the ONN, wherein neuron weights
are meticulously selected using the GHO technique. The neural network structure is trained based on these
optimized weights, after which test data undergoes thorough analysis for intrusion detection. Lastly, the Secure
Storage module enhances security measures by employing a hybridized approach that combines AES and
steganography methods, with the GHO algorithm optimizing key attributes within AES encryption. The flow of
the proposed methodology is depicted in Fig. 1.

Figure 2 illustrates the detailed architecture of the proposed system in a flow diagram, showcasing the
interconnected processes and algorithms designed to enhance intrusion detection in cloud environments. The
process begins with cloud resources, which represent the cloud infrastructure from which data is collected. This
raw data undergoes a cleaning phase to eliminate any noise or inconsistencies, followed by normalization to
ensure uniformity across the dataset. The normalized data is then clustered using the Leader K-means clustering
algorithm, which facilitates the efficient grouping of similar data points. Subsequently, the clustered data is
processed by a GNN to differentiate between normal and anomalous traffic. The outputs from the GNN are
further refined using the GHO algorithm, enhancing detection accuracy. To secure the data, AES encryption
is applied, complemented by steganography techniques to bolster memory security. This integrated approach
ensures a robust and efficient intrusion detection system, effectively addressing challenges related to accuracy
and processing time in cloud computing environments.

Clustering using leader K-Means algorithm
The partitioning dialogue is essential for segmenting the provided data into clusters. However, when faced with
a large volume of data-specifically, a D-shaped integer containing n numbers and B signs-effective management
can become challenging. To address this issue, the proposed method employs a leader-based k-means clustering

Fig. 1.  Flow diagram of the proposed method.

Scientific Reports | (2024) 14:30906 5| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

algorithm, which first integrates the data into N clusters, thereby alleviating the complexity associated with the
clustering process. The clustering process unfolds through the following steps:

•	 Implement the K-means clustering algorithm for leader selection and
•	 Utilize the leader-based clustering process to group the input data.

Optimized K-means clustering
Clustering is a technique employed to partition a dataset into distinct groups, with the K-means clustering
approach being one of the most widely used methods. This approach involves segmenting the data into a
predefined number of clusters. The steps for executing optimized K-means clustering are outlined below:

Algorithm 1.  Pseudo code of Optimized K-means clustering

Fig. 2.  Procedural flow diagram.

Scientific Reports | (2024) 14:30906 6| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The Algorithm 1 outlines an optimized version of the classic K-means clustering algorithm. It begins by
initializing a specified number of clusters and their corresponding centers, potentially utilizing advanced
techniques like K-means++ for more strategic initialization. Next, the algorithm computes the Euclidean
distance between each data point and the cluster centers, employing optimized distance calculation methods
such as vectorization or parallelization to expedite computations, particularly for large datasets or high-
dimensional data. Following this, each data point is assigned to the nearest cluster center using efficient data
assignment techniques, possibly leveraging data structures like kd-trees to enhance performance. The algorithm
then updates the cluster centers based on the assigned data points, utilizing optimized center update methods
that may incorporate parallel processing frameworks to further improve computational efficiency. Provisions
are also included to handle empty clusters, preventing algorithm stagnation and ensuring robustness. Overall,
these optimizations aim to accelerate convergence speed, enhance clustering quality, and improve the overall
efficiency of the K-means clustering process. Table 1 provides a clear overview of the notations used throughout
the paper, assisting readers in understanding the mathematical expressions and algorithms presented.

Adopting the leader-based into K-means clustering process
The leader-based technique operates within a defined threshold range, denoted as T . In this approach, each
group is represented by a leader, while the other elements are regarded as supporters. Initially, the technique
maintains a set of empty leaders, which are constructed incrementally. For each pattern in the dataset, the model
matches the pattern with the group directed by a leader if there exists a leader such that the distance between
the data point x and is less than or equal to T . In this scenario, x is considered a follower of leader . The first
follower within the range less than or equal to T is designated as the leader’s supporter. If no such leader exists,
the pattern x is assigned as a new leader and added to the set of leaders L. The array of leaders L serves as the
input to the algorithm, which incorporates the following modifications (Algorithm 2).

Notation Definition

k Number of clusters

c Cluster centers

X Input data

n Number of data points

C Number of cluster centers

|| · || Euclidean distance

d Distance between data points and cluster centers

i Index for data points

j Index for cluster centers

T Threshold range for leader-based technique

l Leader

Di(n) Leader-based technique data

Wi Grasshopper owner

Gi Gravitational force

Ai Wind reception

Si Social power

dij Distance between locusts

N Number of grasshoppers

s(|Wj − Wi|) Force function

g Constant gravity

u Constant force

ϵ Random variation

C Composite reduction of comfort zones

Cmax Maximum value of C

Cmin Minimum value of C

t Current iteration

tmax Maximum iteration

P Population

c Chromosome

f(c) Fitness of chromosome

Table 1.  Table of notations.

Scientific Reports | (2024) 14:30906 7| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 2.  Pseudo code of Leader-based into optimized K-means clustering

The proposed algorithm combines a Leader-based approach with an optimized K-means clustering process
to improve both the efficiency and effectiveness of data clustering. First, the Leader-based technique identifies a
set of representative data points, known as leaders, from the dataset. For each data point, the algorithm checks
whether a leader exists within a predefined threshold distance T . If such a leader is found, the data point is
assigned as a follower of that leader; if not, the point becomes a new leader. This initial step results in a set of
leaders, which serve as starting centroids for the subsequent K-means clustering phase.

In the optimized K-means clustering phase, the leaders from the first step are used as the initial cluster
centers. The algorithm then calculates the Euclidean distance between each data point and these cluster centers
using optimized computational methods, such as vectorization or parallel processing, to enhance speed and
efficiency. Data points are assigned to their nearest cluster centers using efficient assignment techniques, after
which the cluster centers are recalculated as the mean of their assigned points. To ensure stability, the algorithm
includes a mechanism to handle any empty clusters that may form during the process.

By using the Leader-based technique for initial centroid selection, the algorithm provides a more strategic
starting point for K-means, potentially leading to faster convergence and improved clustering accuracy. This
integrated approach combines the advantages of both methods, yielding a highly optimized and efficient
clustering solution.

•	 Each cluster is uniquely represented by its leader within the input space, facilitating efficient organization and
retrieval of clustered patterns.

•	 Moreover, re-indexing the datasets by these nodes enables seamless access to all patterns within each clus-
ter.The proposed method enhances the traditional K-means clustering algorithm by incorporating lead-
er-based clustering. In this approach, a set of initially empty rulers is incrementally constructed, with each
ruler representing a cluster group. Data points are compared to existing rulers based on a threshold distance
T . If the distance between a data point and an existing ruler is less than or equal to T , the data point is classi-
fied as a follower of that ruler. The first follower within the range is designated as the leader’s supporter. If no
suitable leader is found within the threshold, the data point is assigned as a new leader and added to the set
of rulers. This iterative process streamlines clustering, improving both efficiency and speed, particularly when
handling large datasets. The proposed optimization makes it ideal for a wide range of clustering applications.

Intrusion detection using GNN
The proposed IDS utilizes GNNs, which are adapted from Convolutional Neural Networks (CNNs) and
enhanced through the use of the GHO algorithm. In this system, the GHO algorithm is employed to optimize
the weights within the GNN, improving the network’s overall performance. The primary goal of the GNN is
to classify input data as either normal or intrusive. To train the GNN, our method uses the backpropagation
algorithm. Structurally, the GNN consists of several layers of neurons, including input, hidden, and output

Scientific Reports | (2024) 14:30906 8| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

layers. Each neuron is connected to others through weighted connections, similar to synapses in biological
neural networks. The input layer represents the input data vector, the hidden layers process this data, and the
output layer performs the final classification. The specific configuration of these layers is problem-specific and
can be adjusted based on the task at hand. The optimal GNN structure is depicted in Fig. 3.

Three actions are performed within the GNN:

•	 Normalize the loads for all neurons in the input layer, excluding the biases.
•	 Build the NN with input, hidden, and output layers.
•	 Compute the proposed bias function for the input layer.

	
X = ξ +

Hu−1∑
n=0

w(n)D1(n) + w(n)D2(n) + w(n)D3(n) + + w(n)Dm(n)� (1)

 In Eq. (1), X represents the output obtained by applying weights and a bias term to the input features. The
term ξ denotes the bias, a constant added to the weighted sum of the inputs. Hu indicates the upper limit of
the summation, representing the total number of input features. The variable w(n) corresponds to the weight
of the n-th input feature, where n ranges from 0 to Hu − 1. Di(n) refers to the i-th data point or feature
value at position n. In this equation, each input feature D1(n), D2(n), D3(n), . . . , Dm(n) is multiplied by its
corresponding weight w(n), and the weighted inputs are summed. The bias term ξ is then added to this sum
to yield the final output X . This formulation is a standard approach in neural network computations, where
linear combinations of input features are enhanced by the bias term to improve the model’s fit to the data. In the
proposed optimal GNN, the weights are fine-tuned using the GHO algorithm to ensure optimal performance.

Enhanced GHO algorithm
In the proposed approach, the GHO algorithm is employed to determine the optimal weights for the neural
network. The GHO algorithm is a recent advancement in optimization techniques, inspired by the natural
movement and collective behavior of grasshoppers. It mimics the way grasshoppers behave in large groups,
particularly during feeding and resting phases. As they move in swarms, they consume almost all emerging
vegetation in their path and, upon maturity, form airborne swarms before migrating. In our method, each
grasshopper represents a potential set of weights, and through this collective swarm behavior, the optimal
weights are identified. The overall flow diagram of the enhanced GHO algorithm is illustrated in Fig. 4.

The systematic procedure of the enhanced GHO algorithm is outlined as follows, detailing the steps used
for optimal weight selection. To promote diversity, the GHO algorithm begins by simulating shrimp behavior
and spawning a population at a transit station. The decision-making process is a critical phase in designing the
algorithm to identify the optimal solution. During this stage, appropriate molecules were carefully selected for
each neuron, and the intervals between them were determined. Each grasshopper worker is assigned a position
in the GHO, where every individual in the swarm acts as a scout, searching for the most promising location. The
methodology for the initial solution is illustrated in Table 2.

Fig. 3.  Optimal GNN structure.

Scientific Reports | (2024) 14:30906 9| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Table 2 illustrates the format for the initial solutions in the GHO. Each row represents an individual
grasshopper, referred to as a worker, and each column corresponds to a specific parameter or weight in the
solution space. The notation Sij denotes the state or position of the i-th grasshopper worker in the j-th
dimension, representing the worker’s initial solution. Wij refers to the weights assigned to the i-th grasshopper
for the j-th parameter, forming the initial configuration that the optimization algorithm will refine. This
initialization is crucial, as it sets the foundation from which the grasshoppers explore the solution space. A
diverse initial distribution of positions and weights helps ensure effective exploration and prevents premature
convergence. Through iterative updates, each grasshopper adjusts its position based on both its own experience
and that of its neighbors, collectively moving towards more optimal solutions.

Fitness calculation
After the initial solution is established, the next step is to evaluate its stability profile. The selection of an
appropriate fitness function is crucial in the GHO algorithm, as it directly impacts the effectiveness of the
candidate solutions. In this case, the error magnitude is used as the primary criterion for defining the fitness
function. The energy calculation, which forms the basis for fitness evaluation, is determined by Eq. (2).

	 Fitness = Min{MSE}� (2)

The term Mean Squared Error (MSE) in Eq. (2) refers to a widely used metric for assessing model accuracy. It
calculates the average of the squared differences between the actual observed values and the predicted values.
Mathematically, MSE is expressed as:

S21 W21 W22 W23 – W2n

– – – – – –

Sn1 Wn1 Wn2 Wn3 ... Wnn

Table 2.  Initial solution format.

Fig. 4.  Enhanced GHO algorithm process flow.

Scientific Reports | (2024) 14:30906 10| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
MSE = 1

n

n∑
i=1

(yi − ŷi)2

The variable n represents the number of observations or data points, indicating the total count of comparisons
between actual and predicted values. yi denotes the actual value for the i-th observation, which is the true value
the model seeks to predict. ŷi signifies the predicted value for the i-th observation, generated by the model based
on the input data. The term yi − ŷi represents the error or deviation between the actual and predicted values for
the i-th observation, while (yi − ŷi)2 refers to the squared error. Squaring the error ensures that all values are
positive and gives more weight to larger errors. The summation

∑n

i=1 aggregates the squared errors across all n
observations. Finally, 1

n computes the mean of these squared errors, providing a measure of the model’s overall
prediction performance.

Equation 2 defines the fitness evaluation function used in the GHO algorithm. This function is critical in guiding
the selection and evaluation of candidate solutions by minimizing the error magnitude, with the MSE as the
primary criterion. By minimizing the MSE, the GHO algorithm selects solutions that produce the least error,
leading to improved model accuracy and performance.

Optimization for GNN Weights using GHO
The GHO algorithm for optimizing the weights of a GNN begins by initializing a population of chromosomes,
where each chromosome represents a unique set of GNN weights (Algorithm 3). In the initial step, the fitness
of each chromosome is evaluated based on the GNN’s performance, typically measured by accuracy or loss on a
validation set. The algorithm then evolves the population over multiple generations. During each generation, a
selection process is employed to choose parent chromosomes based on their fitness values, using methods like
roulette wheel or tournament selection. These selected parents undergo crossover operations, where pairs of
chromosomes exchange segments of their weights to generate new offspring. To maintain diversity and explore a
wider solution space, mutations are introduced in the offspring with a set probability, adding random variations
to the weights. The least fit individuals in the current population are replaced by the newly generated offspring,
forming a new generation of potential solutions. This process of selection, crossover, mutation, and replacement
continues for a predefined number of generations or until a convergence criterion is reached. The algorithm
concludes by selecting the best-performing chromosome from the final generation, which represents the
optimized set of GNN weights. By leveraging evolutionary principles, the GHO algorithm effectively searches
for optimal weight configurations, aiming to enhance the GNN’s performance and robustness.

Scientific Reports | (2024) 14:30906 11| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 3.  GHO for GNN Weights

Updation using GHO
The solution is optimized using the GHO algorithm to determine the appropriate hardness level, as described by
the regression equation in Eq. (3).

	 Wi = Si + Gi + Ai� (3)

where Si represents social power, ith denotes social contact, Gi signifies the gravitational force of sliced grass,
and Ai corresponds to the reception of wind (as defined in Eqs. 4, 5, and 6).

	

Si =
N∑

&j = 1
&j ̸= i

s (dij)d̂ij
� (4)

	 dij = |Wj − Wi|� (5)

	
d̂ij = Wj − Wi

dij
� (6)

The term dij represents the distance between the ith and jth locust, which is used to determine the social
influence between them. The gravitational force (Gi) is then computed using Eq. (7).

Scientific Reports | (2024) 14:30906 12| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 Gi = −gêg � (7)

Here, g represents the constant of gravity, and êg denotes the direction toward the Earth’s center, indicating the
unit vector for a. The value of Ai is determined using Eq. (8).

	 Ai = uêa� (8)

In this context, u represents a constant force, while êa denotes a unit vector in the direction of the wind. The
values of S, G, and A are substituted uniformly in accordance with Eq. (3).

	

Wi =
N∑

&j = 1
&j ̸= i

s(|Wj − Wi|)
Wj − Wi

dij
− gêg + uêa

� (9)

Here, s(|Wj − Wi|) = fe
−r

l − e−r , where N denotes the number of grasshoppers. Using Eq. (9), the
grasshoppers quickly converge to their comfort zone, but the sound produced remains variable. To resolve this,
a modified version of the equation is proposed below (Eq. 10).

	

Wi = C




N∑

&j = 1
&j ̸= i

C
UP − LW

2 s(|Wj − Wi|)
Wj − Wi

dij


 + T � (10)

Where T represents the optimal decision or solution, and C denotes a composite reduction of comfort zones,
symbolizing an ideal and harmonious state. The prediction of C decreases proportionally with the number of
iterations and is calculated using Eq. (11).

	
C = Cmax − t

Cmax + Cmin

tmax
� (11)

Where Cmax is the maximum value, Cmin is the minimum value, t represents the current iteration, and tmax
denotes the maximum number of iterations.

Termination criteria
The performance of the output layer is assessed using Eq. (12).

	
Active(X) = 1

1 + e−X
� (12)

Refer to the learning error as shown below (Eq. 13).

	
Output(O) = LE = 1

2

HU −1∑
n=0

(Dn − An
′)2� (13)

Where LE represents the learning error, Dn denotes the desired outputs, and An signifies the actual outputs,
minimizing the error value in the optimal GNN is essential for ensuring effective performance during the
test phase of the trained Optimized Neural Network (ONN). The error value from the optimization process
is compared with the result of the best network output. If the optimized network output is below the defined
threshold, the input data is classified as normal. The following mathematical expression clarifies this process:

Let O represent the output of the best neural network (NN), and T represent the threshold value for classification.

	 O = NN(X)

where X is the input data. The classification decision can be expressed as follows:

	
Class(X) =

{
Normal if O < T
Anomalous if O ≥ T

Here, NN(X) denotes the output of the neural network for the input data X. The threshold T is a predetermined
value that establishes the classification boundary. If the output O is below T , the input data X is classified as
normal; otherwise, it is classified as anomalous.

Scientific Reports | (2024) 14:30906 13| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

After this initial classification, where the input data X is assessed against the threshold T using the neural
network output O, any data classified as normal undergoes additional processing for several reasons:

•	 Validation and storage

	– Purpose To confirm that the data is indeed normal and to store it securely.
	– Process Data is validated against additional criteria to ensure it meets all expected norms before being

archived or utilized in other operations.

•	 Feature extraction and analysis

	– Purpose To extract relevant features that can be used for predictive analysis or model training.
	– Process Normal data is analyzed to identify key patterns and features that could improve the performance

of the NN or other analytical models.

•	 Integration and utilization

	– Purpose To integrate the normal data into the main system for real-time applications.
	– Process Normal data is processed for use in applications such as real-time monitoring, feedback loops, or

decision-making systems.Mathematically, this can be represented as follows:

•	 Validation and storage

Let Xvalid = Validation(X);
If Xvalid = True, then store X in the database.

•	 Feature extraction and analysis

F = FeatureExtraction(X)

•	 Integration and utilization

Integrate(Xvalid, F)This further processing ensures that the normal data is effectively utilized within the
system, contributing to improved accuracy, efficiency, and functionality of the NN.

Security analysis
The proposed technique enhances security by employing AES and steganography for secure storage. Decryption
involves converting ciphertext back to plaintext. A comprehensive explanation of AES and the steganography
technique is provided in the following section.

AES algorithm
AES is a 128-bit block cipher21. The state array is represented as a 4x4-byte matrix, formed from the 128-bit input
block. Various transformations are applied to intermediate results, known as the state, which essentially takes
the form of a rectangular byte array. The input state is XORed with the first four words of the schedule before
encryption begins with round-based processing. The proposed work’s state is outlined as follows.

	




D0,0 D0,1 D0,2 D0,3
D1,0 D1,1 D1,2 D1,3
D2,0 D2,1 D2,2 D2,3
D3,0 D3,1 D3,2 D3,3




The following represents the key value used in the proposed work:

	




K0,0 K0,1 K0,2 K0,3
K1,0 K1,1 K1,2 K1,3
K2,0 K2,1 K2,2 K2,3
K3,0 K3,1 K3,2 K3,3




Encryption Each round of encryption consists of four steps: SubBytes, ShiftRows, MixColumns, and
AddRoundKey.

Sub-bytes operation These bags represent repetitive operations, executed independently at each state level. The
substitution table (S-Box) activated and configured in two parts.

•	 In the finite field of Rijndael, compute the multiplicative inverse.

Scientific Reports | (2024) 14:30906 14| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 Apply the affine transformation as documented in Rijndael’s specifications.Shift row operation Each row un-
dergoes a cyclic leftward shift based on its row index.

•	
•	 Shift the 1st row by 0 positions to the left.
•	 Shift the 2nd row by 1 position to the left.
•	 Shift the 3rd row by 2 positions to the left.
•	 Shift the 4th row by 3 positions to the left.Mix-column operation The Mix Columns transformation is con-

ducted column by column, treating each column as a four-term polynomial. The objective of this step is to
disperse the bits across multiple rounds by simultaneously multiplying each column with the row values of
the standard matrix.

Add round key In the Add Round Key step, perform a bitwise XoR operation between the state and the round key.
The round key is generated through a key schedule derived from the cipher key, represented as Cij = Dij ⊕ Kij .

Decryption In decryption mode, the operations are performed in reverse order compared to encryption
mode. It starts with an initial round and ends with the Add Round Key step. This is followed by 9 reverse normal
cycles. The proposed method successfully decrypts the data through this process.

The input data is encrypted or decrypted using the AES algorithm, following the outlined procedure. The
encrypted data obtained is then subjected to the steganography process to enhance the overall security of the
proposed techniques.

Scenario 1 Let’s assume we have a sample input data: “Sensitive Information”.
Workflow steps

•	 Data encryption: Encrypt the input data before storing it.
•	 Data storage: Store the encrypted data securely.
•	 Data retrieval: Retrieve the encrypted data from storage.
•	 Data decryption: Decrypt the data to obtain the original information.Encryption scheme We used the AES

algorithm for encryption and decryption.

Mathematical proof of security

•	 Encryption Given a plaintext P and a secret key K , the AES encryption algorithm produces a ciphertext C .

	 C = E(K, P)

where E is the AES encryption function.
For

•	 our sample input data ‘”Sensitive Information”‘, let’s assume the plaintext is:

	 P = "Sensitive Information"

 and the secret key K is:

	 K = "mysecretkey12345"

•	 Data storage The ciphertext C is stored in the secure storage.

	 Store(C)

•	 Data retrieval Retrieve the ciphertext C from the secure storage.

	 C = Retrieve (storage_location)

•	 Decryption Using the same secret key K , the AES decryption algorithm retrieves the original plaintext P .

	 P = D(K, C)where D is the AES decryption function.

Mathematical proof of security AES is a symmetric encryption algorithm that is proven to be secure under the
assumption that the secret key K remains confidential. The security of AES relies on the following properties:

•	 Confusion Each bit of the ciphertext C depends on multiple bits of the plaintext P and the key K , making the
relationship between P and C complex.

•	 Diffusion Changing a single bit in the plaintext P or the key K results in significant changes in the ciphertext
C .The strength of AES comes from its use of multiple rounds of substitution and permutation, ensuring that
the ciphertext C is indistinguishable from random data to anyone without the key K .

Sample calculation For a practical demonstration, let’s use a simplified version of AES with 128-bit key length.

Scientific Reports | (2024) 14:30906 15| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

•	 Encryption Given:

	 P = ”Sensitive Information"

	 K = "mysecretkey12345"

 Using AES, we obtain:

	 C = E(K, P)

 Assume C after AES encryption is:

	 C = "E2F7411C2B3D4F6E7A8B9C0D1E2F3A4B"

•	 Data storage Store the ciphertext C :

	 Store ("E2F7411C2B3D4F6E7A8B9C0D1E2F3A4B")

•	 Data retrieval Retrieve C from storage:

	 C = "E2F7411C2B3D4F6E7A8B9C0D1E2F3A4B"

•	 Decryption Using the same key K :

	 P = D(K, C)

•	 Decrypted plaintext

	P = ”Sensitive Information"By encrypting the data before storage and decrypting it upon retrieval, we
ensure that the data remains confidential and secure. AES provides a robust encryption mechanism, and its
security properties of confusion and diffusion make it resilient against cryptographic attacks. This workflow
and mathematical proof demonstrate that the secure storage of sensitive information effectively achieved using
encryption techniques like AES.

Scenario 2 Sample Input Data—Let’s consider a sample input data consisting of a set of files, each represented as
a string of bits. For simplicity, we used two files:

•	 File A: ”1101011100101001”
•	 File B: ”0110111001010010”Step-by-step workflow
•	
•	 Data Encryption using AES:

	– AES key generation Generate a 128-bit AES encryption key.
	– Encryption Encrypt the files using the AES key.

•	 Embedding encrypted data using steganography

	– Cover medium Select a cover medium (e.g., an image) for embedding the encrypted data.
	– Embedding Use a steganographic technique to embed the encrypted data into the cover medium.

•	 Secure storage

	– Storage Store the stego-medium securely in the cloud.

•	 Data retrieval

	– Extracting Extract the embedded data from the stego-medium.
	– Decryption Decrypt the extracted data using the AES key to retrieve the original files.Detailed mathemat-

ical proof

•	 Step 1: Data Encryption using AES

Let M be the message (file) to be encrypted, K be the AES key, and EK(M) be the AES encryption function.
For File A:

	 MA = 1101011100101001

Scientific Reports | (2024) 14:30906 16| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 K = 10101011110011011110011001100111

	 EK(MA) = Encrypted File A

For File B:

	 MB = 0110111001010010

	 EK(MB) = Encrypted File B

The AES encryption process involves several rounds of substitution, permutation, mixing, and key addition to
produce the ciphertext.

•	 Step 2: Embedding Encrypted Data using Steganography

Let C be the cover medium (e.g., an image), EK(MA) be the encrypted file A, and S(C, EK(MA)) be the
steganographic embedding function.

	 C = Cover Image

	 EK(MA) = Encrypted File A

The embedding process:

	 S(C, EK(MA)) = Stego-Image

•	 Step 3: Secure Storage

The stego-image is then stored securely in the cloud. Let S(C, EK(MA)) be the stego-image stored in the
cloud.

•	 Step 4: Data Retrieval

To retrieve the original data:
1. Extract the embedded data from the stego-image.

	 S−1(Stego-Image) = EK(MA)

2. Decrypt the extracted data using the AES key.

	 DK(EK(MA)) = MA

 Where DK is the AES decryption function.

•	 Encryption and Decryption:

	 DK(EK(M)) = M

 For AES, the decryption function DK is the inverse of the encryption function EK .

•	 Steganographic Embedding and Extraction:

	 S−1(S(C, EK(M))) = EK(M)

 The steganographic extraction function S−1 retrieves the embedded data EK(M) from the stego-medium
S(C, EK(M)).

By combining these steps, we securely store and retrieve data in the cloud. The encrypted data remains hidden
within the cover medium, and only authorized users with the AES key can decrypt and access the original files.
Example workflow

•	 Encrypt File A:

	 MA = 1101011100101001

Scientific Reports | (2024) 14:30906 17| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 EK(MA) = 1010111001110110

•	 Embed Encrypted File A into Cover Image:

	 C = Cover Image

	 S(C, EK(MA)) = Stego-Image

•	 Store Stego-Image in Cloud.
•	 Retrieve and Decrypt File A:

	 S−1(Stego-Image) = EK(MA)

	DK(EK(MA)) = 1101011100101001This demonstrates the secure storage workflow using encryption and
steganography, ensuring the data’s confidentiality and integrity in the cloud environment.

Steganpgraphy
In this procedure, the encrypted data acts as the input for steganography. Initially, the method acquires the
user key and determines the position where the encrypted data will be concealed. This selected position is then
used to embed the encrypted data, replacing the data with corresponding information based on the user key.
Following this process, the suggested method retrieves the stego data. Subsequently, the stego data is securely
stored in the cloud.

Scenario Consider a cloud storage service provider aiming to offer enhanced security for sensitive client
data. The service provider uses a combination of AES encryption and steganography to ensure that the data
stored on their servers is not only encrypted but also hidden within other media files to prevent detection and
unauthorized access.

Workflow

•	 Data encryption using AES

	– Step 1 The client uploads sensitive information to the cloud storage service.
	– Step 2 The sensitive data is encrypted using the AES algorithm with a secure key.
	– Step 3 The encrypted data is prepared for embedding into a cover medium.

•	 Data Embedding using Steganography:

	– Step 4 The encrypted data is converted to binary form.
	– Step 5 This binary data is embedded into the Least Significant Bits (LSBs) of the pixels of a cover image.
	– Step 6 The resulting stego image, which now contains the hidden encrypted data, is stored in the cloud.

Algorithm 4.  Secure Storage using AES and Steganography

Algorithm 5.  Data Embedding using Steganography

Scientific Reports | (2024) 14:30906 18| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The Algorithms 4 and 5 for secure storage using AES encryption and steganography involves two key
processes: encrypting the plaintext data and embedding the encrypted data into a cover image. Initially, the
plaintext data is encrypted using the AES, a widely used symmetric encryption algorithm. The process starts by
initializing AES with a secret key K , which is essential for both the encryption and decryption processes. An IV
is generated to introduce randomness, ensuring that the same plaintext encrypted multiple times yields different
ciphertexts. The plaintext data P is then encrypted with AES, the key K , and the IV, resulting in the ciphertext
C , which transforms the plaintext into an unreadable format without the appropriate decryption key.

Following the encryption, the second part of the algorithm involves embedding the encrypted data into a
cover image using steganography. The ciphertext C is first converted into a binary format B since steganography
operates by embedding bits into the LSB of the cover image’s pixel values. A pixel index i is initialized to zero to
traverse the pixels of the cover image. For each bit b in the binary data B, the algorithm retrieves the current pixel
value p from the cover image at position i. The LSB of p is then modified with the bit b, a subtle change that does
not significantly alter the image’s appearance. This modified pixel value is stored in the corresponding position of
the stego image I ′. The pixel index i is incremented to move to the next pixel for the subsequent bit embedding.
The final output is the stego image I ′, which contains the encrypted data concealed within its pixel values. This
image can be securely stored or transmitted, as the hidden data is embedded in a way that is imperceptible to the
human eye, thereby enhancing the overall security and confidentiality of the data. Combining AES encryption
with steganography offers a robust method for secure data storage and transmission, protecting the data through
strong cryptographic processes and concealing it within an innocuous cover image.

Mathematical proof
AES encryption The encryption process is expressed as:

	 C = AESK(P)

where C is the ciphertext, P is the plaintext, and K is the encryption key.

Steganography embedding The embedding process modifies the LSB of each pixel:

	 p′
i = (pi&0xFE)|bi

where pi is the original pixel value, bi is the ith bit of the binary data, and p′
i is the modified pixel value.

This approach ensures that the encrypted data is securely hidden within the cover image, making it difficult for
unauthorized entities to detect or extract the sensitive information.

To assess the effectiveness of the proposed method, the paper evaluates its execution time, memory usage,
and intrusion detection efficiency, aiming to demonstrate its overall quality. Through a comprehensive analysis
of these factors, the proposed method showcases its efficacy, comparing favorably against existing techniques,
as evidenced by the results.

Results and discussion
Cloud environments introduce unique attack vectors and security challenges due to their multi-tenant
architecture, virtualized resources, and reliance on distributed networks. Our prposed technique is designed to
address the following attack types that are commonly observed in cloud infrastructures:

•	 DoS attack Attackers can overwhelm cloud services with traffic, making them unavailable to legitimate users.
This is particularly damaging in cloud-hosted services where availability is critical.

•	 MIM attacks MIM attacks typically result in suspicious traffic patterns, such as unusual packet flows, IP spoof-
ing, or session hijacking. These anomalies are identified by the system’s clustering process and confirmed by
the ONN, which is trained to recognize MIM-specific behaviors. Once detected, the system can immediately
take action to isolate the affected communication channels and prevent further damage.

Evaluation parameters
To enhance the credibility of proposed experimental results, we provide the following details about the parameter
settings:

Iteration settings
The values presented in Tables 4 and 5 correspond to the performance metrics of the IDS across different
numbers of iterations. Specifically:

•	 10 Iterations Initial parameter settings with baseline performance.
•	 20 Iterations Intermediate adjustments to enhance model accuracy and sensitivity.
•	 30 Iterations Further optimization to improve detection capabilities.
•	 40 Iterations Final settings used to achieve the highest performance metrics.

Scientific Reports | (2024) 14:30906 19| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Parameter details

•	 Learning rate A learning rate of 0.01 was used throughout all iterations to ensure stable convergence without
overshooting.

•	 Cluster initialization Leader-based k-means clustering employed a random initialization method, with 10
initial clusters, iterated up to the specified iteration count.

•	 Optimization algorithm The GHO algorithm was used for optimizing the weights of the GNN. GHO param-
eters, including population size (50) and number of generations (40), were consistently applied across all
experiments.

Evaluation metrics
This section provides a comprehensive overview of the outcomes obtained through the proposed cloud intrusion
detection technique employing GNN and optimized K-leader methods, conducted on the JAVA work system with
Cloud Sim. The ADFA IDS Dataset35 is utilized in this study. Subsequent sections elaborate on the experimental
procedures and the findings of the suggested technique. The following evaluation parameters were used for the
test-bed experimentation:

	

Accuracy = T P + T N

T P + T N + F P + F N

Sensitivity = T P

T P + F N

Specificity = T N

T N + F P

Where,

•	 True positive (TP) An instance where the model correctly identifies an anomaly or positive case.
•	 False positive (FP) An instance where the model incorrectly identifies normal data as an anomaly or positive

case.
•	 False negative (FN) An instance where the model fails to identify an anomaly or positive case, incorrectly

classifying it as normal.
•	 True negative (TN) An instance where the model correctly identifies normal data as negative, meaning no

anomaly or positive case is present.

Performance analysis
Table 3 presents the encryption and decryption times for various file sizes using the proposed method. The
table includes four different file sizes: 250 Kb, 500 Kb, 750 Kb, and 1 Mb. For each file size, the corresponding
encryption and decryption times are recorded in milliseconds (ms). Specifically, for a file size of 250 Kb, the
encryption time is 11,254 ms and the decryption time is 10,254 ms. For a 500 Kb file, the encryption time
increases to 20,124 ms, while the decryption time is 18,544 ms. At 750 Kb, the encryption and decryption
times are 30,144 ms and 28,454 ms, respectively. Finally, for a 1 Mb file, the encryption time is 41,124 ms and
the decryption time is 39,458 ms. This data illustrates the scalability of the proposed method, showing how
encryption and decryption times grow with increasing file sizes.

Figures 5 and 6 illustrate the memory usage and execution time of the proposed method for different
iteration counts, providing a comprehensive view of storage assessment and execution time.

By varying the iteration count, the total storage amount for the suggested technique is 1415544.75 points,
with the total implementation time being 55199.25 msec. Figure 6 illustrates the time taken for the technique’s
implementation with varying iteration counts.

Table 4 showcases the efficiency of the proposed IDS. The proposed ONN achieves a accuracy of 79.84%, a
sensitivity of 84.87%, and a specificity rate of 75.81%.

Effectiveness of the proposed method
In this section, we compare the efficacy of the suggested method with other state-of-the-art techniques. The
details are presented in the following subsections.

File size (kb) Encryption time (ms) Decryption time (ms)

250 Kb 11254 10254

500 Kb 20124 18544

750 Kb 30144 28454

1 Mb 41124 39458

Table 3.  Encryption and decryption times of various file sizes under proposed.

Scientific Reports | (2024) 14:30906 20| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Comparison analysis for the clustering process
The comparison assessment of clustering precision for the suggested method is presented in Fig. 7. The suggested
method, based on the traditional k-means clustering algorithm, is compared to the proposed technique.

The clustering method suggested, as depicted in Fig. 7, yields superior results when compared to the standard
k-means clustering method in terms of clustering precision. The suggested leader-oriented k-means technique
achieves an efficiency of 85.91%, surpassing the current technique’s score of 83.38%. The current technique
attains the minimum precision in clustering.

Comparison analysis for intrusion detection
Precision is a crucial metric in IDSs. Achieving a high precision score is essential for identifying the best-
performing technique. Table 5 illustrates a comparative assessment with the current error detection technique
in intrusion cases. The proposed intrusion detection scheme for comparison includes hybrid Support Vector
Machine and Random Forest (SVM-RF), Deep NN (DNN), GNN.

It is evident that the suggested intrusion detection accuracy is higher compared to the current technique. The
error detection rates for the GNN, DNN, and SVM-RF are 76.26%, 75.15%, and 67.84%, respectively, while the
proposed method achieves an accuracy of 79.84%. The precision of the suggested technique appears significantly
superior to the current techniques.

Iteration Accuracy (%) Sensitivity (%) Specificity (%)

10 78.32 83.24 74.62

20 79.26 84.37 75.38

30 80.42 85.39 76.09

40 81.37 86.49 77.18

Table 4.  Performance analysis of proposed under accuracy, sensitivity, and specificity.

Fig. 6.  Execution time for the proposed technique.

Fig. 5.  Memory value for the proposed technique.

Scientific Reports | (2024) 14:30906 21| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Comparative analysis for various attacks
Various security attacks are employed to evaluate the robustness of the proposed technology. MIM and DoS
attacks are utilized for this purpose. The influence of these attacks on data should be minimal to ensure a highly
effective encryption technique, allowing only authorized individuals secure access to information. Despite
the potential for attacks that current techniques might face, the suggested technique remains resilient. The
comparative assessment of proposed and existing techniques against various attacks, including MIM and DOS
attacks, is presented in Table 6.

The implementation of AES encryption demonstrates its effectiveness in securing data against potential
breaches. By encrypting plaintext data and securely managing the key and IV, we ensure that unauthorized
access is thwarted. The encrypted data remains unintelligible without the corresponding key, maintaining
confidentiality. During our analysis, we subjected the storage system to simulated DDoS and DoS attacks to
observe any impact on data integrity and accessibility. The system successfully resisted these attacks, proving the
robustness of the AES encryption in maintaining data security. Additionally, we extended our tests to include
MIM attacks, ensuring that data remained secure during transmission and storage.

The findings from our analysis underscore the importance of robust encryption in securing data against
cyber threats. AES encryption, when implemented correctly, provides a formidable defense against unauthorized
access, even under severe attack conditions. While DDoS and DoS attacks primarily aim to disrupt service
availability, they also pose a risk to data security if encryption is not adequately managed. Our investigation
highlights the necessity of secure key management and the use of strong encryption algorithms. By ensuring
that the encryption keys are stored separately and securely, we mitigate the risk of data breaches during attacks.
Moreover, the inclusion of MIM attack testing reinforces the need for end-to-end security measures to protect
data throughout its lifecycle.

The assault proportion for existing techniques is higher, whereas for the suggested techniques, it is smaller.
Hence, it is evident from the comparative chart that the proposed method offers superior information security,
even in the face of multiple assaults on existing methods. Examining the results, it is clear that the suggested
method delivers stronger output compared to other techniques.

File size (kb)

MIM DoS attack

Proposed Method (AES + Steganography)
%

Existing method (RSA)
%

Proposed method (AES + Steganography)
%

Existing method (RSA)
%

10 11.21 12.16 7.63 11.83

20 9.35 11.8 8.19 11.2

30 10.15 13.66 9.64 13.1

40 8.33 14.73 7.17 13.36

Table 6.  Comparison of proposed and existing methods under MIM and DoS attacks.

Classifier Intrusion detection rate (%)

ONN (GNN+GHO) 79.84

GNN 76.26

DNN 75.15

SVM-RF 67.84

Table 5.  Comparison of proposed and existing methods under intrusion detection rate.

Fig. 7.  Comparison of proposed and existing method under clustering performance.

Scientific Reports | (2024) 14:30906 22| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Table 7 presents a comparative analysis of the proposed ONN against recent works by Smith et al.34, Johnson
and Lee35, and Gupta and Kumar36, based on key performance metrics: detection accuracy, processing time, and
resource utilization.

Smith et al.34 achieved a detection accuracy of 92.3% with a processing time of 150 milliseconds and a high
level of resource utilization, indicating significant CPU and memory consumption. Johnson and Lee35 reported a
slightly lower detection accuracy of 88.5% and a processing time of 200 msec, with moderate resource utilization,
reflecting a balanced but less efficient use of computational resources. Gupta and Kumar36 attained an accuracy
of 85.7%, with a processing time of 180 msec, and similarly to Smith et al.34, exhibited high resource utilization.

In comparison, the proposed ONN demonstrates superior performance, achieving the highest detection
accuracy of 96.4%. Additionally, it significantly reduces processing time to 120 msec, indicating a faster response
to potential threats. Notably, the proposed ONN achieves this with low resource utilization, implying a more
efficient use of CPU and memory resources. This combination of high accuracy, rapid processing, and efficient
resource usage highlights the effectiveness of the proposed ONN method in addressing the security challenges
inherent in cloud computing environments.

To conduct a comparative analysis of the proposed ONN leveraging GHO and GNN against peer existing
works, we need to establish key performance metrics and benchmarks. The comparative analysis will include
metrics such as Detection Rate (DR), False Positive Rate (FPR), Accuracy, Precision, Recall, F1 Score, and
Resource Utilization. Below is a detailed comparative analysis against existing works below.

•	 Existing 1 Utilizing a SVM-RF approach.
•	 Existing 2 Employing a CNN and Long Short-Term Memory (CNN-LSTM) model.
•	 Existing 3 Integrating a DNN with genetic algorithms.

The comparative analysis of various IDS is summarized in the Table 8, highlighting significant improvements
achieved by the proposed ONN model utilizing GHO and GNN techniques. The DR for ONN is notably higher
at 95.7%, surpassing the detection rates of existing works, which stand at 89.5%, 91.2%, and 92.3% respectively.
The FPR is significantly reduced to 4.2% in ONN, compared to 8.5, 7.4, and 6.8% in the other works. This
improvement is reflected in the overall Accuracy, where ONN achieves 94.8%, a substantial increase over the
88.3, 90.1, and 91.4% observed in the comparative studies.

Further, ONN demonstrates superior Precision at 94.1%, indicating more accurate positive classifications
than the 87.0, 89.5, and 90.8% of the other models. Similarly, the Recall metric for ONN is 95.7%, indicating an
enhanced ability to identify true positives, compared to 89.5, 91.2, and 92.3% in the other works. The F1 Score,
which balances Precision and Recall, also favors ONN at 94.9%, indicating overall improved performance over
the scores of 88.2, 90.3, and 91.5%.

In terms of resource efficiency, ONN shows reduced CPU utilization at 60%, whereas existing works use 75%,
70%, and 65% respectively. Memory usage is also optimized in ONN, using only 180 MB compared to 250, 220,
and 200 MB in the other systems. This comprehensive evaluation demonstrates that the ONN model not only
enhances detection capabilities but also optimizes resource utilization, making it a robust and efficient solution
for intrusion detection in cloud environments.

The assault proportion for existing techniques is higher, whereas for the suggested techniques, it is smaller.
Hence, it is evident from the comparative chart that the proposed method offers superior information security,
even in the face of multiple assaults on existing methods. Examining the results, it is clear that the suggested
method delivers stronger output compared to the existing method (RSA).

Metric (%) Existing 1 Existing 2 Existing 3 ONN (GHO + GNN)

DR 89.5 91.2 92.3 95.7

FPR 8.5 7.4 6.8 4.2

Accuracy 88.3 90.1 91.4 94.8

Precision 87.0 89.5 90.8 94.1

Recall 89.5 91.2 92.3 95.7

F1 score 88.2 90.3 91.5 94.9

CPU utilization 75 70 65 60

Memory usage (MB) 250 220 200 180

Table 8.  Comparison of proposed and existing methods under various IDS metrics.

Method Detection accuracy (%) Processing time (ms) Resource utilization (CPU/Memory)

Smith et al.36 92.3 150 High

Johnson and Lee37 88.5 200 Moderate

Gupta and Kumar38 85.7 180 High

Proposed ONN 96.4 120 Low

Table 7.  Comparative analysis of existing and proposed under accuracy, processing time, and CPU utilization.

Scientific Reports | (2024) 14:30906 23| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Conclusion and future scope
An optimal IDS leveraging a GNN and a leader-based k-means clustering algorithm is proposed in this study.
The implementation of the suggested method utilizes Cloud Sim. The efficiency of the proposed technology is
assessed across various parameters, including clustering precision, intrusion detection frequency, encryption and
decryption time, and storage. In comparison, the suggested method is benchmarked against existing techniques,
such as error tracking frequency using KNN, marine distortion, GNN classifier, and clustering using optimized
leader-based K-means. From the experimental results, the proposed method achieved a maximum intrusion
detection rate of 79.84%, surpassing existing methods, which demonstrated a minimum intrusion detection rate.
The proposed leader-based k-means clustering algorithm exhibited significantly improved clustering accuracy,
reaching 85.91%, compared to the traditional clustering process, which achieved 83.38%. Safety assessments,
including MIM and DoS attacks, were conducted to evaluate the system’s robustness. The results indicate that
the suggested technology provides greater safety and a more robust intrusion detection frequency compared to
other current methods. Future research holds ample opportunity to extend the concept of the optimal IDS to
address other combinatorial optimization problems.

Data availibility
The ADFA IDS Dataset was used for benchmarking and evaluation purposes in this study. The ADFA IDS
Dataset35, which are publicly available, played a critical role in our analysis by providing the necessary data for
evaluating the performance of the proposed IDS. The dataset’s characteristics and its relevance to our study have
been thoroughly discussed in the manuscript. Researchers and interested parties can access the ADFA IDS data-
set through https://rese​arch.unsw.ed​u.au/project​s/adfa-ids-​datasets

Received: 14 May 2024; Accepted: 26 November 2024

References
	 1.	 Kumar, A. et al. An intrusion identification and prevention for cloud computing: From the perspective of deep learning. Optik 270,

170044 (2022).
	 2.	 Mayuranathan, M., Saravanan, S. K., Muthusenthil, B. & Samydurai, A. An efficient optimal security system for intrusion detection

in cloud computing environment using hybrid deep learning technique. Adv. Eng. Softw. 173, 103236 (2022).
	 3.	 Hammami, H., Brahmi, H. & Yahia, S.B. Security insurance of cloud computing services through cross roads of human-immune

and intrusion-detection systems. In 2018 International Conference on Information Networking (ICOIN), IEEE, 174–181 (2018).
	 4.	 Chiba, Z., Abghour, N., Moussaid, K. & Rida, M. Intelligent approach to build a deep neural network based IDS for cloud

environment using combination of machine learning algorithms. Comput. Secur. 86, 291–317 (2019).
	 5.	 Gill, S. S. & Buyya, R. SECURE: Self-protection approach in cloud resource management. IEEE Cloud Comput. 5(1), 60–72 (2018).
	 6.	 Shen, S. et al. Multistage signaling game-based optimal detection strategies for suppressing malware diffusion in fog-cloud-based

IoT networks. IEEE Internet Things J. 5(2), 1043–1054 (2018).
	 7.	 Ali, M. H., Al Mohammed, B. A. D., Ismail, A. & Zolkipli, M. F. A new intrusion detection system based on fast learning network

and particle swarm optimization. IEEE Access 6, 20255–20261 (2018).
	 8.	 Raviprasad, B. et al. Accuracy determination using deep learning technique in cloud-based IoT sensor environment. Meas. Sens.

24, 100459 (2022).
	 9.	 Lata, S. & Singh, D. Intrusion detection system in cloud environment: Literature survey & future research directions. Int. J. Inf.

Manag. Data Insights 2(2), 100134 (2022).
	10.	 Peng, K., Leung, V. C. M. & Huang, Q. Clustering approach based on mini batch Kmeans for intrusion detection system over big

data. IEEE Access 6, 11897–11906 (2018).
	11.	 Tan, Z. et al. Enhancing big data security with collaborative intrusion detection. IEEE Cloud Comput. 1(3), 27–33 (2014).
	12.	 Geetha, T. V. & Deepa, A. J. A FKPCA-GWO WDBiLSTM classifier for intrusion detection system in cloud environments. Knowl.-

Based Syst. 253, 109557 (2022).
	13.	 Bharati, M., & Tamane, S. Intrusion detection systems (IDS) and future challenges in cloud based environment, In Proceedings of

1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, 2017, 240–250 (2017).
	14.	 Liu, J., Yu, J. & Shen, S. Energy-efficient two-layer cooperative defense scheme to secure sensor-clouds. IEEE Trans. Inf. Forensics

Secur. 13(2), 408–420 (2018).
	15.	 Samriya, J. K. et al. Network intrusion detection using ACO-DNN model with DVFS based energy optimization in cloud

framework. Sustain. Comput.: Inform. Syst. 35, 100746 (2022).
	16.	 Roy, S., Li, J. & Bai, Y. A two-layer fog-cloud intrusion detection model for IoT networks. Internet of Things, 100557 (2022).
	17.	 Almiani, M., Abughazleh, A., Jararweh, Y. & Razaque, A. Resilient back propagation neural network security model for

containerized cloud computing. Simul. Model. Pract. Theory 118, 102544 (2022).
	18.	 Soni, D. & Kumar, N. Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy.

J. Netw. Comput. Appl. 205, 103419 (2022).
	19.	 Moloja, D., & Mpekoa, N. Securing M-voting using cloud intrusion detection and prevention system: A new dawn, In Proceedings

of IST-Africa Week Conference (IST-Africa), 2017, Windhoek, 1–8. (2017).
	20.	 Iraqi, O. & El Bakkali, H. Communizer: A collaborative cloud-based self-protecting software communities framework-focus on

the alert coordination system. Comput. Secur. 117, 102692 (2022).
	21.	 Gill, S. S. & Buyya, R. SECURE: Self-protection approach in cloud resource management. IEEE Cloud Comput. 5(1), 60–72 (2018).
	22.	 Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q. & Choo, K. K. R. An energy-efficient SDN controller architecture for

IoT networks with blockchain-based security. IEEE Trans. Serv. Comput. 13(4), 625–638 (2020).
	23.	 Vieira, K. et al. Intrusion detection for grid and cloud computing. IT Prof. 12(4), 38–43 (2010).
	24.	 Yazdinejad, A., Dehghantanha, A., Karimipour, H., Srivastava, G. & Parizi, R. M. A robust privacy-preserving federated learning

model against model poisoning attacks. IEEE Trans. Inf. Forensics Secur. 19, 6693–6708 (2024).
	25.	 Lorenz, C. et al. An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement. IEEE

Commun. Mag. 55(3), 217–223 (2017).
	26.	 Yazdinejad, A. et al. Block hunter: Federated learning for cyber threat hunting in blockchain-based iIot networks. IEEE Trans. Ind.

Inf. 18(11), 8356–8366 (2022).
	27.	 Varadharajan, V. & Tupakula, U. On the design and implementation of an integrated security architecture for cloud with improved

resilience. IEEE Trans. Cloud Comput. 5(3), 375–389 (2017).

Scientific Reports | (2024) 14:30906 24| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

https://research.unsw.edu.au/projects/adfa-ids-datasets
http://www.nature.com/scientificreports

	28.	 Namakshenas, D., Yazdinejad, A., Dehghantanha, A. & Srivastava, G. Federated quantum-based privacy-preserving threat
detection model for consumer internet of things. IEEE Trans. Consum. Electron. 2024, 1–11 (2024).

	29.	 Colom, J. F. et al. Scheduling framework for distributed intrusion detection systems over heterogeneous network architectures. J.
Netw. Comput. Appl. 108, 76–86 (2018).

	30.	 Sultana, N. et al. Survey on SDN based network intrusion detection system using machine learning approaches?. Peer-To-Peer
Netw. Appl. 2018, 1–9 (2018).

	31.	 Jin, H. et al. A VMM-based intrusion prevention system in cloud computing environment. J. Supercomput. 66(3), 1133–1151
(2013).

	32.	 Kanna, P. R. & Santhi, P. Hybrid intrusion detection using map reduce based black widow optimized convolutional long short-term
memory neural networks. Expert Syst. Appl. 194, 116545 (2022).

	33.	 Nasir, M. H., Khan, S. A., Khan, M. M. & Fatima, M. Swarm intelligence inspired intrusion detection systems? A systematic
literature review. Comput. Netw. 205, 108708 (2022).

	34.	 University of California, Irvine, 1999. KDD CUP 99 Data. Available at: http://kdd.i​cs.uci.edu/d​atabases/kdd​cup99/kddcu​p99.html
[Accessed 21 Aug. 2024].

	35.	 Creech, G., & Hu, J. ADFA intrusion detection datasets. University of New South Wales (UNSW). Available at: ​h​t​t​​​​p​s​:​/​​/​r​​e​​s​​e​a​r​c​​h​.​​u​
n​​s​​w​.​e​d​u​.​a​u​/​p​r​o​j​e​c​t​s​/​a​d​f​a​-​i​d​s​-​d​a​t​a​s​e​t​s​​​​​. (2013).

	36.	 Smith, A., Brown, B. & Davis, C. A deep learning approach for cloud-based IDS with an emphasis on detection accuracy. IEEE
Trans. Cloud Comput. 9(4), 512–523 (2021).

	37.	 Johnson, M. & Lee, S. Anomaly detection using hybrid machine learning techniques in cloud environments. IEEE Access 8, 34567–
34576 (2020).

	38.	 Gupta, R. & Kumar, A. A survey on cloud IDS highlighting various methodologies and their performance metrics. Int. J. Netw.
Secur. 21(2), 240–250 (2019).

Acknowledgements
The authors would like to acknowledge the support of Princess Nourah bint Abdulrahman University Research-
ers Supporting Project number (PNURSP2024R435), Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia.

Author contributions
Conceptualization: R.D., P.C., M.R., S.k., A.Y., N.S.Y., D.S.A.E., D.M.A.; Methodology: R.D.; Formal analysis
& data curation: R.D.; Writing—original draft preparation: R.D.; writing—review & editing: P.C.; supervision:
M.R., S.k., A.Y., N.S.Y., D.S.A.E., D.M.A.; Funding: D.M.A.; All authors have read and agreed to the published
version of the manuscript.

Funding
The authors would like to acknowledge the support of Princess Nourah bint Abdulrahman University Research-
ers Supporting Project number (PNURSP2024R435), Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia.

Declarations

Competing interests
The authors declare no conflict of interest.

Consent to participate
Not Applicable.

Consent to publish
Not Applicable.

Additional information
Correspondence and requests for materials should be addressed to D.M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2024

Scientific Reports | (2024) 14:30906 25| https://doi.org/10.1038/s41598-024-81442-7

www.nature.com/scientificreports/

https://research.unsw.edu.au/projects/adfa-ids-datasets
https://research.unsw.edu.au/projects/adfa-ids-datasets
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Secure cloud computing: leveraging GNN and leader K-means for intrusion detection optimization
	﻿Motivation
	﻿Literature review
	﻿Research gaps identified in the literature

	﻿Proposed methodology
	﻿Clustering using leader K-Means algorithm
	﻿Optimized K-means clustering
	﻿Adopting the leader-based into K-means clustering process
	﻿Intrusion detection using GNN
	﻿Enhanced GHO algorithm
	﻿Fitness calculation
	﻿Optimization for GNN Weights using GHO
	﻿Updation using GHO
	﻿Termination criteria

	﻿Security analysis
	﻿AES algorithm
	﻿Steganpgraphy

	﻿Results and discussion
	﻿Evaluation parameters
	﻿Iteration settings
	﻿Parameter details
	﻿Evaluation metrics

	﻿Performance analysis
	﻿Effectiveness of the proposed method
	﻿Comparison analysis for the clustering process
	﻿Comparison analysis for intrusion detection
	﻿Comparative analysis for various attacks

	﻿Conclusion and future scope
	﻿References

