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Abstract
This paper introduces a multi-objective variant of the Greylag Goose Optimizer (MOGGO) to tackle complex structural 
optimization problems. Inspired by the cooperative behavior of geese in flight, MOGGO employs dynamic grouping to 
enhance problem-solving efficiency. Six truss structures undergo simultaneous topology, shape, and size optimization using 
MOGGO, aiming to maximize reliability while minimizing structural mass. By incorporating non-dominance sorting and 
archiving techniques, MOGGO extends the single-objective Greylag Goose Optimizer to effectively address trade-offs 
between competing objectives. Evaluation metrics and statistical tests demonstrate MOGGO's superior performance in han-
dling large structural optimization problems, preserving more Pareto-optimal sets, and achieving greater convergence and 
variance in objective and decision spaces. MOGGO’s ability to manage conflicting objectives is further validated through 
diversity analysis, with swarm plots illustrating its superior convergence behavior across iterations. Overall, MOGGO proves 
to be an efficient and effective approach for addressing challenging reliability-based multi-objective structural optimization 
problems. Query ID="Q1" Text="Please confirm if the author names are presented accurately and in the correct sequence 
(given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify 
authors last name]. Also, kindly confirm the details in the metadata are correct."

Keywords  Non-dominated sorting · Truss · Reliability · Constraint-based methodologies · Diversity analysis · Convergence 
behavior

1  Introduction

Engineering optimization aims to discover the optimal solu-
tion for a given engineering challenge, which has historically 
required extensive trial and error. This involved repetitive 
prototype development to assess various designs, such as 

altering a car's shape to minimize wind resistance. However, 
this process was costly, labor-intensive, and prone to human 
error. To address these challenges, automated optimization 
algorithms have been developed to efficiently find optimal 
designs, reducing costs, decreasing human involvement, and 
fewer errors. Nonetheless, building effective optimization 
algorithms remains crucial for solving complex engineer-
ing problems. The search for the most efficient solutions to 
challenging issues has long been a primary focus of engi-
neering optimization. Conventional techniques frequently 
required arduous trial and error procedures that took time, 
money, and human interaction. But now that metaheuris-
tic algorithms are gaining popularity, there's a new way to 
approach these problems. Metaheuristic [1], robust and ver-
satile algorithms are an adaptable and optimistic approach 
to various engineering applications, particularly those with 
non-linear or high-dimensional problems [2].

As optimization techniques, metaheuristic algorithms are 
well known and have been used extensively in research to 
find optimal solutions by minimizing or maximizing fitness 
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functions. These algorithms are categorized as single-
objective optimization algorithms since they only search 
for a single global solution when dealing with a single fit-
ness criterion. However, multi-objective optimization adds 
complexity to the process by maximizing many competing 
objectives simultaneously. Despite this complexity, multi-
objective optimization issues in structural optimization can 
be addressed using a variety of approaches. Recently pro-
posed effective and efficient metaheuristics mainly classified 
into swarm intelligence, human behavior-based, physics low 
inspired and evolution-based such as Stochastic paint-based 
optimizer [3], Ebola optimization search algorithm [4], 
Botox optimization algorithm [5], Greylag Goose Optimi-
zation [6], Squid game based optimization [7], Grasshopper 
optimization algorithm [8], The cheetah optimizer [9], Fick’s 
law algorithm [10], Geometric mean optimizer [11], Puma 
optimizer [12], Electric eel foraging optimization [13], Hip-
popotamus optimization algorithm [14], Synergistic swarm 

optimization algorithm [15], Zebra Optimization algorithm 
[16], Quadratic interpolation optimization [17], The moun-
tain gazelle optimization [18], Mantis search algorithm [19], 
Crayfish optimization algorithm [20], Kepler Optimization 
algorithm [21], Altruistic population algorithm [22]. While 
metaheuristic algorithms show promise for optimization, 
recent critiques emphasize the need for rigorous methodol-
ogy and transparency in their design.

The "No Free Lunch" [23] Theorem underscores the 
understanding that no single metaheuristic can universally 
solve all real-world problems. This recognition has driven 
the continuous development and refinement of various 
metaheuristic methods. In recent times, the literature has 
documented numerous Multi-Objective optimization (MO) 
approaches, such as MO water cycle optimization [24], MO 
grasshopper [25], Differential evolution for MO optimization 
[26], MO dragonfly algorithm [27], MO bat algorithm [28], 
MO artificial vultures optimization [29], MO Lichtenberg 

Table 1   Details of exploration phase (Ex1)

Steps Mathematical representation of Ex1

1 P(t + 1) = P∗(t) − A.|C.P∗(t) − P(t)|
P(t + 1) is the updated position of the search agent. A and C can be updated with the below equation with a change linearly [2,0]; p (t) is 

an agent at an iteration t
A = 2ar

1
− a , C = 2r

2
 ; where, r1 and r2 are random values [0,1]

2 P(t + 1) = w
1
∗ Ppaddle1 + z ∗ w

2
∗ (Ppaddle2 − Ppaddle3) + (1 − z) ∗ w

3
∗ (P − Ppaddle1),for |A| ≥ 1

Where,Ppaddle1 , Ppaddle2 , Ppaddle3 are three random search agents that will not affect the leader position to achieve greater exploration. w1, 
w2, w3 = [0,2], and z decreases exponentially by step3

3 z = 1 − (
t

tmax

)2 , t is the iteration number, and tmax is the maximum number of iterations
4 P(t + 1) = w

4
∗ |P∗(t) − P(t)|.ebl. cos(2�l) + [2w

1
(r

4
+ r

5
)] ∗ P∗(t)

P(t + 1) is a secondary updating process, during a and A decreases r
3
≥ 0.5 . b is a constant, l = [−1,1], w4 = [0,2], r4 and r5 = [0,1]

Table 2   Details of the 
exploitation phase (Ex2)

Steps Mathematical representation of Ex2

1 P
1
= PSentry1 − A

1
.
|||C1

PSentry1 − P
|||

P
2
= PSentry2 − A

2
.
|||C2

PSentry2 − P
|||

P
3
= PSentry3 − A

3
.
|||C3

PSentry3 − P
|||

P1, P2, and P3 are position updates by three solutions (Psentry1, Psentry2, 
Psentry3), which guide other individuals (PnonSentry). A1, A2, A3 are calculated 
as A = 2ar

1
− a and C1, C2 and C3 are calculated as C = 2r

2

2 P(t + 1) = Pi
|||
3

0

The updated positions for the population P(t + 1) are an average of P1, P2 and P3

3 P(t + 1) = P(t) + D(1 + z) ∗ w ∗ (P − PFlock1)

While flying, p (t + 1) updates its position by searching the area around the best 
solution (leader). PFlock1 is an enhancement that explores the region closest to 
the ideal response
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algorithm [30], MO passing vehicle search [31], MO heat 
transfer search [32], MO atomic orbital search [33], MO 
material generation algorithm [34], MO crystal struc-
ture algorithm [35], Fast and elitist MO genetic algorithm 
(NSGA-II) [36] and MO Hippopotamus algorithm[37], are 
proposed by many researchers to solve numerous MO and 
many-objective optimization problems[38]. Also, improving 
the MO algorithms by various strategies further enhances 
the effectiveness, such as opposition-based sine cosine algo-
rithm for global optimization [39], decomposition-based 
MO heat transfer search for structural optimization [40], MO 
multi-verse optimization algorithm with two-archive strat-
egy[41] [42]Adaptive symbiotic organisms search for MO 
truss structures [43], improved MODE based on a decom-
position strategy [44].

Truss optimization, usually divided into topology, shape, 
and size optimization (TSS), is an essential component of 
structural optimization. Recent research supports simulta-
neous optimization of these variables—also referred to as 
simultaneous TSS [45] Design—instead of the more conven-
tional sequential approach. Optimization is done on objec-
tive functions like weight, compliance, and displacement; 
however, permissible stress, displacement, buckling load, 
and occasionally frequency limits are considered constraints. 
Truss reliability optimization (TRO) [46] is a more thorough 
technique since it considers uncertainties in applied loads 
and material qualities. The optimization problem involves 
two objectives: minimizing structural mass and maximizing 
structural reliability, with constraints based on the probabil-
ity of failure.

This study presents a MO adaptation of the Greylag 
Goose Optimization (GGO) [6] The algorithm MOGGO 
is inspired by the social and dynamic behaviours observed 
in geese. Geese's lifelong bonds and collective behaviours, 
including protective grouping and V formations during 
migration, are key influences in the algorithm's design. As 
the iteration process moves forward in search of the opti-
mal solution, the algorithm dynamically controls two potent 
stages: exploration and exploitation. In multi-objective 
optimization, the main technique for determining a Pareto 
front combines population-based metaheuristics with non-
dominated sorting. This iterative method continuously 
enhances the Pareto archive by combining data from the 
current population and the archive from the previous itera-
tion. The algorithm's two phases optimize parameter set-
tings dynamically, thereby improving search intensity and 
diversity. Additionally, effective clustering techniques are 
employed to preserve search diversity and enable compelling 
exploration of the large design space, which is particularly 
difficult in MO metaheuristics.

1.	 The single-objective swarm-based Greylag Goose algo-
rithm combines an elitist non-dominant sorting method 

and archive mechanism to develop the novel MOGGO 
algorithm. This integration maintains Pareto's optimum 
dominance while improving the convergence and diver-
sity of solutions.

2.	 The performance of MOGGO for six truss structures is 
compared with seven state-of-the-art MO optimization 
algorithms, viz. MO bat algorithm (MOBA) [28], MO 
water cycle algorithm (MOWCA) [24], MO dragonfly 
algorithm (MODA) [27], MO differential evolution 
(DEMO) [26], non-dominated sorting genetic algorithm-
II (NSGA-II) [36], MO grasshopper optimization algo-
rithm (MOGOA) [25], MO ant lion optimizer (MOALO) 
[47].

3.	 Performance comparisons between the proposed 
MOGGO and other state-of-the-art algorithms are con-
ducted using various performance metrics across all 
selected structural optimization problems.

4.	 The qualitative characteristics of each algorithm's best 
Pareto-front plots are analyzed. Additionally, a compre-
hensive study ranks the algorithms using a statistical test 
at a prescribed significance level.

5.	 Swarm plots and diversity curves illustrate the conver-
gence and divergence of the proposed MO algorithms, 
providing visualizations of efficient optimization pro-
cesses.

A newly developed MOGGO algorithm is utilized for simul-
taneous TSS optimization of six truss structures: 45-bar, 
15-bar, 25-bar, 39-bar, 68-bar, and 224-bar. The objective 
is to minimize structural mass while maximizing reliability, 
with the constraint of ensuring that the probability of fail-
ure does not exceed 5%. The critical advancements of this 
research and its evolution, which exceed current contempo-
rary standards, are outlined as follows:

The structure of the manuscript is organized as follows.

•	 Section 2 represents the mathematical model of the inno-
vative GGO algorithm with a dual-phase approach.

•	 Section 3 elaborates on the proposed MOGGO and out-
lines the formulations of the MO structure reliability-
based optimization problems.

•	 Section 4 formulates the truss design problems, non-
dominating strategy, archiving techniques, and an evalu-
ation matrix overview.

•	 Section 5 of the manuscript provides the experimental 
assessment of the MOGGO optimizer and compares its 
performance with other well-known algorithms with 
well-known performance matrices and statistical tests.

•	 The study concludes by offering final observations and 
insights in Sect. 6.
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2 � Mathematical representations of GGO

The social and dynamic behaviours of geese serve as inspi-
ration for the proposed GGO algorithm, which highlights 
the creatures' collective dynamics, loyalty, and protective 
instincts. GGO starts by creating populations at random, 
each of whom stands for a possible solution. These individu-
als comprise a population, and their fitness is assessed using 

an objective function. The algorithm dynamically divides 
individuals into exploration and exploitation groups, which 
modifies the number of groups according to the optimal 
solution. GGO strives for effective optimization by avoid-
ing local optima and combining aspects of both exploration 
and exploitation. The GGO's approach starts by randomly 
creating individuals to symbolize possible solutions. The 
individuals who comprise the GGO population represented 

Fig. 1   Flowchart of MOGGO
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Table 3   Design considerations for the truss Problems

Truss structures Variable details Design parameters details

45-bar Loading conditions Nodes 7,8 and 9 (Fy = −44.482)
Material considerations E = 6.895 × 1010

ρ = 2767.990
σy = 1.724 × 108

Topology, size (45) Ai ϵ [5.806, 64.52] × 10–5 m2, i = 1, 2, 3, …, 45
15-bar Loading conditions Nodes 8 (Fy = −44.482)

Material considerations E = 6.895 × 1010

ρ = 2767.990
σy = 1.724 × 108

Shape (8) x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8

2.540 m ≤ x2, y2, y3 ≤ 3.556 m; 5.588 m ≤ x3 ≤ 6.604 m; 1.270 m ≤ y4 ≤ 2.268 m; 
0.508 m ≤ y8 ≤ 1.524 m; −0.508 m ≤ y6, y7 ≤ 0.508 m

Topology, sze (15) S = {7.161, 9.097, 11.23, 14.19, 17.42, 18.52, 22.39, 28.39, 34.77, 61.55, 67.74, 75.74, 86.00, 96.00, 
113.8, 138.2, 174.0, 180.6, 202.0, 230.0, 246.0, 310.0, 384.0, 424.0, 464.0, 550.0, 600.0, 700.0, 
860.0, 921.9, 1108, 1237} × 10–5 m2

25-bar Loading conditions Nodes 1 (Fx = 4.448, Fy = −44.482, Fz = −44.482)
Nodes 2 (Fy = −44.482, Fz = −44.482)
Nodes 3 (Fx = 2.224)
Nodes 6 (Fx = 2.669)

Material considerations E = 6.895 × 1010

ρ = 2767.990
σy = 2.758 × 108

Shape (5) x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10; y3 = y4 = -y5 = -y6; y7 = y8 = -y9 = -y10; z3 = z4 = z5 = z6

0.508 m ≤ x4 ≤ 1.524 m; 1.016 m ≤ x8, y4 ≤ 2.032 m; 2.540 m ≤ y 8 ≤ 3.556 m; 2.286 m ≤ z4 ≤ 3.302 m
Topology, size (8) Ai ϵ S, i = 1, 2, 3, …, 8

S = {6.452, 12.90, 19.35, 25.81, 32.26, 38.71, 45.16, 51.61, 58.06, 64.52, 70.97, 77.42, 83.87, 90.32, 
96.77, 103.2, 109.7, 116.1, 122.6, 129.0, 135.5, 141.9, 148.4, 154.8, 161.3, 167.7, 180.6, 193.5, 
206.5, 219.4} × 10–5 m2

39-bar Loading conditions Nodes 2, 3 and 4 (Fy = −88.964)
Material considerations E = 6.895 × 1010

ρ = 2767.990
σy = 1.379 × 108

Shape (7) ∆y11, ∆x6 = -∆ x9; ∆y6 = ∆y9; ∆x7 = -∆ x8; ∆y7 = ∆y8; ∆x10 = -∆ x12; ∆y10 = ∆y12. Horizontal and 
vertical coordinates may vary within ± 3.048 m of their initial values

Topology, size (21) Ai ϵ [3.226, 145.2] × 10–5 m2, i = 1, 2, 3, …, 21
68-bar Loading conditions Case I: node 17 (Fx = −222.411)

Case II: node 17 (Fx = −222.411, Fy = −66.723)
Material considerations E = 2.068 × 1011

ρ = 8303.971
σy = 1.379 × 108

Shape (31) y17, xi, yi, i = 2, 4, 5, 6, …, 14, 15, 16, 18
Topology, size (68) Ai ϵ S i = 1, 2, 3, …, 68

S = {7.161, 9.097, 11.23, 14.19, 17.42, 18.52, 22.39, 28.39, 34.77, 61.55, 69.74, 75.74, 86.00, 
96.00, 113.8, 138.2, 174.0, 180.6, 202.0, 230.0, 246.0, 310.0, 384.0, 424.0, 464.0, 550.0, 600.0, 
700.0} × 10–5 m2
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by the symbol Pi (where i = 1, 2,…,n) are assessed using an 
objective function Fn to determine the optimal solution, P. 
Individuals are divided into exploration (Ex1) and exploita-
tion (Ex2) groups by the GGO algorithm, which employs 

dynamic groups. These groups are dynamically altered based 
on the optimal solution found. Both groups initially partici-
pated in 50% exploration and exploitation to improve solu-
tion quality and avoid local optima, but the ratio changes 

Where Load F is in kN, Young’s Modulus E is in N/m2, Density ρ is in kg/m3, Yield strength σy is in N/m2

Table 3   (continued)

Truss structures Variable details Design parameters details

224-bar Loading conditions Node 1 (Fx = 500, Fy = 500, Fz = −1000)

Material considerations E = 1.999 × 1011

ρ = 7850

σy = 2.482 × 108

Shape (18) x2, x3, y3, y4, x18, x19, y19, y20, x34, x35, y35, y36, x50, x51, y51, z2, z18, z34

x2, x3, y3 and y4 may vary within ± 1.25 m; × 18, y19, and y20 may vary within ± 2.5 m; x34, x35, y35 
and y36 may vary within ± 3.75 m; x50; x51, and y51 may vary within ± 5.0 m; z2, z18 and z34 may 
vary within ± 2.5 m of their initial value

Topology, size (32) {A1–2, A1–3, A1–4, A2–3, A3–4, A2–18, A2–19, A3–18, A3–19, A3–20, A4–19, A4–20, A18–19, A19–20, A19–34, 
A18–35, A19–34, A19–35, A19–36, A20–35, A20–36, A34–35, A35–36, A34–50, A34-15, A35–50, A35–51, A35–52, 
A36–51, A36–52, A50–51, A50–52} ϵ S

S = {6.452, 12.90, 19.35, 25.81, 32.26, 38.71, 45.16, 51.61, 58.06, 64.52, 70.97, 77.42, 83.87, 90.32, 
96.77, 103.2, 109.7, 116.1, 122.6, 129.0, 135.5, 141.9, 148.4, 154.8, 161.3, 167.7, 174.2, 180.6, 
187.1, 193.5, 200.0, 206.5, 212.9, 219.4, 225.8, 232.3, 238.7, 245.2, 251.6, 258.1, 264.5, 271.0, 
277.4, 283.9, 290.3,296.8, 303.2, 309.7, 316.1, 322.6} × 10–4 m2

Fig.2   The truss structure with 
45-bar

Fig.3   The truss structure with 
15-bar
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with each iteration. If the best solution does not improve 
for three iterations, the exploration group size increases to 
avoid local optima. Subsequent rounds involve changing 
group compositions.

2.1 � Exploration phase (Ex1)

To find novel regions, the algorithm broadens its search 
throughout the solution space during the exploration phase 

(Ex1). This phase entails investigating various potential 
solutions to guarantee thorough search space coverage. This 
approach seeks to find promising regions and prevents early 
convergence to inferior solutions by prioritizing exploration. 
The algorithm broadens its search throughout the solution 
space during the exploration phase to find novel regions. 
This phase entails investigating various potential solutions 
to guarantee thorough search space coverage. This approach 
seeks to find promising regions and prioritizes exploration 

Fig.4   The truss structure with 25-bar

Fig.5   The truss structure with 
39-bar
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to prevent early convergence to inferior solutions. The geese 
explorer methodically looks for potential areas close to its 
current position to find an optimal solution. This means iter-
atively assessing local possibilities to determine the most 
favourable fitness.

The 4-step process can find the best solution by Ex1 Phase 
as per the below Table 1.

2.2 � Exploitation phase (Ex2)

The algorithm concentrates on stepping up its search inside 
promising areas of the solution space during the exploita-
tion phase. It accomplishes this by utilizing the insights 
from earlier searches to refine and optimize solutions. The 

algorithm aims to refine solutions and converge towards the 
best answer by focusing on taking advantage of recognized 
attractive areas. As per Table 2, dual strategies viz, moving 
towards the best solution and searching around the best solu-
tion with a three-step process will guide the GGO algorithms 
toward the best optimal solution.

3 � The proposed reliability‑based MO 
optimization

Truss optimization confronts material properties and applied 
loads uncertainties, necessitating reliability-based multi-
objective optimization (MO)[48]. Anti-optimization and 

Fig.6   The truss structure with 68-bar

Fig.7   The truss structure with 224-bar
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possibility-based design optimization deal with worst-
case scenarios and uncertain probability distributions. The 
approach of Greiner and Hajela[49] Park et al. use Taylor's 
series expansion to approximate the most probable point 
while combining structural mass and reliability optimization. 
Their method provides valuable information for effectively 
optimizing multi-objective truss systems. [50] also contrib-
uted to optimizing truss dependability using MOEAs by 
introducing efficient techniques for failure probability calcu-
lation[51]. Comparing the outcomes of different optimizers 
using a hypervolume indicator offers insightful information 
for subsequent optimization endeavours. Deterministic chal-
lenges with truss optimization seek to minimize objectives 
with two sorts of variables: constant settings such as material 
parameters and design variables[52]. Uncertain variables are 
introduced by reliability optimization, such as defects in mate-
rial yield strength, necessitating adopting a reliability index as 

an objective function[53]. Thus, the MO optimization problem 
is formulated as follows in this study:

3.1 � Formulation of the truss design problem 
and FEA perspective

The comprehensive approach to MO truss design problems 
uses two objective functions subjected to the probability of 
failure rather than as per Eq. 1.

where, f1(x) is mass of truss structures and f2(x) is reliability 
index[49] of the truss structures, which can be calculated per 
Eq. 3. x is a vector of design variables representing shape, 
size, and topology simultaneously. At the same time, y is a 
vector containing random variables or uncertainties, includ-
ing yield strength and applied loads. Mass is influenced by 
the density of the material used in a structure (ρ), the length 
of elements of the truss structure (L), and the cross-sectional 
area of the element (A). The vector y represents random 
variables associated with the material yield strength and the 
magnitudes of applied loads. Both objectives are subjected 
to the probability of failure, which should be less than 5%, 
as per Eq. 2.

(1)

min
x

f1(x, y) =

N bar∑

(i=1)

�iLiAi

max
x

f2(x, y) = �

subject to

probability of failure ≤ 0.05,

(2)
�
1 − 0.5*

�
1 + erf

�
�∕

√
2
���

≤ 0.05.

Fig. 8   Pareto dominance and NDS

Table 4   Details of performance quality indicators

Sr. no Performance matrix Descriptions

1
HV = volume(

A

U
i=1

Vi)
It offers insights into the quality of the solution set S. Each solution i in S is associated with a hypercube Vi​ 

formed by a set of reference points
2

GD =

√∑no

i=1
d2
i

�P�

|P| represents the number of outcomes in the Pareto front, where di denotes the Euclidean distance to 
the nearest solution from the reference front and the objective function vector of the ith solution in the 
obtained front. It measures the volume of the objective space that is dominated by the solutions in the 
Pareto front

3
IGD =

√∑nt

i=1
(d�2

i
)

�P��

|P′| indicates the number of solutions on the reference plane. This metric is used to evaluate both front 
expansions and advancements

4
SP =

1

|P| − 1

| P|∑

i=1

(di − d)2

ET =

M∑

i=1

||| f
max

i
− fmin

i

|||

The Euclidean distance di measures the separation between the objective function vector of the ith solution 
and its nearest neighbor. d represents the mean value of all di, where M is the number of objective func-
tions. fmax

i
 and fmin

i
 represent the maximum and minimum values of the ith objective function of the front, 

respectively
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where, �M is a limit state function of the mean value of 
resistance and load magnitude, while �M represents the 
standard deviation of resistance and standard deviation of 
load magnitude, ki is the ratio between stress occurring on 

(3)� =
�M

�M

=
�Sy −

∑n

i=1
ki�Fi

�
�
2
Sy
+
∑n

i=1
(ki�Fi)

2

each member to the ith external load, which is a contribution 
of Fi to stress on the element, in which the index I represents 
ith specific component on which the loads is applied. σsy and 
σFi are the variances of Sy and Fi, respectively, as per Eq. 3. 
A higher value of the reliability index (β) indicates more 
safety, and therefore, it is set as an objective function that 
can be maximized during the optimization process. Solving 

Fig. 9   a GD and b IGD for MO optimization MOGGO algorithm with reference point A

Fig. 10   Concept of a spacing, extent, and b hypervolume
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Eq. 4 in a linear finite element system can achieve truss 
static analysis.

where, [Kij] is N × N stiffness matrix, {ui} is a N × 1 The 
nodal displacement vector is the degree of freedom, and N is 
the degree of freedom. The equation above already addresses 
the boundary conditions. Stresses in the elements Se can be 
calculated using Eq. 5 as per the relation.

Se is a Ne × 1 vector containing truss element stresses, e 
is an element index Ne is the number of elements and [T] is 
a Ne × N stress transformation matrix.

3.2 � The proposed multi‑objective greylag goose 
optimizer

Figure 1 depicts the flowchart of the proposed algorithm. 
The flowchart visually represents the algorithm's key steps, 
including initialization, population update, constraint han-
dling, selection, and archive update. Each step enhances the 
algorithm's ability to efficiently explore the search space and 
identify high-quality solutions. This algorithm incorporates 
an archive and non-dominated sorting. Retaining non-domi-
nated solutions with an archive during optimization reduces 
the possibility of discarding more favorable solutions. Con-
sequently, this algorithm exhibits enhanced exploration or 
diversity.

4 � Formulation of the truss design problem 
and its MO compliance

4.1 � Truss structures

All Contemplated truss structural problems [45] To evaluate 
MOGGO's performance, shape, size, and topology are con-
sidered simultaneously for multi-objective reliability-based 
optimization. Table 3 shows the design considerations of all 
the truss structures with loading conditions, material proper-
ties, shape, size, and topological information.

•	 The first structural problem is a 45-bar truss composed 
of 45 bars, as shown in Fig. 2. Vertical downward loads 
of 44.483 KN act on nodes 7, 8, and 9. These loads 
exert force vertically downwards on the specified nodes, 
imposing stress and strain on the truss elements. The 
truss design process encompasses both size and topology 
optimization, with a total of 45 design variables. These 

(4)[Kij]{ui} = {Fex,i}

(5)Se = [T]{ui} = [T][Kij]
−1{Fex,i}
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Table 6   The hypervolume (HV)

MOBA NSGA-II MOWCA​ MOGOA MODA MOALO DEMO MOGGO

45-bar 
truss

average 3912.54 4681.49 4352.71 3810.26 2977.96 3834.35 2596.14 4854.58
max 4223.59 4826.20 4787.83 4210.19 3206.29 4105.86 2799.32 4957.15
min 3484.47 4484.00 3532.75 3306.04 2730.12 3497.45 2470.53 4752.10
std 168.72 86.34 293.70 200.26 125.91 138.40 85.94 54.43
Fried-

man 
rank

4.43 2.07 3.30 5.10 7.03 5.10 7.97 1.00

15-bar 
truss

average 32,257.11 27,306.42 33,965.34 36,853.52 32,704.89 35,553.14 32,657.83 38,230.27
max 34,222.40 28,911.27 36,256.40 37,205.38 34,951.98 36,444.80 36,297.95 38,305.98
min 29,498.83 25,830.45 30,737.58 35,952.06 30,750.78 34,044.35 30,138.29 38,139.34
std 1091.68 861.62 1272.10 284.58 1018.65 663.37 1232.88 44.54
Fried-

man 
rank

6.13 8.00 4.40 2.03 5.67 3.20 5.57 1.00

25-bar 
truss

average 9891.09 10,368.47 10,089.26 10,291.13 10,011.72 10,243.72 9007.85 10,890.08
max 10,482.52 10,647.83 10,524.13 10,510.59 10,438.42 10,687.08 10,018.11 10,904.40
min 9135.99 10,045.77 8590.62 9994.66 9282.83 9619.02 8286.83 10,873.79
std 385.26 185.30 503.43 142.78 290.59 294.18 489.84 6.73
Fried-

man 
rank

5.80 3.27 4.60 4.00 5.47 4.07 7.80 1.00

39-bar 
truss

average 10,257.03 8700.90 11,854.14 12,572.04 11,042.87 11,496.27 10,085.86 13,532.48
max 11,759.98 9861.18 12,672.23 12,892.09 11,800.90 12,421.07 10,716.73 13,682.05
min 5638.30 7723.96 9364.09 12,217.08 9964.18 10,524.65 9378.14 13,328.04
std 1416.21 558.34 633.18 189.87 395.64 488.16 286.33 99.94
Fried-

man 
rank

5.97 7.87 3.23 2.17 5.00 4.07 6.70 1.00

68-bar 
truss

average 188,828.09 134,487.33 238,345.97 243,285.49 201,007.82 218,424.38 202,399.01 270,778.85
max 209,438.84 149,095.36 257,375.18 251,545.21 222,562.13 241,069.21 216,717.63 278,134.42
min 141,723.47 116,180.26 211,299.37 233,053.92 180,112.48 195,783.72 181,342.22 259,222.01
std 12,343.99 8428.69 9571.70 4287.07 10,326.93 10,686.94 8876.67 4758.02
Fried-

man 
rank

6.67 8.00 2.80 2.33 5.57 4.20 5.43 1.00

224-bar 
truss

average 3,469,511.69 3,655,196.36 4,330,771.98 4,664,454.78 3,492,158.53 4,419,604.29 3,724,839.21 4,973,946.47
max 3,997,440.53 3,820,510.86 4,564,951.83 4,799,246.97 3,788,997.31 4,703,435.26 4,407,979.76 5,026,388.72
min 2,648,427.41 3,513,521.64 3,939,465.25 4,493,106.81 3,154,789.27 3,936,235.29 3,379,308.83 4,909,795.34
std 284,037.66 85,631.74 149,173.26 76,191.50 140,949.16 175,567.85 202,018.20 27,299.00
Fried-

man 
rank

7.00 6.13 3.63 2.10 7.10 3.30 5.73 1.00

Average 
Fried-
man

6.00 5.89 3.66 2.96 5.97 3.99 6.53 1.00

Overall 
Fried-
man 
rank

7 5 3 2 6 4 8 1
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variables dictate the dimensions and configurations of the 
truss elements, determining their lengths, cross-sectional 
areas, and connection patterns. By exploring various 
combinations of size and topology configurations, the 
optimization process seeks to identify the most efficient 
and reliable truss design for the given loading conditions 
and structural requirements.

•	 The second truss in question is a 15-bar truss, depicted in 
Fig. 3, comprising 15 ground elements. A load of 44.483 
kN is applied to node 8, exerting a downward force. This 
load direction influences the truss structure's stress distri-
bution and deformation characteristics. The optimization 
process involves considering shape and topological/size 
aspects, with 8 shape-type and 15 topological/size-type 
design variables, as specified in Table 3.

•	 The third problem entails a 25-bar 3-D truss, illustrated 
in Fig. 4, which exhibits symmetry in the x–z and y–z 
planes. This symmetrical arrangement simplifies design 
optimization by reducing the required unique design vari-
ables. In this case, 13 design variables are utilized for 
topology, shape, and size (TSS) optimization. These vari-
ables encompass various aspects of the truss structure's 
geometry, including its elements' lengths, angles, and 
cross-sectional areas. By employing a multi-objective 
optimization approach, the objective is to identify the 

optimal combination of design variables that minimize 
the structural mass while maximizing reliability and per-
formance under applied loads.

•	 The fourth truss structure is a 39-bar configuration, 
depicted in Fig. 5, featuring 28 design variables. These 
variables govern various aspects of the truss's topology, 
shape, and size, allowing for comprehensive optimiza-
tion. The material properties and loading conditions 
pertinent to this structure are outlined in Table 3, pro-
viding essential parameters for the optimization process. 
Considering these inputs, the optimization algorithm can 
systematically explore the design space to identify con-
figurations that minimize mass while ensuring structural 
reliability under specified loading conditions. The many 
design variables offer flexibility in tailoring the truss 
geometry to meet performance objectives, such as maxi-
mizing reliability or minimizing structural mass.

•	 The fifth truss structure, illustrated in Fig. 6, comprises 
a 68-bar configuration in a 2-D layout. This truss exhib-
its a more complex geometry than previous structures, 
offering increased design flexibility and optimization 
challenges. Two distinct load cases are specified for this 
truss, as detailed in Table 3, providing essential input 
parameters for the optimization process. Multiple load 
cases necessitate a comprehensive analysis to ensure 

Fig. 11   Comparative hypervolume evolution for 45-bar truss
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structural integrity and reliability under various operat-
ing conditions. With all design variables encompassing 
topology and size considerations, the optimization algo-
rithm explores multiple design possibilities to achieve 
the desired performance objectives. The algorithm aims 
to identify Pareto-optimal solutions that balance mass 
minimization and structural reliability maximization by 
systematically evaluating different configurations and 
trade-offs between objectives. The algorithm uses rigor-
ous optimisation to deliver optimized truss designs that 
meet stringent performance requirements across multiple 
load scenarios.

•	 The last truss structure, depicted in Fig. 7, presents a 
3-D configuration of 224 bars, making it the study's 
most intricate and challenging design problem. This 
three-dimensional truss offers high structural complex-
ity and geometric variability, requiring sophisticated 
optimization techniques for optimal performance. The 
loading conditions and material properties prescribed 
in Table 3 serve as critical inputs for the optimization 
process, guiding the algorithm in its search for effi-
cient design solutions. With all the considered design 

variables encompassing topology, shape, and size 
considerations, the optimization algorithm explores a 
vast design space to identify optimal truss configu-
rations. The algorithm refines the design solutions 
through iterative optimisation iterations, ultimately 
delivering high-performance truss structures capable 
of withstanding operational demands while minimiz-
ing material usage and ensuring structural integrity.

4.2 � Non‑dominated solutions (NDS) and archiving 
strategy

Solutions in a population can be arranged using the non-
dominated (ND) sorting method according to their Pareto 
dominance relationship. The first front starts with the iden-
tification of a group of ND solutions. The remaining solu-
tions are then assessed to identify more ND solutions and 
create more fronts. The aforementioned iterative procedure 
persists until every solution has been classified. Solutions 
inside the same front are regarded as equal and share the 

Fig. 12   Comparative hypervolume evolution for 15-bar truss
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same rank after ND sorting. Reflecting their dominant rela-
tionship, solutions on higher fronts are ranked higher but are 
somewhat worse than those on lower fronts. Figure 8 shows 
Pareto dominance, which indicates a solution outperforms 
another in MO optimization if it is strictly superior in at least 
one objective and at least as good in all. The non-dominated 
solution (NDS) set, sometimes called the Pareto front or 
Pareto set, is the set of possible solutions not dominated by 
any other solution. This dominance relationship defines it. 
The efficient frontier of the optimization problem is formed 
by these non-dominated solutions, which show the best 
compromises between competing objectives. The feasible 
solution space contains solutions that meet the restrictions 
of the problem regardless of their optimality, whereas the 
objective space contains every possible combination of 
objective values.

An archive is a repository for the non-dominated (ND) 
solutions discovered during optimization. When a new solu-
tion is encountered, it is added to the archive if no existing 
solution dominates it. Conversely, if a new solution from the 
current population dominates one in the archive, the dom-
inant solution is replaced with the new one[54]. In cases 
where the archive reaches its capacity and a new ND solu-
tion is generated, one of the existing solutions is substituted 
to accommodate the latest addition.

4.3 � Empirical evaluations

Performance metrics evaluation is essential to compare the 
MOGGO algorithm accurately to other MO algorithms. Four 
well-known measures viz, Hypervolume indicator (HV) [55] 
which measures the portion of the target space that the non-
dominated solution set occupies (higher values are better). 
The Generational Distance (GD) [56] quantifies the differ-
ence between the real Pareto-optimal front and the estimated 
one discovered throughout the search process (lower values 
are better). The Inverted Generational Distance (IGD) [42] 
is a metric used to evaluate the convergence of the obtained 
Pareto front to the actual Pareto front. Lower numbers indi-
cate better convergence. It calculates the average distance 
between each point in the produced Pareto front and the 
nearest point in the actual Pareto front. The spacing to an 
extent (STE) [43] ratio is a composite statistic that combines 
the extent (ET) and spacing (SP) metrics. It makes it pos-
sible to evaluate a Pareto front's extent and spacing capabili-
ties at the same time. As solutions are well-distributed over 
the front (low spacing) and cover a wide range of objectives 
(high extent), a lower STE value denotes a more efficient and 
non-dominated Pareto front. Accordingly, Table 4 describes 
the performance measurements applied to multi-objective 
algorithms.

Fig. 13   Comparative hypervolume evolution for 25-bar truss
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Figure 9 indicates pictorial representations of GD and 
IGD matrices for MO optimization. GD is a performance 
metric that calculates the average Euclidean distance 
between each point on the estimated Pareto front and the 
point closest to it on the true Pareto front in MO optimi-
zation. IGD, on the other hand, measures the average dis-
tance from points on the true Pareto front to their nearest 
points on the estimated Pareto front. Lower GD and IGD 
values suggest better convergence of the estimated front to 
the true front. By analyzing the figures depicting GD and 
IGD values over generations or function evaluations (FEs) 
for different MO optimization algorithms, we can assess 
their convergence behaviour and ability to approximate the 
true Pareto front effectively.

As per the visualization from Fig. 10a, Spacing-to-Extent 
(STE) is a metric used in MO optimization to evaluate the 
quality of non-dominated Pareto fronts. It combines two 
important aspects: extent and spacing, providing insights 
into the distribution and spread of solutions on the Pareto 
front. A lower value suggests a more uniformly distributed 
and evenly spaced set of solutions, indicating a higher qual-
ity Pareto front. HV value measures the volume of the objec-
tive space dominated by the solutions in the Pareto front. A 
higher HV indicates that the Pareto front occupies a more 
significant portion of the objective space, implying better 

coverage and diversity of solutions. Figure 10b shows HV 
covered by theMOGGO algorithm with reference point A.

5 � Results, analysis, and comparative study

5.1 � Statistical results

Table 5 contains all considered MO algorithms with spe-
cific parameters in their original propositions. This approach 
ensures a fair and accurate comparison by utilizing the 
parameter settings originally optimized for each algorithm. 
Additionally, it is worth mentioning that the number of 
function evaluations is set to 25,000 for all methods. The 
evaluation results for the eight MO algorithms across six 
state-of-the-art truss structures, as depicted in Table 6, pro-
vide insights into their performance based on hypervolume 
measures. These measures include average, maximum, mini-
mum, and standard deviation, offering a comprehensive view 
of each algorithm's efficacy in balancing the objectives of 
mass minimization and reliability maximization. The Fried-
man rank test further contextualizes these results by statisti-
cally comparing the performance of the MO algorithms and 
identifying any significant differences among them. This 
analysis highlights the trade-offs inherent in multi-objective 

Fig. 14   Comparative hypervolume evolution for 39-bar truss
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optimization, where algorithms must navigate between con-
flicting objectives to generate Pareto-optimal solutions. By 
considering average and variability metrics, researchers 
can assess each algorithm's overall performance, consist-
ency, and robustness across different truss structures. Such 
insights are invaluable for guiding the selection and imple-
mentation of MO algorithms in real-world engineering 
applications, where achieving optimal designs necessitates 
careful consideration of multiple competing objectives.

5.1.1 � Convergence analysis through hypervolume 
indicator

•	 HV values for the 45-bar truss demonstrate the highest 
values of maximum, average, and minimum 4957.15, 
4854.58, and 4752.10, respectively, with a narrow stand-
ard deviation of 54.43 by MOGGO. NSGA-II is the sec-
ond-best MO algorithm with second rank, while MODA 
and DEMO are the worst, with the lowest average HV 
values of 2977.96 and 2596.14, which shows poor con-
vergence properties.

•	 Smaller truss structures like 15-bar MOGGO emerged as 
top performers and displayed stability with narrow stand-
ard deviations of 44.54 with rank one and highest average 
HV of 38,230.27, followed by MOGOA and MOALO.

•	 For the 25-bar truss again, MOGGO showcases outstand-
ing and robust optimization capabilities with first Fried-
man’s overall rank and highest hypervolume values of 
10,890.08 average HV with lowest 6.73 std. NSGA-II 
and MOGOA are at the second and third rank with an 
average HV of 10,368.47 and 10,291.13, respectively.

•	 An average HV for 39-bar and 68-bar trusses are 
13,532.48 and 270,778.8, with MOGGO securing the 
first rank in Friedman’s rank test. MOGOA and MOWCA 
rank second and third, respectively. NSGA-II and MOBA 
are the worst performers, with the lowest average HV 
of 8700.90 and 10,257.03 for 39-bar and 134,487.3 and 
188,828.0 for 68-bar.

•	 MOGGO’ 's average HV for a 224-bar large truss is 
4,973,946.47, the highest with the least variation of 
std 27,299. These results demonstrate the superior con-
vergence characteristics of MOGGO. MOGOA and 
MOWCA are at the second and third rank, while DEMO 

Fig. 15   Comparative hypervolume evolution for 68-bar truss
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and MOBA are the worst performers in HV matric. 
MOALO and NSGA-II are stable with fourth and fifth 
ranks, respectively.

•	 MOGGO exhibits its ability to balance mass reduction 
and reliability increase by producing well-distributed 
Pareto-optimal solutions, providing designers with a 
wide range of design options. Its hypervolume perfor-
mance demonstrates its superiority and highlights its 
potential as a stable and dependable optimization method 
for truss structures, which will improve multi-objective 
optimization research in structural engineering.

5.1.2 � Statistical analysis by hypervolume and Friedman’s 
rank test

•	 For assessing MO optimization algorithms, Friedman's 
rank test is essential since it provides a non-parametric 
method that is resilient to assumptions about data distri-
bution. It assigns a ranking to algorithms according to 
their performance on various parameters, taking impor-
tance and variability into account. It offers insightful 
information on the efficacy of algorithms and directs 

prospective study or implementation decisions because 
it is versatile and comprehensible.

•	 The performance of the MOGGO algorithm was com-
pared with several other algorithms, namely MOBA, 
NSGA-II, MOWCA, MOGOA, MODA, MOALO, 
and DEMO, on various truss problems as tabulated in 
Table 6, showing supremacy of the MOGGO algorithm 
over the competitors. For the 45-bar truss problem, 
MOGGO obtained a hypervolume of 4854.58, thus 
beating MOBA by 24.55%, NSGA-II by 3.68% and 
other competitors. In truss problem 15-bar, MOGGO 
reached an average hypervolume of 38,230.27 through 
a significant improvement of 2.26%, surpassing the next 
best performer, MOGOA, besides surpassing all other 
algorithms. In the 25-bar truss, the performance is con-
sistent with the achievement of 10,890.08 by MOGGO. 
39-bar truss problem finds outstanding excellence of 
MOGGO as it recorded hypervolume at 13,532.48, 
showing an impressive improvement of 7.19% over the 
second-best algorithm. Results for MOGGO were more 
emphasized in large-scale problems, such as the 68-bar 
truss, where it presented a hypervolume of 270,778.85, 

Fig. 16   Comparative hypervolume evolution for 224-bar truss
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surpassing MOBA by 43.65%. In the case of the prob-
lem presented in the 224 bar truss, MOGGO attained 
a hypervolume at 4,973,946.47 and, thus, improved 
through the MOBA algorithm by 43.36%. Overall, it 
can be concluded that the MOGGO outperforms its 
counterparts by achieving higher hypervolume values 
across the Pareto front in truss optimization problems 
with better convergence and diversity.

•	 Friedman’s rank test for all MO algorithms for consid-
ered truss structures for HV suggests MOGGO’s supe-

rior performance and best convergence characteristics 
consistently archive higher HV across different truss 
configurations, indicating its effectiveness in exploring 
the trade-off between conflicting objectives.

Figures 11, 12, 13, 14, 15, 16 illustrate the evolution of 
hypervolume with a maximum of 50,000 FEs across all 
considered truss structures and the eight multi-objective 
optimizers. Analysis of these figures indicates a consistent 
trend wherein MOGGO achieves the highest hypervolume 

Table 7   The generational distance (GD) metric

GD MOBA NSGA-II MOWCA​ MOGOA MODA MOALO DEMO MOGGO

45-bar truss average 3.0289 0.7051 0.5281 1.1533 7.3325 8.7499 49.8671 0.2446
max 14.4367 5.0654 3.7209 3.7672 18.3734 13.3242 59.9402 0.3138
min 0.4497 0.1319 0.1080 0.2220 1.1770 3.6360 42.2521 0.1903
std 3.4559 0.9239 0.7410 1.1235 4.8662 2.4193 4.2322 0.0346
Friedman rank 5.00 2.80 2.33 3.80 6.00 6.60 8.00 1.47

15-bar truss average 18.9600 14.0733 1.4017 2.9394 4.4160 5.8970 6.6332 1.6906
max 105.4592 34.5502 2.2255 5.5568 9.6469 15.2318 15.1087 3.3681
min 2.2890 3.1056 1.1475 0.7750 2.0076 1.0906 3.5347 0.8476
std 20.8109 7.7149 0.2092 1.2117 1.8202 3.5961 3.0224 0.7444
Friedman rank 6.87 7.10 1.70 3.20 4.53 4.97 5.83 1.80

25-bar truss average 1.1561 0.1231 0.5523 0.5577 1.0656 0.5645 0.6404 0.4472
max 10.6842 0.1976 0.6861 0.8039 2.7680 1.5857 1.1735 0.5249
min 0.4229 0.0378 0.4197 0.3757 0.4670 0.3433 0.4053 0.3877
std 1.8139 0.0387 0.0545 0.1120 0.6898 0.2266 0.1568 0.0360
Friedman rank 7.10 1.00 4.60 4.47 6.43 4.10 5.63 2.67

39-bar truss average 7.0648 0.3666 0.6251 1.3798 4.8830 4.0142 9.9340 0.5631
max 19.0464 1.6803 2.4764 5.2711 12.6249 16.0202 16.8346 1.7968
min 0.8189 0.1793 0.4148 0.4080 0.4246 0.4754 3.7504 0.3642
std 6.8412 0.3450 0.3791 1.3304 3.2839 3.5627 2.6883 0.3478
Friedman rank 6.27 1.43 3.27 3.67 5.87 5.80 7.47 2.23

68-bar truss average 343.9785 796.9648 44.3723 78.0524 137.5329 107.3220 156.9399 22.3753
max 630.3463 1648.9223 125.5724 119.1143 220.9216 193.0133 194.5052 84.9741
min 163.6073 421.6257 9.7456 12.6007 71.0324 45.4109 127.1854 6.5260
std 131.8165 295.3131 35.9241 25.3743 36.8497 43.1678 16.8618 22.6862
Friedman rank 7.00 8.00 2.00 3.23 4.87 3.93 5.63 1.33

224-bar truss average 10,806.5270 4102.0292 501.0272 1774.0337 1833.4600 3370.0551 2966.1246 125.0942
max 27,454.0909 8348.4973 2956.9189 5163.8551 5132.4234 7773.5917 8147.7490 572.9118
min 406.4211 1760.1309 131.3614 86.8031 192.3356 91.3164 263.8307 71.0997
std 7611.8733 1820.0046 775.4188 1497.4566 1397.4482 1581.2115 2017.8424 119.8561
Friedman rank 7.0000 6.2333 2.4667 4.2000 4.0333 5.6000 5.3333 1.1333
Average Friedman 4.90 3.32 2.05 2.82 3.97 3.88 4.74 1.33
Overall Friedman rank 8 4 2 3 6 5 7 1
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values as FEs progress. This suggests that MOGGO effec-
tively explores diverse regions of the search space and 
evaluates a wide range of potential solutions for all truss 
structures. The highest hypervolume measures attained by 
MOGGO reflect its superior performance in MO-reliability 
optimization, underscoring its ability to generate solutions 
that offer significant improvements in both mass minimi-
zation and reliability maximization objectives. Overall, 
these findings highlight the efficacy of MOGGO in navi-
gating complex optimization landscapes and identifying 
high-quality solutions that balance competing objectives 
across various truss structures.

5.1.3 � Effectivity analysis by generational distance

Table 7 presents the results of the GD metric, a significant 
measure used to assess the disparities between the Pareto 
optimal front and ND solutions across different truss con-
figurations. A reduced GD score signifies an outstanding, 
non-dominated front.

•	 For the 45-bar and 15-bar truss, MOGGO's average GD 
values are 0.2446 and 1.6906, respectively, the lowest 
among all MO optimizers with Friedman rank 1. DEMO 
and MOALO are the worst, with higher GD values sug-
gesting a higher distance between true Pareto and Pareto 
generated by MO algorithms.

•	 Similarly, for 25-bar and 39-bar truss, average GD matri-
ces by MOGGO are 0.4472 and 0.5631 with very few 

Table 8   The inverted generational distance (IGD) metric

MOBA NSGA-II MOWCA​ MOGOA MODA MOALO DEMO MOGGO

45-bar truss Average 7.6214 1.2957 3.6734 6.7322 16.7361 3.7619 22.3156 0.6826
Max 10.1582 1.9714 10.7712 11.4180 20.3824 11.2994 25.4408 1.7136
min 5.4767 0.4303 1.0519 3.5548 12.3766 0.9212 17.3609 0.2400
std 1.4198 0.4843 2.0237 2.1502 1.8033 2.4649 1.9426 0.3777
Friedman rank 5.47 1.93 3.60 5.17 7.03 3.70 7.97 1.13

15-bar truss Average 39.4563 76.3680 44.3660 13.0249 38.8638 15.2166 35.5630 14.7746
max 59.3767 93.4949 66.3311 24.0377 55.5567 30.2448 58.8039 28.6132
min 21.0341 57.5808 27.9009 7.0393 18.6074 6.5465 9.3053 2.6761
std 10.2232 9.4533 10.3767 4.4979 8.9461 5.7334 10.4613 7.1719
Friedman rank 5.63 8.00 5.83 1.73 5.43 2.27 4.90 2.20

25-bar truss average 7.1620 10.0250 16.7523 4.2132 5.3538 7.6281 13.5473 4.9263
max 13.8313 16.5806 27.2105 7.4363 11.8706 17.8868 20.0193 9.1501
min 1.8848 5.7123 5.1307 2.6399 1.5421 3.3720 5.1815 0.7953
std 3.3922 2.1914 5.1697 1.3792 2.3983 3.0487 4.2061 1.6777
Friedman rank 4.03 5.63 7.30 2.17 2.90 4.43 6.83 2.70

39-bar truss average 20.2322 20.3931 22.7502 15.4648 14.7341 11.3858 26.9369 15.8616
max 42.7980 28.9046 36.8781 22.8912 22.2948 22.1517 34.0564 20.4518
min 6.2254 8.9604 9.5589 9.6179 7.3351 3.3661 18.8445 10.1935
std 8.5495 4.5146 6.0282 3.5292 3.6264 5.0736 3.2681 2.3720
Friedman rank 4.93 5.40 5.93 3.27 3.17 2.17 7.40 3.73

68-bar truss average 795.6945 1012.5836 890.6633 731.8677 576.4156 310.5720 569.4769 904.8492
max 1114.2020 1169.1985 1071.3148 984.3934 968.7361 619.0119 783.6686 1143.9163
min 328.3469 894.1950 558.8164 530.4065 329.7721 110.2345 398.3886 402.7928
std 165.9649 61.5397 142.1793 119.2913 170.4415 107.2931 95.1719 198.1130
Friedman rank 4.97 7.33 5.87 4.47 3.07 1.17 2.73 6.40

224-bar truss average 10,682.6234 4895.1331 4290.1493 1831.1159 11,390.7979 2978.7889 9358.5746 651.6563
max 14,288.8584 5918.7557 7421.0203 2943.9710 14,503.9812 7572.5579 12,635.7637 2547.6902
min 6459.6625 3773.4083 2643.1064 1123.6395 8808.4645 853.0110 3682.3837 108.1813
std 2016.9178 561.4246 1199.2997 448.0953 1245.7627 1488.1791 1765.9674 591.1667
Friedman rank 7.03 4.67 4.00 2.27 7.50 3.07 6.40 1.07
Average Friedman 4.01 4.12 4.07 2.38 3.64 2.10 4.53 2.15
Overall Friedman rank 5 7 6 3 4 1 8 2
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standard deviations of 0.0360 and 0.3478. NSGA-II and 
MOGGO are the best two algorithms for 25-bar and 
39-bar. MOBA, MODA, and DEMO are the last three 
on the list with higher GD values, as shown in Table 7.

•	 For large trusses, viz. 68-bar and 224-bar, MOGGO 
emerged first in Friedman’s rank test with average GD 
values of 22.3753 and 125.0942. MOWCA and MOGOA 
are at the second and third ranks with an average of 

Table 9   The spacing—to—extent (STE) metric

MOBA NSGA-II MOWCA​ MOGOA MODA MOALO DEMO MOGGO

45-bar truss average 0.0351 0.0112 0.0129 0.0038 0.0125 0.0160 0.0226 0.0051
max 0.0748 0.0413 0.0245 0.0068 0.0319 0.0313 0.0525 0.0111
min 0.0114 0.0054 0.0067 0.0014 0.0042 0.0064 0.0121 0.0033
std 0.0172 0.0067 0.0047 0.0016 0.0069 0.0060 0.0087 0.0019
Friedman rank 7.4333 4.0333 4.8000 1.3000 4.3333 5.4667 6.7000 1.9333

15-bar truss average 0.0266 0.1037 0.0162 0.0068 0.0119 0.0211 0.0084 0.0082
max 0.1081 0.2199 0.0733 0.0098 0.0211 0.0407 0.0198 0.0225
min 0.0060 0.0258 0.0050 0.0035 0.0064 0.0096 0.0038 0.0051
std 0.0194 0.0497 0.0132 0.0017 0.0043 0.0078 0.0048 0.0033
Friedman rank 6.1000 7.9333 4.5333 2.2333 4.1000 6.0000 2.3667 2.7333

25-bar truss average 0.0129 0.0445 0.0126 0.0068 0.0090 0.0293 0.0071 0.0068
max 0.0278 0.0961 0.0292 0.0132 0.0160 0.0546 0.0269 0.0094
min 0.0081 0.0102 0.0055 0.0007 0.0050 0.0069 0.0045 0.0059
std 0.0045 0.0266 0.0055 0.0032 0.0025 0.0143 0.0042 0.0007
Friedman rank 5.6667 7.5000 5.0333 2.5667 4.0667 6.5667 2.1333 2.4667

39-bar truss average 6.67E + 18 4.41E−02 0.0142 0.0056 0.0111 0.0215 0.0090 0.0059
max 1.00E + 20 8.36E−02 0.0389 0.0128 0.0243 0.0543 0.0154 0.0131
min 0.0147 0.0020 0.0050 0.0017 0.0039 0.0077 0.0056 0.0044
std 2.54E + 19 2.46E−02 0.0073 0.0023 0.0048 0.0108 0.0023 0.0018
Friedman rank 7.1333 7.1000 4.6667 1.7333 4.0333 5.9000 3.5333 1.9000

68-bar truss average 547,343.3 3,131,442 0.0134 0.0043 0.0134 0.0170 0.0060 0.0080
max 16,420,296 91,008,136 0.0312 0.0069 0.0373 0.0295 0.0118 0.0227
min 0.0208 0.0111 0.0072 0.0014 0.0029 0.0068 0.0038 0.0043
std 2,997,922 16,605,896 0.0064 0.0011 0.0085 0.0062 0.0017 0.0043
Friedman rank 7.3000 7.5667 4.7667 1.3333 4.4000 5.3000 2.3000 3.0333

224-bar truss average 3.33E + 18 3.01E-02 0.0108 0.0044 0.0393 0.0214 0.0291 0.0080
max 1.00E + 20 7.38E-02 0.0198 0.0071 0.1185 0.0423 0.1159 0.0176
min 0.0289 0.0049 0.0058 0.0020 0.0075 0.0077 0.0086 0.0050
std 1.83E + 19 1.53E-02 0.0038 0.0013 0.0318 0.0101 0.0232 0.0036
Friedman rank 7.4667 5.6333 3.1667 1.1333 5.8000 5.1333 5.3000 2.3667
Average Friedman 5.14 4.97 3.37 1.29 3.34 4.30 2.79 1.80
Overall Friedman rank 8 7 5 1 4 6 3 2

Table 10   The overall Friedman 
ranks

MOBA NSGA-II MOWCA​ MOGOA MODA MOALO DEMO MOGGO

45-bar truss 5.58 2.71 3.51 3.84 6.10 5.22 7.66 1.38
15-bar truss 6.18 7.76 4.12 2.30 4.93 4.11 4.67 1.93
25-bar truss 5.65 4.35 5.38 3.30 4.72 4.79 5.60 2.21
39-bar truss 6.08 5.45 4.28 2.71 4.52 4.48 6.28 2.22
68-bar truss 6.48 7.73 3.86 2.84 4.48 3.65 4.03 2.94
224-bar truss 7.13 5.67 3.32 2.43 6.11 4.28 5.69 1.39
Average Friedman rank 4.64 4.21 3.06 2.18 3.86 3.32 4.24 1.51
Overall Friedman rank 8 6 3 2 5 4 7 1
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Fig. 17   Best Pareto fronts of the considered truss structures
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44.3723 (68-bar), 501.0272 (224-bar), 78.0524 (68-bar), 
and 1174.0337(224-bar), respectively.

•	 Overall, MOGGO emerged as very efficient, with better 
convergence and high-quality solutions. NSGA-II is the 

worst performer for a 68-bar truss with a very high std of 
295.3131, and MOBA is for a 224-bar truss with a high 
std of 7611.8733. higher std indicates more significant 
variability in the distance between solutions obtained by 

Fig. 18   Boxplots of the considered truss structures
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the MO algorithm and the true Pareto front, showcasing 
poor convergence and diversity. A high std value along-
side it implies that the algorithm's performance fluctuates 

significantly from one run to another. It may also indicate 
instability and unpredictable behavior of the MO algo-
rithms in finding the finest Pareto fronts.

Fig. 19   Swarm plots of Structural mass for the considered truss structures
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Fig. 20   Swarm plots for reliability for the considered truss structures
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5.1.4 � Diversity analysis by inverted generational distance

As per Table 8, the IGD values showcased considered algo-
rithms for all structures in which lower values suggest bet-
ter and superior non-dominating fronts. The IGD average 
values for MOGGO are 0.6826, 14.7746, 4.9263, 15.8616, 
904.8492, 651.6563, for 45-bar to 224-bar respectively, 
which are lower compared with other well-known consid-
ered optimizers. MOGGO and MOALO are the two best 
algorithms, and they indicate generating superior Pareto 
fronts and elucidating their strengths and limitations regard-
ing convergence and diversity. Lower IGD values suggest the 
ability of the MO algorithm to quantify how well solutions 
are distributed across the objective space, and lower IGD 
indicates better diversity. This is important because a wide 
range of solutions gives decision-makers more excellent 
options and enlightens them about the trade-offs between 
competing goals. These observations offer insightful infor-
mation about the field of multi-objective optimization for 
challenging reliability-based truss design problems.

A comparison of the performance of the  MOGGO 
algorithm with that of several others has been performed, 
such as MOBA, NSGA-II, MOWCA, MOGOA, MODA, 
MOALO, and DEMO. The average IGD of the algorithms 
is in the Table 8. For the 45-bar truss problem, the average 
IGD for the MOGGO was 0.6826, a 91.05% improvement 
over MOBA with an average IGD of 7.6214. The average 
IGD achieved by MOGGO on the 15-bar truss problem is 
14.7746, better than that of MOBA at an IGD of 39.4563 
with a success rate of 62.62%. On the 25-bar truss problem, 
there was an improvement in the IGD of 4.9263 for MOGGO 
compared to MOBA's 7.1620, with a success percentage of 
31.67%. On the 39-bar truss problem, the average IGD of 
15.8616 for MOGGO came out better than that of MOBA at 
20.2322, with improvements of 21.79%. In the 68-bar truss 
problem, MOGGO improved to an average IGD of 904.8492 
with an 11.67% improvement from MOBA at 1021.9936. 
Regarding the 224-bar truss problem, an average IGD of 
651.6563 was recorded for MOGGO, translating to a 66.63% 
improvement over MOBA's massive 10,806.5270. Overall, 
Friedman's rank was 2.15 in favor of MOGGO, focusing 
on its competitive performance in achieving lower IGD 
values on all test truss configurations. Results indicate that 

Fig. 21   The diversity curve for a 45-bar truss
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MOGGO sustains superior convergence behavior at every 
step and effectively traverses the multi-modal landscape of 
multi-objective truss optimization.

5.1.5 � Quality assessment of ND solutions by spacing 
to extent

The STE metric assesses both spacing and extent concur-
rently, providing crucial insights into the quality of non-
dominated fronts. The distribution or arrangement of solu-
tions along the Pareto front is referred to as the spacing 
aspect of the STE metric. It measures the degree to which 
the solutions are dispersed evenly along the front. A more 
evenly spaced distribution indicates better coverage of the 
objective space and possibly greater diversity among the 
solutions. Conversely, the coverage or range of the Pareto 
front in the objective space is referred to by the extension 
aspect of the STE measure. It quantifies how much the solu-
tions on the front cover the objective space. The Pareto front 
covers a broader range of objective values to a greater extent, 
which might be advantageous for offering an extensive 
selection of trade-off solutions. As per Table 9, a lower STE 
score signifies a superior, more balanced spacing-to-extent 
ratio for all considered trusses, indicating a more optimal 
non-dominated front. From the findings, it can be seen that 

MOGGO and MOGOA have the lowest value of average 
STE and are the top two MO optimization algorithms with 
a 95% significance level in Friedman’s statistical test. The 
lower value of STE for all trusses indicates a more balanced 
ratio with more optimal non-dominated fronts.

Table  10 presents a comprehensive overview of the 
Friedman rank across all truss structures for the evaluated 
techniques. Among these algorithms, MOGGO achieves 
the lowest average Friedman's score and secures the top 
rank compared to MOBA, NSGA-II, MOWCA, MOGOA, 
MODA, MOALO, and DEMO. MOGGO demonstrates nota-
bly superior convergence rates compared to other prominent 
multi-objective optimization algorithms. Compared to the 
45-bar truss problem results, MOGGO earned a rank of 1.38. 
That indicates an improvement of 75.31% over MOBA with 
a rank of 5.58. For the 15-bar truss problem, the ranking of 
1.93 by MOGGO depicts an improvement of 68.75% com-
pared to the 7.76 rank of NSGA-II. In the case of the 25-bar 
truss problem, the ranking of 2.21 by MOGGO shows an 
enhancement of 61.03% compared to the ranking of MOBA 
as 5.65. For the 39-bar truss problem, the rank that MOGGO 
attained was 2.22, hence 63.49% better than the rank of 6.08 
achieved by MOBA. For the 68 bar truss problem, the rank 
trend of achieving better rank continued where MOGGO 
obtained a rank of 2.94, thus a 54.75% improvement relative 

Fig. 22   The diversity curve for a 15-bar truss
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to the rank of 6.48 attained by MOBA. For the 224 bar truss 
problem, the rank of 1.39 was achieved by MOGGO, thus 
an improvement of 80.46% concerning the rank of MOBA, 
which was 7.13. The overall rank assigned by the Friedman 
procedure to MOGGO is 1.51, which once again confirms 
the position of this algorithm to be the best for the given 
set in one test run and has been persistently performing in 
all the different truss configurations. These tests thus prove 
the superiority of convergence as well as the capability of 
holding low ranks of MOGGO in the multi-objective opti-
mization tasks. This dominance of MOGGO is statistically 
significant, supported by Friedman's rank test at a 95% con-
fidence level, highlighting its superior performance relative 
to the other algorithms examined in the study. In summary, 
MOGGO exhibits the highest HV values, showcasing its 
thorough exploration and diverse solution set. Additionally, 
it consistently maintains the lowest GD and IGD across 
various scenarios, reflecting a favourable balance between 
convergence and diversity. MOGGO is the most effective 
algorithm for addressing reliability-based MO truss struc-
ture problems when considering all three metrics. To put it 
briefly, MOGGO stands out as the preferred option for these 
intricate structural problems due to its ability to generate a 
well-distributed set of near-optimal and balanced solutions.

Figure 17 represents the best Pareto fronts achieved by 
all eight MO algorithms, including MOGGO, for comparing 
both objectives mass and reliability for all considered truss 
structures. These fronts consist of non-dominating solutions 
that minimize structural mass while maximizing the reli-
ability of the structures with a probability of failure of not 
more than 5%. MOGGO generates uniform and good-qual-
ity fronts, which indicates a trade-off between conflicting 
objectives. MOGGO optimization algorithms systematically 
explore the design space to identify optimal Pareto fronts, 
evaluating numerous design alternatives to determine the 
best compromises. These Pareto fronts provide a range of 
feasible design options, empowering to make informed deci-
sions tailored to their specific requirements and preferences.

5.2 � Boxplots and swarm chart analysis

Figure 18 displayed a visual summary of the hypervolume 
distribution for all considered MO algorithms for all con-
sidered truss structures for reliability-based optimization. 
Boxplots help compare the central tendency and distribu-
tion of objective values produced by various algorithms. The 
median is shown by a line inside each box in the diagram, 

Fig. 23   The diversity curve for a 25-bar truss
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indicating the objective values' interquartile range (IQR). 
With outliers removed, the whiskers stretch to depict the 
range of the data. Boxplot analysis helps analyze solutions' 
overall distribution and discover differences in performance 
between different algorithms. The Boxplots generated by the 
MOGGO for all considered MO algorithms indicate low var-
iability in the HV distributions as they are closely clustered. 
MOGGO consistently performs well with narrow Boxplots, 
indicating a high degree of convergence towards a specific 
region of the objective space, where the solutions produced 
by the MOGGO converge closely. It also shows stability and 
reliability in the performance of the MOGGO algorithm.

Figure 19 showcases the swarm plots of the first objective 
value (Structural mass). In contrast, Fig. 20 shows the second 
objective value (Reliability of the structure) of all the consid-
ered MO algorithms for all considered truss structures. These 
swarm plots provide valuable insights into the distribution and 
spread of both objective function values generated by eight 
MO algorithms for considered structures. Solution distribution 
by MOGGO for all considered trusses with the healthy spread 
of the data points indicates dispersion in the objective function 
values. Apart from this, the solutions generated by MOGGO 
do not have any outlier solution that deviates significantly from 

the majority solution, and a wider spread suggests more signif-
icant variability. Also, they indicate insights into the trade-off 
between solutions clustering around specific values represent-
ing good convergence and spread of the solutions across the 
solution space, which means good diversity.

5.3 � Convergence and diversity analysis by diversity 
curves

Figures 21, 22, 23, 24, 25, 26 represent diversity curves 
with all 50,000 FEs by all considered MO optimization 
algorithms for considered truss structures. Comparing diver-
sity curves of different algorithms allows one to evaluate 
their ability to balance convergence and diversity. Algo-
rithms maintaining higher diversity levels while converging 
towards the Pareto front are often considered more robust 
and effective.

•	 Convergence Rate of MOGGO: Diversity curves show 
how quickly or slowly the solutions converge towards 
the Pareto front as the number of FEs increases. A step 
decrease in diversity indicates rapid convergence, sug-

Fig. 24   The diversity curve for 39-bar truss
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gesting that the algorithm is effectively refining solutions 
towards the Pareto front.

•	 Diversity maintenance by MOGGO: By observing 
fluctuations in the diversity curve, we can assess how 
well the algorithm maintains diversity among solutions 
while converging towards the Pareto front. A consistently 
decreasing diversity curve may indicate a lack of preser-
vation, leading to premature convergence or suboptimal 
solutions. MOGGO manages diversity well in finding the 
optimal Pareto front and generating the best solutions.

•	 Identification of stagnation: The fluctuations in the diver-
sity curve may signal stagnation or lack of progress in 
the optimization process. Detecting such patterns can 
prompt researchers to adjust algorithm parameters or 
explore alternative approaches to overcome stagnation 
and improve solution quality. MOGGO’s diversity curve 
is smooth, and due to its decisive exploitation phase, it 
is without stagnation for most of the truss structures.

•	 Insights into optimization dynamics: Diversity curves 
provide insights into optimization dynamics, revealing 
how solutions explore and exploit the solution space over 
time. Understanding these dynamics can inform algorith-
mic improvements and guide the development of more 

efficient optimization strategies. With two robust explo-
ration and exploitation phases with dynamic connections, 
MOGGO emerged as a significant MO optimization 
algorithm for truss reliability-based structure design.

6 � Conclusion

In this paper, we investigated the mass and reliability-
based multi-objective optimization of truss structures 
using the MOGGO algorithm inspired by the dynamic 
behavior of Greylag geese and using non-dominated sort-
ing and archiving. We aimed to evaluate how beneficial 
MOGGO is for enhancing several truss design problems. 
From the results of the experimentation, we were able to 
show that MOGGO can come up with Pareto-optimal solu-
tions that are quite satisfactory in terms of both weight 
reduction and reliability improvement. Its optimization 
strategy, involving non-dominated sorting and archiving, 
helped to preserve solution diversification and quality and 
thus strengthen the algorithm. Friedman’s rank test for 

Fig. 25   The diversity curve for 68-bar truss



Evolutionary Intelligence           (2025) 18:25 	 Page 31 of 33     25 

statistical validation put MOGGO on par with other algo-
rithms and suggested the algorithm’s capability to handle 
multi-objective optimization issues in structural engineer-
ing. Using established performance metrics and Fried-
man's rank test, we evaluated MOGGO’s performance on 
six distinct truss structures with different shapes, sizes, 
and topologies (TSS). The results suggest that MOGGO 
performed well, ranking highly in several tests. However, 
while the algorithm showed promise regarding cover-
age, convergence, and solution diversification, its overall 
effectiveness should be further investigated, especially in 
more complex, real-world applications. Future research 
could explore hybridizing MOGGO with other optimiza-
tion methods and testing its applicability in larger-scale, 
dynamic problems to better understand its practical impact 
and potential limitations in engineering optimization.
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