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Abstract
This article aims to define four new kinds of rough set models based on cardinality
neighborhoods and two ideals. The significance of these methods lies in their foun-
dation on ideals, which serve as topological tools. Furthermore, the use of two ideals
offers two perspectives instead of just one, thereby reducing the boundary region and
increasing the accuracy, which is the primary objective of rough set theory. The con-
cepts of lower and upper approximations based on ideals are presented for the four
types. Additionally, we establish essential properties and results for these approxima-
tions and construct counterexamples to demonstrate how some of Pawlak’s properties
have dissipated in the proposed models. The relationships between the current and
previous approximations are discussed, and algorithms to classify whether a subset is
exact or rough are introduced. Furthermore, we demonstrate how one combination of
ideals is applied to address rough paradigms from a topological perspective. Practi-
cally, we apply the proposed paradigms to dengue disease management and elucidate
two key points: first, ourmodels are distinguished compared to previous ones by retain-
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ing most properties of the original approximation operators proposed by Pawlak; and
second, we identify which of the proposed models is better at increasing the accuracy
of subsets. In conclusion, we debate the advantages of the suggested models and the
motivations behind each type, while also highlighting some of their shortcomings.

Keywords Eξ -neighborhood · Ideals · Rough sets · Lower and upper
approximations · Accuracy criteria

1 Introduction

1.1 Literature review

Pawlak [36, 37] introduced rough set theory as a valuable approach for dealing with
uncertain and vague information. This approach confronts uncertainty by splitting
data into equivalence classes, aiming to identify both confirmed and possible data
obtainable through subsets. It forms a framework for analyzing and understanding
data by utilizing approximate sets to describe the properties of the data. This the-
ory has garnered considerable attention and application across various disciplines
due to its efficacy in handling imperfect knowledge in data mining, particularly in
decision-making analysis [1] and pattern recognition [25, 35]. To accommodate vari-
ous information systems and address complex practical issues, several extended rough
set models have been introduced. These include fuzzy and soft rough sets [33, 49],
multi-granulation rough sets [20, 41], and covering rough sets [50, 56].

In Pawlak’s standard model, equivalence classes are derived using an equivalence
relation, which is a strict condition that limits the efficiency of rough set theory in
modeling many real-world problems. Consequently, several models have been pro-
posed that do not require the existence of an equivalence relation. The unit of granular
computing (or blocks) used to design these models is the abstract notion of neigh-
borhoods, which describes the geometric characteristic of nearness. The rough set
paradigms inspired by these neighborhoods were compared in terms of their ability to
achieve the properties of the Pawlak model and their effectiveness in increasing the
accuracymeasure. These neighborhoods include left and right neighborhoods [51, 52],
intersection and union neighborhoods [3, 5, 6], maximal and minimal neighborhoods
[8, 20], subset and containment neighborhoods [10, 11], and equal neighborhoods
[34], among others. To incorporate more expert opinions, the concept of “ideal" was
integrated into earlier rough set models by [28]. Several researchers have since utilized
this approach [15, 24, 26] to maximize confirmed knowledge, thereby enhancing the
reliability of decision-making methods. It is important to note that many researchers
have developed various methods to enhance the properties of rough approximation
operators and increase accuracy. These methods include using a family of relations
instead of a single relation or employing multiple ideals instead of a single ideal (see
[27]).

The relationship between topology and rough set theory was identified early by
[47], resulting in the establishment of a topological framework for modeling infor-
mation systems. Within this framework, the lower approximation corresponds to the
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topological concept of interior points, and the upper approximation corresponds to the
topological concept of closure points. The similarity between these two frameworks
has prompted many researchers to revisit set theory through a topological lens, as
demonstrated in the studies of [2, 9, 12, 31, 32, 39, 43]. Various methods have been
employed to study rough setmodelswithin topological spaces, such as using the neigh-
borhood of each point as a subbase of a topology [31] or initiating the topology using
the following formula: {H ⊆ Σ : Gξ (σ ) ⊆ H∀σ ∈ Σ} [2]. To improve the properties
of operators and increase accuracymeasures, the concept of ideals was introduced into
topological spaces used to study information systems, as investigated in [23, 28, 54].
Additionally, topological generalizations have been employed in modeling set theory
and providing descriptions of real-world problems, as seen in [7, 17, 21, 41].

1.2 Gap of research

Upon reviewing the rough set models in the published literature, we note a lack of
models inspired by neighborhoods that consider the number of elements related to
each other under arbitrary relations. Consequently, we utilize the concept of cardinality
neighborhoods as a component of the rough paradigms presented herein. To enhance
decision-making confidence by expanding the amount of confirmed information, we
improve upon previous rough paradigms by employing two ideals rather than one.
The use of two ideals provides two perspectives instead of one, aiming to reduce
the boundary region and increase the accuracy degree, which is the primary goal
of rough set theory. These results can be routinely generalized to a finite family of
ideals. The models presented effectively address challenges related to the cardinality
of neighborhoods and demonstrate significant improvements in rough approximation
operators, as evidenced by our findings. This work addresses gaps and challenges
encountered in practical applications.

1.3 Manuscript’s design

The contributions of this work are organized as follows:

(i) In Sect. 2, we review various types of rough neighborhoods and their associ-
ated rough set paradigms, as well as some topological methods used to analyze
information systems.

(ii) In Sect. 3, we introduce four types of rough set paradigms based on cardinality
neighborhoods and two ideals. The motivations behind their introduction will be
detailed and their core features will be explored.

(iii) In Sect. 4, we examine the counterparts of the models presented in Subsection
3.4 from a topological standpoint.

(iv) In Sect. 5, we demonstrate how the current framework applies to the modeling of
medical information systems, specifically in the context of dengue disease. Also,
we compare our models with previous ones in terms of approximation operators
and boundary regions.

(v) In Sect. 6, we discuss the advantages and limitations of the current models com-
pared to existing ones.
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(vi) In Sect. 7, we summarize the key characteristics and aspects of our models and
suggest directions for future research.

2 Preliminaries

This section is dedicated to reviewing several key definitions and results, and to justi-
fying the need for introducing the concepts of cardinal neighborhoods and ideals.

2.1 Traditional approximation space (TAS)

Definition 1 (see, [36]) Let Σ denote a universe, defined as a nonempty finite set.
A binary relation ρ on Σ is characterized as a subcollection of Σ × Σ . The pairing
(σ1, σ2) ∈ ρ is commonly expressed asσ1ρσ2.A relationρ onΣ is termed equivalence
if it is reflexive, symmetric, and transitive i.e σρσ for any σ ∈ Σ , σ1ρσ2 ⇐⇒ σ2ρσ1,
and σ1ρσ3 when σ1ρσ2 and σ2ρσ3. Moreover, ρ is a comparable relation, if it satisfies
σ1ρσ2 or σ2ρσ1 for all σ1, σ2 ∈ Σ .

Definition 2 [37, 38] Let ρ be an equivalence relation on Σ . Supposing O ⊆ Σ , so
the lower, upper approximations of O will be represented respectively as:

ρ(O) = ∪{H ∈ Σ/ρ | H ⊆ O}.
ρ(O) = ∪{H ∈ Σ/ρ | H ∩ O 	= ∅},

The notation Σ/ρ symbolizes the family comprising all equivalence classes induced
by the relation ρ.

The pair (Σ, ρ) is henceforth referred to as an approximation space. A set O is
considered rough rough if, ρ(O) and ρ(O), are not equal. Conversely, if the upper and
lower approximations coincide, the set is termed definable or exact.

The core features of traditional rough set model are outlined in the subsequent
proposition.

Proposition 1 [37, 38] Consider an equivalence relation ρ defined on Σ . For sets
H,O, the next characteristics hold:

(L1) ρ(H) ⊆ H (U1) H ⊆ ρ(H)

(L2) ρ(∅) = ∅ (U2) ρ(∅) = ∅
(L3) ρ(Σ) = Σ (U3) ρ(Σ) = Σ

(L4) I fH ⊆ O, then ρ(H) ⊆ ρ(O) (U4) I fH ⊆ O, then ρ(H) ⊆ ρ(O)

(L5) ρ(H ∩ O) = ρ(H) ∩ ρ(O) (U5) ρ(H ∩ O) ⊆ ρ(H) ∩ ρ(O)

(L6) ρ(H) ∪ ρ(O) ⊆ ρ(H ∪ O) (U6) ρ(H ∪ O) = ρ(H) ∪ ρ(O)

(L7) ρ(Hc) = (ρ(H))c (U7) ρ(Hc) = (ρ(H))c

(L8) ρ(ρ(H)) = ρ(H) (U8) ρ(ρ(H)) = ρ(H)
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(L9) ρ((ρ(H))c) = (ρ(H))c (U9)ρ((ρ(H))c) = (ρ(H))c

(L10) ρ(O) = O,∀O ∈ Σ/ρ (U10) ρ(O) = O,∀O ∈ Σ/ρ

Traditional theory [37, 38] has been extended through various methodologies, with
a thorough validation of the properties associated with these extensions. However,
some properties have proven to be uncertain. Despite this, obtaining as many of these
properties as possible is considered beneficial within these methodologies.

Additionally, rough sets can be numerically characterized using the following two
criteria:

Definition 3 [37, 38] Consider an equivalence relation ρ on Σ , the A-accuracy and
R-roughness criteria of O are determined as:

A(O) = | ρ(O) |
| ρ(O) | , | ρ(O) |	= 0.

R(O) = 1 − A(O).

In many cases, equivalence relations may not be feasible. As a result, the classical
approach has been extended by employing weaker relations than full equivalence.

2.2 Sorts of �-Neighborhood space

Definition 4 [3, 5, 6, 52, 53] Consider an arbitrary relation ρ on Σ . If ξ ∈
{r , 〈r〉, l, 〈l〉, i, 〈i〉, u, 〈u〉}, then the ξ -neighborhoods of σ ∈ Σ , symbolized by
Gξ (σ ), are identified as:

(i) Gr (σ ) = {η ∈ Σ : σ ρ η}.
(i i)

G〈r〉(σ ) =
{ ⋂

σ∈Gr (η)

Gr (η) : ∃ Gr (η) involving σ

∅ : Elsewise

(i i i) Gl(σ ) = {η ∈ Σ : η ρ σ }.
(iv)

G〈l〉(σ ) =
{ ⋂

σ∈Gl (η)

Gl(η) : ∃ Gl(η) involving σ

∅ : Elsewise

(v) Gi (σ ) = Gr (σ )
⋂Gl(σ ).

(vi) G〈i〉(σ ) = G〈r〉(σ )
⋂G〈l〉(σ ).

(vi i) Gu(σ ) = Gr (σ )
⋃Gl(σ ).

(vi i i) G〈u〉(σ ) = G〈r〉(σ )
⋃G〈l〉(σ ).

Unless otherwise specified, we will assume that ξ belongs to the set {r , 〈r〉, l,
〈l〉, i, 〈i〉, u, 〈u〉}.
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Definition 5 [43] Consider a relation ρ on Σ and let �ξ denote a mapping from Σ to
2Σ , associating each member σ ∈ Σ with its ξ -neighborhood in 2Σ . Consequently,
the triple (Σ, ρ, �ξ ) is termed an ξ -neighborhood space, abbreviated as ξ -NS.

The above mentioned sorts of neighborhoods were employed to introduce novel
changeability of lower and upper approximations, as well as accuracy (roughness)
criteria. To improve the quality of approximations and maximize accuracy, numerous
comparisons were conducted among these different types of neighborhoods.

Definition 6 [3, 5, 6, 52, 53] Given a relation ρ onΣ , the lower, and upper approxima-
tions of each subsetO regarding to the various kinds of neighborhoods are introduced
as:

FGξ
(O) = {σ ∈ Σ : Gξ (σ ) ⊆ O},

FGξ (O) = {σ ∈ Σ : Gξ (σ ) ∩ O 	= ∅}.

Definition 7 [3, 5, 6, 52, 53] Consider a relation ρ on Σ . The AGξ
-accuracy and

RGξ
-roughness criteria of a nonempty set O in regard to ρ are represented by:

AGξ
(O) = | FGξ

(O) ∩ O |
| FGξ (O) ∪ O | , and

RGξ
(O) = 1 − AGξ

(O).

Definition 8 (see, [11]) Consider two relations ρ1 and ρ2 onΣ such that ρ1 ⊆ ρ2. The
approximations derived from G-neighborhoods show the property of monotonicity in
both accuracy, and roughness of any set if AGξ1(O) ≥ AGξ2(O) and respectively,
RGξ1(O) ≤ RGξ2(O).

2.3 Cardinality �-neighborhood systems

This section is dedicated to introducing the concept of cardinality neighborhoods for
any element in a universe, based on a given binary relation. We will explore their main
properties and determine the conditions under which some of these neighborhoods
are identical. Illustrative examples are provided to support the derived results and
relationships. The study of cardinality neighborhoods aims to enhance the accuracy
of approximations.

For any ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉, u, 〈u〉}, |Gξ (.)| denotes the cardinality of Gξ (.).

Definition 9 [14]Consider a relationρ onΣ . For each ξ , the cardinality neighborhoods
of an element σ of Σ (briefly, Eξ (σ )) is defined as:

(i) Er (σ ) = {η ∈ Σ : |Gr (σ )| = |Gr (η)|}.
(i i) El(σ ) = {η ∈ Σ : |Gl(σ )| = |Gl(η)|}.
(i i i) Ei (σ ) = Er (σ ) ∩ El(σ ).
(iv) Eu(σ ) = Er (σ ) ∪ El(σ ).
(v) E〈r〉(σ ) = {η ∈ Σ : |G〈r〉(σ )| = |G〈r〉(η)|}.
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(vi) E〈l〉(σ ) = {η ∈ Σ : |G〈l〉(σ )| = |G〈l〉(η)|}.
(vi i) E〈i〉(σ ) = E〈r〉(σ ) ∩ E〈l〉(σ ).
(vi i i) E〈u〉(σ ) = E〈r〉(σ ) ∪ E〈l〉(σ ).

Proposition 2 [14]

(i) Ei ⊆ Er ∩ El ⊆ Er ∪ El ⊆ Eu, and E〈i〉 ⊆ E〈r〉 ∩ E〈l〉 ⊆ E〈r〉 ∪ E〈l〉 ⊆ E〈u〉.
(iii) All Eξ are equal, if ρ is a symmetric relation on Σ .

Proposition 3 [14] Consider (Σ, ρ, �ξ ) as an ξ -N S. If σ ∈ Σ , then Eξ (σ ) 	= ∅ for
each ξ .

Proposition 4 [14] Consider (Σ, ρ, �ξ ) as an ξ -N S and σ ∈ Σ . Then, σ ∈ Eξ (x) iff
x ∈ Eξ (σ ), for each ξ .

Proposition 5 [14] Consider (Σ, ρ, �ξ ) as an ξ -N S. If σ ∈ Eξ (y), y ∈ Eξ (x), then
σ ∈ Eξ (x), for any ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
Corollary 1 [14] Consider (Σ, ρ, �ξ ) as an ξ -N S and σ ∈ Σ . Then, σ ∈ Eξ (x) iff
Eξ (σ ) = Eξ (x), for any ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
Corollary 2 [14] For every ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}, the cardinality neighborhood of
elements of Σ constitute a partition of Σ . That is the relation ρ defined by xρσ ⇐⇒
x ∈ Eξ (σ ) is an equivalence relation for all ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
Corollary 3 [14] If ρ is a symmetric relation, then the cardinality neighborhood of
elements of Σ constitute a partition of Σ for each ξ ∈ {u, 〈u〉}
Proposition 6 [14] Eξ = E〈ξ〉 for ξ ∈ {r , l, i, u}, if ρ is a preorder (i.e., reflexive,
transitive) relation on Σ .

Definition 10 [14] Consider (Σ, ρ, �ξ ) as an ξ -NS. Based on cardinality neighbor-
hoods, the Eξ -lower approximationFEξ

(O), and Eξ -upper approximationFEξ (O) of
a set O, assigned as:

FEξ
(O) = {σ ∈ Σ : Eξ (σ ) ⊆ O}, and

FEξ (O) = {σ ∈ Σ : Eξ (σ ) ∩ O 	= ∅}

Definition 11 [14] TheEξ -boundary,Eξ -positive, andEξ -negative regions of a subset
O within an ξ -NS (Σ, ρ, �ξ ) are identified respectively as:

BEξ
(O) = FEξ (O) \ FEξ

(O)

PEξ
(O) = FEξ

(O),

NEξ
(O) = Σ \ FEξ (O)

Furthermore, rough sets defined by cardinality neighborhoods can be numerically
characterized using the following two criteria:
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Definition 12 [14] The Eξ -accuracy and Eξ -roughness criteria of O 	= ∅ of an ξ -NS
(Σ, ρ, �ξ ) are respectively endowed by:

AEξ
(O) = | FEξ

(O) |
| FEξ (O) | , | FEξ (O) |	= 0.

REξ
(O) = 1 − AEξ

(O).

Theorem 1 [14] Consider (Σ, ρ, �ξ ) as an ξ -N S. Based on cardinality neighbor-
hoods, the family ΩEξ

= {O ⊆ Σ: ∀ σ ∈ O, Eξ (σ ) ⊆ O} constitutes a topology on
Σ , for each ξ ,

Lemma 1 [14] Let (Σ, ρ, �ξ ) be an ξ -NS and σ ∈ Σ . If ξ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}, then
Eξ (σ ) is ΩEξ -open set.

2.4 Ideals

Definition 13 [30] A non-empty subclass R of 2Σ is called an ideal on Σ provided
that the next conditions are satisfied.

1. The union of any two sets in R is a member of R.
2. Any subset of a member in R is also contained in R.

Definition 14 Let R,T be two ideals on Σ . Then,

1. For an element O to belong to R ∪ T, it must be contained in either R or T.
2. [27] The smallest collection output by R and T is denoted by R∨T and is specified

as follows R ∨ T = {A ∪ B : A ∈ R,B ∈ T}.
Note that It is important to indicate that

1. R ∪ T may not surely form an ideal.
2. R ∨ T represents an ideal, as established in Proposition 5.1 of [27].
3. R ⊆ R ∪ T ⊆ R ∨ T, and T ⊆ R ∪ T ⊆ R ∨ T.

2.5 kinds of approximations described by cardinality neighborhoods and ideals

Definition 15 [15] Consider (Σ, ρ, �ξ ) as an ξ -NS and R is an ideal onΣ . Regarding
to cardinality neighborhoods and ideals, the duo (RF̃Eξ

(O), RF̃Eξ (O)) stands for
lower and upper approximations of a set O, respectively, are signified as follows:

RF̃Eξ
(O) = {σ ∈ Σ : Eξ (σ ) \ O ∈ R},

RF̃Eξ (O) = {σ ∈ Σ : Eξ (σ ) ∩ O /∈ R}

Proposition 7 [15] Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ), andO ⊆ Σ . If R ⊆ T,
then the following statements hold for each ξ :

(i ) RF̃Eξ
(O) ⊆ TF̃Eξ

(O),

123



Generalized rough approximation spaces

(i i ) TF̃Eξ (O) ⊆ RF̃Eξ (O),

Definition 16 [15] Let R be an ideal on an ξ -NS (Σ, ρ, �ξ ). Based on cardinality
neighborhoods and ideals, the R

Eξ -lower approximation RFEξ
(O), and R

Eξ -upper
approximation RFEξ (O) of any subset O of Σ are assigned as follows:

RFEξ
(O) =R F̃Eξ

(O) ∩ O,

RFEξ (O) =R F̃Eξ (O) ∪ O

Definition 17 [15] The R
Eξ -boundary, REξ -positive, and R

Eξ -negative regions of a
subset O within an ξ -NS (Σ, ρ, �ξ ) with ideal R on Σ are respectively given by

R
BEξ

(O) =R FEξ (O) \R FEξ
(O)

R
PEξ

(O) =R FEξ
(O),

R
NEξ

(O) = Σ \R FEξ (O).

Definition 18 [15] The R
Eξ -accuracy and R

Eξ -roughness criteria of O 	= ∅ of an
ξ -NS (Σ, ρ, �ξ ) with ideal R on Σ are respectively given by

RAEξ
(O) = |R FEξ

(O) |
|R FEξ (O) | , |

R FEξ (O) |	= 0.

RREξ
(O) = 1 −R AEξ

(O).

Theorem 2 [15] LetR be an ideal on an ξ -N S (Σ, ρ, ζξ ). IfH,O ⊆ Σ , then for each
ξ the next statements hold true.

(i ) RFEξ
(O) ⊆ O ⊆ RFEξ (O).

(i i ) RFEξ
(∅) = ∅, and RFEξ (∅) = ∅.

(i i i ) RFEξ
(Σ) = Σ , and RFEξ (Σ) = Σ .

(iv) IfH ⊆ O, then RF̃Eξ
(H) ⊆ RF̃Eξ

(O) and RF̃Eξ (H) ⊆ RF̃Eξ (O).
(v) RFEξ

( RFEξ
(O)) = RFEξ

(O), and FEξ (FEξ (O)) = FEξ (O), for each ξ ∈
{r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(vi ) RFEξ
( RFEξ

(O)) ⊆ RFEξ
(O), and FEξ (FEξ (O)) ⊇ FEξ (O), for each ξ ∈

{u, 〈u〉}.
(vi i ) Let η ∈ Σ . Then RFEξ

(Eξ (η)) = Eξ (η), for each ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.
(vi i i ) Let η ∈ Σ . Then RFEξ

(Eξ (η)) ⊆ Eξ (η), for each ξ ∈ {u, 〈u〉}.
(i x) RFEξ (H)∩ RFEξ (O) = RFEξ (H∩O), and RFEξ (H)∪ RFEξ (O) = RFEξ (H∪

O), for each ξ .
(x) RFEξ (H)∪ RFEξ (O) ⊆ RFEξ (H ∪ O) and RFEξ (H ∩ O) ⊆RFEξ (H)∩

RFEξ (O), for each ξ .
(xi) RFEξ

(Oc) = (RFEξ (O))c and RFEξ (Oc) = (RFEξ
(O))c.
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3 Types of approximations characterized by cardinality
neighborhoods and two ideals

This section introduces novel sorts of approximation spaces, which utilize two ideals.
These approximations are analyzed using two distinct methods, their properties are
examined, and the relationships between these methods are explored.

3.1 First type of rough set paradigms

Definition 19 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals. The duo (R�TF̃Eξ

(O), R�TF̃Eξ (O)) stands for lower
and upper approximations of a set O, respectively, are signified as follows:

R�TF̃Eξ
(O) = {σ ∈ Σ : Eξ (σ ) \ O ∈ R ∪ T}

R�TF̃Eξ (O) = {σ ∈ Σ : Eξ (σ ) ∩ O /∈ R ∪ T}

By utilizing the operators (RF̃Eξ (·) and RF̃Eξ (·)) furnished in [15], Definition 19
can be reformulated as follows:

Definition 20 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals, the duo (R�TF̃Eξ

(O), R�TF̃Eξ (O)) stands for lower
and upper approximations of a set O, respectively, are signified as follows:

R�TF̃Eξ
(O) =R F̃Eξ

(O) ∪T F̃Eξ
(O)

R�TF̃Eξ (O) =R F̃Eξ (O) ∩T F̃Eξ (O)

Remark 1 The present operators introduced in Definition 20 can be viewed as a real
generalization of the operators offered in [15]. Because the current method in Defini-
tion 20 coincides with the previous method that described in Definition 3.1 of [15], if
one of the following conditions is held:

1. One of the ideal R or T is the empty collection.
2. T = R.
3. T ⊆ R or R ⊆ T.

Theorem 3 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then for each ξ the
next statements hold true.

(i ) RF̃Eξ
(O) ⊆ R�TF̃Eξ

(O), and TF̃Eξ
(O) ⊆ R�TF̃Eξ

(O).
(i i ) R�TF̃Eξ (O) ⊆ RF̃Eξ (O), and R�TF̃Eξ (O) ⊆ TF̃Eξ (O).

Proof Utilizing Definition 20, one can prove these statements. ��
In the existing models, certain characteristics of Pawlak’s paradigm are violated.

Some of their deficiencies will be displayed in the following remark:

Remark 2 (i) R�TF̃Eξ
(∅) 	= ∅, and R�TF̃Eξ (Σ) 	= Σ .
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Table 1 Eξ -neighborhoods for
members of Σ

σ1 σ2 σ3 σ4

Er {σ1, σ3} {σ2} {σ1, σ3} {σ4}
El {σ1} {σ2} {σ3, σ4} {σ3, σ4}
Ei {σ1} {σ2} {σ3} {σ4}
Eu {σ1, σ3} {σ2} {σ1, σ3, σ4} {σ3, σ4}
E〈r〉 {σ1} {σ2, σ4} {σ3} {σ2, σ4}
E〈l〉 {σ1} {σ2, σ3} {σ2, σ3} {σ4}
E〈i〉 {σ1} {σ2} {σ3} {σ4}
E〈u〉 {σ1} {σ2, σ3, σ4} {σ2, σ3} {σ2, σ4}

(i i) R�TF̃Eξ
(O) � O �

R�TF̃Eξ (O).
(i i i) R�TF̃Eξ

( R�TF̃Eξ
(O)) �

R�TF̃Eξ
(O) for each ξ ∈ {u, 〈u〉}.

(iv) R�TF̃Eξ ( R�TF̃Eξ (O)) �
R�TF̃Eξ (O) for each ξ ∈ {u, 〈u〉}.

(v) If η ∈ Σ , then R�TF̃Eξ
(Eξ (η)) � Eξ (η), for each ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(vi) R�TF̃Eξ (H) ∩ R�TF̃Eξ (O) 	= R�TF̃Eξ (H ∩ O), for each ξ .
(vi i) R�TF̃Eξ (H) ∪ R�TF̃Eξ (O) 	= R�TF̃Eξ (H ∪ O), for each ξ .

The subsequent example supports the aforementioned remarks.

Example 1 Consider ρ = {(σ1, σ2), (σ2, σ2), (σ2, σ3), (σ3, σ4)} is a binary relation on
Σ = {σ1, σ2, σ3, σ4}. Then the cardinality neighborhoods of each element of Σ will
be calculated in Table 1.

Let R = {∅, {σ3}}, T = {∅, {σ1}} be two ideals. Then, R ∪ T = {∅, {σ1}, {σ3}}.
Accordingly, one can be observed that:

(i) R�TF̃E〈l〉(∅) = {σ1}, and R�TF̃E〈l〉(Σ) = {σ2, σ3, σ4}.
(i i) R�TF̃El (O) = {σ1} � {σ3} � ∅ = R�TF̃El (O), if O = {σ3}.
(i i i) R�TF̃E〈u〉(

R�TF̃E〈u〉(O)) = {σ1} � {σ1, σ3} =R�T F̃E〈u〉(O), if O = {σ2}.
(iv) R�TF̃E〈u〉( R�TF̃E〈u〉(O)) = {σ2, σ3, σ4} � {σ2, σ4} =R�T F̃E〈u〉(O) if O =

{σ1, σ3, σ4}.
(v) R�TF̃El (El(η)) = {σ1, σ2} � {σ2} = El(η), if η = {σ2}.
(vi) Let H = {σ1, σ2},O = {σ2, σ3},H ∩ O = {σ2}, then R�TF̃Er (H) ∩

R�TF̃Er (O) = {σ1, σ2, σ3} 	= {σ2} = R�TF̃Er (H ∩ O).
(vi i) Let H = {σ3, σ4},O = {σ1, σ4},H ∪ O = {σ1, σ3, σ4}, then R�TF̃Er (H) ∪

R�TF̃Er (O) = {σ4} 	= {σ1, σ3, σ4} = R�TF̃Er (H ∪ O).

To address these shortcomings while preserving the advantages of the previously
introduced rough set model, particularly in enhancing the lower approximation and
minimizing the upper approximation, we have structured the following subsection.

3.2 Second type of rough set paradigms

Definition 21 Consider R,T as ideals on an ξ -NS (Σ, ρ, �ξ ). With respect to cardi-
nality neighborhoods and ideals, the pair (R�TFEξ

(O), R�TFEξ (O)) representing the
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lower and upper approximations of a set O, respectively, are signified as follows:

R�TFEξ
(O) =R FEξ

(O) ∪T FEξ
(O)

R�TFEξ (O) =R FEξ (O) ∩T FEξ (O)

where RFEξ
(O), TFEξ

(O), RFEξ (O), TFEξ (O) are mentioned in Definition 3.2 in
[15].

Definition 22 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals, the R�T

Eξ -accuracy degree R�TAEξ
(O) of a setO is

assigned as:

R�TAEξ
(O) = |R�T FEξ

(O) |
|R�T FEξ (O) | , |

R�T FEξ (O) |	= 0.

The following theorem demonstrates that the current models surpass the previous
paradigms outlined in [15] by enhancing the lower approximation and minimizing the
upper approximation, thereby maximizing accuracy measures.

Theorem 4 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then for each ξ the
next statements hold true.

(i ) RFEξ
(O) ⊆ R�TFEξ

(O), and TFEξ
(O) ⊆ R�TFEξ

(O).
(i i ) R�TFEξ (O) ⊆ RFEξ (O), and R�TFEξ (O) ⊆ TFEξ (O).
(i i i ) RAEξ

(O) ≤ R�TAEξ
(O), and TAEξ

(O) ≤ R�TAEξ
(O).

Proof Utilizing Definitions 21, 22, one can prove these statements. ��
Theorem 5 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). IfH,O ⊆ Σ , then for each ξ

the next statements hold true.

(i ) R�TFEξ
(∅) = ∅, and R�TFEξ

(Σ) = Σ .
(i i ) R�TFEξ (∅) = ∅, and R�TFEξ (Σ) = Σ .
(i i i ) IfH ⊆ O, then R�TFEξ

(H) ⊆ R�TFEξ
(O) and R�TFEξ (H) ⊆ R�TFEξ (O).

(iv) R�TFEξ
(O) ⊆ O ⊆ R�TFEξ (O).

(v) R�TFEξ
(Oc) = (R�TFEξ (O))c and R�TFEξ (Oc) = (R�TFEξ

(O))c.
(vi ) R�TFEξ

(O)=R�TFEξ
(R�TFEξ

(O)), andR�TFEξ (R�TFEξ (O))=R�TFEξ (O),
for each ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(vi i ) R�TFEξ
(R�TFEξ

(O)) ⊆R�TFEξ
(O), andR�TFEξ (R�TFEξ (O)) ⊇R�TFEξ (O),

for each ξ∈{u, 〈u〉}.
(vi i i ) Let η ∈ Σ . Then R�TFEξ

(Eξ (η)) = Eξ (η), for each ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.
(i x) Let η ∈ Σ . Then R�TFEξ

(Eξ (η)) ⊆ Eξ (η), for each ξ ∈ {u, 〈u〉}.
(x) R�TFEξ (H) ∩ R�TFEξ (O) ⊇ R�TFEξ (H∩O), and R�TFEξ (H) ∪ R�TFEξ (O)

⊆ R�TFEξ (H ∪ O).
(xi) R�TFEξ (H) ∪ R�TFEξ (O) ⊆ R�TFEξ (H ∪ O) and R�TFEξ (H ∩ O) ⊆

R�TFEξ (H) ∩ R�TFEξ (O).
(xii ) If Oc ∈ R ∪ T, then R�TFEξ

(O) = O and R�TFEξ (Oc) = Oc.
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Proof According to Definition 21, (i), (i i), (i i i), (iv), (vi i i), (i x), (x), (xi), (xii)
are understandable.

(v) R�TFEξ
(Oc) = RFEξ

(Oc) ∪ TFEξ
(Oc). From Theorem 2 (xi), R�TFEξ

(Oc) =
(RFEξ (O))c ∪ (TFEξ (O))c = (RFEξ (O) ∩ TFEξ (O))c = (R�TFEξ (O))c. By
the same manner, R�TFEξ (Oc) = (R�TFEξ

(O))c.
(vi) Let ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}. R�TFEξ

(O) = RFEξ
(O) ∪ TFEξ

(O) = RFEξ
(

RFEξ
(O))∪ TFEξ

( TFEξ
(O))⊆RFEξ

(RFEξ
(O)∪ TFEξ

(O))∪ TFEξ
(RFEξ

(O)

∪ TFEξ
(O))=RFEξ

(R�TFEξ
(O))∪ TFEξ

(R�TFEξ
(O)) =R�TFEξ

(R�TFEξ
(O)).

Regarding to items (i i i), (iv), R�TFEξ
( R�TFEξ

(O)) ⊆ R�TFEξ
(O). By using

(v), R�TFEξ (R�TFEξ (O)) ⊆ R�TFEξ (O).
(vi i) Let ξ ∈ {u, 〈u〉}. Regarding to items (i i i), (iv), R�TFEξ

( R�TFEξ
(O)) ⊆

R�TFEξ
(O), and R�TFEξ (R�TFEξ (O)) ⊇ R�TFEξ (O).

��
To discuss how the converse of Theorem 4 and properties in some cases of Theo-

rem 5 is not achieved with lower approximations, and to establish similar examples
involving upper approximations using property (v), let’s first clarify the context and
notation involved in these theorems and properties.

Example 2 According to Example 1, we have the following remarks:

(i) Suppose that O = {σ3}. If R = {∅, {σ3}}, T = {∅, {σ1}} are two ideals on Σ ,
then R�TFEr (O) = {σ3}, and RFEr (O) = ∅. Hence, R�TFEr (O) �

RFEr (O).
(ii) Suppose that R = {∅, {σ3}}, T = {∅, {σ1}} are two ideals on Σ . If ξ = r ,

then the converse of (x) for Theorem 5 need not be true. If H = {σ2, σ3, σ4},
O = {σ1, σ2, σ4}, then R�TFEξ (H) = Σ , R�TFEξ (O) = Σ and R�TFEξ (H ∩
O) = {σ2, σ4}. Hence, R�TFEξ (H ∩ O) �

R�TFEξ (H) ∩ R�TFEξ (O).
(iii) Suppose that R = {∅, {σ2}}, T = {∅, {σ4}} are two ideals on Σ . If ξ = r , then

1) the converse of (i i i) for Theorem 5 is not true. If H = {σ1}, O = {σ3}, then
R�TFEξ (H) = ∅, R�TFEξ (O) = ∅. Hence, R�TFEξ

(H) ⊆ R�TFEξ
(O), but

H � O, and O � H.
2) the converse of (iv) for Theorem 5 fails in general. If O = {σ1, σ2, σ4}, then

R�TFEξ (O) = {σ2, σ4}. Hence, O �
R�TFEξ

(O).
3) the converse of (xi) for Theorem 5 fails in general. If H = {σ1}, O = {σ3},

then R�TFEξ (H) = ∅, R�TFEξ (O) = ∅, R�TFEξ (H ∪ O) = {σ1, σ3}. Hence,
R�TFEξ (H ∪ O) �

R�TFEξ (H) ∪ R�TFEξ (O).
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(iv) Suppose that R = {∅, {σ3}}, T = {∅, {σ1}} are two ideals on Σ . If ξ = 〈u〉, then
1) the converse of (vi i) for Theorem 5 need not be true. If O = {σ2, σ3}, then

R�TFEξ (O) = {σ3}, and R�TFEξ (
R�TFEξ (O)) = ∅. Hence, R�TFEξ (O) �

R�TFEξ (
R�TFEξ (O)).

2) the converse of (i x) for Theorem 5 need not be true. Let σ3 ∈ Σ .
Then Eξ (σ3) = {σ2, σ3}, and R�TFEξ

(Eξ (σ3)) = {σ3}. Hence, Eξ (σ3) �

R�TFEξ
(Eξ (σ3)).

In the remainder of this subsection, we do the following: 1) expounding on the
relationships between the different cases of the proposed rough paradigms, and 2)
providing an algorithm to determine whether a subset is classified as R�T

Eξ -exact or
R�T

Eξ -rough.

Proposition 8 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R�TFEu(O) ⊆ R�TFEr (O)∩ R�TFEl(O) ⊆ R�TFEr (O)∪ R�TFEl(O) ⊆
R�TFEi (O).

(i i ) R�TFEi (O) ⊆ R�TFEr (O)∩ R�TFEl(O) ⊆ R�TFEr (O)∪ R�TFEl(O) ⊆
R�TFEu(O).

(i i i ) R�TFE〈u〉(O) ⊆ R�TFE〈r〉(O)∩ R�TFE〈l〉(O) ⊆ R�TFE〈r〉(O)∪ R�TFE〈l〉(O) ⊆
R�TFE〈i〉(O).

(iv) R�TFE〈i〉(O) ⊆ R�TFE〈r〉(O)∩ R�TFE〈l〉(O) ⊆ R�TFE〈r〉(O)∪ R�TFE〈l〉(O) ⊆
R�TFE〈u〉(O).

Proof The proof is warranted by (i) of Proposition 2. ��
Corollary 4 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R�TAEu(O) ≤ R�TAEr (O) ≤ R�TAEi (O), and R�TAEu(O) ≤ R�TAEl(O) ≤
R�TAEi (O).

(i i ) R�TAE〈u〉(O) ≤ R�TAE〈r〉(O) ≤ R�TAE〈i〉(O), and R�TAE〈u〉(O) ≤ R�TAE〈l〉(O)

≤R�T AE〈i〉(O).

Proposition 9 If O is a nonempty subset of Σ , then 0 ≤ R�TAEξ
(O) ≤ 1 for any ξ .

Proof Follows by the fact that R�TFEξ
(O) ⊆ O ⊆ R�TFEξ (O). ��

Definition 23 A subset O is called R�T
Eξ -exact, if R�TAEξ

(O) = 1. Otherwise, O is
called R�T

Eξ -rough.

Eventually, we present Algorithm 1, which determines whether a set is R�T
Eξ -exact

or R�T
Eξ -rough, and subsequently computes its accuracy measure.
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Input : The universal set Σ under consideration.
Output: Determine whether a subset is R�T

Eξ -exact or R�T
Eξ -rough and compute its accuracy.

1 Insert a relation ρ and two ideal R and T over Σ as given by the expert;
2 Combine R ∪ T;
3 Select a type of ξ ;
4 for all σ ∈ Σ do
5 Compute Gξ (σ )

6 end
7 for all σ ∈ Σ do
8 Compute Eξ (σ )

9 end
10 for each subset O 	= ∅ of Σ do
11 Compute R�TF̃Eξ (O) (by the formula of Definition 19);

12 Compute R�TFEξ (O) = R�TF̃Eξ (O) ∩ O;

13 Compute R�TF̃Eξ (O) (by the formula of Definition 19);

14 Compute R�TFEξ (O) = R�TF̃Eξ (O) ∪ O;

15 if R�TFEξ (O) = R�TFEξ (O) then
16 a subset O is R�T

Eξ -exact;

17 Print R�TAEξ
(O) = 1

18 else
19 a subset O is R�T

Eξ -rough;

20 Compute R�TAEξ
(O) =

|R�TFEξ
(O)|

|R�TFEξ (O)|
21 end
22 end

Algorithm 1: Examination whether a subset is R�T
Eξ -exact or R�T

Eξ -rough, and
compute its accuracy

3.3 Third type of rough set paradigms

This part introduces a new paradigm of rough sets inspired by the concepts of car-
dinality neighborhoods and two ideals. We demonstrate that this paradigm enhances
the lower approximation and reduces the upper approximation of sets compared to
previous rough set models.

Definition 24 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals, the duo (R∨TF̃Eξ

(O), R∨TF̃Eξ (O)) stands for lower
and upper approximations of a set O, respectively, are signified as follows:

R∨TF̃Eξ
(O) = {σ ∈ Σ : Eξ (σ ) \ O ∈ R ∨ T},

R∨TF̃Eξ (O) = {σ ∈ Σ : Eξ (σ ) ∩ O /∈ R ∨ T}.

Remark 3 If T = {∅}, T = R or T ⊆ R in Definition 24, then the current method
coincides with the previous method described in Definition 3.1 of [15]. Therefore, the
present work can be viewed as a real generalization of work presented in [15].
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Wehighlight, in the next findings, the advantages of current models over themodels
presented in the foregoing subsection.

Theorem 6 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then for each ξ the
next statements hold true.

(i ) R�TF̃Eξ
(O) ⊆ R∨TF̃Eξ

(O).
(i i ) R∨TF̃Eξ (O) ⊆ R�TF̃Eξ (O).

Proof Since R ∪ T ⊆ R ∨ T, the proof is evident. ��
The converse of items of Theorem 6 need not to be true as we note in the next

example:

Example 3 Continued in Example 1.

(i) If O = {σ2, σ4}, then R�TF̃Er (O) = {σ2, σ4} and R∨TF̃Er (O) = Σ . Hence,
R∨TF̃Eξ

(O) �
R�TF̃Eξ

(O).
(i i) If O = {σ1, σ2, σ3}, then R∨TF̃Er (O) = {σ2} and R�TF̃Er (O) = {σ1, σ2, σ3}.

Hence R�TF̃Eξ (O) �
R∨TF̃Eξ (O).

Proposition 10 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R∨TF̃Eu(O) ⊆ R∨TF̃Er (O)∩ R∨TF̃El(O) ⊆ R∨TF̃Er (O)∪ R∨TF̃El(O) ⊆
R∨TF̃Ei (O).

(i i ) R∨TF̃Ei (O) ⊆ R∨TF̃Er (O)∩ R∨TF̃El(O) ⊆ R∨TF̃Er (O)∪ R∨TF̃El(O) ⊆
R∨TF̃Eu(O).

(i i i ) R∨TF̃E〈u〉(O) ⊆ R∨TF̃E〈r〉(O)∩ R∨TF̃E〈l〉(O) ⊆ R∨TF̃E〈r〉(O)∪ R∨TF̃E〈l〉(O) ⊆
R∨TF̃E〈i〉(O).

(iv) R∨TF̃E〈i〉(O) ⊆R∨TF̃E〈r〉(O)∩R∨TF̃E〈l〉(O) ⊆R∨TF̃E〈r〉(O)∪R∨TF̃E〈l〉(O) ⊆
R∨TF̃E〈u〉(O).

Proof The proof is warranted by (i) of Proposition 2. ��
Proposition 11 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R∨TF̃Eξ (H) ∩ R∨TF̃Eξ (O) = R∨TF̃Eξ (H ∩ O), for each ξ .
(i i ) R∨TF̃Eξ (H) ∪ R∨TF̃Eξ (O) = R∨TF̃Eξ (H ∪ O), for each ξ .

Proof The proof is obvious, since R ∨ T is ideal. ��
In the available models, specific features of Pawlak’s model are disrupted. Some

of these inadequacies are accentuated in the following remark:

Remark 4 (i) R∨TF̃Eξ
(∅) 	= ∅, and R∨TF̃Eξ (Σ) 	= Σ .

(i i) R∨TF̃Eξ
(O) � O �

R∨TF̃Eξ (O).
(i i i) R∨TF̃Eξ

( R∨TF̃Eξ
(O)) �

R∨TF̃Eξ
(O) for each ξ ∈ {u, 〈u〉}.

(iv) R∨TF̃Eξ ( R∨TF̃Eξ (O)) �
R∨TF̃Eξ (O) for each ξ ∈ {u, 〈u〉}.

(v) If η ∈ Σ , then R∨TF̃Eξ
(Eξ (η)) � Eξ (η), for each ξ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.
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Example 4 Continued in Example 1. Let R = {∅, {σ3}}, T = {∅, {σ1}} be two ideals.
Then, R ∨ T = {∅, {σ1}, {σ3}, {σ1, σ3}}. Accordingly, one can be observed that:

(i) R∨TF̃E〈i〉(∅) = {σ1, σ3}, and R∨TF̃E〈i〉(Σ) = {σ2, σ4}.
(i i) R∨TF̃El (O) = {σ1} � {σ3} � ∅ = R∨TF̃El (O), if O = {σ3}.
(i i i) R∨TF̃E〈u〉(

R∨TF̃E〈u〉(O)) = {σ1} � {σ1, σ3} =R∨T F̃E〈u〉(O), if O = {σ2}.
(iv) R∨TF̃E〈u〉( R∨TF̃E〈u〉(O)) = {σ2, σ3, σ4} � {σ2, σ4} =R∨T F̃E〈u〉(O) if O =

{σ1, σ3, σ4}.
(v) R∨TF̃Er (Er (η)) = {σ1, σ2, σ3} � {σ2} = Er (η), if η = {σ2}.
To contend these imperfectnesswhile conserving the advantages of the foregoing rough
set model (introduced in this subsection), especially in terms of augmenting lower
approximation and decreasing upper approximation, we form up the next subsection.

3.4 Fourth type of rough set paradigms

Definition 25 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals, the duo (R∨TFEξ

(O), R∨TFEξ (O)) stands for lower
and upper approximations of a set O, respectively, are signified as follows:

R∨TFEξ
(O) = {σ1 ∈ Σ : Eξ (σ1) \ O ∈ R ∨ T} ∩ O,

R∨TFEξ (O) = {σ1 ∈ Σ : Eξ (σ1) ∩ O /∈ R ∨ T} ∪ O.

Definition 26 Consider R,T are ideals on an ξ -NS (Σ, ρ, �ξ ). Regarding to cardi-
nality neighborhoods and ideals, the R∨T

Eξ -accuracy degree R∨TAEξ
(O) of a set O

is assigned as:

R∨TAEξ
(O) = |R∨T FEξ

(O) |
|R∨T FEξ (O) | , |

R∨T FEξ (O) |	= 0.

Firstly, we illustrate that the current rough set models are better that their counter-
parts introduced in Subsection 3.2 in terms of enlarging the lower approximation and
minifying the upper approximation.

Proposition 12 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). IfO ⊆ Σ , then for each ξ

the next statements hold true.

(i ) R�TFEξ
(O) ⊆ R∨TFEξ

(O).
(i i ) R∨TFEξ (O) ⊆ R�TFEξ (O).

Proof It follows from the fact that R ∪ T ⊆ R ∨ T. ��
Corollary 5 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

R�TAEξ
(O) ≤ R∨TAEξ

(O).

The subsequent instance demonstrates that the converse of the above proposition
and corollary is incorrect in general.
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Example 5 Let ρ and T as given in Example 1. Put R = {∅, {σ4}} and let O = {σ3}.
Then, R�TFEu (O) = ∅, whereas R∨TFEu (O) = {σ3}.

We now proceed to examine the properties of R∨TFEξ
(), R∨TFEξ () for any set, as

outlined in the following results.

Theorem 7 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). IfH,O ⊆ Σ , then for each ξ

the next statements hold true.

(i ) R∨TFEξ
(∅) = ∅, and R∨TFEξ

(Σ) = Σ .
(i i ) R∨TFEξ (∅) = ∅, and R∨TFEξ (Σ) = Σ .
(i i i ) IfH ⊆ O, then R∨TFEξ

(H) ⊆ R∨TFEξ
(O) and R∨TFEξ (H) ⊆ R∨TFEξ (O).

(iv) R∨TFEξ
(O) ⊆ O ⊆ R∨TFEξ (O).

(v) R∨TFEξ
(Oc) = (R∨TFEξ (O))c and R∨TFEξ (Oc) = (R∨TFEξ

(O))c.
(vi ) R∨TFEξ

(O)=R∨TFEξ
(R∨TFEξ

(O)), andR∨TFEξ (R∨TFEξ (O))=R∨TFEξ (O),
for each σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(vi i ) R∨TFEξ
(R∨TFEξ

(O)) ⊆R∨TFEξ
(O), andR∨TFEξ (R∨TFEξ (O)) ⊇R∨TFEξ (O),

for each σ ∈ {u, 〈u〉}.
(vi i i ) Let η ∈ Σ . Then R∨T

FEξ
(Eξ (η)) = Eξ (η), for each σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(i x) Let η ∈ Σ . Then R∨TFEξ
(Eξ (η)) ⊆ Eξ (η), for each σ ∈ {u, 〈u〉}.

(x) R∨TFEξ (H) ∩ R∨TFEξ (O)= R∨TFEξ (H∩O), and R∨TFEξ (H) ∪ R∨TFEξ (O)

= R∨TFEξ (H ∪ O), for each ξ .
(xi) R∨TFEξ (H)∪R∨TFEξ (O) ⊆R∨TFEξ (H∪O)andR∨TFEξ (H∩O) ⊆R∨TFEξ (H)

∩ R∨T
FEξ (O), for each ξ .

Proof Direct to prove. ��
Proposition 13 Let R be an ideal on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R∨TFEu(O) ⊆ R∨TFEr (O)∩ R∨TFEl(O) ⊆ R∨TFEr (O)∪ R∨TFEl(O) ⊆
R∨TFEi (O).

(i i ) R∨TFEi (O) ⊆ R∨TFEr (O)∩ R∨TFEl(O) ⊆ R∨TFEr (O)∪ R∨TFEl(O) ⊆
R∨TFEu(O).

(i i i ) R∨TFE〈u〉(O) ⊆R∨TFE〈r〉(O)∩R∨TFE〈l〉(O) ⊆R∨TFE〈r〉(O)∪R∨TFE〈l〉(O) ⊆
R∨TFE〈i〉(O).

(iv) R∨TFE〈i〉(O) ⊆R∨TFE〈r〉(O)∩R∨TFE〈l〉(O) ⊆R∨TFE〈r〉(O)∪R∨TFE〈l〉(O) ⊆
R∨TFE〈u〉(O).

Proof The proof is warranted by (i) of Proposition 2. ��
Corollary 6 Let R be an ideal on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R∨TAEu(O) ≤ R∨TAEr (O) ≤ R∨TAEi (O), and R∨TAEu(O) ≤ R∨TAEl(O) ≤
R∨TAEi (O).

(i i ) R∨TAE〈u〉(O) ≤R∨TAE〈r〉(O) ≤R∨TAE〈i〉(O), andR∨TAE〈u〉(O) ≤R∨TAE〈l〉(O)

≤R∨T AE〈i〉(O).
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Proposition 14 If O is a nonempty subset of Σ , then 0 ≤ R∨TAEξ
(O) ≤ 1 for any σ .

Proof Follows by the fact that R∨TFEξ
(O) ⊆ O ⊆ R∨TFEξ (O). ��

Definition 27 A subsetO is called R∨T
Eξ -exact, if R∨TAEξ

(O) = 1. Otherwise,O is
called R∨T

Eξ -rough.

Eventually, we furnish Algorithm 2 to specify if a set is R∨T
Eξ -exact or R∨T

Eξ -
rough and then compute its accuracy measure.

Input : The universal set Σ under consideration.
Output: Determine whether a subset is R∨T

Eξ -exact or R∨T
Eξ -rough and compute its accuracy.

1 Insert a relation ρ and two ideal R and T over Σ as given by the expert;
2 Combine R ∨ T;
3 Select a type of ξ ;
4 for all σ ∈ Σ do
5 Compute Gξ (σ )

6 end
7 for all σ ∈ Σ do
8 Compute Eξ (σ )

9 end
10 for each subset O 	= ∅ of Σ do
11 Compute R∨TF̃Eξ (O) (by the formula of Definition 24);

12 Compute R∨TFEξ (O) = R∨TF̃Eξ (O) ∩ O;

13 Compute R∨TF̃Eξ (O) (by the formula of Definition 24);

14 Compute R∨TFEξ (O) = R∨TF̃Eξ (O) ∪ O;

15 if R∨TFEξ (O) = R∨TFEξ (O) then
16 a subset O is R∨T

Eξ -exact;

17 Print R∨TAEξ
(O) = 1

18 else
19 a subset O is R∨T

Eξ -rough;

20 Compute R�TAEξ
(O) =

|R∨TFEξ
(O)|

|R∨TFEξ (O)|
21 end
22 end

Algorithm 2: Examination whether a subset is R∨T
Eξ -exact or R∨T

Eξ -rough, and
compute its accuracy

4 Various topologies induced by cardinality neighborhoods and two
ideals

In this section, we employ cardinal neighborhoods and two ideals to get diverse topolo-
gies that are finer than those previously produced by cardinal neighborhoods in terms
of one ideal, as described in [14], for any given relation.
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Theorem 8 Let R,T be ideals on an ξ -N S (Σ, ρ, �ξ ). For each ξ , the family R∨TΩEξ

= {O ⊆ Σ: ∀ σ ∈ O, Eξ (σ )\O ∈ R ∨ T} constitutes a topology on Σ .

Proof Firstly, suppose Oι∈R∨TΩEξ
, for each ι∈Δ. Let σ ∈ ∪ι∈ΔOι, then there is

ι0∈Δ s.t. σ ∈ Oι0 and Eξ (σ )\Oι0 ∈ R ∨ T. Since Oι0 ⊆ ∪ι∈ΔOι. Therefore,
Eξ (σ )\(∪ι∈ΔOι) ∈ R ∨ T, this means that ∪ι∈ΔOι ∈ R∨TΩEξ

.
Secondly, let O1,O2 be elements of R∨TΩEξ

and σ belongs to the intersection of O1
andO2. ThenEξ (σ )\O1 ∈ R∨T andEξ (σ )\O2 ∈ R∨T. Hence,Eξ (σ )\[O1∩O2] ∈
R ∨ T. This means that O1 ∩ O2 ∈ R∨TΩEξ

.
Finally, it is evident that ∅,Σ∈R∨TΩEξ

, for each ξ . Consequently, R∨TΩEξ
is a topol-

ogy on Σ . ��
If O ∈ R∨TΩEξ

, then O is said to be R∨TΩEξ
-open set and its complement is named

a R∨T⊥Eξ
-closed set, where R∨T⊥Eξ

= {F : Fc ∈ R∨TΩEξ
}.

Example 6 Continuing from Example 1.
If R = {∅, {σ3}}, then
RΩEr = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ1, σ3}, {σ1, σ4}, {σ2, σ4},

{σ1, σ2, σ3}, {σ1, σ2, σ4}, {σ1, σ3, σ4}}.
RΩEl = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ3, σ4}, {σ1, σ4},

{σ2, σ4}, {σ2, σ3, σ4}, {σ1, σ2, σ4}, {σ1, σ3, σ4}}.
RΩEi = 2Σ.

RΩEu = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ1, σ4}, {σ2, σ4}, {σ1, σ2, σ4}, {σ1, σ3, σ4}}.
RΩE〈r〉 = {∅,Σ, {σ1}, {σ3}, {σ1, σ3}, {σ2, σ4}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.
RΩE〈l〉 = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ1, σ4}, {σ2, σ3}, {σ2, σ4},

{σ1, σ2, σ3}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.
RΩE〈i〉 = 2Σ.

RΩE〈u〉 = {∅,Σ, {σ1}, {σ2, σ4}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.

If T = {∅, {σ1}}, then
TΩEr = {∅,Σ, {σ2}, {σ3}, {σ4}, {σ1, σ3}, {σ2, σ3}, {σ2, σ4}, {σ3, σ4},

{σ1, σ2, σ3}, {σ2, σ3, σ4}, {σ1, σ3, σ4}}.
TΩEl = {∅,Σ, {σ1}, {σ2}, {σ1, σ2}, {σ3, σ4}, {σ2, σ3, σ4}, {σ1, σ3, σ4}}.
TΩEi = 2Σ.

TΩEu = {∅,Σ, {σ2}, {σ3, σ4}, {σ2, σ3, σ4}, {σ1, σ3, σ4}}.
TΩE〈r〉 = {∅,Σ, {σ1}, {σ3}, {σ1, σ3}, {σ2, σ4}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.
TΩE〈l〉 = {∅,Σ, {σ1}, {σ4}, {σ1, σ4}, {σ2, σ3}, {σ1, σ2, σ3}, {σ2, σ3, σ4}}.
TΩE〈i〉 = 2Σ.

TΩE〈u〉 = {∅,Σ, {σ1}, {σ2, σ3, σ4}}.
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If R ∨ T = {∅, {σ1, {σ3, {σ1, σ3}}, then
R∨TΩEr = 2Σ.
R∨TΩEl = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ3, σ4}, {σ1, σ4},

{σ2, σ4}, {σ2, σ3, σ4}, {σ1, σ2, σ4}, {σ1, σ3, σ4}}.
R∨TΩEi = 2Σ.

R∨TΩEu = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ1, σ4}, {σ2, σ4},
{σ3, σ4}, {σ1, σ2, σ4}, {σ1, σ3, σ4}, {σ2, σ3, σ4}}.

R∨TΩE〈r〉 = {∅,Σ, {σ1}, {σ3}, {σ1, σ3}, {σ2, σ4},
{σ1, σ2, σ4}, {σ2, σ3, σ4}}.

R∨TΩE〈l〉 = {∅,Σ, {σ1}, {σ2}, {σ4}, {σ1, σ2}, {σ1, σ4},
{σ2, σ3}, {σ2, σ4}, {σ1, σ2, σ3}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.

R∨TΩE〈i〉 = 2Σ.

R∨TΩE〈u〉 = {∅,Σ, {σ1}, {σ2, σ4}, {σ1, σ2, σ4}, {σ2, σ3, σ4}}.

Proposition 15 Let R be an ideal on an ξ -N S (Σ, ρ, �ξ ). Then

(i) For each ξ , RΩEξ
⊆ R∨TΩEξ

, and TΩEξ
⊆ R∨TΩEξ

.
(i i ) If ρ is preorder relation, then R∨TΩEξ

= R∨TΩE〈ξ〉 , for ξ ∈ {r , l, i, u}.
Proof (i) Obviously, RΩEξ

⊆ R∨TΩEξ
, and TΩEξ

⊆ R∨TΩEξ
, according to the fact

that R ⊆ R ∨ T, and T ⊆ R ∨ T.
(i i) Obvious by Proposition 6.

��
The converse of Proposition 15 need not to be true, as we see in the following

example:

Example 7 Continuing from Example 6. Let R = {∅, {σ3}}, T = {∅, {σ1}}, and σ = r .
Then, R∨TΩEr = 2Σ

�
RΩEr and

R∨TΩEr �
TΩEr .

Theorem 9 The following properties hold for the topologies generated by cardinality
neighborhoods and two ideals:

(i ) R∨TΩEu ⊆ R∨TΩEr ∩ R∨TΩEl ⊆ R∨TΩEr ∪ R∨TΩEl ⊆ R∨TΩEi .
(i i ) R∨TΩE〈u〉 ⊆ R∨TΩE〈r〉∩ R∨TΩE〈l〉 ⊆ R∨TΩE〈r〉∪ R∨TΩE〈l〉 ⊆ R∨TΩE〈i〉 .

Proof A direct result of (i) of Proposition 2. ��
Subsequently, we will construct multiform of rough approximations using the

topologies generated from cardinal neighborhoods and two ideals. Additionally, we
will discuss some of their properties.

Definition 28 Let R∨TΩEξ
be the topologies generated by cardinality neighborhoods

and two ideals, for each ξ . Then, the lower and upper approximations, of any set O,
are endowed by:
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R∨Tλξ (O)=R∨TintEξ
(O), R∨Tλξ (O)=R∨TclEξ

(O), (whereR∨TintEξ
(O), R∨TclEξ

(O)

represent interior, closure respectively of a set O with respect the topology R∨TΩEξ
).

Additionally, the accuracy criteria of O is assigned as: R∨Tϕλξ (O) = |R∨Tλξ (O)|
|R∨Tλξ (O)| ,

| R∨Tλξ (O) |	= 0.

It is noticeable that 0 ≤R∨T ϕλξ ≤ 1. If R∨Tϕλξ (O) = 1, then O is specified to as
an R∨T

Eξ -exact set. Otherwise, O is designated an R∨T
Eξ -rough set.

Regarding Definition 28, the following outcomes can be certified utilizing the char-
acteristics of interior and closure topological operators. It is remarkable that specific
properties, which are absent in the R∨TF̃Eξ

-, R∨TF̃Eξ -approximations remain valid

for the R∨Tλξ -, R∨Tλξ -approximations.

Theorem 10 For each ξ , suppose that R∨TΩEξ
is a topology generated by cardinality

neighborhood and ideal. If H,O ⊆ Σ , then the next statements are valid:

(i) R∨Tλξ (O) ⊆ O.

(i i ) R∨Tλξ (∅) = ∅.
(i i i ) R∨Tλξ (Σ) = Σ .

(iv) IfH ⊆ O, then R∨Tλξ (H) ⊆ R∨Tλξ (O).

(v) R∨Tλξ (H ∩ O) = R∨Tλξ (H) ∩ R∨Tλξ (O).

(vi ) R∨Tλξ (Oc) = (R∨Tλξ (O))c.

(vi i ) R∨Tλξ (
R∨Tλξ (O)) = R∨Tλξ (O).

Proof Straightforward from the properties of an interior topological operator. ��
Corollary 7 For each ξ , suppose that R∨TΩEξ

is a topology generated by cardinality
neighborhood and ideal. Then R∨Tλξ (H) ∪ R∨Tλξ (O) ⊆ R∨Tλξ (H ∪ O) for any
H,O ⊆ Σ .

Theorem 11 For each ξ , suppose that R∨TΩEξ
is a topology generated by cardinality

neighborhood and ideal. If H,O ⊆ Σ , then the next statements are valid:

(i) O ⊆ R∨Tλξ (O).

(i i ) R∨Tλξ (∅) = ∅.
(i i i ) R∨Tλξ (Σ) = Σ .

(iv) IfH ⊆ O, then R∨Tλξ (H) ⊆R∨T λξ (O).

(v) R∨Tλξ (H ∪ O) = R∨Tλξ (H) ∪ R∨Tλξ (O).

(vi ) R∨Tλξ (Oc) = (R∨Tλξ (O))c.

(vi i ) R∨Tλξ (R∨Tλξ (O)) = R∨Tλξ (O).

Proof From the properties of a closure topological operator, the proof is understand-
able. ��
Corollary 8 Let R∨TΩEξ

be the topologies generated by cardinality neighborhoods

and two ideals. Then R∨Tλξ (H ∩ O) ⊆ R∨Tλξ (H) ∩ R∨Tλξ (O) for any H,O ⊆ Σ .
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Proposition 16 If O is a nonempty subset of Σ , then 0 ≤ R∨Tϕλξ (O) ≤ 1 for any ξ .

Proposition 17 Let R∨TΩEξ
be the topologies generated by cardinality neighborhoods

and two ideals, then R∨Tϕλξ (Σ) = 1.

Proposition 18 Let R∨TΩEξ
be the topologies generated by cardinality neighborhoods

and two ideals. If O is a nonempty subset of Σ , then

(i) R∨Tλu(O) ⊆ R∨Tλr (O) ∩ R∨Tλl(O) ⊆ R∨Tλr (O) ∪ R∨Tλl(O) ⊆ R∨Tλi (O).

(i i ) R∨Tλi (O) ⊆ R∨Tλr (O) ∩ R∨Tλl(O) ⊆ R∨Tλr (O) ∪ R∨Tλl(O) ⊆ R∨Tλu(O).
(i i i ) R∨Tλ〈u〉(O) ⊆ R∨Tλ〈r〉(O) ∩ R∨Tλ〈l〉(O) ⊆ R∨Tλ〈r〉(O) ∪ R∨Tλ〈l〉(O) ⊆

R∨Tλ〈i〉(O).

(iv) R∨Tλ〈i〉(O) ⊆ R∨Tλ〈r〉(O) ∩ R∨Tλ〈l〉(O) ⊆ R∨Tλ〈r〉(O) ∪ R∨Tλ〈l〉(O) ⊆
R∨Tλ〈u〉(O).

Corollary 9 Let R∨TΩEξ
be the topologies generated by cardinality neighborhoods

and ideals. If O is a nonempty subset of Σ , then

(i) R∨Tϕλu (O) ≤R∨T ϕλr (O) ≤R∨T ϕλi (O).
(i i ) R∨Tϕλu (O) ≤R∨T ϕλl (O) ≤R∨T ϕλi (O).
(i i i ) R∨Tϕλ〈u〉(O) ≤R∨T ϕλ〈r〉(O) ≤R∨T ϕλ〈i〉(O).
(iv) R∨Tϕλ〈u〉(O) ≤R∨T ϕλ〈l〉(O) ≤R∨T ϕλ〈i〉(O).

Next, we will compare the approximations and accuracy criteria presented in this
section, which are based on topological structures, with the analogous methods intro-
duced in the previous section.

Proposition 19 Consider R ∨ T is an ideal on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then

(i) R∨Tλξ (O) ⊆ R∨TFEξ
(O), for each ξ .

(i i ) R∨Tλξ (O) ⊇ R∨TFEξ (O), for each ξ .

Proof To prove (i). Let σ1 ∈ R∨Tλξ (O), then there exists a subset V ∈ R∨TΩξ such
that σ1 ∈ V ⊆ O. This implies that Eξ (σ1)\V ∈ R ∨ T. Since V ⊆ O, then
Eξ (σ1)\O ∈ R ∨ T. Hence, σ1 ∈ R∨TF̃Eξ

(O). Since σ1 ∈ O, then σ1 ∈R∨TFEξ
(O)

and so R∨Tλξ (O) ⊆ R∨TFEξ
(O).

By the same manner, one can prove the rest items of this proposition. ��

Corollary 10 Consider R ∨ T is an ideal on an ξ -N S (Σ, ρ, �ξ ). If O ⊆ Σ , then
R∨Tϕλξ (O) ≤ R∨TAEξ

(O), for each ξ .

The converse of Corollary 10 need not to be true, refer to Example 6. Suppose
that σ = 〈u〉 and O = {σ1, σ4}. Then R∨TAEξ

(O) = 1
3 ,

R∨Tϕλξ (O) = 1
4 . Hence,

R∨TAEξ
(O) ≮

R∨Tϕλξ (O).
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Table 2 Patients with various symptoms and report

Patients Rashes Fever Headache Vomiting Fatigue Decision

σ1 + + - - + �
σ2 - + + + + �
σ3 + + - + - �
σ4 - - + + - ✗

σ5 + + - - + ✗

σ6 + + - + + ✗

σ7 + + - + - �
σ8 + - - - - ✗

5 An application of the proposed approach to diagnosis of dengue
disease

This section examines our models’ efficiency in dealing with dengue disease informa-
tion systems for some patients.We demonstrate how our approach assists in improving
the made decision and how we benefit from a topological technique to assign the most
important symptoms in deciding the decision. According to the below analysis, we
can say that our proposed paradigms outperform the existing paradigms. In contrast,
we point out the limitation(s) induced by the approach introduced in Subsection 3.1.

In Table 2, we display a set of eight patients Σ = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8}
with the following symptoms (known in the information system as conditional
attributes): rashes, fever, headache, vomiting, and fatigue. Whereas the dengue report
is the decision attribute. For each symptom (conditional attribute), we give one of the
values + or - depending on whether the patient has that symptom or not. Also, we give
one of the values �, or ✗ for the decision attribute.

Let us consider the expert define a relation ρ on Σ as follows

σiρσ j ⇐⇒ σi and σ j have similar positive symptoms greater than two

Then ρ = {(σ1, σ1), (σ2, σ2), (σ3, σ3), (σ5, σ5), (σ6, σ6), (σ7, σ7), (σ1, σ5), (σ5, σ1),
(σ1, σ6), (σ6, σ1), (σ2, σ6),
(σ6, σ2), (σ3, σ6), (σ6, σ3), (σ3, σ7), (σ7, σ3), (σ5, σ6), (σ6, σ5), (σ6, σ7), (σ7, σ6)}.

It can be seen that the given relation ρ is symmetric but it is neither reflex-
ive (since (σ4, σ4}) /∈ ρ) nor transitive (since (σ2, σ5}) /∈ ρ in spite of being
(σ2, σ6}), (σ6, σ5}) ∈ ρ). To process these data, we should initiateEξ -neighbourhoods
systems. According to the symmetric characteristic of this relation, we obtain that all
Eξ -neighbourhoods are equal (by Proposition 2). In Table 3, we provide Eξ for each
patient.

Also, let R = {∅, {σ4}, {σ5}, {σ4, σ5}}, T = {∅, {σ7}} refer to the ideals
given by two experts. Hence, R ∪ T = {∅, {σ4}, {σ5}, {σ7}, {σ4, σ5}}, R ∨ T =
{∅, {σ4}, {σ5}, {σ7}, {σ4, σ5}, {σ4, σ7}, {σ5, σ7}, {σ4, σ5, σ7}}.We compute the approx-
imation operators and accuracy measures for a set of patients they have positive report

123



Generalized rough approximation spaces

Table 3 Eξ for each patient

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Gr () {σ1, σ5,
σ6}

{σ2, σ6} {σ3, σ6,
σ7}

∅ {σ1, σ5,
σ6}

{σ1, σ2, σ3,
σ5, σ6, σ7}

{σ3, σ6,
σ7}

∅

G〈r〉() {σ1, σ5,
σ6}

{σ2, σ6} {σ3, σ6,
σ7}

∅ {σ1, σ5,
σ6}

{σ6} {σ3, σ6,
σ7}

∅

Er () {σ1, σ3,
σ5, σ7}

{σ2} {σ1, σ3,
σ5, σ7}

{σ4, σ8} {σ1, σ3,
σ5, σ7}

{σ6} {σ1, σ3,
σ5, σ7}

{σ4, σ8}

of dengueH = {σ1, σ3, σ4, σ6} by usingmodels introduced in [14, 15] and our models
given herein as follows.

− Approach introduced in [14].

(i) FEξ
(H) = {σ6},

(ii) FEξ (H) = {σ1, σ3, σ4, σ5, σ6, σ7, σ8},
(iii) AEξ

(H) = |FEξ
(H)|

|FEξ (H)| = 1
7 .

− Approach introduced in [15].

(i) RFEξ
(H) = {σ6},

(ii) RFEξ (H) = {σ1, σ3, σ4, σ5, σ6, σ7},
(iii) RAEξ

(H) =
|RFEξ

(H)|
|RFEξ (H)| = 1

6 .

(iv) TFEξ
(H) = {σ6} and

(v) TFEξ (H) = {σ1, σ3, σ4, σ5, σ6, σ7, σ8},
(vi) TAEξ

(H) =
|TFEξ

(H)|
|TFEξ (H)| = 1

7 .

− Approach introduced herein (in Subsection 3.2).

(i) R∪TFEξ
(H) = {σ6},

(ii) R∪TFEξ (H) = {σ1, σ3, σ4, σ5, σ6, σ7},
(iii) R∪TAEξ

(H) =
|R∪TFEξ

(H)|
|R∪TFEξ (H)| = 1

6 .

− Approach introduced herein (in Subsection 3.4)

(i) R∨TFEξ
(H) = {σ1, σ3, σ6},

(ii) R∨TFEξ (H) = {σ1, σ3, σ4, σ6, σ7},
(iii) R∨TAEξ

(H) =
|R∨TFEξ

(H)|
|R∨TFEξ (H)| = 3

5 .

− A topological approach presented in Sect. 4. First, the structure of topol-
ogy produced by Table 3 is R∨TΩEξ = {∅,Σ, {σ2}, {σ6}, {σ8}, {σ2, σ6},
{σ2, σ8}, {σ4, σ8}, {σ6, σ8}, {σ2, σ4, σ8}, {σ2, σ6, σ8}, {σ4, σ6, σ8}, {σ2, σ4, σ6,
σ8}, {σ1, σ3, σ6}, {σ1, σ3, σ7}, {σ1, σ2, σ3, σ7}, {σ1, σ3, σ6, σ7}, {σ1, σ3, σ7, σ8},
{σ1, σ3, σ5, σ7}, {σ1, σ2, σ3, σ5, σ7}, {σ1, σ3, σ5, σ6, σ7}, {σ1, σ3, σ5, σ7, σ8}, {σ1,
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σ2, σ3, σ5, σ6, σ7}, {σ1, σ2, σ3, σ6, σ7}, {σ1, σ2, σ3, σ7, σ8}, {σ1, σ2, σ3, σ4, σ7, σ8},
{σ1, σ3, σ4, σ6, σ7, σ8}, {σ1, σ3, σ4, σ5, σ6, σ7, σ8}, {σ1, σ2, σ3, σ4, σ5, σ7, σ8},
{σ1, σ3, σ4, σ5, σ7, σ8}, {σ1, σ2, σ3, σ4, σ6, σ8}, {σ1, σ2, σ3, σ4, σ5, σ6, σ8}, {σ1,
σ3, σ4, σ7, σ8}, {σ1, σ3, σ5, σ8}, {σ1, σ2, σ3, σ4, σ6, σ7, σ8}}.

(i) R∨Tλξ (H) = R∨TintEξ
(H) = {σ1, σ3, σ6},

(ii) R∨Tλξ (H) = R∨TclEξ
(H) = {σ1, σ3, σ4, σ5, σ6, σ7}, and

(iii) R∨Tϕλξ (H) = |R∨Tλξ (H)|
|R∨Tλξ (H)| = 1

2 .

According to the above, one can see that these computations are in agreement
with the results obtained in Proposition 12 and Corollary 5. This means that the best
development for the lower approximations and upper approximations, and accuracy
measures of subsets compared to other rough set models presented herein and those
displayed in [14, 15] is produced by the models introduced in Subsection 3.4. Further-
more, we use the topological paradigms of rough sets defined in Sect. 4 to calculate
the approximations (lower and upper) and boundary regions of subsets. Because of the
failures of rough set models established in Subsection 3.1 and Subsection 3.3 about
accuracy measures and preserving the main characteristics of the standard models, we
see it is appropriate to neglect these models in this part.

In the remaining part of this Section, we apply a topology R∨TΩEξ (that we gen-
erate above by cardinality neighborhoods and ideals) to determine the key symptoms
to judge whether the patient infected by dengue disease or not, where R∨TΩEξ =
{∅,Σ, {σ2}, {σ6}, {σ8}, {σ2, σ6}, {σ2, σ8}, {σ4, σ8}, {σ6, σ8}, {σ2, σ4, σ8}, {σ2, σ6, σ8},
{σ4, σ6, σ8}, {σ2, σ4, σ6, σ8}, {σ1, σ3, σ6}, {σ1, σ3, σ7}, {σ1, σ2, σ3, σ7}, {σ1, σ3,
σ6, σ7}, {σ1, σ3, σ7, σ8}, {σ1, σ3, σ5, σ7}, {σ1, σ2, σ3,σ5, σ7}, {σ1, σ3, σ5, σ6, σ7}, {σ1,
σ3, σ5, σ7, σ8}, {σ1, σ2, σ3, σ5, σ6, σ7}, {σ1, σ2, σ3, σ6, σ7}, {σ1, σ2, σ3, σ7, σ8}, {σ1,
σ2, σ3, σ4, σ7, σ8}, {σ1, σ3, σ4, σ6, σ7, σ8}, {σ1, σ3, σ4, σ5, σ6, σ7, σ8}, {σ1, σ2, σ3,σ4,
σ5, σ7, σ8}, {σ1, σ3, σ4, σ5, σ7, σ8}, {σ1, σ2, σ3, σ4, σ6, σ8}, {σ1, σ2, σ3, σ4, σ5, σ6, σ8},
{σ1, σ3, σ4, σ7, σ8}, {σ1, σ3, σ5, σ8}, {σ1, σ2, σ3, σ4, σ6, σ7, σ8}}.
(i) If we neglect the symptom “rashes" from the conditional attributes, then

ρrashes = {(σ2, σ2), (σ6, σ6), (σ2, σ6), (σ6, σ2)}. It is clear that R∨TΩEξ −
rashes 	= R∨TΩEξ .

(ii) If we exclude the symptom “fever" from the conditional attributes, then one can
check that R∨TΩEξ − f ever 	= R∨TΩEξ .

(iii) If we remove the symptom “headache" from the conditional attributes, then we
obtain a similar relation ρ, which implies that R∨TΩEξ − headache = R∨TΩEξ .

(iv) If we cancel the symptom “vomiting" from the conditional attributes, then one
can check that R∨TΩEξ − vomiting 	= R∨TΩEξ .

(v) If we omit the symptom “fatigue" from the conditional attributes, then one can
check that R∨TΩEξ − f atigue 	= R∨TΩEξ .

According to the above computations, we get that the symptoms of rashes, fever,
vomiting, and fatigue are the core of attributes; i.e., we arrive at the conclusion that
rashes, fever, vomiting, and fatigue are the key symptoms to judge whether the patient
has dengue disease or not.
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6 Discussions: strengths and limitations

In what follows, we reason why we need the current rough set models. We show
their advantages and how they expand the domain of application. Also, we refer to
some remarks that should be taken into account when we apply these models to avoid
shortcomings. Moreover, we compare the four proposed rough set models in terms of
accuracy measures and their ability to maintain the properties of Pawlak’s model.

− Advantages

(i) The present rough set models are constructed by any arbitrary relation,
which widens the situations that are covered by these models compared to the
standard models of Pawlak and others generated by equivalence relations or
some specific kinds of relations such as those models introduced in [14, 15].
(i i) The rough set models introduced herein provide an efficient instrument
to address some issues that consider the number of elements associated with
each other under arbitrary relations. They also enhance the previous rough
paradigms by using two ideals instead of one since the use of two ideals pro-
vides two perspectives rather than just one. This hybridized technique reduces
the boundary region and increases the degree of accuracy compared to [14,
15], which is in agreement with the primary objective of rough set theory.
(i i i) Rough sets models presented in Subsection 3.2 and Subsection 3.4 main-
tain most properties of the standard models of Pawlak (given in Proposition
1) as clarified in Proposition 9 and Proposition 9. These two models keep the
improvements obtained by other models introduced in Subsection 3.1 and Sub-
section 3.3 in relation to enhancing the lower approximation and shrinking the
upper approximation, moreover, they eliminate the defects resulting from the
first and third models.
(iv) We initiate a counterpart topological model for the fourth model (the best
one) to assist numerous users with abstract backgrounds such as topologists
in selecting the methods appropriate to their experiences. These sorts of users
prefer to cope with the topological techniques because of the ease of comput-
ing the approximation operators from their corresponding interior and closure
topological operators.

− Limitations

(i) Our models displayed in Subsection 3.1 and Subsection 3.3 lose some
standard model properties, such as the property describing the relationship
between the subsets and their lower and upper approximations. This means
that the relationship used to calculate the accuracy measures in these two
models should be updated; it cannot be applied directly, as this will otherwise
lead to contradictions.
(i i) The proposed models do not satisfy the monotonicity property since the
cardinal rough neighborhoods change in away that cannot be determinedwhen
we maximize or minimize the given relation.
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− Comparisons
According to the computations presented in the previous section, the fourth model
is the most preferred as it yields the highest accuracy and preserves the greatest
number of properties from Pawlak’s standard model. The second model follows
in terms of maintaining these two characteristics. In contrast, the first and third
models encounter issues with calculating accuracy measures and lose many of the
fundamental properties of Pawlak’s standard model.

7 Conclusion and future work

Rough set theory is one of the most popular and powerful methods to cope with
uncertainty and high dimensionality of a wealth of data, which pose challenges to
the fields of data mining, pattern recognition, and computational intelligence. One
core merit of rough set theory is its ability to represent data using a granular structure
without requiring prior information beyond the dataset. Traditionally, this granular
structure, represented by equivalence classes, has been refined using neighborhood
systems inspired by arbitrary relations, which relaxes the strict conditions of equiva-
lence relations.

In this article, we have adopted novel types of generalized approximation spaces
utilizing the concepts of cardinality neighborhoods and ideals. These types of rough
paradigms differ from the previous types in two ways: the first is that two ideals are
used instead of a single ideal, and the second is the method of forming a new structure
from these ideals, as we used two methods for the construction as follows:

union construction: R ∪ T = {A : A ∈ R or A ∈ T} and
joint construction: R ∨ T = {A ∪ B : A ∈ R,B ∈ T}

Since the structure R∨T contains R∪T, we find that the generalized approximation
spaces inspired by R∨T expand the domain of confirmed knowledge more effectively
than those inspired by R∪T. Moreover, while the structure R∨T constitutes an ideal,
R ∪ T does not, leading to the dissipation of some properties of Pawlak’s standard
model in the generalized approximation spaces inspired by R ∪ T.

We have explored the key properties of the four rough set models introduced in
Sect. 3 and demonstrated that the second and fourth models are preferable for ana-
lyzing information systems. In contrast, we showed that the first and third models
have limitations concerning maintaining the main features of the original paradigm,
and some formulas used to calculate accuracy are invalid in certain cases. Then, we
constructed topological spaces using joint ideals R ∨ T as an analogy for the fourth
proposed rough paradigm. We have illustrated its relationships with its counterpart
paradigm set up in Subsection 3.4. In this regard, the space constructed by union
ideals R ∪ T fails to be a topology; it institutes a supra topology, so we delay the
investigation of this structure for future works. We have examined the performance
and efficiency of the proposed paradigms via amedical example of dengue disease; the
outcomes of our computations indicate that the rough set models adopted herein out-
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perform existing models. Last but not least, we have listed the merits of the proposed
models and identified their limitations.

In the future, we intend to achieve the following studies:

– Integrate the technique of a finite set of ideals with the other types of existing
rough neighborhoods to establish fresh rough set models.

– Develop the proposed rough set models using a finite set of arbitrary relations
instead of one. This hybridization will significantly increase the accuracy.

– look at these models within the framework of soft rough set settings.
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