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ORIGINAL ARTICLE
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structure under mechanical loading via coupled Carrera unified formulation, 
layer-wise and Laplace transform approaches

Xiaoshan Xua, Gongxing Yanb,c, M. Atifd, and Mohammed El-Meligye,f 

aCollege of Civil Engineering, Chongqing Vocational Institute of Engineering, Chongqing, China; bSchool of Intelligent Construction, Luzhou 
Vocational and Technical College, Luzhou, Sichuan, China; cLuzhou Key Laboratory of Intelligent Construction and Low-carbon Technology, 
Luzhou, China; dDepartment of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia; eJadara University 
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ABSTRACT 
This study presents a comprehensive investigation into the slope stability and instability of column 
structures made of Triply Periodic Minimal Surfaces (TPMS) under mechanical loading. TPMS struc
tures, known for their high strength-to-weight ratio, are increasingly used in engineering applica
tions, particularly in lightweight structures. However, their stability behavior under complex 
loading conditions remains largely unexplored. To address this gap, we employ a coupled 
approach integrating the Carrera Unified Formulation (CUF), the Layer-Wise (LW) theory, and 
Laplace Transform techniques. The CUF framework, known for its versatility in modeling structural 
behavior across different geometrical and loading configurations, is utilized to capture the mech
anical response of the TPMS-based columns. The LW theory further enhances the model by accur
ately representing the through-thickness behavior, particularly crucial for layered or composite 
TPMS structures. Finally, the Laplace Transform approach is applied to efficiently solve the govern
ing differential equations, reducing the computational complexity of time-dependent mechanical 
analyses. A parametric study investigates the influence of various geometrical parameters, material 
properties, and loading conditions on the stability of the structures. The results highlight the criti
cal factors influencing slope stability, including the interplay between the TPMS geometry and 
material distribution. Moreover, the findings offer insights into failure mechanisms, providing a 
basis for optimizing the design of TPMS-based columns for enhanced mechanical performance. 
This work contributes to advancing the theoretical understanding of TPMS structures, offering 
novel methodologies for slope stability analysis in complex mechanical systems.
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1. Introduction

Composite structures are vital in modern engineering due to 
their unique combination of lightweight properties and high 
strength, making them indispensable in various industries [1–4]. 
Composites, typically made from reinforcing fibers such as car
bon, glass, or aramid embedded in a matrix material like epoxy, 
provide engineers with the ability to design structures that meet 
stringent performance criteria without the weight penalty of tra
ditional materials like steel or aluminum [5]. One of the most 
significant advantages of composite materials is their high 
strength-to-weight ratio, which is critical in applications like 
aerospace, automotive, and marine industries [6–8]. By reducing 
the weight of structures, engineers can improve fuel efficiency, 
payload capacity, and overall performance. For instance, the 
aerospace industry relies heavily on composites for manufactur
ing aircraft wings, fuselages, and other components, reducing 
weight and improving fuel economy. Composites also offer 
excellent corrosion resistance, which extends the lifespan of 
structures in harsh environments, such as chemical plants, 

offshore platforms, and bridges [9]. Unlike metals, composites 
do not rust or degrade as easily, leading to lower maintenance 
costs and longer service life [10]. This makes them particularly 
appealing for engineers designing structures that must withstand 
environmental stressors over extended periods. Another key 
benefit is the tailorability of composites [11, 12]. Engineers can 
optimize the orientation and type of fibers to achieve desired 
mechanical properties for specific applications, allowing for 
greater control over the behavior of the structure under various 
loads [13]. This flexibility is not possible with traditional iso
tropic materials, where properties are uniform in all directions. 
Composites also excel in vibration damping, which is crucial in 
applications like automotive suspensions, wind turbine blades, 
and sports equipment [14]. By absorbing and dissipating energy, 
composites help reduce noise, improve ride comfort, and extend 
the life of components subjected to dynamic loads [15]. The 
anisotropic nature of composites—where properties differ along 
different directions—allows engineers to strategically place mate
rials only where they are needed, optimizing material usage and 
minimizing unnecessary weight [16]. This enables innovative 
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design possibilities, like the creation of complex geometries or 
integrating multiple functions into a single component [17]. In 
addition to mechanical benefits, composites contribute to ther
mal stability in industries where materials are exposed to 
extreme temperatures. They have low thermal conductivity, 
making them ideal for applications in space structures, satellites, 
and electronics, where temperature fluctuations can cause mater
ial failure [18]. Furthermore, composite structures are crucial for 
sustainability efforts [19]. As industries aim to reduce their 
environmental footprint, the use of composites can contribute to 
greener solutions by reducing fuel consumption and emissions 
in transportation sectors [20]. Additionally, many composites 
can be made from renewable or recyclable materials, aligning 
with global sustainability goals [21]. Lastly, the long-term cost 
savings associated with composite materials, due to their durabil
ity, low maintenance, and ability to outperform traditional mate
rials in extreme conditions, make them an attractive choice for 
engineers [22]. Although the initial cost of composites can be 
higher, their overall lifecycle cost is often lower, especially in 
applications requiring long-term durability and performance 
[23]. In summary, composite structures offer engineers a versa
tile, high-performance material option that is well-suited to meet 
the growing demands of modern engineering applications, rang
ing from aerospace to civil infrastructure, thanks to their cus
tomizable, durable, and lightweight properties [24].

The Carrera Unified Formulation (CUF) is a significant 
advancement in the field of structural modeling, offering engi
neers a powerful tool to analyze complex structures with 
enhanced accuracy and efficiency [25]. It provides a unified 
framework that simplifies the implementation of different struc
tural theories, such as classical beam, plate, and shell theories, as 
well as more advanced models [26]. One of its core benefits is 
its ability to handle a wide variety of structural configurations, 
from simple to multilayered composites, using a single formula
tion approach [27]. CUF is particularly valuable in the analysis 
of structures with varying geometries and material properties, 
such as aerospace, automotive, and civil engineering applications 
[28]. Engineers can seamlessly switch between different levels of 
model fidelity—ranging from basic one-dimensional to advanced 
three-dimensional formulations—depending on the complexity 
of the structure and the required accuracy [29]. This adaptability 
makes CUF highly efficient, especially in optimizing computa
tional resources during finite element analysis. In addition, CUF 
supports higher-order theories without the need for complex 
mathematical formulations, enabling more accurate predictions 
of phenomena such as vibration, buckling, and dynamic 
response [30]. The formulation is also well-suited for analyzing 
laminated composite materials, which are increasingly used in 
modern engineering structures due to their superior strength-to- 
weight ratios [28]. Moreover, CUF’s versatility allows engineers 
to easily incorporate various boundary conditions, loading scen
arios, and material nonlinearity, enhancing its applicability in 
real-world structural analysis. Its unified nature eliminates the 
need for problem-specific formulations, significantly reducing 
development time and simplifying code implementation [29]. 
This capability is essential for industries where precision and 
efficiency are critical, allowing engineers to perform detailed 
structural analysis while minimizing errors [31]. Overall, the 

Carrera Unified Formulation offers a flexible, accurate, and com
putationally efficient approach to structural modeling, making it 
an indispensable tool for engineers tackling complex design and 
analysis challenges [32].

Numerical investigation plays a crucial role in modern 
engineering due to its ability to analyze complex systems 
that are difficult or impossible to solve analytically [33, 34]. 
By using numerical methods, engineers can simulate real- 
world phenomena with high precision, providing insights 
into the behavior of structures, materials, and systems under 
various conditions [35, 36]. It allows for the evaluation of 
different design alternatives before physical prototypes are 
created, saving both time and resources [37, 38]. Numerical 
analysis is particularly important in fields like aerospace, 
civil, and mechanical engineering, where precision is critical 
for safety and performance [39, 40]. In the design of bridges, 
buildings, and vehicles, for instance, numerical methods can 
predict load distribution, stress concentrations, and failure 
points [41, 42]. The outputs of the previous references can 
be used as the input in Refs. [43, 44]. These insights help 
engineers optimize designs for strength, durability, and cost- 
effectiveness [45, 46]. Moreover, numerical simulations 
enable the study of phenomena such as fluid dynamics, heat 
transfer, and electromagnetic fields, which are often too 
complex for purely experimental investigation [47, 48]. By 
applying methods like finite element analysis (FEA) and 
computational fluid dynamics (CFD), engineers can refine 
their designs with confidence [49, 50]. Additionally, numer
ical investigations provide a framework for integrating 
multidisciplinary considerations, such as material science 
and environmental factors, into the design process [51, 52]. 
This comprehensive approach ensures that products and 
structures meet both performance standards and regulatory 
requirements [53, 54]. The outputs of the previous referen
ces can be used as the input in Refs. [55, 56]. Engineers can 
also use numerical tools to investigate the effects of nonli
nearities, uncertainties, and dynamic loads, which are vital 
for assessing long-term performance and safety [57, 58]. 
Ultimately, numerical methods offer a cost-effective, effi
cient, and flexible approach for tackling a wide range of 
engineering challenges, making them indispensable in both 
academic research and industry [59, 60]. Ref. [61] aimed to 
improve economic stability by implementing targeted finan
cial strategies and risk management techniques. This was 
achieved by using advanced algorithms to classify credit 
card users based on their financial behaviors. In contrast, 
Ref. [62] utilizes extreme value theory in conjunction with 
mixture models to effectively identify and evaluate tail risks 
in financial markets, estimating the probability of rare but 
significant financial losses.

The slope stability and instability of column structures 
composed of triply periodic minimal surfaces under mech
anical stress are thoroughly examined in this work. Because 
of its excellent strength-to-weight ratio, TPMS structures are 
being used more and more in engineering applications, 
especially for lightweight constructions. Their stability 
behavior under intricate loading situations, however, is yet 
mostly unknown. We use a linked method that integrates 
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the Layer-Wise theory, the Carrera Unified Formulation, 
and Laplace Transform techniques in order to close this 
gap. To capture the mechanical reaction of the TPMS-based 
columns, the CUF framework—which is well-known for its 
adaptability in simulating structural behavior across various 
geometrical and loading configurations—is used. By faith
fully capturing the through-thickness behavior, which is 
especially important for layered or composite TPMS struc
tures, the LW theory improves the model even more. 
Ultimately, time-dependent mechanical studies’ computing 
complexity is decreased by effectively solving the governing 
differential equations using the Laplace Transform method. 
The impact of different geometrical factors, material charac
teristics, and loading circumstances on the stability of the 
constructions is examined using a parametric research. The 
findings draw attention to the important variables affecting 
slope stability, such as the interaction between the material 
distribution and TPMS shape. Furthermore, the results pro
vide light on the reasons of failure and serve as a foundation 
for improving the mechanical performance of TPMS-based 
column designs. This study offers new approaches for slope 
stability analysis in complicated mechanical systems, further
ing our theoretical knowledge of TPMS structures.

2. Mathematical modeling

When it comes to the other two orthogonal dimensions, a 
column’s longitudinal length (L) is fundamental. A beam is 
a typical thin construction. The global coordinate system for 
the column structure, where the x − z plane and y− axis 
(0� y� L) are perpendicular and parallel to the cross sec
tion, respectively, is adopted to be the Cartesian coordinate 
system, as seen in Figure 1.

2.1. TPMS architectures

Three uniform sheet-based models and their 3D printing 
prototypes are taken into consideration in order to stream
line the design process for TPMS substrates. These models 
are Primitive (P), Gyroid (G), and I-graph and wrapped 

package-graph (IWP), as shown in Figure 2. The effective 
elastic parameters of TPMS-based cellular material models, 
namely Poisson’s ratio, shear modulus, and Young’s modulus, 
must be approximated in order to forecast their mechanical 
behavior with any degree of accuracy. Using a two-phase fit
ting approach, a recent effective homogenization strategy of 
three distinct cellular TPMS forms (P, G, and IWP) is sug
gested [51]. Therefore, the relative density q ¼ qðzÞ=qs, 
where qðzÞ and qs, respectively, reflect the mass density of 
TPMS and the base material, may be used to describe the 
material characteristics of various TPMS structures. These are 
the precise formulae for these amounts [63].

E
Es
¼

CE
1q

nE
1 , q � kE

CE
2q

nE
2 þ CE

3 , q > kE
,

(

(1a) 

G
Gs
¼

CG
1 qnG

1 , q � kG

CG
2 qnG

2 þ CG
3 , q > kG

,

(

(1b) 

� ¼
a1eðb1qÞ þ d1, q � k�

a2q
2 þ b2qþ d2, q > k�

:

(

(1c) 

As demonstrated in Eqs. (1a)–(1c), it is clear to see that 
12 parameters are required to fully determine the material 
properties for each TPMS architecture. These coefficients are 
provided in Table 1 and Eqs. (2a) and (2b) [63].

CE
1 kEð Þ

nE
1 ¼ CE

2 kEð Þ
nE

2 þ CE
3 , CE

3 ¼ 1 − CE
2 , (2a) 

d1 ¼ �s − a1eb1k� , b2 ¼ −a2ðk� þ 1Þ, d2 ¼ �s − a2 − b2: (2b) 

On the other hand, we assume that the porosity distribu
tion of the TPMS substrate layer is mathematically deter
mined using two mass density functional grading 
distributions as follows [51]

qðzÞ ¼ qsqmax 1 − q0 þ q0wðzÞ½ �, (3) 

where wðzÞ represents the distribution function and is expli
citly expressed as follows

w zð Þ:
PA : w1 zð Þ ¼ z

hþ
1
2

� �nA

PB : w2 zð Þ ¼ 1 − cos pz
h
� �� �nS

,

(

(4) 

in which h is the thickness of the microplates; q0 ¼

1 − qmin=qmax represents the porosity parameter, with qmin 
and qmax respectively denoting the minimum and maximum 
values of the relative density. Additionally, the definitions of 
the power indexes nA and nS can be found in the Appendix 
section.

In this study, a straight single-walled carbon nanotube 
(SWCNT) reinforcement phase is added to improve the cel
lular TPMS substrate layer. It is widely known that the 
agglomeration phenomenon, which happens during synthe
sis under realistic circumstances, has a major impact on the 
reinforcing performance of composite materials. Because of 
this, the CNT-reinforced base material is described in this 
work using a two-factor model, which takes into consider
ation the agglomeration processes suggested by Shi et al. 
[64]. In this model, SWCNTs are dispersed randomly 

Figure 1. The geometry of the column structure under external mechanical 
loading (EML) and global coordinate system.
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throughout the material, with a few areas designated as 
“agglomeration regions” that may have larger concentrations 
of CNTs. Three model parameters are defined as follows: Vr 
(volume fraction of CNT reinforcement), n (agglomeration 
ratio), and f (agglomeration CNT reinforcement ratio).

Vr ¼
Vr

V
, n ¼

Vaggl

V
, f ¼

Vaggl
r

Vr
, (5) 

where V, Vaggl, Vr, and Vaggl
r stand for the volume of the 

total material, total CNT reinforcement, and CNT reinforce
ment, in that order. The Appendix section defines the 
agglomeration phenomena as well as the effective mechan
ical characteristics of composite materials. Furthermore, 
using the mixing rule, the mass density of the CNTR mater
ial is calculated as follows.

qs ¼ qmVm þ qrVr: (6) 

where the mass densities of the matrix and CNT are 
denoted by qm and qr, respectively. The matrix’s volume 
fraction is Vm ¼ 1 − Vr:

2.2. Carrera unified formulation (CUF)

At a given position in the structure, the displacement vector 
uðx, y, z; tÞ, strain vector eðx, y, z; tÞ, and stress vector 
rðx, y, z; tÞ may be represented as follows:

Figure 2. Various porous TPMS structures [59].

Table 1. Twelve coefficients for determining the material characteristics of 
TPMS types.

Property Parameter

TPMS type

P G IWP

Elastic modulus, E (GPa) CE
1 0.317 0.596 0.597

nE
1 1.264 1.467 1.225

nE
2 2.006 2.351 1.782

kE
m 0.25 0.45 0.35

Shear modulus, G (GPa) CG
1 0.705 0.777 0.529

nG
1 1.189 1.544 1.287

nG
2 1.715 1.982 2.188

kG
m 0.25 0.45 0.35

Poisson’s ratio, � a1 0.314 0.192 2.597
b1 −1.004 −1.349 −0.157
a2 0.152 0.402 0.201
k� 0.55 0.50 0.13
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uðx, y, z; tÞ ¼ fu v wgT, (7a) 

eðx, y, z; tÞ ¼ f�yy�xx�zz�xz�yz�xyg
T, (7b) 

rðx, y, z; tÞ ¼ fryyrxxrzzrxzryzrxyg
T
: (7c) 

where superscript “T” is the transpose operator. t is the time 
variable, being omitted in the remaining part for conveni
ence. The constitutive equations follow Hooke’s law, while 
the geometrical equations satisfy the linear relation:

eðx, y, zÞ ¼ Duðx, y, zÞ, (8a) 

rðx, y, zÞ ¼ Ceðx, y, zÞ: (8b) 

where C is the material coefficient matrix and D is a 6� 3 
differential operator matrix. The references [13] may be seen 
in their explicit forms. Well-known for their ability to ana
lyze the mechanics of thin, isotropic structures with bend
ing-dominated deformation are classical column models like 
EBBM and TBM. However, because of the weaker cross- 
section kinematic fields, these theories are not as often used 
in the modeling of thin-walled and composite structures. In 
order to solve this issue, CUF creates a unified column 
model in which any function pertaining to x and z coordi
nates may be used to generate the cross-section kinematic 
fields, as in the following example:

uðx, y, zÞ ¼ Fsðx, zÞusðyÞ, s ¼ 1, 2, ::::, M (9) 

where the 1D generalized displacement vector along the col
umn’s axis is denoted by usðyÞ: The arbitrary cross-section 
expansion, Fsðx, zÞ, establishes the kind of column model. 
M is the number of expansion terms, and s is the summa
tion in the repeated index.

2.3. Hierarchical Legendre expansions (HLE)

Initially, Szab�o et al. [65] used hierarchical Legendre polyno
mials to produce p-version FEM. The CUF-Hierarchical 
Legendre Expansions (HLE) column model was created by 
Carrera et al. [66] using hierarchical Legendre polynomials 
as Fsðx, zÞ: This work served as inspiration for their work. 
Layer-wise kinematics are naturally enabled in CUF-HLE 
since the polynomials are specified on the local natural 
coordinate system and transferred into the global coordinate 
system via the isoparametric transformation. Three groups 
comprise the formulation of 2D Legendre polynomials: 
internal, side, and vertex functions. Specifically, in order to 
produce the first-order expansions, which are bilinear 
Lagrange polynomials, vertice functions are introduced:

Fs ¼
1
4

1þ rrsð Þ 1þ sssð Þ, s ¼ 1, 2, 3, 4 (10) 

Thus, in the natural coordinate system, rs and ss are the 
coordinates of four vertexes across the quadrilateral area. 
Over the span −1, þ 1½ �, r and s change.

Fs r, sð Þ ¼
1
2

1 − sð Þ/j rð Þ, s ¼ 5, 9, 13, 18, ::: (11a) 

Fs r, sð Þ ¼
1
2

1þ rð Þ/j sð Þ, s ¼ 6, 10, 14, 19, ::: (11b) 

Fs r, sð Þ ¼
1
2

1þ sð Þ/j sð Þ, s ¼ 7, 11, 15, 20, ::: (11c) 

Fs r, sð Þ ¼
1
2

1 − sð Þ/j sð Þ, s ¼ 8, 12, 16, 21, ::: (11d) 

where /jðrÞ indicates 1D Legendre internal functions, see 
Ref. [67] for further information. For j > 4, the higher- 
order cross-section kinematics must be supplemented by a 
set of internal functions. The main distortion emerges from 
inside and disappears from the periphery. Typically, the jth- 
order expansions have j − 3 internal functions. Their state
ments may be expressed succinctly as follows:

Fsðr, sÞ ¼ /jðrÞ/kðsÞ, j, k � 2; s ¼ 17, 22, 23, 28, 29, 30, :::
(12) 

According to the preceding formulations, all of the lower- 
order kinematics—that is, the vertex, side, and internal func
tions—are included in the whole higher-order kinematics 
(j � 4), which can explain all rational deformations. The 
structural theory is generated via Legendre-based interpolat
ing functions, which results in pure displacements and 
higher-order modes as the model’s degrees of freedom.

3. Governing equations

The governing equations of a generic column structure in a 
Cartesian reference frame can be derived via the variational 
principle of virtual work. For static, free vibration and 
dynamic response analyses they hold:

dLint ¼ dLext, (13a) 

dLint ¼ −dLine, (13b) 

dLint ¼ dLext − dLine: (13c) 

where d denotes the symbol of the virtual variation. Lint is 
the strain energy, Line indicates the inertial work, Lext repre
sents the work done by the external force.

3.1. Stiffness matrix

The virtual variation of strain energy can be written as:

dLint ¼

ð

V
deTrdV , (14) 

where V is the volume.
Consider the geometrical relations and constitutive law 

under the assumption of small displacements, rotations and 
deformations, as follows:

e ¼ Du, (15a) 

r ¼ Ce: (15b) 
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where D is 6� 3 differential operator matrices. C is 6� 6 
stiffness matrices of the material. The explicit formulations 
of D and C have already been reported in the litera
ture [68].

By substituting geometrical and constitutive equations in 
Eqs. (8a) and (b) and the displacement assumption in Eq. 
(9) into Eq. (14), one has:

dLint ¼ ðdqsjÞ
T
ð

V
Rp

j FsDTCDFsRp
i dVdqsi ¼ ðdqsjÞ

TKssij
e qsi:

(16) 

where Kssij
e is the fundamental nucleus of the element stiff

ness matrix, which is composed of 3� 3 matrices.

Kssij
e ¼

Kssij
eð11Þ Kssij

eð12Þ Kssij
eð13Þ

Kssij
eð21Þ Kssij

eð22Þ Kssij
eð23Þ

Kssij
eð31Þ Kssij

eð32Þ Kssij
eð33Þ

2

6
6
6
6
4

3

7
7
7
7
5
: (17) 

In the case of laminated structures with orthotropic 
material, their explicit formulations are given in Appendix 
A.

Kssij
eð11Þ ¼ Ji, yj / FsC46Fs, z .þJi, yj / FsC26Fs, x .þJi, yj, y / FsC66Fs

.þJij / Fs, z C44Fs, z .þJij / Fs, z C24Fs, x .þJij, y

/ Fs, z C46Fs .þJij, y / Fs, x C26Fs .þJij / Fs, x C24Fs, z

.þJij / Fs, x C22Fs, x . ,
(18a) 

Kssij
eð12Þ ¼ Ji, yj / FsC66Fs, x .þJi, yj / FsC56Fs, z .þJi, yj, y / FsC36Fs

.þJij / Fs, x C26Fs, x .þJij / Fs, x C25Fs, z .þJij

/ Fs, z C46Fs, x .þJij / Fs, z C45Fs, z .þJij, y / Fs, z C34Fs

.þJij, y / Fs, x C23Fs . ,
(18b) 

Kssij
eð13Þ ¼ Ji, yj / FsC46Fs, x .þi, yj / FsC16Fs, z .þJi, yj, y / FsC56Fs

.þJij / Fs, z C44Fs, x .þJij / Fs, z C14Fs, z .þJij

/ Fs, x C24Fs, x .þJij / Fs, x C12Fs, z .þJij, y / Fs, z C45Fs

.þJij, y / Fs, x C25Fs . ,
(18c) 

Kssij
eð21Þ ¼ Jij, y / Fs, x C66Fs .þJij, y / Fs, z C56Fs .þJi, yj / FsC34Fs, z

.þJi, yj / FsC23Fs, x .þJi, yj, y / FsC36Fs .þJij

/ Fs, x C46Fs, x .þJij / Fs, x C26Fs, x .þJij / Fs, z C45Fs, z

.þJij / Fs, z C25Fs, x . ,
(18d) 

Kssij
eð22Þ ¼ Jij / Fs, x C66Fs, x .þJij / Fs, x C56Fs, z .þJij / Fs, z C56Fs, x

.þJij / Fs, z C55Fs, z .þJij, y / Fs, x C36Fs .þJij, y

/ Fs, z C35Fs .þJi, yj / FsC36Fs, x .þJi, yj / FsC35Fs, z

.þJi, yj, y / FsC33Fs . ,
(18e) 

Kssij
eð23Þ ¼ Jij / Fs, x C46Fs, x .þJij / Fs, x C16Fs, z .þJij / Fs, z C45Fs, x

.þJij / Fs, z C15Fs, z .þJij, y / Fs, x C56Fs .þJij, y

/ Fs, z C55Fs .þJi, yj / FsC34Fs, x .þJi, yj / FsC13Fs, z

.þJi, yj, y / FsC35Fs . ,
(18f) 

Kssij
eð31Þ ¼ Ji, yj / FsC45Fs, z .þJi, yj / FsC25Fs, x .þJi, yj, y / FsC56Fs

.þJij / Fs, x C44Fs, z .þJij / Fs, x C24Fs, x .þJij

/ Fs, z C12Fs, x .þJij / Fs, z C14Fs, z .þJij, y / Fs, x C46Fs

.þJij, y / Fs, z C16Fs . ,
(18g) 

Kssij
eð32Þ ¼ Ji, yj / FsC56Fs, x .þJi, yj / FsC55Fs, z .þJi, yj, y / FsC35Fs

.þJij / Fs, z C16Fs, x .þJij / Fs, z C15Fs, z .þJij

/ Fs, x C46Fs, x .þJij / Fs, x C45Fs, z .þJij, y / Fs, x C34Fs

.þJij, y / Fs, z C13Fs . ,
(18h) 

Kssij
eð33Þ ¼ Ji, yj / FsC45Fs, x .þJi, yj / FsC15Fs, z .þJi, yj, y / FsC55Fs

.þJij / Fs, x C44Fs, x .þJij / Fs, x C14Fs, z .þJij

/ Fs, z C14Fs, x .þJij / Fs, z C11Fs, z .þJij, y / Fs, x C45Fs

.þJij, y / Fs, z C15Fs . ,
(18i) 

where / � . ¼
Ð

X
dX is a cross-section moment parameter, 

whereas

Jij ¼

ð1

0
Rp

i Rp
j y, ndn, (19a) 

Jij, y ¼

ð1

0
Rp

i Rp
j, n

dn, (19b) 

Ji, yj ¼

ð1

0
Rp

i, n
Rpdn, (19c) 

Ji, yj, y ¼

ð1

0
Rp

i, n
Rp

j, n
=y, ndn: (19d) 
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and “derivatives” is indicated by the suffix after the comma. 
Note that the aforementioned integration is carried out over 
the parametric space [0, 1]. As expounded in Ref. [69], the 
mathematical transformation of integration variables provides 
an alternate method for doing Gauss quadrature smoothly. 
Changing the column model and shape function types does 
not change the elements of the basic nucleus in the element 
stiffness matrix. According to this sort of invariance, the glo
bal stiffness matrix of any type of column model may be easily 
built by adjusting the loop statements that are represented by 
the code’s indices s, s, i, and j properly.

4. B-spline functions

This study is innovative in that it approximates us yð Þ using 
B-spline functions. The form function of the resultant elem
ent in the setting of IGA is contrasted with that of the tradi
tional FEM element after a short introduction to the 
fundamentals of B-spline functions. The following is the 
recursive definition of these functions at beginning order 
p ¼ 0 using the piece-wise constant representation:

N0
i ðnÞ ¼

1 if ni � n � niþ1

0 otherwise
:

(

(20) 

where ni stands for the ith knot.
For p ¼ 1, 2, 3, :::, one obtains:

Np
i nð Þ ¼

n − ni

niþp − ni
Np−1

i nð Þ þ
niþpþ1 − n

niþpþ1 − niþ1
Np−1

iþ1 nð Þ: (21) 

where both N0
i and Np

i are B-spline functions and p corre
sponds to the order.

Usually, the knot vector includes a sequence of non- 
decreasing coordinates in the parametric space, written as:

N ¼ fn1, n2, :::, nnþpþ1g: (22) 

where n is the number of functions. The knot vector, also 
known as uniform or non-uniform B-splines, may have a uni
form or non-uniform distribution in the parametric space. 
Unlike Lagrange interpolation functions, this allows several 
knots to share a single value. This characteristic will influence 
the B-spline functions’ continuity (C1, C2, :::, C1). The knot 
vector is referred to as the open one, or endpoints interpol
ation, for the given order p if the first and final knots occur 
pþ 1 times. On the other hand, the knot vector possesses 
Cp−m continuous derivatives at that place if the multiplicity of 
the internal knot is m: As a result, the B-spline functions may 
exactly create the basic straight line as follows:

y ¼
Xn

i¼1
Np

i ðnÞyi: (23) 

where yi is the coordinate of the control point, which may 
fall off the curve.

Through the definition above, usðyÞ in Eq. (9) can be 
approximated by the weighted linear combination of Np

i ðnÞ:

By substitution of this approximation into Eq. (9), one can 
obtain:

uðx, y, zÞ ¼ Fsðx, zÞNp
i ðnÞqsi, s ¼ 1, 2, ::::, M i ¼ 1, 2, ::::, n

(24) 

where weighted coefficient qsi is the generalized nodal dis
placement vector, the subscript s implies the summation. 
Corresponding B-spline elements may be created using the 
displacement pattern mentioned above; this process is com
parable to that used in the FEM. To increase the analytical 
accuracy, the initial coarse meshes—which fall into three 
categories: h − , p − , and k− types—should be gently 
refined. In this study, only the h-type will be used, and its 
mechanism is based on inserting the knot into the knot vec
tor without altering the function’s order or the geometric 
form. Those who are interested might see Hughes et al. [70] 
for information on the other two categories.

4.1. Loading vector

The work performed by the external force in the case of the 
concentrated load F ¼ fFx, Fy, Fzg operating at the position 
ðxc, yc, zcÞ is stated as follows:

dLext ¼ duTF: (25) 

Analogously, other kinds of loading conditions, such sur
face and line loads, may be handled. When Eq. (24) is sub
stituted for Eq. (25), the result is:

dLext ¼ dqT
sjFsR

p
j F ¼ dqT

sjP
sj
e : (26) 

where Fs and Rp
j are evaluated at the corresponding position 

ðxc, zcÞ and ðycÞ, Psj
e is the element nodal load vector.

4.2. Mass matrix

The virtual variation of inertial work can be expressed [71]:

dLine ¼

ð

V
duT

s q€usdV: (27) 

where superimposed dots denote the second derivative with 
respect to time, substituting Eq. (24) into Eq. (27), it holds:

dLine ¼

ð

V
dqT

sjðJij / qFsFs.ÞIÞ€qsidV ¼ dqT
sjM

ssij
e €qsi: (28) 

where symbols Jij and / � . can be found in Appendix A, I is 
a 3� 3 identity matrix. Mssij

e is the element mass matrix.

4.3. Algebraic expressions of governing equations

The static analysis inquiries into the equilibrium between 
internal and external forces. Considering Eqs. (16) and 
(13a), the final algebraic system of governing equations as 
proposed in Eq. (13a) is obtained

Kq ¼ P: (29) 

The balance between elastic and inertial forces is exam
ined by the free vibration analysis. In this problem, the 
notion of virtual displacements is articulated as previously 
explained in Sections 4.1 and 4.3.
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KqþM€q ¼ 0: (30) 

The solution of q may be found by multiplying the 
motion’s amplitude function (Q) by the function linked to 
natural frequency ðxÞ-, eixt , when harmonic motion is con
sidered. Therefore, it is possible to reduce Eq. (31) to a 
standard eigenvalue problem:

ðK − x2MÞQ ¼ 0: (31) 

In the more broad scenario, the dynamic issue takes into 
consideration the contributions of internal, external, and 
inertial energy. Consequently, the set of governing equations 
in algebraic form becomes

KqþM€q ¼ P: (32) 

Applying Laplace transform [72] to Eq. (32) brings about 
the following relations

Kq̂ þMS2q̂ ¼ P̂: (33) 

The layer-wise method combined with the Laplace trans
form to Eq. (33), allows for the determination of the dis
placement for each layer. Using the modified formulation of 
Dubner and Abate, the displacements are produced over 
time by using the inverse Laplace transform [72]. Therefore, 
Eq. (34) is the formula that was used in this investigation to 
carry out the inverse Laplace transform.

f tð Þ ¼
2eat

T
−

A0

2
þ
X1

k¼0
Ak cos

2kpt
T

� �

− Bk sin
2kpt

T

� �� �" #

,

(34) 

Here

A0 ¼ Re F að Þ½ �, Ak ¼ Re F aþ i
2kp
T

� �� �

,

Bk ¼ Im F aþ i
2kp
T

� �� �

,
(35a) 

S ¼ aþ i
2kp
T

, aT ¼ 5: (35b) 

5. Results and discussion

5.1. Validation

The simply supported (SS) square beam with L=b ¼ 10 
exhibits the first seven non-dimensional flexural frequencies, 
x� ¼ ðxL2=bÞ

ffiffiffiffiffiffiffiffi
q=E

p
, in Table 1. The current LE models’ 

findings are contrasted with reference FE results from Refs. 
[73, 74], as well as those from traditional theories (EBBM, 
TBM), CUF(TE)-DSM, and CUF(LE)-Navier theory. A 
range of LE models are taken into account in the table 
shown in Figure 3. The accuracy of the current strong form 
LE beam is shown by the comparison of the data in Table 2. 
It even shows convergence with regard to EBBM in the case 
of the simplest one, 1L4. The Navier solution, which also 
makes use of the LE model, and the results produced by the 
current technique coincide rather well. It is important to 
take note of 1� 2L4 and 2� 1L4, since they are distinct 
models with varying flexure directions along ox and oz. 
Despite having the same amount of degrees of freedom as 
1L9, the 2� 2L4 model in Figure 3(d) yields somewhat bet
ter accurate results, at least when compared to the lower fre
quencies. The 1L16 model’s findings demonstrate its 
superior accuracy and higher-order, fourth-order interpol
ation capabilities, which are especially noticeable in the 
higher frequency range.

Table 2 presents the first seven non-dimensional flexural 
frequencies for a simply supported (SS) square beam with a 
length-to-breadth ratio ðL=b ¼ 10Þ: Various models and 
methods are used to calculate these frequencies, illustrating 
differences in results based on different approaches. The 
TBM-DSM and EBBM-DSM models, as referenced in [74], 

Figure 3. LE modeling of the square cross-section beam. (a) 1L4. (b) 1� 2L4. (c) 2� 1L4. (d) 2� 2L4. (e) 1L9. (f) 1L16.
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provide results that serve as baseline comparisons. The first 
frequency for TBM-DSM is 2.807, increasing to 92.334 for 
the seventh frequency. In comparison, the EBBM-DSM 
shows slightly higher values, with the first frequency at 
2.838 and the seventh at 117.859, indicating higher stiffness 
predictions from this model. Results obtained using the 
FEM [74] are also included, with three variations based on 
the number of elements (NAS1D50, NAS1D100, and 
NAS1D200). The frequencies increase with more refined 
element numbers, demonstrating the impact of mesh refine
ment on the accuracy of the results. For example, 
NAS1D200 yields slightly higher values than NAS1D50, with 
the first frequency increasing from 2.813 to 2.813, and the 
seventh from 91.907 to 92.226, respectively. The CUF (TE)- 
DSM model with N ¼ 3 and N ¼ 4 [74] shows close agree
ment with the DSM-based models. As expected, increasing 
the polynomial order from N ¼ 3 to N ¼ 4 does not drastic
ally affect the results, with the frequencies remaining nearly 
constant, e.g. the first frequency for both is 2.803, and the 
seventh is approximately 89.863. The CUF (LE)-Navier [73] 
model introduces different configurations (e.g. 1L4, 
2� 2L4), showing variability in the predicted frequencies. 
For instance, the first frequency for 1L4 is 3.063, which is 
higher than that of other models, suggesting a stiffer 
response prediction. The seventh frequency for this method, 
at 97.226, also deviates from other methods, reflecting differ
ences in how boundary conditions and assumptions affect 
the flexural frequencies. The current theory, presented at the 
bottom of the table, offers results for the same configura
tions. The first frequency for 1L4 is 3.063, consistent with 
the CUF (LE)-Navier model. The rest of the frequencies 
closely align, with the seventh frequency at 97.225, confirm
ing the consistency between the models. This table high
lights the influence of different modeling techniques, 
boundary conditions, and element refinements on predicting 

flexural frequencies in square beams. From Table 2 can be 
concluded that there is good agreement between the current 
work and those of published articles.

5.2. Parametric result

Figure 4 appears to illustrate the dynamic response of a col
umn structure composed of advanced nanocomposite rein
forced materials designed with different Triply Periodic 
Minimal Surface (TPMS) architectures—Primitive, Gyroid, 
and IWP (Schwarz P) models—under mechanical loading. 
The graphs aim to compare the slope stability/instability of 
these structures based on their deformation characteristics. 
The top graph presents a time series of the slope’s rate of 
change, @w=@x, for each TPMS architecture. The x-axis rep
resents time (in seconds), while the y-axis denotes the 
change in slope rate, potentially indicating the magnitude of 
deformation or stress along the column’s length. The three 
curves—red for Primitive, blue for Gyroid, and black for 
IWP—show oscillatory behavior, typical of dynamic systems 
under mechanical excitation. The amplitude and frequency 
of the oscillations differ for each architecture, suggesting 
that each TPMS model responds differently to mechanical 
stress. This difference in behavior could highlight varying 
levels of stiffness or internal stress distribution across the 
materials, with the Gyroid (blue) showing larger oscillations 
compared to the other models. This suggests greater sensi
tivity or susceptibility to mechanical instability. The bottom 
two subplots (b and c) offer phase-plane diagrams, where 
the x-axis represents @2w

@x@t (rate of slope change), and the y- 
axis represents @w

@x (curvature or second derivative of the 
slope). These diagrams visualize the dynamic stability of the 
system, with trajectories indicating the evolution of slope 
and curvature over time. In subplot (b), for @2w

@x@t vs. @w
@x , the 

three TPMS architectures again show distinct behaviors. The 
red trajectory (Primitive) forms larger loops, while the blue 
(Gyroid) and black (IWP) show tighter loops. This suggests 
that the Primitive architecture experiences greater deform
ation but possibly returns to equilibrium more predictably, 
whereas the Gyroid and IWP have a more intricate stability 
profile. Subplot (c) focuses on the slope stability by looking 
at the @3w

@x@t2 versus @2w
@x@t , capturing how the change in slope 

evolves with time. This further highlights the mechanical 
response diversity among the TPMS models. The overall 
analysis underscores that the Gyroid model shows more 
complexity and larger deformations, which could imply a 
greater potential for instability under prolonged mechanical 
loading, while the Primitive and IWP offer more predictable, 
albeit less stable, behavior.

Figure 5 illustrates the slope stability and instability ana
lysis of a nanocomposite reinforced column structure under 
mechanical loading, considering different TPMS architec
tures with a PB distribution function. The three architec
tures compared are Primitive, Gyroid, and IWP (Schwarz 
P), with the same mechanical loading conditions, but now 
analyzed through the PB distribution. The top graph shows 
how the slope rate evolves over time for each of the TPMS 
models. The x-axis represents time (in seconds), while the y- 

Table 2. First seven non-dimensional flexural frequencies x� ¼ ðxL2=bÞffiffiffiffiffiffiffiffi
q=E

p
for the simply supported (SS) square beam, L=b ¼ 10:

Model 1 2 3 4 5 6 7

TBM-DSM [1] 2.807 10.779 22.849 37.858 54.856 73.192 92.334
EBBM-DSM [1] 2.838 11.213 24.742 42.847 64.869 90.330 117.859

FEM [74]
NAS1D50 2.813 10.841 23.055 38.225 55.256 73.331 91.907
NAS1D100 2.813 10.841 23.060 38.246 55.323 73.491 92.225
NAS1D200 2.813 10.842 23.062 38.254 55.340 73.532 92.296

CUF (TE)-DSM [74]
N ¼ 3 2.803 10.723 22.621 37.299 53.812 71.509 89.963
N ¼ 4 2.803 10.722 22.617 37.282 53.765 71.402 89.759

CUF (LE)-Navier [73]
1L4 3.063 11.704 24.653 40.573 58.415 77.456 97.226

1� 2L4 2.914 11.168 23.617 39.030 56.416 75.074 94.536
2� 1L4 2.998 11.474 24.213 39.923 57.575 76.452 96.083
2� 2L4 2.839 10.890 23.055 38.143 55.187 73.500 92.621

1L9 2.808 10.784 22.869 37.902 54.929 73.268 92.453
1L16 2.803 10.722 22.618 37.291 53.794 71.472 89.898

Current theory
1L4 3.064 11.707 24.657 40.572 58.418 77.459 97.224

1� 2L4 2.915 11.169 23.619 39.032 56.421 75.077 94.538
2� 1L4 2.999 11.477 24.214 39.926 57.574 76.453 96.085
2� 2L4 2.844 10.891 23.056 38.146 55.189 73.504 92.624

1L9 2.809 10.785 22.870 37.905 54.926 73.267 92.456
1L16 2.806 10.723 22.619 37.293 53.797 71.474 89.897
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axis reflects the rate of slope change, @w
@x , in the structure. 

The red curve corresponds to the Primitive model, the blue 
curve represents the Gyroid, and the black curve stands for 
the IWP architecture. The oscillatory behavior of the struc
tures is more pronounced here compared to Figure 4. The 
amplitudes are smaller, but the frequencies appear to be 
higher, indicating a potentially stiffer or more responsive 
system. The Primitive architecture (red) has the highest 
amplitudes, suggesting a larger deformation rate compared 

to Gyroid (blue) and IWP (black). The varying frequencies 
and amplitudes suggest distinct mechanical behaviors for 
each TPMS, with Primitive responding with larger oscilla
tions, while the IWP and Gyroid show tighter, more con
trolled oscillations. In subplots (b) and (c), phase-plane 
diagrams further characterize the dynamic responses. In sub
plot (b), which compares the slope rate @w

@x with the curva
ture @2w

@x@t , each TPMS architecture exhibits a different phase 
portrait. The Primitive architecture (red) forms larger and 

Figure 4. Slope stability/instability information of the advanced nanocomposite reinforced column structure under mechanical loading for various TPMS architec
tures and PA as the distribution function.
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more elliptical loops, while the Gyroid (blue) and IWP 
(black) create more compact, cyclic paths. This shows that 
the Primitive model exhibits greater mechanical deformation 
but may stabilize back to equilibrium more effectively. The 
Gyroid, however, shows a more complex response with 
tighter loops, implying greater stiffness and potential 
instability over time. Subplot (c) compares @3w

@x@t2 versus @2w
@x@t , 

depicting how the slope rate changes with time. The 
Primitive model (red) again shows larger loops, implying 

more substantial deformations, while the Gyroid and IWP 
form denser loops. The denser loops for the Gyroid suggest 
increased stability, but potentially more susceptibility to 
complex dynamic behavior due to its intricate surface struc
ture. The IWP model demonstrates a middle ground, with 
more uniform and predictable dynamics compared to the 
other two models. Overall, Figure 5 demonstrates that the 
Primitive architecture exhibits larger deformation magni
tudes but returns more predictably to equilibrium, while the 

Figure 5. Slope stability/instability information of the advanced nanocomposite reinforced column structure under mechanical loading for various TPMS architec
tures and PB as the distribution function.
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Gyroid and IWP models display more complex stability pro
files. The smaller amplitude and higher frequency of oscilla
tions for the PB distribution function may indicate a more 
rigid structure under mechanical loading conditions. 
However, the differences in dynamic response between the 
TPMS models emphasize the importance of choosing the 
appropriate architecture for specific mechanical performance 
needs.

Figure 6 demonstrates the slope stability and instability of a 
nanocomposite reinforced column structure under mechanical 

loading, focusing on the Gyroid architecture. The mechanical 
response is analyzed with varying values of nS, representing dif
ferent structural configurations within the PB distribution func
tion. The values of nS considered are 1, 3, and 5, denoted by 
red, blue, and black curves, respectively. In the top graph, the 
x-axis represents time (in seconds), while the y-axis shows the 
rate of slope change, @w

@x : The different colors illustrate the oscil
latory response of the structure for the corresponding values of 
nS: The red curve nS ¼ 1 exhibits the highest amplitude oscilla
tions, while the blue curve (nS ¼ 3) and the black curve 

Figure 6. Slope stability/instability information of the advanced nanocomposite reinforced column structure under mechanical loading for various nS and PB as the 
distribution function.
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(nS ¼ 5) display progressively lower amplitudes. This indicates 
that as nS increases, the mechanical response becomes less 
intense in terms of deformation rate, suggesting increased 
structural stability or reduced sensitivity to mechanical loading. 
Moreover, the oscillation frequencies seem to increase with 
higher nS, indicating that the system becomes stiffer and 
responds more quickly to mechanical stress. The bottom two 
subplots (b and c) provide further insight through phase-plane 
diagrams. Subplot (b) plots @2w

@x@t (slope rate) against @w
@x (curva

ture or second derivative of the slope). The phase portraits 

reveal the dynamic behavior for each nS value. The red curve 
(nS ¼ 1) forms larger loops, indicative of greater deformation, 
while the blue (nS ¼ 3) and black (nS ¼ 5) curves form tighter 
loops. This suggests that the structure experiences reduced 
deformation as nS increases, likely resulting in higher stability 
and less susceptibility to large-scale mechanical oscillations. 
Subplot (c) presents the relationship between @3w

@x@t2 and @2w
@x@t , 

illustrating how the slope rate evolves over time. The red curve 
(nS ¼ 1) again shows larger loops compared to the blue and 
black curves, indicating a more dynamic and less stable 

Figure 7. Slope stability/instability information of the advanced nanocomposite reinforced column structure under mechanical loading at various times.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 13



response. The progressively smaller and more compact loops 
for (nS ¼ 3) and (nS ¼ 5) reinforce the observation that higher 
nS values correspond to more controlled, stable behavior under 
mechanical loading. Overall, Figure 6 demonstrates that as nS 
increases, the Gyroid-based structure becomes stiffer, exhibiting 
smaller deformations and a more stable dynamic response. This 
indicates that by tuning nS, the mechanical performance of the 
column structure can be optimized for specific applications, 
with higher nS values favoring greater stability and reduced 
mechanical instability under load.

Figure 7 presents a detailed analysis of slope stability and 
instability in an advanced nanocomposite reinforced column 
structure composed of Triply Periodic Minimal Surface 
materials under mechanical loading, specifically with a 
gyroid-based configuration. The figure illustrates the behav
ior of the structure over time in response to loading and 
highlights different aspects of the deformation and response 
dynamics. In Figure 7(a), the graph plots the time evolution 
of the slope derivative ð@w=@x) as a function of time, indi
cating the dynamic response of the column structure under 

Figure 8. Slope stability/instability information of the advanced nanocomposite reinforced column structure for various distribution functions of mechanical 
loading.
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loading. The oscillatory nature of the curve suggests the 
structure undergoes significant fluctuations in response to 
the mechanical load. The increasing amplitude of oscilla
tions over time implies a possible onset of instability, 
where the structure experiences larger deformations as time 
progresses. This time-varying behavior is characteristic of 
instability phenomena, such as flutter or dynamic buckling, 
often observed in slender structures or those with complex 
geometries like TPMS materials. The specific model used 
in this analysis, referred to as a gyroid with parameters 
ns ¼ 5 and X ¼ x, emphasizes the structural configuration 
and loading conditions employed. Figure 7(b,c) provide 
further insight into the slope variations in terms of phase- 
space trajectories, plotting @2w

@x@t against @w=@x at different 
instants. These phase diagrams reveal spiraling paths, 
which are a hallmark of a stable system that could 
approach a limit cycle, or indicate complex behavior like 
bifurcation points. The symmetrical and closed-loop trajec
tories in both subfigures reflect a system oscillating within 
a bounded range, suggesting some degree of stability, des
pite the oscillatory behavior observed in the time plot. 
These phase portraits are essential for understanding the 
equilibrium points and stability margins of the system. A 
tighter spiral (in Figure 7(b)) likely represents a period of 
relatively lower energy or small perturbations, while the 
broader loops (in Figure 7(c)) could signify increasing 
energy levels or transition toward instability. In summary, 
this figure offers a comprehensive depiction of the dynamic 
response of a TPMS-based column structure, showcasing 
both time-domain and phase-space analyses. The oscillatory 
trends, coupled with the evolving phase portraits, under
score the complexity of stability behavior in such advanced 
materials under mechanical stress.

Figure 8 presents an analysis of the slope stability and 
instability of a nanocomposite-reinforced column structure 
with a gyroidal configuration, subjected to different forms 
of mechanical loading. This study focuses on the behavior 
of the structure under various loading distributions charac
terized by functions F tð Þ ¼ P0sinðXtÞ, F tð Þ ¼ 1:5P0sinðXtÞ, 
and F tð Þ ¼ 2P0sinðXtÞ: These loading distributions intro
duce different levels of force, as depicted by the increasing 
factors of P0, ranging from standard (red curve), inter
mediate (black curve), to higher force (blue curve). In 
Figure 8(a), the graph shows the time evolution of the 
slope derivative ð@w=@x) over time for each of the loading 
distributions. The red curve corresponds to the smallest 
loading function, while the black and blue curves corres
pond to increased load levels. The behavior under the 
smallest loading is relatively stable with moderate oscilla
tions, but as the loading function increases (e.g. the blue 
curve), the amplitude of the oscillations grows significantly. 
This suggests that the higher the mechanical load applied 
to the structure, the more prone the column is to experi
ence larger deformations, which could lead to instability. 
The oscillations seen in this figure can be interpreted as 
the structure’s response to dynamic loads, with increasing 
energy leading to more pronounced deformations as the 
load grows. Figure 8(b,c) further analyze the system by 

presenting phase portraits, where @2w
@x@t is plotted against 

@w=@x, for different instants of time. These phase-space 
diagrams give a clear representation of the system’s stabil
ity under varying mechanical loads. In Figure 8(b), which 
corresponds to the lowest load (red curve), the closed, 
elliptical trajectories indicate a relatively stable state with 
small perturbations, suggesting that the structure can main
tain its equilibrium without drastic changes. However, as 
seen in Figure 8(c), when the mechanical load increases 
(black and blue curves), the trajectories spread out into 
larger loops, indicating more complex oscillatory behavior 
and a higher tendency toward instability. The larger phase 
portraits indicate that the system is experiencing greater 
fluctuations, moving further from equilibrium as the mech
anical load increases. In summary, Figure 8 provides criti
cal insight into how different mechanical load distributions 
affect the slope stability of the gyroid-based nanocomposite 
column structure. As the mechanical load increases, the 
column becomes more unstable, which is reflected in both 
the time evolution of slope oscillations and the increasingly 
complex phase-space trajectories. These findings are vital 
for understanding how varying force distributions influence 
the overall stability of such advanced materials under 
dynamic mechanical conditions.

6. Conclusion

In this study, we analyzed the slope stability and instability 
of column structures made of TPMS under mechanical load
ing using a coupled approach that integrated the Carrera 
unified formulation, the layer-wise theory, and Laplace 
Transform techniques. The primary objective was to under
stand the stability behavior of TPMS structures, which had 
not been thoroughly explored in previous research, espe
cially under complex loading conditions. We successfully 
employed the CUF, which provided a versatile and robust 
framework to model the mechanical response of TPMS col
umns with various geometrical and material configurations. 
By using the LW theory, we were able to account for the 
detailed through-thickness behavior of the structures, which 
was particularly relevant for multilayered TPMS or compos
ite designs. The Laplace Transform further allowed us to 
efficiently solve the governing equations in the time domain, 
reducing computational demands and improving solution 
accuracy. The results of the parametric study revealed that 
the stability of TPMS columns was highly dependent on sev
eral critical factors, including their geometrical configur
ation, the material distribution within the structure, and the 
nature of the applied mechanical loading. We found that 
certain TPMS geometries exhibited enhanced stability due to 
their unique surface properties and load-distribution charac
teristics. Additionally, the interaction between different 
material layers in layered TPMS columns played a signifi
cant role in determining their overall stability or susceptibil
ity to failure. In terms of instability, our analysis identified 
specific loading conditions and structural configurations that 
led to slope failure. These findings provided insight into the 
failure mechanisms of TPMS-based columns, enabling us to 
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suggest design strategies for improving their mechanical per
formance. Overall, our work contributed to a deeper under
standing of the slope stability and instability of TPMS 
structures, offering novel methodologies that can be applied 
to the design and optimization of lightweight, high-perform
ance columns in engineering applications. This study laid 
the groundwork for future research into the stability of 
advanced periodic structures under mechanical loads.
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Appendix A 

A.1. Definition of nA and nS

The following are the power indexes, nA and nS, respectively [74].

nA ¼
qmax − M

qsh
M
qsh

− qmax 1 − q0ð Þ
, (A1-1a) 

M
qsh
¼

ð1

0

2
p

qmax 1 − q0 þ q0ð1 − /Þ
nS

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − /2

p d/, (A1-1b) 

with / ¼ cos pz
h
� �

and M refers to the total mass per surface area of 
the TPMS substrate layer.

A.2. Definition of effective properties

The isotropic mechanical characteristics of CNTR material may be 
computed using the effective material properties of agglomeration 
(aggl) and non-agglomeration (non − aggl) areas, in accordance with 
the Eshelby–Mori–Tanaka (EMT) micro-mechanical scheme.

Es ¼
9KsGs

3Ks þ Gs
, �s ¼

3Ks − 2Gs

6Ks þ 2Gs
, (A2-1a) 

Ks ¼ Knon−aggl 1þ
l

Kaggl
Knon−aggl

− 1
� �

1þ a 1 − lð Þ
Kaggl

Knon−aggl
− 1

� �

0

B
@

1

C
A, (A2-1b) 

Gs ¼ Gnon−aggl 1þ
l

Gaggl
Gnon−aggl

− 1
� �

1þ b 1 − lð Þ
Gaggl

Gnon−aggl
− 1

� �

0

B
@

1

C
A, (A2-1c) 

where

a ¼
1þ �non−aggl

3ð1 − �non−agglÞ
, b ¼

2ð4 − 5�non−agglÞ

15ð1 − �non−agglÞ
, (A2-2a) 

�non−aggl ¼
3Knon−aggl − 2Gnon−aggl

6Knon−aggl þ 2Gnon−aggl
: (A2-2b) 

Besides, the mechanical properties of these regions can be calcu
lated via

Kaggl ¼ Km þ
vrf dr − 3Kmarð Þ

3 n − vrfþ vrfarð Þ
,

Gaggl ¼ Gm þ
vrf gr − 2Gmbrð Þ

2 n − vrfþ vrfbrð Þ
,

(A2-3a) 

Knon−aggl ¼ Km þ
vrð1 − gÞ dr − 3Kmarð Þ

3 1 − n − vrð1 − gÞ þ vrð1 − gÞarð Þ
, (A2-3b) 

Gnon−aggl ¼ Gm þ
vrð1 − gÞ gr − 2Gmbrð Þ

2 1 − n − vrð1 − gÞ þ vrð1 − gÞbrð Þ
: (A2-3c) 

where

ar ¼
3Km þ 3Gm þ kr − lr

3Gm þ 3kr
, (A2-4a) 
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br ¼
4Gm þ 2kr þ lr
15Gm þ 15kr

þ
4Gm

5Gm þ 5pr

þ
2Gm 3Km þ Gmð Þ þ 2Gm 3Km þ 7Gmð Þ

5Gm 3Km þ Gmð Þ þ 5mr 3Km þ 7Gmð Þ
, (A2-4b) 

dr ¼
3Km þ 2Gm − lrð Þ 2kr þ lrð Þ

3Gm þ 3kr
þ

1
3

nr þ 2lrð Þ, (A2-4c) 

gr ¼
8Gmpr

5Gm þ 5pr
þ

8Gmmr 3Km þ 4Gmð Þ

15Km Gm þmrð Þ þ 5Gm 7mr þ Gmð Þ

þ
2 2Gm þ lrð Þ kr − lrð Þ

15Gm þ 15kr
þ

2
15

nr − lrð Þ: (A2-4d) 

where Km ¼ Em= 3ð1 − 2�mÞ½ �, and Gm ¼ Em= 2ð1þ �mÞ½ � stand for 
Hill’s elastic moduli of the reinforcement component, and kr , lr , mr , 
nr , and pr for the Young’s modulus and Poisson’s ratio of the compos
ite matrix, respectively.
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