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A B S T R A C T

Composite sector disks have extensive applications in aerospace industries, particularly when exposed to chal-
lenging conditions such as supersonic airflow and thermal environments. These applications leverage the su-
perior properties of composite materials, including high strength-to-weight ratios, enhanced durability, and 
excellent thermal resistance, to meet the stringent requirements of aerospace operations. Multi-directional 
functionally graded (MD-FG) materials due to high-temperature resistance and other amazing properties in 
each direction have gotten plenty of attention recently. So, in this research, a thermoelasticity solution has been 
presented to study fundamental frequency traits of an MD-FG sector disk in supersonic airflow via both math-
ematics simulation and deep neural networks technique. For obtaining exact displacement fields, along with 
defining the changes of transverse shear strains along the system’s thickness, the refined zigzag hypothesis is 
utilized. For obtaining the temperature-dependent equations, heat conduction relation and thermal boundary 
conditions of the MD-FG structure are presented. A coupled quasi-3D new refined theory (Q3D-NRT) and 
generalized differential quadrature method (GDQM) are presented for obtaining and solving the partial differ-
ential equations in the time-displacement domain. After obtaining the mathematics results, appropriate datasets 
are made for testing, training, and validation of the deep neural networks technique. Finally, the results have 
shown that aerodynamic pressure, temperature changes, Mach number, free stream speed, and air yaw angle 
have a major role in the stability/instability analyses of the thermally affected MD-FG sector disk in supersonic 
airflow. As an amazing outcome, increasing the sector angle, FG indexes, and temperature change lead to the 
reduction of the critical Mach number, and aerodynamic pressure associated with the flutter phenomenon.

1. Introduction

Composite materials are widely utilized in diverse engineering tar-
gets thanks to numerous merits such as high strength (or stiffness). As 
composite structures continue to evolve, advancements in material sci-
ence are leading to even more specialized applications [1,2]. For 
instance, hybrid composites, which combine two or more types of re-
inforcements, offer improved properties over single-reinforcement 
composites, providing engineers with greater flexibility in material 
design [3]. These materials are being used in high-performance sports 
equipment, advanced medical devices, and even civil engineering 

structures, such as bridges and buildings, where durability and reduced 
weight are critical [4]. One significant area of research is the develop-
ment of smart composites, which integrate sensors and actuators within 
the material [5]. These embedded technologies can monitor the health 
of the structure in real-time, detecting damage or stress before failure 
occurs, making them invaluable for safety-critical applications like 
aircraft and spacecraft [6]. Manufacturing processes for composite 
structures have also advanced [7-9]. Techniques such as automated fiber 
placement and additive manufacturing (3D printing) enable precise 
control over the material layup, allowing for highly optimized and 
customized components [10]. These methods reduce material waste and 
improve production efficiency [11,12]. The challenges of composite 
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recycling are being addressed as well [13,14]. With an increased focus 
on sustainability, innovations in chemical recycling methods aim to 
recover valuable fibers and resins, making composite materials more 
eco-friendly [15]. Despite these advancements, the adoption of com-
posites in some industries is still limited by high upfront costs and the 
need for specialized fabrication techniques [16]. However, as 
manufacturing processes become more efficient and material costs 
decrease, composite structures are expected to play an even larger role 
in the future of engineering [17]. Their ability to provide tailored so-
lutions to complex engineering problems ensures that composites will 
remain a vital area of material science and engineering innovation for 
years to come [18].

However, drawbacks, such as sharp variation of stresses from one 
layer to another or inability to endure the higher values of thermal loads 
[19] bring about a novel sort of semi-composite materials so-called 
functionally graded materials (FGMs). Due to their superior usage in 
diverse engineering objectives, mechanical characteristics of FG struc-
tures, especially in one direction, have been scrutinized by many 
scholars [20-22].

Stability analysis of structures is a critical aspect of engineering, 
ensuring that structures can withstand applied loads without experi-
encing failure due to instability, such as buckling or collapse [23]. En-
gineers must assess stability to guarantee the safety and functionality of 
buildings, bridges, towers, and other load-bearing structures [24]. 
Without proper stability analysis, even a well-designed structure might 
fail under certain conditions, potentially leading to catastrophic conse-
quences [25,26].

Mathematical modeling of structures is a fundamental tool for en-
gineers to predict the behavior of physical systems under various con-
ditions [27]. It allows for the analysis of stress, strain, and deformation 
in complex structures, helping to ensure safety and performance [28]. 
By simulating different scenarios, engineers can optimize designs to 
meet specific requirements while minimizing material costs and weight 
[29]. Accurate models help to reduce the need for extensive physical 
prototyping, thus saving time and resources [30]. Mathematical models 
also provide insight into failure mechanisms, allowing engineers to 
design structures with higher reliability [31]. In fields like aerospace, 
civil, and mechanical engineering, modeling is essential for under-
standing dynamic loading, vibration, and fatigue [32]. The use of 
models ensures compliance with safety standards and regulations, which 
is critical in many engineering applications [33]. It also supports engi-
neers in conducting sensitivity analyses and identifying the most influ-
ential parameters affecting a structure’s performance [34].

Based on an investigation by Steinberg [35], the aerospace craft’s 
fuselage withstands an exceedingly high thermal load with extreme 
temperature gradient, especially when that reaches an altitude and 
speed of 29 km and Mach 8. In this situation, the common 
one-directional FG materials are improper to tolerate far more violent 
temperature changes. To overcome this defect, multi-directional FG 
(MD-FG) materials, with the ability to resist high-temperature fields, are 
introduced [36]. Accordingly, it is worth mentioning some studies in 
which structure is made of MD-FG materials. Nonlinear dynamical 
characteristics of a three-layer sandwich plate made of two-directional 
FG (2D-FG) porous materials, supported by an elastic medium, and 
subjected to a moving load were explored by Esmaeilzadeh et al. [37]. 
Allahkarami et al. [38] studied the influence of various parameters such 
as boundary types, thickness-to-radius ratio, porosity coefficient asso-
ciated with even and uneven distribution types, FG (or power-law) 
index, and medium constants on the stability/instability characteris-
tics of an MD-FG porous cylindrical shell. In those papers, the 
third-order shear deformation hypothesis, and generalized differential 
quadrature (GDQ) in addition to Bolotin’s methods were used to model 
the structure and extract the stable regions, respectively. In another 
paper, the first-order shear deformation hypothesis in conjunction with 
geometrical nonlinearity, and the Galerkin method along with the 
multiple scale method were utilized for mathematical modeling and 
analysis of the nonlinear dynamic response of in-Plane 2D-FG Rectan-
gular Plate whose material properties affected by temperature changes 
[39]. They showed that FG indexes have a major role in the nonlinear 
traits of the structure. Also, the vibrational behavior of a temper-
ature‑dependent FG disk with 2D temperature and material distribu-
tions was probed by Saini et al. [40].

The structure’s unstable vibrational behavior or flutter phenomenon, 
which is due to the aerodynamic forces, can cause noticeable de-
formations and fatigue in the systems in addition to lessening the 
structure’s life. In the following, a brief review of the available papers on 
the flutter study of different structures under supersonic airflow has 
been carried out [41-43]. Upon the first-order piston and classical plate 
hypotheses together regarding the aerodynamic damping and magne-
torheological fluid, the flutter behavior of a sandwich plate was 
analyzed by Eshaghi [44]. Through the sensitivity analyses of the 
aerodynamic stiffness matrix, Song et al. [42] suggested a new approach 
for passive control of axially FG panels and beams under supersonic 
airflow. They derived the optimum Young’s modulus as well as thickness 
functions and explained that the variation of the flutter modes leads to 
escalating the flutter bound. Upon the first-order shear deformation 
theory, Zhong et al. [45] studied the flutter boundaries of electromag-
netic FG porous plates in a thermal environment and under supersonic 
airflow. They exhibited that reducing the FG indexes has a positive effect 
on the escalation of flutter bound. Also, the porosity factor and its 
pattern, together with boundary type have chief roles in the structure’s 
critical aerodynamic pressure. Utilizing the Navier-solution, Lagrange 
processing, together with the first-order piston hypothesis, all relations 

Nomenclature

nr, nθ, and nz the FG indexes in the r-, θ-, and z- directions
()c and ()m the ceramic and metal phase
E(r,θ,z,T), α(r,θ,z,T), ρ(r,θ,z,T), G(r,θ,z,T), K(r,θ,z,T), and v(r,θ,

z,T) Young’s modulus, thermal expansion, mass 
density, shear modulus, thermal conductivity, and 
Poisson’s ratio, respectively

h, Ro, I, and β thickness, radius, moment inertia, and span angle, 
of disks, respectively

u, v, and w displacement fields of a certain point in the plate 
domain in the (r, θ, z) system.

u0, v0, and w0 displacement components of the mid-plane
f r, f θ, and w1 rotations about the θ, r, and z axes, respectively
w2, and w3 The higher-order terms in the Taylor’s series 

expansion.
εkk, and σkk (k = r, θ, z) normal stresses and strains in the main 

directions
(γθz, γrz, γrθ), and (τθz, τrz, τrθ) shear strain and stress
ch, and Rh The system’s specific heat and heat generation in the 

system
Λk, Λe, and Λw Kinetic and potential energies, as well as work 

done by the system
Λ1, and Λ2 external works due to the airflow
(T,T1,T2), and ∇ temperature gradient, and Laplace operator
ΔP aerodynamic pressure loading at high supersonic speeds
M∞, λ∞, θ∞, and U∞ Mach number, aerodynamic pressure, air 

yaw angle, and free stream speed
M , K , and C mass, stiffness, and damping of the system
ℵ, d, and b displacement vector, domain nodal points, and 

boundary nodal-points
ω, and ω dimensional natural frequency and its non-dimensional 

form
S, C, and F represent simply, clamped, and free supported 

boundary conditions, respectively
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corresponded to the flutter traits and vibrational behavior of FG cylin-
drical panels, which are constructed from open-cell metal foams and 
reinforced via graphene platelets, with porosity effect, and under su-
personic flow were analyzed by Zhou et al. [46]. Nonlinear flutter and 
buckling traits of an FG cylindrical shell reinforced with composite 
materials under supersonic airflow were probed by Asadi and Wang 
[47]. In this article, it was displayed that the aerodynamic pressure and 
FG pattern of carbon nanotubes in polymer matrix have a major role in 
the system’s deformation shapes. Through the isogeometric approach, 
Khalafi and Fazilati [48] explored the role of crack traits, temperature, 
and flow direction on the flutter traits of an FG plate in which the me-
chanical properties of one is temperature dependent. They expressed 
that the escalation of the crack length has a weakening effect on the 
critical flutter pressure if the flow direction and crack orientation 
become aligned.

This article, in addition to providing a thermoelastic solution, ex-
amines the influences of supersonic airflow parameters, such as aero-
dynamic pressure, Mach number, air yaw angle, as well as free stream 
speed, together with aerodynamics, and FG indexes on the vibration 
frequency of MD-FG sector disk in the thermal environment are the main 
goals of this investigation. To factor in the change of shear strains along 
the system’s thickness, a coupled Q3D-NRT upon the refined zigzag 
hypothesis has been utilized. Accordingly, this study endeavors to 
examine the vibrational traits of an innovative geometric structure 
called MD-FG sector disks. To this end, the GDQM is employed to solve 
resultant equations derived through Hamilton’s principle. After 
obtaining the mathematics results, appropriate datasets are made for 
testing, training, and validation of the deep neural networks technique. 
Finally, the results show that aerodynamic pressure, temperature 
changes, Mach number, free stream speed, and air yaw angle have a 
chief role in the stability boundaries of the thermally affected MD-FG 
sector disk in supersonic airflow.

2. Effective material properties: MD-FG materials

The effective mechanical property ℘ of an MD-FG disk can be written 
as 

℘(r, θ, z,T) = ℘m + (℘c − ℘m)
(

0.5 +
z
h

)nz
(

r − Ri

Ro − Ri

)nr( θ
θm

)nθ

, (1) 

Effective Young’s modulus, E(r, θ, z, T), thermal expansion co-
efficients, α(r,θ,z,T), mass density ρ(r,θ,z,T), shear modulus, G(r,θ,z,T), 
thermal conductivity, K(r,θ,z,T), along with Poisson’s ratio, ϑ(r,θ,z,T), 
can be derived from the Eq. (1). Also, it is supposed that the mechanical 
property ℘(r, θ, z,T) is temperature-dependent [49]. So, 

℘ = ℘0
(
℘− 1T− 1 +℘1T+℘2T2 +℘3T3 +1

)
. (2) 

The temperature-dependent coefficients in Eq. (2), i.e. ℘0, ℘− 1, ℘1, 
℘2 and ℘3, are tabulated in Table 1. Since the mechanical properties of 
structure vary in various directions, the mid-plane is different from the 
neutral plane [50].

3. Mathematical modeling

The schematic of an MD-FG disk with its corresponding dimensions is 
shown in Fig. 1.

3.1. Displacement field

As stated before, a Q3D-NRT is hired to introduce the structure’s 
kinematic field. Therefore, 

u(r, θ, z, t) = u0(r, θ, t) −
(

5z3

3h2 −
z
4

)
∂w0(r, θ, t)

∂r
+

5
4

(

z −
4z3

3h2

)

f r(r, θ, t),

(3) 

v(r, θ, z, t) = v0(r, θ, t) −
(

5z3

3h2 −
z
4

)
∂w0(r, θ, t)

r∂θ
+

5
4

(

z −
4z3

3h2

)

f θ(r, θ, t),

w(r, θ, z, t) = w0(r, θ, t) + zw1(r, θ, t) + z2w2(r, θ, t) + z3w3(r, θ, t).

The strain-displacement relations are 

εrr =
∂u
∂r
, εθθ =

1
r

(

u +
∂v
∂θ

)

, εzz =
∂w
∂z
, (4) 

γrθ =
1
r

∂u
∂θ

+
∂v
∂r

−
v

r
, γrz =

∂u
∂z

+
∂w
∂r
, γθz =

∂v
∂z

+
1
r

∂w
∂θ

.

Next, the non-zero strain components are 

εrr =
∂u0

∂r
− C1

∂2
w0

∂r2 + C2
∂u1

∂r
, (5a) 

εθθ =
1
r

(

u0 − C1
∂w0

∂r
+C2u1 +

∂v0

∂θ
−

C1

r
∂2

w0

∂θ2 +C2
∂v1

∂θ

)

, (5b) 

εzz = w1 + 2zw2 + 3z2w3, (5c) 

γrz = −
∂C1

∂z
∂w0

∂r
+

∂C2

∂z
u1 +

∂w0

∂r
+ z

∂w1

∂r
+ z2∂w2

∂r
+ z3∂w3

∂r
, (5d) 

γrθ =
1
r

∂u0

∂θ
−

C1

r
∂2

w0

∂r∂θ
+

C2

r
∂u1

∂θ
+

∂v0

∂r
−

C1

r
∂2

w0

∂r∂θ
+ C2

∂v1

∂r
−

v0

r
+

2C1

r2
∂w0

∂θ

−
C2

r
v1,

(5e) 

γθz = −
1
r

∂C1

∂z
∂w0

∂θ
+

∂C2

∂z
v1 +

1
r

∂w0

∂θ
+

z
r

∂w1

∂θ
+

z2

r
∂w2

∂θ
+

z3

r
∂w3

∂θ
, (5f) 

where C1 = 4z3

3h2, and C2 = z − 4z3

3h2. Also, strain-stress relations consid-
ering the thermomechanical effects are 

Table 1 
The temperature-dependent material properties of the MD-FG disk [49].

Ceramic (Al2O3)

℘ ℘0 ℘− 1 ℘1 ℘2 ℘3

Ec[pa] 348.43 ×
109

0 − 3.070 ×

10− 4
2.160 ×

10− 7
− 8.946 ×

10− 11

αc
[
K− 1] 5.8723 ×

10–6
0 9.095 ×

10− 4
0 0

Kc
[
W.m− 1K− 1] 13.723 0 − 1.032 ×

10− 3
5.466 ×

10− 7
− 7.876 ×

10− 11

ϑc 0.2400 0 0 0 0
ρc
[
Kg.m− 3] 2370 0 0 0 0

Metal (SUS304)
Em[pa] 201.04 ×

109
0 3.079 ×

10− 4
− 6.534 ×

10− 7
0

αm
[
K− 1] 12.330 ×

10–6
0 8.086 ×

10− 4
0 0

Km
[
W.m− 1K− 1] 15.379 0 − 1.264 ×

10− 3
2.092 ×

10− 6
− 7.223 ×

10− 10

vm 0.3262 0 − 2.002 ×

10− 4
3.797 ×

10− 7
0

ρm
[
Kg.m− 3] 8166 0 0 0 0

Fig. 1. Schematic of disk.
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σrr
σθθ
σzz
τθz
τrz
τrθ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εrr − αΔT
εθθ − αΔT
εzz − αΔT

γθz
γrz
γrθ

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (6) 

where 

Q11 = 2Q44
(1 − ϑ(r, θ, z,T))
(1 − 2ϑ(r, θ, z,T))

,Q33 = Q22 = Q11, (7) 

Q12 = 2Q44
ϑ(r, θ, z,T)

(1 − 2ϑ(r, θ, z,T))
,Q13 = Q23 = Q12,

Q44 =
E(r, θ, z,T)

2(1 + ϑ(r, θ, z,T))
,Q66 = Q55 = Q44.

Additionally, the heat conduction relation for the MD-FG conductive 
layer is [51] 

∇2T + Rh = ρch
∂T
∂t
. (8) 

It is worth expressing that the relation corresponding to steady state 
is derived by ignoring thermal generation. So, 

∇2T = 0, (9) 

Finally, for the MD-FG conductive layer, we have 

1
r

∂
∂r

(

rK(r, θ, z,T)
∂T(r, θ, z,T)

∂r

)

+
1
r2

∂
∂θ

(

K(r, θ, z,T)
∂T(r, θ, z,T)

∂θ

)

+
∂
∂z

(

K(r, θ, z,T)
∂T(r, θ, z,T)

∂z

)

= 0,
(10) 

whose thermal boundary conditions read as follows 

T(Ri, θ, z) = 0,T(r,0, z) = 0,T
(

r, θ, −
h
2

)

= T1, (11) 

T(Ro, θ, z) = 0,T(r, θm, z) = 0,T
(

r, θ,
h
2

)

= T2.

3.2. Hamilton’s principle

The equilibrium equations in conjunction with boundary conditions 
are extracted by considering Hamilton’s principle [52-54]. 

∫t2

t1

(δΛk − (δΛe − δΛw))dt = 0. (12) 

The kinetic, i.e. Λk, and potential, i.e. Λe, energies of the structure are 

Λk =

∫

ρ
[(

∂U
∂t

)2

+

(
∂V
∂t

)2

+

(
∂W
∂t

)2]

dV, (13a) 

Λe =

∫

{σzzεzz + σrrεrr + σθθεθθ + τrθγrθ + τθzγθz + τrzγrz}dV. (13b) 

Also, the aerodynamic pressure, i.e. ΔP(r, θ, t), which is a non- 
conservative force, leads to the generation of external work, i.e. Λw , 
on the system as: 

Λw =

∫

A

ΔP(r, θ, t)w0dA, (14) 

Regarding Krumhaar’s modified supersonic piston hypothesis 
together with the curvature effect, and utilizing the virtual work due to 

the aerodynamic load, i.e. ΔP, the aerodynamic stiffness matrix along 
with the aerodynamic damping matrix are obtained. So, at first, ΔP is 

ΔP = −
ρU2

∞M2
∞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

M2
∞ − 1

√

(
∂w0

∂r
cos(θ∞)+

1
r

∂w0

∂θ
sin(θ∞)

)

−
ρU∞M∞

(
M2

∞ − 2
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
M2

∞ − 1
)3

√
∂w0

∂t
, (15) 

Since λ∞ =
ρU2

∞̅̅̅̅̅̅̅̅̅̅
M2

∞ − 1
√ , Eq. (15) can be written as: 

ΔP = − λ∞M2
∞

(
∂w0

∂r
cos(θ∞)+

1
r

∂w0

∂θ
sin(θ∞)

)

− λ∞
M∞
(
M2

∞ − 2
)

U∞
(
M2

∞ − 1
)

∂w0

∂t
.

(16) 

in which U∞ shows the velocity of sound, and M∞ ≥ 1.7 is Mach num-
ber. To get the flutter relation of the supersonic disks, it is necessary to 
eliminate the stabilizer parameter, i.e. the aerodynamic damping term, 
from the aerodynamic load presented in Eq. (16).

Applying Eqs. (13a-b), and (14) into Eq. (12), leading to the 
following equations 

δu0 :
1
r

∂(rN rr)

∂r
−

N θθ

r
+

∂N rθ

r∂θ
= I0

∂2
u0

∂t2 − K0
∂3

w0

∂r∂t2
+ K1

∂2
f r

∂t2 , (17a) 

δv0 :
1
r

∂N θθ

∂θ
+

1
r

∂(rN rθ)

∂r
+

N rθ

r
= I0

∂2
v0

∂t2 −
K0

r
∂3

w0

∂θ∂t2 + K1
∂2

v0

∂t2
,

(17b) 

δw0 :

∂2
(rM rr)

∂r2 −
∂M θθ

∂r
+

1
r

∂2
M θθ

∂θ2 −
∂(rRrz)

∂r
+

∂(rN rz)

∂r

2
∂2

M rθ

∂r∂θ
+ 2

∂M rθ

∂θ
−

∂Rθz

∂θ
+

∂N θz

∂θ
+ ΔP =

∂
∂r

(

rK0
∂2

u0

∂t2

)

−
∂
∂r

(

rL0
∂3

w0

∂r∂t2

)

+
∂
∂r

(

rJ0
∂2

f r
∂t2

)

+
∂
∂θ

(

K0
∂2

v0

∂t2

)

−
1
r

∂
∂θ

(

L0
∂3

w0

∂θ∂t2

)

+
∂
∂θ

(

J0
∂3

f θ

∂t2

)

+ rI0
∂2

w0

∂t2 + rI1
∂2

w1

∂t2

+rI2
∂2

w2

∂t2 + rI3
∂2

w3

∂t2

,

(17c) 

δf r :
1
r

∂(rN rr)

∂r
−

N θθ

r
+

∂P rθ

∂θ
− S rz = K1

∂2
u0

∂t2 − J0
∂3

w0

∂r∂t2 + L1
∂2

f r
∂t2

,

(17d) 

δf θ :
∂P θθ

∂θ
+

∂(rP rθ)

∂r
+ P rθ − rS θz = K1r

∂2
v0

∂t2 − J0
∂3

w0

∂θ∂t2 + L1r
∂2

f θ

∂t2
,

(17e) 

δw1 :
1
r

∂(rM rz)

∂r
+

1
r

∂M θz

∂θ
− N zz = I1

∂2
w0

∂t2 + I2
∂2

w1

∂t2 + I3
∂2

w2

∂t2 + I4
∂2

w3

∂t2
,

(17f) 

δw2 :
1
r

∂(rP rz)

∂r
+

1
r

∂P θz

∂θ
− 2M zz = I2

∂2
w0

∂t2 + I3
∂2

w1

∂t2 + I4
∂2

w2

∂t2 + I5
∂2

w3

∂t2
,

(17 g) 

δw3 :
1
r

∂(rQrz)

∂r
+

1
r

∂Qθz

∂θ
− 3P zz = I3

∂2
w0

∂t2 + I4
∂2

w1

∂t2 + I5
∂2

w2

∂t2 + I6
∂2

w3

∂t2
.

(17h) 

In addition, the resultant boundary conditions can be written as 

δu0 = 0 or (rN rr)n̂r + (N rθ)n̂θ = 0, (18a) 

δv0 = 0 or (rN rθ)n̂r + (N θθ)n̂θ = 0, (18b) 
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δw0 = 0 or
{

∂(rM rr)

∂r
− M θθ − rRrz + rN rz

}

n̂r

+

{
∂M θθ

r∂θ
+

2∂M rθ

∂r
+

2M rθ

r
− Rrz +N θz

}

n̂θ

= 0, (18c) 

δf r = 0 or (rP rr)n̂r + (P rθ)n̂θ = 0, (18d) 

δf θ = 0 or (rP rθ)n̂r + (P θθ)n̂θ = 0, (18e) 

δw1 = 0 or (rM rz)n̂r + (M θz)n̂θ = 0, (18f) 

δw2 = 0 or (rP rz)n̂r + (P θz)n̂θ = 0, (18 g) 

δw3 = 0 or (rQrz)n̂r + (Qθz)n̂θ = 0. (18h) 

where 

N rr =

∫

V

(σrr)rdrdθdz, M rr =

∫

V

(C1σrr)rdrdθdz, P rr =

∫

V

(C2σrr)rdrdθdz,

(19) 

N θθ =

∫

V

(σθθ)rdrdθdz, M θθ =

∫

V

(C1σθθ)rdrdθdz, P θθ

=

∫

V

(C2σθθ)rdrdθdz,

N zz =

∫

V

(σzz)rdrdθdz, M zz =

∫

V

(zσzz)rdrdθdz, P zz =

∫

V

(
z2σzz

)
rdrdθdz,

N θz =

∫

V

(τθz)rdrdθdz,M θz =

∫

V

(zτθz)rdrdθdz, P θz =

∫

V

(
z2τθz

)
rdrdθdz 

Qθz =

∫

V

(
z3τθz

)
rdrdθdz, N rz =

∫

V

(τrz)rdrdθdz,M rz =

∫

V

(zτrz)rdrdθdz,

P rz =

∫

V

(
z2τrz

)
rdrdθdz,Qrz =

∫

V

(
z3τrz

)
rdrdθdz, Rrz

=

∫

V

(
∂C1

∂z
τrz

)

rdrdθdz 

S rz =

∫

V

(
∂C2

∂z
τrz

)

rdrdθdz, N rθ =

∫

V

(τrθ)rdrdθdz,M rθ

=

∫

V

(C1τrθ)rdrdθdz,

P rθ =

∫

V

(C2τrθ)rdrdθdz,

Ij =

∫

r

∫

θ

∫

z

ρ(r, θ, z)rzjdzdθdrin which j = 0,…,6,

{L0, L1} =

∫

V

( {
C2

1,C
2
2
}

ρ(r, θ, z,T)
)
rdrdθdz,

{K0,K1} =

∫

V

({C1,C2}ρ(r, θ, z,T))rdrdθdz,

{J0} =

∫

V

({C1C2}ρ(r, θ, z,T))rdrdθdz.

4. Solution

As a powerful numerical approach, the GDQ method is hired to 
discretize and solve the equilibrium relations together with boundary 
conditions. Therefore, the jth-order derivatives of function F (r), at point 
(
ri,θj

)
, is guessed approximately as [55] 

∂F
∂r

⃒
⃒
⃒
⃒
r=ri ,θ=θj

=
∑N r

m=1

∑N θ

n=1
A

r
imIθ

jnF mn, (20a) 

∂F
∂θ

⃒
⃒
⃒
⃒
r=ri ,θ=θj

=
∑N r

m=1

∑N θ

n=1
Ir
imA

θ
jnF mn, (20b) 

∂
∂r

(
∂F
∂θ

⃒
⃒
⃒
⃒
r=ri ,θ=θj

)

=
∑N r

m=1

∑N θ

n=1
A

r
imA

θ
jnF mn, (20c) 

∂2
F

∂r2

⃒
⃒
⃒
⃒
r=ri ,θ=θj

=
∑N r

m=1

∑N θ

n=1
B

r
imIθ

jnF mn, (20d) 

∂2
F

∂θ2

⃒
⃒
⃒
⃒
r=ri ,θ=θj

=
∑N r

m=1

∑N θ

n=1
Ir
imB

θ
jnF mn. (20e) 

in which Ir
im

(
or Iθ

jn

)
=

{
1 i = m(or j = n)
0 otherwise .

A r
im (or A θ

jn) shows the weighting coefficients of the first-order de-
rivatives in the r (or θ) direction. Also, B r

im (or B θ
jn) denotes the 

weighting coefficients of the second-order derivatives in the r (or θ) 
directions. 

A
r
im =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ(ri)

(ri − rm)ξ(rm)
when i ∕= m

−
∑N r

k=1,k∕=i

A ik when i = m
i,m = 1,2,…,N r, (21a) 

A
θ
jn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
ξ
(
θj
)

ξ(θn)
(
θn − θj

) when n ∕= j

−
∑N θ

k=1,

k∕=j

A jk when n = j n, j = 1,…,N θ. (21b) 

in which 

ξ(ri) =
∏N r

k=1,k∕=i
(ri − rk), (22a) 

ξ
(
θj
)
=
∏N θ

k=1,

k∕=j

(
θj − θk

)
. (22b) 

And 

B
r
im = 2

(

A
r
iiA

r
im −

A
r
im

(ri − rm)

)

m ∕= i,m, i = 1,…,N r, (23a) 

B
θ
jn = 2

(

A
θ
jjA

θ
jn +

A
θ
jn

(
θn − θj

)

)

n ∕= j, n, j = 1,…,N θ, (23b) 
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B
r
ii = −

∑N r

k=1,k∕=i

B
r
ikm = i, i = 1,…,N r, (23c) 

B
θ
jj = −

∑N θ

k=1,k∕=j
B

θ
jk, j = 1, 2,…,N j, j = n. (23d) 

Here, grid-points in the r and θ directions are introduced upon the 
Chebyshev-Gauss-Lobatto [56] 

ri =
R0 + Ri

2
−

R0 − Ri

2
cos
(

i − 1
N r − 1

π
)

i = 1,…,N r, (24a) 

θj =
χ
2
−

χ
2

cos
(

j − 1
N θ − 1

π
)

. j = 1,…, N θ. (24b) 

Now, the discrete form of the boundary conditions and equilibrium 
relations is assembled in the matrix form as: 
{[

[M dd] [M db]

[M bd] [M bb]

]

ω2 + i
[
[C dd] [C db]

[C bd] [C bb]

]

ω+

[
[K dd] [K db]

[K bd] [K bb]

]}{
Ξd
Ξb

}

= 0,
(25) 

The system’s characteristics, including natural frequencies along 
with the mode shapes, are the roots of Eq. (25). Further, the dimen-
sionless frequency and aerodynamic pressure are defined as: 

{ω,D, λ} =

{

ωR2
o

̅̅̅̅̅̅̅̅̅
ρcA

D

√

,
Ech3

12
(
1 − v2

c
),

λ∞R3
o

Ech3

}

. (26) 

At last, for numerical solution, the thermal field can be attained by 
replacing Eqs.)1),)20) into Eq.)10).

5. DNNs for predictive modeling

Deep neural networks (DNNs) are powerful tools for predictive 
modeling, particularly in complex systems like functionally graded 
material (FGM) sector disks, where aero-thermodynamic responses need 
to be accurately forecasted. These responses are critical in applications 
like aerospace engineering, where high temperatures and stresses de-
mand precise material design to ensure durability and performance 
[57]. Using datasets generated from mathematical simulations, DNNs 
can be employed to model these complex interactions efficiently [58]. 
FGMs are composite materials where properties vary spatially to achieve 
desirable mechanical and thermal performance. In sector disks, FGMs 
can provide resistance to temperature gradients and mechanical stress 
by varying properties like conductivity and density. Predicting the 
aero-thermodynamic responses of these disks, such as temperature dis-
tribution, heat flux, and stress patterns, is crucial for optimizing their 
design in high-performance environments. DNNs excel in capturing 
nonlinear relationships and patterns in large datasets, which is essential 
for modeling the complex behaviors of FGMs under different conditions. 
The architecture of a DNN can be designed to learn the intricate patterns 
of aero-thermodynamic behavior by feeding it with input variables such 
as material composition, environmental conditions, and geometric 
properties of the sector disk. The network, through multiple hidden 
layers, can map these inputs to the aero-thermodynamic responses of 
interest. A common approach is to divide the dataset into training, 
validation, and test sets [59]. The DNN is trained on the training set to 
minimize prediction errors using backpropagation and gradient descent 
algorithms. The validation set is used to fine-tune hyperparameters like 
learning rate, number of layers, and neurons per layer [60]. The test set, 
which the model has never seen, assesses the DNN’s performance in 
predicting the aero-thermodynamic responses of new, unseen disk 
configurations. The resulting model can then be used to predict how new 
FGM sector disks will respond under various aero-thermodynamic con-
ditions without the need for extensive numerical simulations. This is not 

only computationally efficient but also provides real-time predictions 
for engineers working on the design and optimization of FGM disks in 
aerospace applications. Therefore, deep neural networks offer a robust 
approach to tackling the complex problem of predicting 
aero-thermodynamic responses, making them an invaluable tool in the 
field of FGM sector disk design.

5.1. Mathematical modeling of deep neural networks for predicting aero- 
thermodynamic responses of FGM sector disks

The mathematical modeling of deep neural networks (DNNs) for 
predicting the aero-thermodynamic responses of functionally graded 
material (FGM) sector disks relies on multiple layers of transformations 
and weight adjustments that map inputs (e.g., material properties, 
geometric features, and boundary conditions) to desired outputs (e.g., 
temperature distribution, thermal stresses, and displacement fields). 
Below is a step-by-step breakdown of the DNN mathematical model in 
this context:

5.1.1. Input layer (Data representation)
Let the input vector be denoted by x ∈ Rn, where x = [x1, x2, …,

xn] represents the physical parameters of the FGM sector disk such as: 

- Material properties (density, thermal conductivity, etc.)
- Geometric properties (radius, thickness, etc.)
- Environmental conditions (temperature, pressure, etc.)

The dimensionality n corresponds to the number of input features 
relevant to the aero-thermodynamic simulation. Each input variable 
xi is normalized to ensure all values are on a similar scale.

5.1.2. Hidden layers (Nonlinear transformations)
The DNN consists of multiple hidden layers, each applying a linear 

transformation followed by a nonlinear activation function. Let the 
output of the l − th hidden layer be denoted as h(l) ∈ Rdl , where dl is the 
number of neurons in layer l.

The transformation in each layer is represented as: 

h(l) = σ
(

W(l)h(l− 1) + b(l)
)
, for l = 1, 2, …, L. (27) 

Where:
W(l) ∈ Rdl×dl− 1 is the weight matrix connecting layer l − 1 to layer l.
b(l) ∈ Rdl is the bias vector of layer l.
σ(⋅) is the activation function (typically ReLU: σ(z) = max(0, z)) 

that introduces nonlinearity to the model.
h(l− 1) is the output of the previous layer or the input layer when l =

1.
The weights W(l) and biases b(l) are trainable parameters updated 

during the learning process. The number of layers L and the number of 
neurons per layer dl are hyperparameters that control the capacity of the 
model.

5.1.3. Output layer (Aero-Thermodynamic predictions)
The final layer provides the predicted aero-thermodynamic re-

sponses. If the output consists of m different responses, the final layer 
produces an output vector y ∈ Rm.

The output layer is typically linear, and its transformation is given 
by: 

y = W(L+1) h(L) + b(L+1). (28) 

Where:
W(L+1) ∈ Rm × dL is the weight matrix of the output layer.
b(L+1) ∈ Rm is the bias vector of the output layer.
h(L) is the output of the last hidden layer.
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5.1.4. Loss function (Error measurement)
To train the DNN, we need to define a loss function that measures the 

difference between the predicted responses ŷ and the actual responses y 
from the simulation dataset. For regression tasks (like predicting 
continuous aero-thermodynamic responses), the most common loss 
function is the mean squared error (MSE): 

L(y, ŷ) =
(

1
m

)
∑m

i=1
(yi − ŷi)

2
. (29) 

Where: 

y =
[
y1, y2, …, yn

]
is the vector of true values from the dataset.

ŷ =
[
ŷ1, ŷ2, …, ŷn

]
is the vector of predicted values from the 

DNN.

m is the number of predicted output variables (temperature, stress, 
displacement, etc.).

5.1.5. Optimization (training the DNN)
The goal of training is to minimize the loss function by adjusting the 

network’s weights and biases. This is done through backpropagation and 
an optimization algorithm like stochastic gradient descent (SGD) or 
Adam. The update rule for the weights is: 

W(l) ← W(l) − η ∇W(l) L. (30) 

Where: 

η is the learning rate, controlling the step size of the updates.
∇W(l) L is the gradient of the loss with respect to the weights W(l) .

This process continues iteratively until the loss converges to a 

Fig. 2. A Python implementation of a deep neural network using TensorFlow/Keras to predict aero-thermodynamic responses of FGM sector disks.
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minimum, resulting in a trained model capable of predicting aero- 
thermodynamic responses.

5.1.6. Inference (prediction on new data)
Once trained, the DNN can be used to predict the aero- 

thermodynamic responses for new FGM sector disk configurations by 
inputting the relevant parameters x into the network. The output ŷ 
provides the predicted responses, which can be used in the design and 
analysis of FGM disks in various engineering applications. Finally, Fig. 2
is a Python implementation of a deep neural network using TensorFlow/ 
Keras to predict aero-thermodynamic responses of FGM sector disks. 
This DNN will take input parameters like material properties, geometric 
properties, and environmental conditions, and output predictions.

6. Numerical results

In this segment, firstly, convergency circumstances (Table 2) in 
addition to the validity of the outcomes (Table 3) are discussed. Next, 
after confirming the accuracy and integrity of the results, the influence 
of various parameters on the stability and dynamical traits of an MD-FG 
disk will be discussed through several plots (Figs. 3 to 10). Also, 
boundary conditions corresponded to Figs. 3 to 10 is SCSC.

6.1. Convergency and validation studies

To analyze and improve the accuracy of the outcomes in addition to 
finding the best number of nodes, that bring about accurate results, the 
system’s first vibration frequency is listed in Table 2 for the varied 
number of points and boundary types. As expected, increasing the 
number of sample nodes in either direction leads to an increase in the 
precision of the outcomes. Therefore, to reach a very high accuracy for 
the sequent studies, it is opted as 15.

Table 3 is devoted to examining the validity and integrity of the 
presented problem formulation and outcomes. To this aim, the first three 
dimensionless vibration frequencies of an FG plate with several 
boundary types were derived for different values of the FG index along 
the z direction. From comparing the results of the current investigation 
with those presented in the references, it is crystal clear that the output 
results have quite a high accuracy, and so, it is allowable to explore the 
influence of several parameters on the mechanical behavior of the cur-
rent system.

6.2. Benchmark results

The impacts of FG indexes, outer radius, and sector angle on the 
flutter instability of SCSC MD-FG disks are studied in Figs. 3 to 5. Fig. 3
displays the change of the complex vibration frequency of an MD-FG 
disk versus aerodynamic pressure, λ∞, for different values of FG in-
dexes. The outcomes of this figure disclose that the critical flutter 
aerodynamic pressures, i.e. λcr

∞, of the MD-FG disk moves to the left and 
down with escalation of the FG indexes, that is, λcr

∞ corresponded to MD- 
FG disk reduces. In other words, increasing the FG indexes have a 
weakening effect on the system’s stiffness.

Fig. 4 has been provided to demonstrate the influence of the outer 

radius, Ro, of the MD-FG disk on the complex vibration frequency of one 
versus aerodynamic pressure, λ∞. From this figure, it is disclosed that the 
λcr

∞ of the MD-FG disk moves to the right and slightly down with esca-
lating the ratio of the outer radius to thickness, i.e. Ro/h, that is, λcr

∞ 
corresponded to MD-FG disk decreases slightly, in a few words, 
increasing the Ro/h has a lessening impact on the system’s stiffness.

To analyze the effect of the sector angle, θ, on the flutter boundaries 
of the SCSC MD-FG disk, the changes of the real and imaginary parts of 
the system’s vibration frequency with respect to the aerodynamic 
pressure are plotted in Fig. 5. From Fig. 5, it is understood that the 
growth of the θ causes a significant reduction in the system’s stiffness 
and both of the real and imaginary parts of the vibration frequency. 
Also, the λcr

∞ of the MD-FG disk moves up and right by reducing the θ, 
that is, λcr

∞ related to MD-FG disk increases.
Totally, from Figs. 3–5, compared to the Ro/h, and θ, FG indexes have 

a critical role to determine and shift the flutter boundaries of the system. 
Influence of the FG indexes, i.e. (nr, nθ, nz), and outer radius, i.e. Ro, of 
the MD-FG disk on the change of the system’s vibrational frequency, 
without damping effect, versus Mach number, i.e. M∞, is analyzed in 
Fig. 6. To produce this figure, it is presumed that Ri = 0, Tb = 300, Tt =

330, θ = π
4, λ∞ = 100, θ∞ = 0, and u∞ = 300. The outcomes of Fig. 6

disclose that the supersonic airflow characteristic of the MD-FG disk 
weakens with intensifying the values of FG indexes in varied directions, 
and the vibration frequency of the system decreases, that is, increasing 
the FG indexes causes shifting the Mach number corresponding to the 
flutter boundaries, i.e. Mcr

∞, to the left and down. Also, increasing the 
Ro/h leads to a slight change in the ω, but it can lead to the escalation of 
the Mcr

∞.
The impact of the sector angle, θ, and temperature change, ΔT, on 

the variation of the system’s vibrational frequency versus Mach number, 
M∞, is illustrated in Fig. 7. Also, the constant parameters corresponding 
to this figure is Ri = 0, Ro = 50h, λ∞ = 100, θ∞ = 0, u∞ = 300, and (nr,

nθ, nz) = (0.5, 0.5, 0.5). From the current plot, it is concluded that 
increasing the θ or ΔT has a decreasing effect on the ω, that is, these 
parameters have a weakening impact on the system’s stiffness. Addi-
tionally, increasing the θ or ΔT leads to moderate and move the Mcr

∞ to 
the left and down.

Totally, upon the Figs. 6 and 7, the impacts of the Ro/h, and FG in-
dexes on the Mcr

∞ and flutter boundaries of the system are more 
remarkable compared to the effect of θ, and ΔT on those. In Figs. 8–10, 
separately, the influence of parameters such as sector angle, i.e. θ, Mach 
number, i.e. M∞, in addition to aerodynamic pressure, i.e. λ∞, on the 
variation of the dimensionless frequency, i.e. ω, of an SCSC MD-FG disk 
with respect to the air yaw angle, i.e. θ∞, is investigated. Upon the Fig. 7, 
lessening the values of the θ lead to an amazing escalation in the sys-
tem’s ω . Also, according to Fig. 9 (and Fig. 10), as a result of heightening 
the M∞ (and λ∞), the vibrational frequency of the MD-FG disk increases. 
Generally, from Figs. 8–10, it is seen that growth of the θ∞ has an in-
crease/decrease influence on the ω, and also the maximum value of the 
ω, i.e. ωmax, could happen at the θ∞ ≅ 100. Moreover, varying the pa-
rameters θ, M∞, and λ∞ has not had a considerable impact on the θ∞ 

corresponded to the ωmax. Finally, compared to the M∞, and λ∞, θ has a 
critical impact on the ω, i.e. θ > M∞ > λ∞.

Fig. 11 shows the mode shape of the presented sector annular plate 
for various. λ∞ values. As is seen, by increasing the λ∞ parameter, the 
maximum sector annular plate’s deflection value increases. Also, by 
increasing the λ∞ parameter, more deformation can be seen at the outer 
radius than at the middle surface. As well as this, as an interesting result 
for related industries, by increasing the λ∞ parameter, the continuous 
deformation can be seen at the outer radius than the inner one.

6.3. The results of the presented DNN

To predict the aero-thermodynamic responses of Functionally 
Graded Material (FGM) sector disks, a Deep Neural Network (DNN) 

Table 2 
Variation of the system’s first vibration frequency (ω) against the number of 

nodes with Ri = 0,
Ro

h
= 50, Tb = 300, Tt = 310, θ =

π
4
, λ∞ = 1, M ∞ =

̅̅̅
2

√
, θ∞ 

= 0, u∞ = 300, and nr = nθ = nz = 0.5.

Boundary condition’s (N r ,N θ)

(7,7) (9,9) (11,11) (13,13) (15,15)

HSSS 30.7512 26.6132 26.5096 26.5096 26.5096
HSCS 36.3112 33.7123 33.6007 33.6007 33.6007
HSFS 11.5231 9.8142 9.7106 9.7106 9.7106
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Table 3 
Comparison of dimensionless frequency for an FG plate made of Aluminum and Alumina [61].

SCS SSS SFS

Mode

nz 1 2 3 1 2 3 1 2 3

1 Present 8.4962 33.0851 74.1261 4.1039 24.7230 61.6900 7.4841 31.9801 73.0001
Ref. [62] 8.4988 33.0865 74.1277 4.1057 24.7247 61.6921 7.4899 31.9818 73.0014
Ref. [63] 8.4988 33.0865 74.1277 4.1057 24.7247 61.6921 – – –
Ref. [64] 8.498 33.086 74.127 4.105 24.724 61.692 7.489 31.981 73.001
Ref. [65] 8.500 33.093 – 4.106 24.742 – 7.491 31.255 –

2 Present 8.1212 31.6232 70.8521 3.9227 23.6301 58.9673 7.1572 30.5631 69.7756
Ref. [62] 8.1236 31.6258 70.8551 3.9244 23.6332 58.9685 7.1592 30.5698 69.7785
Ref. [63] 8.1236 31.6258 70.8551 3.9244 23.6332 58.9685 – – –
Ref. [64] 8.123 31.625 70.855 3.924 23.633 58.968 7.159 30.569 69.778
Ref. [65] 8.125 31.634 – 3.925 23.651 – 7.161 29.877 –

3 Present 7.9091 30.7952 69.0000 3.8194 23.0101 57.4226 6.9701 29.7672 67.9472
Ref. [62] 7.9112 30.7988 69.0024 3.8218 23.0152 57.4266 6.972 29.7705 67.9539
Ref. [63] 7.9112 30.7988 69.0024 3.8218 23.0152 57.4266 – – –
Ref. [64] 7.911 30.798 69.002 3.821 23.015 57.426 6.972 29.7705 67.954

4 Present 7.7302 30.1041 67.45112 3.7326 22.4958 56.1321 6.8132 29.1003 66.4251
Ref. [62] 7.7335 30.1074 67.4532 3.7360 22.4985 56.1372 6.8155 29.1021 66.4282
Ref. [63] 7.7335 30.1074 67.4532 3.736 22.4985 56.1370 – – –
Ref. [64] 7.733 30.107 67.453 3.736 22.498 56.137 6.815 29.102 66.428

5 Present 7.5682 29.4814 66.0563 3.6552 22.0294 54.9699 6.6732 28.4942 65.0492
Ref. [62] 7.5738 29.4854 66.0598 3.6588 22.0338 54.9777 6.6747 28.5009 65.0561
Ref. [63] 7.5738 29.4854 66.0598 3.6588 22.0338 54.9777 – – –
Ref. [64] 7.573 29.485 66.059 3.658 22.033 54.977 6.674 28.501 65.056
Ref. [65] 7.576 29.496 – 3.659 22.052 – 6.677 27.857 –

Fig. 3. The change of real and imaginary parts of eigenvalue for the MD-FG disk versus the aerodynamic pressure under varied FG indexes with Ri = 0, Ro = 50h, Tb 

= 300, Tt = 330, θ = π
4, M∞ =

̅̅̅
2

√
, θ∞ = 0, and u∞ = 300.

Fig. 4. The change of real and imaginary parts of eigenvalue for the MD-FG disk versus the aerodynamic pressure under varied outer radius with Ri = 0, Tb = 300, Tt 

= 330, θ = π
4, M∞ =

̅̅̅
2

√
, θ∞ = 0, u∞ = 300, and (nr , nθ, nz) = (0.5, 0.5,0.5).
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model can be developed using datasets from mathematical simulations. 
These datasets include key input features like material properties (e.g., 
thermal conductivity, density), geometric properties (e.g., thickness, 
radius), and environmental conditions (e.g., temperature, and pressure). 
The outputs of the DNN represent aero-thermodynamic responses such 
as natural frequency, flutter load, and displacement fields. The DNN 
model consists of multiple hidden layers, with each layer applying 
nonlinear transformations to learn complex relationships between input 

and output data. The model is trained using a regression approach, 
minimizing the Mean Squared Error (MSE) between predicted and 
actual values. The trained DNN can then be used for fast, accurate 
predictions of aero-thermodynamic responses under varying conditions, 
making it suitable for optimizing FGM disk design in aerospace appli-
cations. Fig. 12 depicts the training and validation performance of a 
DNN model over 300 epochs, as represented by the Mean Squared Error 
(MSE) on a logarithmic scale. The MSE is a common loss function used in 

Fig. 5. The change of real and imaginary parts of eigenvalue for the MD-FG disk versus the aerodynamic pressure under varied sector angles with Ri = 0, Ro = 50h, 
Tb = 300, Tt = 330, M∞ =

̅̅̅
2

√
, θ∞ = 0, u∞ = 300, and (nr , nθ, nz) = (0.5, 0.5,0.5).

Fig. 6. On the airflow dynamics of an MD-FG disk with several values of a) FG indexes and Ro = 50h b) outer radius and (nr , nθ, nz) = (0.5,0.5,0.5), in addition to 
regarding the impact of M∞.

Fig. 7. On the airflow dynamics of an MD-FG disk with several values of a) sector angle and Tb = 300, Tt = 330 b) temperature difference and θ = π
4, in addition to 

regarding the impact of M∞.
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regression tasks to evaluate the average squared difference between 
predicted and actual values. In the plot, the red curve represents the MSE 
of the training data, while the blue curve shows the MSE for the vali-
dation data. Initially, both training and validation MSE are relatively 
high, with values around 10◦, indicating significant errors in the early 
stages of training. However, both curves drop sharply during the first 50 
epochs, demonstrating rapid improvement in the model’s performance 
as it learns to minimize the error. After around 50 epochs, the training 
curve begins to fluctuate slightly but maintains a steady downward 
trend, reaching a low value around 10–2 to 10–3. This indicates that the 
model continues to learn and improve on the training data, though with 
diminishing returns. The validation curve also follows a similar trend, 
indicating that the model is generalizing well to unseen data and is not 
overfitting significantly. However, the slight gap between the training 
and validation errors shows that there is some variance in the model’s 
ability to generalize, which could be improved with additional regula-
rization techniques. Overall, this figure suggests that the DNN model is 
well-trained, with both training and validation errors converging to a 
low value, confirming the model’s suitability for predicting the aero- 
thermodynamic responses of FG sector disks.

This section examines the effects of R2 and RMSE on the results 
shown in Tables 4 and 5. It has been noted that responses with higher 
RMSE and R2 values are more accurate. It is thus recommended to 
choose R2=0.9921, RMSE=0.3896, and 789 samples when selecting the 
findings. The results of the mathematical modeling are also shown using 
MS (mathematics simulation).

Tables 4 and 5 show how the weight percentage of nz affect the 
dimensionless frequency of the present structure. The part that follows 
will go into more information on this subject.

After testing, training, and validating the results, the following pa-
rameters should be used to correctly predict aero-thermodynamic re-
sponses of FGM sector disks.

Parameter Value/Details

Number of Input Features 10 (material, geometric, and environmental properties)
Number of Hidden Layers 2 hidden layers
Neurons per Layer 64 neurons per hidden layer
Activation Function ReLU for hidden layers, Linear for output layer
Loss Function Mean Squared Error (MSE)
Optimizer Adam
Learning Rate Default (Adam automatically adjusts it)
Batch Size 32
Epochs 250
RMSE 0.3896
R2 0.9921

7. Conclusion

Composite sector disks play a pivotal role in enhancing the perfor-
mance, efficiency, and safety of aerospace structures and systems 
exposed to supersonic airflow and thermal environments. Their inte-
gration into aerospace design allows for the development of advanced, 
resilient, and lightweight solutions tailored to the demanding conditions 
of aerospace applications. Vibrational characteristics of an MD-FG sector 
disk was studied based on the Q3D-NRT along with the refined zigzag 
hypothesis. The equilibrium equations along with the associated 
boundary conditions were obtained by exploiting Hamilton’s principle. 
The solution method was established based on GDQ approach for 
various boundary types, after attaining the effective material properties. 
After obtaining the mathematics results, appropriate datasets are made 
for testing, training, and validation of the deep neural networks tech-
nique. An exhaustive parametric investigation was provided to study the 
role of free stream speed, temperature changes, air yaw angle, aero-
dynamic pressure, boundary domains, and Mach number on the flutter 
boundaries and vibrational traits of the MD-FG sector disk. Some high-
lights of this paper can be expressed in a few words as: 

Fig. 8. Frequency of an MD-FG disk with Ri = 0, Ro = 50h, Tb = 300, Tt =

330, λ∞ = 100, M∞ =
̅̅̅
2

√
, u∞ = 300, and (nr , nθ, nz) = (0.5, 0.5,0.5) in 

addition to regarding the impact of θ∞.

Fig. 9. Frequency of an MD-FG disk with Ri = 0, Ro = 50h, Tb = 300, Tt =

330, λ∞ = 100, θ = π
4, u∞ = 300, and (nr , nθ, nz) = (0.5, 0.5,0.5) in addition 

to regarding the impact of θ∞.

Fig. 10. Frequency of an MD-FG disk with Ri = 0, Ro = 50h, Tb = 300, Tt =

330, θ = π
4, M∞ =

̅̅̅
2

√
, u∞ = 300, and (nr , nθ, nz) = (0.5, 0.5,0.5) in addition 

to regarding the impact of θ∞.
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v In addition to the real part and imaginary part of the ω, the λcr
∞ of the 

MD-FG disk, which is related to the flutter boundary, could reduce 
with the growth of the FG indexes, Ro/h, or θ, that is, increasing each 
of these parameters has a lessening impact on the system’s stiffness.

v Against of the Ro/h, increasing the FG indexes, θ, or ΔT leads to the 
reduction of the Mcr

∞, that is, these parameters have a weakening 
impact on the system’s stiffness.

v The result of intensifying the M∞, or λ∞ is escalation of the system’s 
ω. Apart from, escalating the θ∞ leads to an increase/decrease in 
behavior in the ω.

v Compared to the M∞, and λ∞, θ has a chief role in the ω, i. 
e. θ > M∞ > λ∞.

v Changing the θ, M∞, and λ∞ has a minor effect on the θ∞ related to 
the ωmax. Also, θmax

∞ in which ω = ωmax is equal to 100.
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[31] E. Sobhani, A. Arbabian, Ö. Civalek, M. Avcar, The free vibration analysis of hybrid 
porous nanocomposite joined hemispherical–cylindrical–conical shells, Eng. 
Comput. (2021) 1–28, 2021.

[32] J. Tang, S. Wu, M. Habibi, M. Safarpour, H.E. Ali, Flutter analysis of multi- 
directional functionally graded sector poroelastic disks, Aerosp. Sci. Technol. 140 
(2023) 108481.
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