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This research presents an advancement of the Elk Herd Optimization targeting speci昀椀c real-world 
multi-objective optimization problems, this algorithm is stated as the multi-objective Elk Herd 
Optimization (MOEHO). MOEHO exploits reproductive behaviour among elk herds for balancing 
exploration and exploitation within the optimization procedure toward diversi昀椀cation and 
convergence. The algorithm performed better over the set of small-to-medium scale structural 
design problems thus is widely applicable in engineering design. Further, when compared with eight 
benchmark truss structures against 昀椀ve well-established algorithms the MOEHO has outperformed 
them in the perspective of performance parameters like Spacing (SP), Hypervolume (HV) and 
Inverted Generational Distance (IGD). More concrete statistical analysis through Friedman rank 
test also ascertains the robustness and e昀케ciency of the algorithm, especially at high complexities 
in optimization. The research attracts attention to the ability of such an algorithm which maintains 
a balance between the exploration and exploitation. Computational e昀케ciency of MOEHO and 
qualitatively diversifying solutions along Pareto front, makes it especially applicable in complex 
engineering applications. Further research into extension of MOEHO with applicability on more 
dimensional problems, applied even in energy systems optimization.
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Compliance

Optimization constitutes the core function in handling complex problems of the real-world problems 
encountered in di�erent �elds like engineering, manufacturing, logistics, and resource management. Multi-
objective optimization is much more important because it provides the capabilities to optimize, not just one 
but many con�icting objectives simultaneously.1,2. Objectives o�en have con�ict with each other, and therefore 
a solution must be found that satis�es the objectives such that di�erent constraints are satis�ed. In practice, 
it usually yields a set of solutions known as the Pareto-optimal front, wherein no single solution strictly 
dominates all the others but represents a compromise that is accustomed by special preference3,4. �e tendency 
for increasing complexity attributed to engineering and computational challenges in modern industries has 
necessitated the establishment of robust optimization techniques. In this regard, conventional optimization 
methods always fail in dealing with nonlinear constraints, large search spaces, and complex dynamics of a 
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problem, strictly limiting their capability to �nd optimal solutions. Under such challenges, a paradigm shi� 
has been realized toward metaheuristic algorithms, which have gained immense popularity over the last two 
decades.5,6. In contrast to traditional methods, metaheuristics do not make use of gradient information and 
thus can explore at a much larger extent the solution spaces and avoid better local optima pitfalls. �is feature 
renders metaheuristic algorithms especially appealing when dealing with multiobjective optimization problems 
(MOPs), which involve optimizing con�icting objectives simultaneously7.

In principle, metaheuristic algorithms have an intrinsic di�erence: there is an iterative approach that modi�es 
decision variables towards identifying optimal solutions. �e two fundamental elements of such algorithms are 
exploration and exploitation. Exploration should focus on new regions within the search space; thus, it must 
have a global view and avoid getting trapped locally. However, the exploitation improves solutions in promising 
parts of the search space. It emphasizes precision and accuracy. �ese two phases must be well-balanced for 
metaheuristic optimization strategies to work.8. Over time, metaheuristics have developed into di�erent types, 
each in�uenced by di�erent natural events.

A signi�cant group of these, called nature-inspired algorithms, are based on biological, physical, and 
ecological processes. For instance, Genetic Algorithms (GAs) use the idea of Darwin’s evolution to create 
groups of solutions by using methods like combining, changing, and choosing the best solutions. Some newer 
algorithms that are based on biological traits include di�erential evolution (DE)9, genetic programming (GP)10, 
and Spherical evolution algorithms11, Salp Swarm Algorithm (SSA)12, Monarch Butter�y Optimization (MBO)13, 
Tunicate Search Algorithm (TSA)14, Optimal Foraging Algorithm (OFA)15 , Wild Horse Optimizer (WHO)16 , 
etc.

Another category includes physics-inspired algorithms, which leverage principles from physical laws and 
processes17. Examples include Simulated Annealing (SA)18 , inspired by the annealing process in metallurgy, 
and Fick’s Law Algorithm (FLA)19, which models di�usion processes. Few more instances of physics motivated 
algorithms may be such as Water Cycle Algorithm (WCA)20, Weighted Mean of Vectors (INFO)20 and special 
relativity search (SRS) algorithm21. Such propositions are concerned more with the abstraction and provide 
teachings concerning the optimization of constraints’ performance. Some metaheuristic methods have been 
investigated for structural optimization, such as the Star�sh Optimization Algorithm (SFOA) and Multi-objective 
SHADE with Manta Ray Foraging Optimizer (MOSHADE-MRFO)22. SFOA proved to be competitively e�ective 
in global optimization with a balance of exploration and exploitation. MOSHADE-MRFO has also been used in 
structural design tasks with e�ective convergence and diversity preservation23.

Communal animal behaviour has been a major driving force for the design of optimization algorithms. 
Swarm intelligence-based algorithms imitated behaviours of hunting, food foraging or migration. �e widely 
accepted algorithms in this category include: Chameleon Swarm Algorithm (CSA)24Nutcracker Optimization 
Algorithm (NOA)25, White Shark Optimization Algorithm (WSO)26, Geyser Heuristic Algorithm27, Zebra 
Optimization Algorithm28, Egret Swarm Optimization Algorithm29, Waterwheel Plant Algorithm30, Mantis 
Search Algorithm31, Chameleon Swarm Algorithm (CSA)24 , Cray�sh Optimization Algorithm32, Electric 
Eel Optimizer33 , Orca Predation Algorithm (OPA)34, Prairie Dog Optimizer algorithm35 and so on. �ese 
algorithms use how animals act to create new ways of searching for the best solutions in complex problems. 
�e main focus of this research is on three methods: (1) making existing algorithms better36,37, 2) creation of 
the most modern algorithms and 3) development of hybrid algorithms38. Recent advances in multi-objective 
optimization algorithms includes “Multi-objective heat transfer optimization (MOTEO)39, Two-archive multi-
objective multi-universe optimization (MOMVO2arc)40, multi-objective hippo optimization (MOHO )41, 
multi-objective geometric mean Optimizer (MOGMO)42 , Multi-objective Resistor-Capacitance Optimization 
(MORCO)43, Multi-objective Arti�cial Hummingbird Algorithm (MOAHA)44, Multi-objective Water 
Strider (MOWSO)45, Multi-objective Liver Cancer Algorithm (MOLCA)46, Multi-objective Snow Ablation 
Optimization Algorithm (MOSAO)47 and so on. �ese algorithms elucidate how to integrate advanced methods 
in engineering applications to achieve a balance between objectives. Hybrid algorithms use a weighted average 
to combine the advantages of multiple optimization methods48. By using the weighted average of the solutions 
produced by di�erent methods, these algorithms increase the ability to e�ciently explore the search space, 
thereby reducing the probability of entering the local optimal region49. �is methodology increases the overall 
power and �exibility of the algorithm, resulting in optimal solutions for various problems.50,51

�e "no free lunch" optimization theory52 shows that a single optimization algorithm is not applicable for 
all types of problems. Metaheuristics are good for certain problem domains, but not good at providing optimal 
solutions for other problem domains. �is inconsistency o�en stems from a failure to strike the perfect balance 
between research and development. As a result, these can cause the algorithm to search well or fail at local 
optima. �us, it is required to build novel algorithms in the interest of distinct optimization test cases53.

�is research presents an extension of the recently developed Elk Herd algorithm, called multiobjective Elk 
herd optimization algorithm (MOEHO), useful for solving multi-objective optimization problems of engineering 
design. �e EHO algorithm is a relatively recent addition to the family of nature-inspired metaheuristics. It 
models the social and reproductive behavior of elk herds, focusing on the seasonal dynamics of rutting and 
calving. During the rutting season, dominant male elks or bulls compete for control over groups of females known 
as harems. �is naturally leads to a hierarchy within the herd, and each harem forms a subgroup of solutions. 
Introducing new solutions through calving is similar to the illusion of genetic diversity in reproduction. Finally, 
the selection process provides a solid foundation for the best solutions, so the algorithm moves progressively 
toward optimality. MOO is optimizing two or more con�icting objectives. For instance, reducing material cost in 
engineering design usually con�icts with increasing structural strength. Logistics o�en increases transportation 
cost to reduce the delivery time. �e central idea in MOPs is called Pareto optimality51,54,55.

A solution is Pareto-optimal if no other solution is better for any one objective without deteriorating 
another. �e set of Pareto-optimal solutions forms the Pareto front, which allows the researcher to select a 
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preferred solution from a range of trade-o�s. Generating an appropriately distributed and accurate Pareto front 
is particularly di�cult for high-dimensional, constrained, or multi-modal problem spaces. Key issues in multi-
objective optimization are: Diversity Maintenance: the true Pareto front is approximated, and the possibility of 
being trapped in a local optimum. Handling Constraints: how to handle complex constraints that can reduce 
the size of the feasible region in the search space. Balancing Exploration and Exploitation: how to make sure an 
algorithm properly explores the search space and re�nes promising solutions. �is paper introduces the elk herd 
optimization MOEHO, which is the advanced version of the EHO framework, and it aims at improving multiple 
objectives simultaneously. �is makes MOEHO a powerful and e�cient technique for solving complicated 
optimization problems with tools adapted to multiple objectives. Some of the key characteristics of MOEHO 
include:

1. Pareto-Dominance Ranking: Solutions are ranked based on the degree to which they are better than others, 
thus establishing a clear and accurate Pareto front.

2. Crowding Distance Approach: To promote diversity of the solutions, MOEHO computes crowding 
distances and then concentrates on the clean portions of the Pareto front.

3. Elite Retention: �ere is retention of elite solutions for several generations to guarantee progressive 
enhancement to the Pareto front.

4. Adaptive Parameter Settings: Parameters for searching and utilizing resources are modi�ed in an adaptive 
manner with a view of maintaining a proper equilibrium between them for the whole period of optimization.

The mathematical model of elk herd optimization
�e mathematical model of the optimiser elk herd is included within the optimisation framework. Before, elk 
had been divided into families according to the number of bulls in that family. �rough the rutting season, 
the powerful male elk leads each family, and strength determines how many cows and harems to take. 56. �e 
strength of bulls can be measured through their ability to overthrow dominance. During the calving season, 
each family normally produces an equal number of calves. All the families are then combined during the chosen 
season, and the best candidates are once again invited to the mating season. To ensure that the produced elk herd 
can adapt to varying environmental conditions, this process is repeated. Six consecutive steps are proposed in 
the mathematical model to connect the elk herd’s reproduction cycle with an optimisation framework. We will 
go over each of these processes in great detail. �is is the �owchart shown in picture 1 and the pseudo code that 
goes with it in algorithm 2. Figure 1 Showcase the �owchart of the EHO algorithm.

Fig.1. Flow chart for EHO algorithm.
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Step 1: Set the initial value for the EHO parameter and de昀椀ne the optimization problem
Two such ingredients are necessary to incorporate problem-speci�c knowledge into the EHO: a representation 
that makes the search space obvious and an objective function that measures the answer. Each decision variable 
in a continuous search space has a speci�c range of values for simple optimisation problems. �e objective can 
be expresses as per Eq. (1)

 minf (x) xϵ(LB,UB)x = (x1,x2, . . . ., xn) (1)

f (x) = objective function, xi= individual characteristic of speci�c elk classi�ed by i.
f (x) xϵ(LBi,UBi) LBi= Lower limit, and UBi= Upper limit for the characteristic xi .

Step 2: Generate the initial elk herd
Elk solutions, such as bulls and harems, make up the �rst generation of the elk herd (E).

�e E is a matrix of size n × Elks presented in Eq. (2).
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�e solution xj  can calculated using Eq. (3)

 x
j

i = LBi + (UBi − LBi)x U (0, 1) (3)

�e elks in E are organized in rising sequence on the basis of their quali�cation values, such as f(x1) ≤ f(x2) 
≤ · · · ≤ f(xElk).

Step 3: Rutting season
�e EHO is modelled to generate families according to the bull rate (Br) during rutting season. First, the total 
number of families is determined as B = Br × Elk. �e bulls are selected from E with respect to the �tness values. 
According to Eq. (4), the elks of group B with the maximum quali�cation appear at the beginning of E as bulls. It 
is for combat command contests whereby the toughest elks are accorded more harems upon evaluation.

 B = arg minf(xj) (4)

�en the bulls in the B set start �ghting among themselves to form families. �e harems are then allocated to 
every bull in B through using the roulette-wheel assortment method, based on how these bulls’ �tness values fall 
compared to the total �tness values. In practical terms, the selection probability pj  for every bull xj  in B would 
be obtained as per Eq. (5)

 

pj =
f(xj)

∑B

k=1
f(xk)

 (5)

�e bulls will receive the harem according to the selection likelihood pj  obtained from Algorithm 1. A vector 
H = (h1,h2,....hk), is utilized in the algorithm. �e harems are denoted by k = Elk − B, wherein each is assigned 
by the bull catalogue that is recognized through roulette-wheel selection. For instance, if there are ten elk in the 
herd (Elk = 10) and the bull rate is 30%, B = 3 is showing the no. of families. �e B = (x1

, x
2
.x

3). It is possible to 
point the remaining elks (i.e., (x4,…,x10)) as harems, and then distribute them according to the roulette wheel 
selection.

Step 4: Calving Season
During the season when calf is born, each family’s calf is generated based on the qualities primarily occupied 
from their mother harem  xj

i  (t + 1)) and father bull ( xhj). �e calf is imitated as indicated by Eq. (6) if its index 
i is the same as that of its bull father in the family ( xi(t + 1)).

 x
j

i (t + 1) = x
j

i (t) + α(xk

i
(t) − x

j

i (t)) (6)

In the herd xk(t), where k ∈ (1, 2, …, Elk), the rate of the hereditary qualities from the arbitrarily chosen elk is 
determined by α, which is a arbitrary value in the interval [0, 1]. It is worth noting that a large α increases the 
chance that random elements would share the new calf; thus, it enhances diversi�cation. If the new index of the 
calf is equal to that of its mother, then it xi(t + 1) acquired the traits of the father bull xhj  and mother harem 
x

j , respectively, as in Eq. (7).

 x
j

i (t + 1) = x
j

i (t) + β · (xhj

i
(t) − x

j

i (t)) + γ · (xr

i
(t) − x

j

i (t)) (7)

where the characteristic i of the calf j at iteration t + 1 is represented by xj

i  (t + 1) and will be placed in E’. r is 
the index of a randomly chosen bull from the present set of bulls, such that r ∈ B and hj  denotes the bull for the 
harem j. In the wild, if the mother harem bull does not guard it well enough, it occasionally mates with other 
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bulls. �e portion of the characteristics hereditary received from formerly created calves are arbitrarily obtained 
by the arbitrary numbers γ and β, which fall between 0 and 2.

Equation 6 indicates that the coe�cients β and γ are important variables in the suggested EHO because of 
their similarity to the “social” and “cognitive” models in the PSO. It should be highlighted that the utilization 
of temporary arbitrary values of β and γ in the range [0, 2] as a substitute of a prede�ned value would improve 
performance in some optimization cases. �is can be attributed to the fact that random values for β and γ within 
the allowed range might demonstrate potential to obtain an acceptable degree of EHO performance.

Step 5: Selection time
�e E’ that held the solutions of the calves and the E that had the solutions of the bulls and harem are united into 
a one matrix called Etemp. Based on their suitability value, the elks in the Etemp will be sorted in rising sequence. 
In order to replace the elks in E, the better performing elks of Etemp will be kept for the next generation, so that 
E

j=  Etemp

j   j = (1…, Elk).

Step 6: Termination criteria

Steps 3, 4, and 5 are repeated till the stopping requirement is satis�ed. Typically, the maximum number of 
iterations is used as a condition for termination; sometimes, this is optimality in ideal solutions reach, then 
computing time or the number of ideal iterations should not exceed that number. 

Algorithm 1. :
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Algorithm 2. �e pseudo-code of EHO.

Multi-objective elk herd optimization algorithm
MOEHO algorithm begins by generating a random population. Let t represent the current generation.at

i  and 
a

t+1

i
  denoting the i-th individual in generation t and (t + 1) respectively. Similarly, ut+1

i
  represents an 

individual in next generation, derived using EHO algorithm from parent population Pt. �e �tness value of 
u

t+1

i
 is given by f t+1

i
 and the set of all such individual is dented by U t+1. �e value of  xt+1

i
 is computed based 

on ut+1

i
  incorporating the information feedback mechanism as de�ned in Eq. (8)

 
x

t+1

i = ∂1u
t+1

i + ∂2s
t

k; where ∂1 =
f t

k

f t+1

i
+ f t

k

, ∂2 =
f t+1

i

f t+1

i
+ f t

k

, ensuring ∂1 + ∂2 = 1 (8)

 here,  xt

k  represents the selected k − th individual from generation t, with �tness value of f t

k. The coefficients∂1 
and ∂2 acts as weight factors. �e o�spring population, denoted as Qt consists of individuals at+1

i
. �e combined 

population Rt = Pt ∪ Qt is then categorized into multiple non-dominated levels (F1, F2, . . . , Fl . . . , Fw) . 

Starting from F1, individuals level 1 to  are included in St =

∪
l

i=1
Fi  while any remaining individuals in 

Rt are discarded. If |St| = N  no further actions are needed, and the next generation proceeds directly with 
Pt+1 = St. Else, the individuals in St

Fl
 are added in Pt+1 while the remaining N −

∑
l−1

i=0
|Fi| solutions are 
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chosen from Fl using the Crowding Distance (CD) mechanism. Solutions with larger crowding distance have 
a higher probability being selected. If the termination condition is not met, the process iterates with  t = t + 1  
generating a new population Qt+1 using EHO algorithm. �e MOEHO approach follows a structured selection 
strategy, leading to a computational complexity of O

(

N
2
M

)

 for M -Objective optimization problem.

MOEHO begins with the �rst stage where there is a population of elk solutions that is generated randomly 
and estimated by objective functions. A population is divided into dominant males and harems, with dominant 
males contributing to exploration and the harems helping with local improvement. �e movement schemes 
are employing front male leaders to discover new spaces with the adaptable step size, employing females 
for positioning adjustments according to the optimum solutions in their subgroup, and calves inheriting 
characteristics from parents with subtle perturbations for diversity. Dynamic equilibrium between exploration 
and exploitation is established by means of an adaptable parameter update strategy. To maintain the quality of 
solutions, an elite selection strategy is employed to preserve the best non-dominated solutions across generations. 
�e algorithm terminates when a target number of iterations is reached or convergence conditions are met.

�e MOEHO algorithm improves the traditional EHO with the addition of an information feedback 
mechanism, which improves o�spring generation through the use of adaptive weight factors ∂1 and ∂2 derived 
from �tness values. �is adjustment makes the trade-o� between exploration and exploitation more balanced, 
leading the search process more e�ciently towards the Pareto front. Moreover, the orderly selection strategy, 
which uses the non-dominated sorting and crowding distance mechanisms, enhances diversity of the solution 
and convergence. �rough adaptive regulation of the impact of previous generation selected individuals, 
MOEHO sustains a more dynamic population updating, hence maintaining its capability to solve complex 
multi-objective problems with a better computational e�ciency of O(N2M).

Pseudo-code of MOEHO algorithm.

�e �ow chart of MOEHO algorithm is shown in Fig. 2.
�e Multi-Objective Elk Herd Optimization (MOEHO) algorithm is an advanced nature-inspired 

metaheuristic algorithm designed to solve multi-objective optimization problems. �e algorithm is based on the 
social and reproductive behavior of elk herds, which is modeled to balance exploration and exploitation in the 
optimization process. �e procedure of MOEHO is divided into several key steps, each of which is described in 
detail below.

Initialization

�e MOEHO algorithm begins with the initialization of the population. �e initial population consists of a 
set of randomly generated solutions, each representing a potential solution to the optimization problem. �e 
population size is denoted by N , and each solution is represented as a vector of decision variables xi, where 
i = 1,2, . . . , N . �e decision variables are initialized within the speci�ed lower and upper bounds [LBi, UBi] 
for each variable.

Scienti昀椀c Reports |        2025 15:11767 7| https://doi.org/10.1038/s41598-025-96263-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fitness evaluation
Once the initial population is generated, the �tness of each solution is evaluated based on the objective functions 
of the optimization problem. For multi-objective optimization, the �tness evaluation involves calculating the 
values of multiple con�icting objectives. �e �tness values are used to rank the solutions and determine their 
dominance relationships.

Fig.2. Flowchart of MEHO algorithm.
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Rutting season (exploration phase)
�e rutting season in MOEHO corresponds to the exploration phase of the optimization process. During 
this phase, the population is divided into families based on the bull rate Br , which determines the number of 
dominant solutions (bulls) in the population. �e bulls are selected based on their �tness values, with the �ttest 
solutions being chosen as bulls. Each bull is then assigned a harem of solutions (cows) using a roulette-wheel 
selection mechanism, where the probability of selection is proportional to the �tness of the bulls. �e exploration 
phase is crucial for maintaining diversity in the population. �e bulls compete for dominance, and the harems 
are redistributed based on the �tness of the bulls. �is competition ensures that the algorithm explores di�erent 
regions of the search space, preventing premature convergence to local optima.

Calving season (exploitation phase)
�e calving season represents the exploitation phase of the MOEHO algorithm. During this phase, new solutions 
(calves) are generated by combining the characteristics of the bulls and cows. �e calves are created using a 
combination of genetic operators, including crossover and mutation. �e crossover operator combines the traits 
of the bull and cow to produce a new solution, while the mutation operator introduces random variations to 
maintain diversity. �e exploitation phase focuses on re�ning the solutions in promising regions of the search 
space. �e new solutions are evaluated, and their �tness values are compared to those of the existing solutions. 
�e best solutions are retained for the next generation, ensuring that the algorithm converges towards the 
Pareto-optimal front.

Selection and elitism
A�er the calving season, the population is updated by selecting the best solutions from the combined set of 
bulls, cows, and calves. �e selection process is based on the Pareto dominance ranking and crowding distance. 
Solutions that are non-dominated and have a higher crowding distance are preferred, as they contribute to 
a well-distributed Pareto front. Elitism is also incorporated into the selection process to ensure that the best 
solutions from the current generation are carried over to the next generation. �is helps in maintaining the 
quality of the solutions and accelerates the convergence of the algorithm.

Termination CSriteria
�e MOEHO algorithm iterates through the rutting season, calving season, and selection process until a 
termination criterion is met. �e termination criterion can be based on the maximum number of iterations, the 
quality of the solutions, or the computational time. Once the termination criterion is satis�ed, the algorithm 
returns the set of non-dominated solutions, which form the Pareto-optimal front.

Information feedback mechanism (IFM)
�e MOEHO algorithm incorporates an Information Feedback Mechanism (IFM) to enhance its performance. 
�e IFM uses the �tness values of the solutions from the current and previous generations to guide the search 
process. �e feedback mechanism adjusts the weights of the solutions based on their �tness values, ensuring that 
the algorithm explores the search space more e�ectively. �e IFM is particularly useful in maintaining a balance 
between exploration and exploitation. By incorporating feedback from previous generations, the algorithm can 
adaptively adjust its search strategy, leading to faster convergence and better-quality solutions.

MOEHO represents an enhanced version of EHO which speci�cally targets engineering design problems 
with multiple optimization objectives. MOEHO implements structural changes that optimize its exploration–
exploitation capabilities to achieve reliable performance in di�erent optimization environments. Multiple 
improvements implemented in MOEHO consist of Information Feedback Mechanism (IFM) and adaptive 
parameters with Pareto-dominance ranking that result in enhanced capability for handling con�icting objectives 
while preserving diverse solutions on the Pareto front. �e Information Feedback Mechanism represents a 
vital update in MOEHO that enhances solution quality through the utilization of previous generation data. 
�rough this mechanism the algorithm maintains important insights discovered in prior generations to direct 
its search in future generations. �e feedback system enables MOEHO to improve its search path automatically 
which prevents premature convergence to substandard solutions. MOEHO maintains exploration of new search 
regions while exploiting previously identi�ed promising areas through its use of historical data.

MOEHO implements dynamic parameter adjustments which modify exploration and exploitation 
capabilities of the optimization algorithm during its execution. �e parameters play an essential role in striking 
the right equilibrium between searching the entire space and optimizing promising areas. �rough its adaptive 
mechanism MOEHO establishes the capability to search high-dimensional complex spaces without remaining 
in sub-optimal solutions. During calving season the algorithm adjusts β and γ coe�cients adaptively to 
determine how much trait information parents will pass to their o�spring solutions. Random coe�cient values 
inside de�ned boundaries enable MOEHO to generate diverse o�spring solutions. �e random elements in the 
algorithm enable it to investigate various search areas without compromising solution quality.

MOEHO solves multi-objective optimization problems by applying Pareto-dominance ranking to determine 
the solution rankings through dominance relationship comparisons. �e algorithm focuses on non-dominated 
solutions through this method which enables it to produce an approximation of the Pareto front. �e crowding 
distance metric in MOEHO functions to maintain diverse solutions. �e crowding distance calculation determines 
solution density on the Pareto front to guide exploration toward underpopulated areas while maintaining 
diverse solution distributions. MOEHO maintains an elite retention system that enables the algorithm to keep 
superior solutions from one generation to the next. �e best-performing solutions remain in the optimization 
process through this strategy which prevents valuable information loss and speeds up the convergence to the 
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Pareto front. MOEHO e�ectively supports multi-objective optimization through elite solution retention because 
it preserves both essential elements of convergence and diversity.

MOEHO receives substantial improvements in its performance for multi-objective optimization through the 
implemented modi�cations. �e IFM enables the algorithm to use historical data for optimizing its search while 
adaptive parameter settings help it control its exploration and exploitation behavior. �e Pareto-dominance 
ranking together with crowding distance mechanisms allow MOEHO to maintain a diverse collection of 
solutions that span the entire Pareto front. �e combination of these improvements enables MOEHO to deliver 
superior performance than conventional optimization algorithms regarding solution speed and diversity as well 
as quality thus establishing itself as an e�ective tool for complex engineering design tasks.

�e MOEHO mathematical model uses elk herd reproductive behavior to divide its process into six 
essential stages starting with initialization followed by rutting season then calving season then selection before 
termination. Dominant bulls create harems during rutting season to produce new solutions through the calving 
season. Selection mechanisms within the process maintain only superior solutions for the next generation and 
termination criteria establish the conclusion of optimization. �e MOEHO optimization framework works with 
both continuous domains as well as discrete domains because it provides �exibility across multiple engineering 
applications. MOEHO functions as an advanced optimization tool for structural design and additional 
applications because it maintains adaptive exploration–exploitation balance and shows robustness in multi-
objective optimization.

Formulating the truss design problem
Muti-objective truss design problem
MOO truss problem is a challenging task because of the con�icting objectives, complicated constraints, and 
discrete variables related to the cross-sectional regions. To minimize the total weight and compliance while 
satisfying the given stress limits, the main objective of this paper is to solve the multi-objective truss optimization 
problem49. Since the goals are con�icting, they cannot be achieved simultaneously in a way that maximizes 
total value. Moreover, the nonlinear stress limitations also bound the range of design variables, making optimal 
design problems more complex. Instead of a unique optimal solution, the problem with multiobjective truss 
optimisation seeks for a pareto solution set; a set consisting of all viable alternatives that do not dominate another 
alternative. A multiple objective truss optimisation formulation is illustrated in the expression as follows:

 Find X = {x1,x2,x3,.....,xm,} (9)

 

Min f1 (x) =

m∑

i=1

AiρiLiand Min f1 (x) = compliance = u
T

F  (10)

Subject to constraints:

 |σi| − σmax ≤ 0and A
min

i ≤ Ai ≤ A
max

i
 (11)

where Ai = cross-sectional area for ith element, m = number of design variables,
f1= structural compliance; f2= mass compliance, ρi= mass density and  Li = length of the ith element,  σi 

= stress σmax= the allowable stress, and  Amin

i  = Lower bounds and Amax

i  = Upper of cross-sectional areas.

Formulation of di昀昀erent Truss structures
�e design variables are considered discrete, re�ecting the constraints o�en found in real-world applications for 
truss element sizing. Figs 3,4,5,6,7,8,9,10 illustrate the truss structures for each case.

Fig.3. 10 bar Truss.
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10-Bar planer truss
�e 10-bar truss problem (Fig. 3) uses cross-sectional areas as design variables (Ai for i = 1, 2, …, 10). �e size 
variables range between [1, 1.5, 2, …, 21] × 10−3 m2. �e loading condition involves downward forces of 1000 
KN applied at nodes 2 and 4.

bar 3D truss
�is truss, demonstrated in Fig. 4, also adheres to a stress constraint of stress. �e loading condition is more 
complicated, requiring several forces at di�erent nodes, but the design variables are similarly established. 
To manage the additional loading points while reducing weight and compliance, this structure needs to be 
optimized.

37-Bar planer truss
�e material characteristics and stress limits of the 37-bar truss (Fig. 5) are identical to those of the 10-bar truss. 
It does, however, provide several loading scenarios with forces of 1000 KN. �e range of the design variables 
doesn’t change.

60-Bar ring truss
�e 60-bar ring truss (Fig. 6) follows the same material and stress constraints, with design variables within [1, 
1.5, 2, …, 21] × 10 − 3 m2. Multiple load cases are considered across di�erent nodes, making optimization for 
both mass and stress distribution.

Fig. 5. 37 bar Truss.

 

Fig.4. 25 bar Truss.
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72-Bar tower 3-D truss
�e 72-bar truss is shown in Fig. 7. �e truss is subject to two loading conditions, requiring high optimization 
due to its complex force distribution.

Fig. 7. 72 bar tower truss.

 

Fig.6. 60 bar Truss.
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bar truss
�e 120-bar dome truss ground structures are indicated in Fig. 8.

200-Bar truss
�e 200-bar truss (Fig. 9) adheres to the same stress, density, and Young’s modulus constraints as other trusses. 
�is structure faces lateral and vertical loads at multiple nodes, increasing the complexity of the optimization 
problem.

942-Bar tower truss
�e 942-bar tower truss, depicted in Fig. 10, is a highly complex structure subjected to various vertical and lateral 
loading conditions. Like the other trusses, it follows the same material constraints. �e cross-sectional areas, 
denoted as Ai for i = 1, 2, …, 942, are chosen from a set of discrete values. �e signi�cant size and complexity of 
this structure require a broader range of cross-sectional areas to accommodate the substantial forces. �e load 

Fig. 8. 120 bar Truss Structure.
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cases are divided into sections, including vertical loadings of Pz =  − 100 KN and lateral loadings of Px =  ± 3 KN, 
which together ensure that the structure can withstand both horizontal and vertical forces.

Results and discussion
Convergence and diversity analysis of di昀昀erent truss structures
�e comparative performance analysis of MOOA’s NSGA-II57, MOEA/D58, MOMPA59, MOSAO60, MOGNDO61, 
and MOEHO was completed on eight benchmark truss structures, with consideration given to two main 
objectives, weight minimization and minimization of compliance (structural performance maximization). �e 
Pareto fronts obtained for all algorithms are illustrated in. Figs 11,12,13,14,15,16,17,18 Various performance 
metrics were employed to evaluate the e�ciency of each algorithm in exploring and distributing solutions across 
the objective space, with hypervolume (HV) being one of the most signi�cant indicators.

Table 1 summarizes the parameter settings used in the MO optimization algorithms covered in this work. 
�e major parameters like population size, number of iterations, crossover and mutation strategies, and other 
algorithmic settings are provided to allow reproducibility. In particular, MOEHO uses an adaptive parameter 
updating mechanism with a male rate of 0.2 and elite preservation. In contrast, NSGA-II and MOEA/D use 

Fig. 9. 200 bar Truss.
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SBX crossover and DE crossover, respectively, with various mutation strategies. �e application-speci�c 
mechanisms in MOSAO, MOMPA, and MOGNDO, e.g., snow ablation, Lévy �ight mutation, and generalized 
normal distribution-based search, also re�ect the richness of these methods. �ese parameter selections have 
an important bearing on the comparative performance evaluation of the algorithms for structural optimization 
problems.

MOEHO outperformed the other algorithms in terms of objective space exploration and achieved a closely 
packed Pareto solution set. �is algorithm achieved higher values of hypervolume (HV) hence able to cover 
a wider portion of the objective space and produce better solutions. �us, it can be concluded that MOEHO 
can produce a larger set of complete non dominated solutions than the other approaches. �ese results show 
that the design space in MOEHO is much more e�ectively searched and exploited than for any of the other 
algorithms tested. It does this while correctly approximating the True Pareto Front, and maintains the solutions 
well distributed across the entire design objective space. �e ability of MOEHO to provide high HV con�rms the 
correctness of the solutions it can provide. �is is attributed to capability of MOEHO to appropriately balance 
convergence and diversity without compromising on either of them.

�e diverse pareto fronts that MOEHO provides shows that the trade-o�s between objectives, for instance 
between weight minimization and compliance minimization are well accomplished. One of the advantages is 
�exible properties that help to disperse the solutions. O�en the non-dominated strategy of MOEHO is more 
accepted than other approaches like NSGA-II, MOEA/D, and MOMPA which have more limited and even 
dispersion when addressing multi-objective truss optimization.

Figures  11 through 18 depict the Pareto optimality achieved by several algorithms NSGA-II, MOEA/D, 
MOMPA, MOSAO, MOGNDO, and MOEHO across a variety of truss con�gurations. �ese range from 

Fig.10. 942 bar tower truss.
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relatively simple 10-bar and 25-bar structures to highly complex designs like 200-bar and 942-bar con�gurations. 
For simpler truss setups, the Pareto fronts generated by di�erent algorithms were closely clustered, re�ecting 
e�ective optimization with minimal trade-o�s between con�icting objectives, such as minimizing weight and 
improving structural performance.

Fig.12. Optimum pareto fronts for 25-bar Truss using di�erent algorithms.

 

Fig.11. Optimum pareto fronts for 10-bar Truss using di�erent algorithms.
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�e Pareto solutions created by MOEHO for the 942-bar truss structure show minor di�erences from 
reference solutions as shown in Fig.  18. �e 942-bar truss problem shows high complexity along with 
multidimensional characteristics that create a large search area with complex constraints compared to smaller 
truss structures. MOEHO shows a strong capability to sustain a well-spread and diverse collection of solutions 

Fig.14. Optimum pareto fronts for 60-bar Truss using di�erent algorithms.

 

Fig.13. Optimum fronts for 37-bar Truss using di�erent algorithms.
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Fig.16. Optimum pareto fronts for 120-bar Truss using di�erent algorithms.

 

Fig.15. Optimum pareto fronts for 72-bar Truss using di�erent algorithms.
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Fig.18. Optimum Pareto fronts for 942-bar Truss using di�erent algorithms.

 

Fig.17. Optimum pareto fronts for 200-bar Truss using di�erent algorithms.
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across the Pareto front because it achieves superior Hypervolume (HV) and Inverted Generational Distance 
(IGD) results. �e algorithm maintains strong performance levels regarding convergence and diversity in this 
complex optimization scenario. �e small discrepancy in Fig. 18 does not impact the successful operation of 
MOEHO. �e analysis demonstrates the di�culties of optimizing complex large-scale structures since reference 
solution alignment becomes progressively harder because of the increasing computational complexity. �e 
robust and adaptable character of MOEHO becomes evident through its generation of diverse well-distributed 
solutions in complex optimization conditions. �e algorithm shows reliable and e�ective performance for multi-
objective optimization through its steady performance across multiple truss structure problems (refer to Figs 
11,12,13,14,15,16,17). �e future development of MOEHO will prioritize both improved convergence properties 
for dimensional issues and adaptive control to optimize large optimization challenges. Future developments will 
enhance MOEHO by making the Pareto solutions more compatible with reference fronts in complex problems 
without compromising its ability to preserve diversity and computational speed.

However, as the designs for trusses became increasingly complex, the Pareto front envisioned greater 
dispersion between the two objectives; this proved di�cult in complex domain of optimization. �e hypervolume 
(HV) is used as an important parameter for assessment of convergence and diversity among algorithms. Simpler 
truss structures produced high HV values with relatively low computational e�ort, proving e�cient optimization 
with least resource requirements. In contrast, the optimization of more complex trusses, such as the 942-bar 
structure, required signi�cantly greater computational e�ort, with evaluation counts escalating substantially. 
�is underscores the growing challenge of maintaining both convergence and diversity as the complexity of the 
design space increases. �e results reveal that as truss complexity grows, many algorithms strive to sustain well-
distributed Pareto fronts, particularly due to the increased di�culty in navigating con�icting objectives and a 
more robust optimization landscape. Remarkably, MOEHO consistently performed better than other algorithms 
across all con�gurations, particularly in complex circumstances. It demonstrated �ne capabilities in maintaining 
a well-converged and diverse Pareto front, making it highly e�cient for addressing high-dimensional, multi-
objective truss optimization challenges.

Convergence analysis through HV Matric
Hypervolume (HV)
“Let ar= (ar

1, . . . , a)T , be a inferior point dominated by all the Pareto optimal objective vectors. �e HV of P is 
de�ned as the volume of the objective space dominated by solutions in P and bounded by ar .

 

HV(P) = V(
∪

z∈P

[z1, Z
r

1 ] X . . . X [zm, Z
r

m]) (12)

where V indicates the Lebesgue measure. Hyper Volume assesses the section of the objective space occupied by 
the non-dominated solution set; higher values indicate better performance”62.

Boxplots provide useful information about the mean and distribution of hypervolume (HV) obtained for 
each algorithm over several runs, making them a powerful tool for visual algorithm analysis and optimization. 
Each box shows the median HV value, and the line inside the box represents the interquartile range (IQR) 
around the middle 50% of the data. �e colour of the result depends on the combination of HV input, allowing 
a direct comparison between algorithms. �erefore, these boxes summarize the distribution and centre of the 
HV values   and provide a useful distribution pattern that shows the performance of each algorithm. Box plot 
analysis shows the distribution and structure of HV and shows the reliability and consistency of each algorithm. 
�e boxplot components, including mean HV, di�erence and output, show the algorithm that produces the 
best HV. A high HV value indicates that the algorithm can capture many target regions, while a small IQR and 
a small group interval indicate that the algorithm is reliable and stable. �e relationship between compatibility 
and diversity is important for e�ective organizational design, and managing trade-o�s between competing goals 
is important.

Figure 19 shows the HV parameters of NSGA-II, MOEA/D, MOMPA, MOSAO, MOGNDO, and MOEHO 
for a typical truss problem. �is shows the ability and strength of MOEHO to produce high quality pareto fronts. 
Compared to, algorithms such as NSGA-II and MOGNDO, MOEHO show signi�cant improvement over HV, 

Algorithm
Population 
size (N) Max Iterations/Generations Crossover type & rate Mutation type & rate Other key parameters

MOEHO 100 500 Not explicitly de�ned Adaptive parameter update Males rate: 0.2, Elite Retention

NSGA-II 100 500 SBX Crossover, 0.9 Polynomial Mutation, 1/n Non-dominated Sorting, Crowding Distance

MOEA/D 100 500
Di�erential Evolution 
(DE) Crossover, 1.0

Polynomial Mutation, 1/n
Weight Vector-based Decomposition, 
Tchebyche� Approach, Neighborhood size (T) = 6

MOSAO 100 500 Not explicitly de�ned Gaussian Mutation, 0.02
Snow Ablation Mechanism, Elite Pool, Brownian 
Random Number Vector

MOMPA 100 500 Not explicitly de�ned Lévy Flight Mutation, 0.02 �ree-phase Hunting Strategy, FADs = 0.2, P = 0.5

MOGNDO 100 500 Gaussian Crossover, 0.8 Gaussian Mutation, 0.05
Generalized Normal Distribution-based Search, 
Grid In�ation Parameter (α) = 0.01, Leader 
Selection Pressure (β) = 4

Table 1. Parameter Settings of MO Optimization Algorithms Under Consideration.

 

Scienti昀椀c Reports |        2025 15:11767 20| https://doi.org/10.1038/s41598-025-96263-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


especially for complex problems where computational e�ciency and quality of solutions are important. �e 
comparison in these boxes shows that MOEHO is better than other algorithms, achieving the highest average 
HV and the lowest IQR. �e small density in the centre of the boxplots of MOEHO ensures that it can pass 
through the selected area, �nd a good solution, and do this without excessive monitoring. In general, MOEHO 

Fig. 20. Convergence plot of hyper volume by considered algorithms for di�erent truss structures.

 

Fig. 19. Box plot of hyper volume by considered algorithms for di�erent truss structures.
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exhibits better performance in system optimization, especially for complex multi-objective problems that require 
robust, diverse, and well-organized solutions.

Figure 20 illustrates the hypervolume HV trends observed across eight benchmark constraint-based design 
problems by comparison of accomplishment of MOEHO with several multi-objective evolutionary algorithms 
(MOEAs), including NSGA-II, MOSAO, and MOGNDO. �ese results imply that MOEHO is performing better, 
with faster convergence and higher �nal HV values than in previous studies, across all benchmark problems.

�e MOEHO convergence curve reveals that it is possible to rapidly �nd early high-quality solutions, as 
well as accurately estimate the Pareto-optimal front in the early stages of the optimization process. �is early 
‘lead’ in performance is ahead of the other algorithms, thus con�rming the superiority of MOEHO in quality 
and diversity of the solution obtained. �e MOEHO algorithm’s structure enables it to cover a large portion 
of the solution space while o�ering a good balance of two or more con�icting objectives with great precision. 
Exploration of objective space over the course of iterations is, thus, vital for multiobjective optimization. 
Given complicated solution spaces, the adaptive approach of MOEHO indeed proves to strengthen it to obtain 
optimality of a solution largely.

�e above plots indicate the HV convergence of MOEHO to be more statistically higher than other 
algorithms. �is shows support convergence with lesser iterations while providing uniform exploration of multi-
dimensional objective space. In comparison with other algorithms, most of the times it tends to output variable 
solutions in the HV, and the MOEHO has got very nice and smooth transitions showing its ability to �nd the 
best solutions.By achieving fast convergence, excellent diversity, and the ability to adapt varied constraint 
environments, the MOEHO proves to be highly e�ective for complex multi-objective optimization problems. Its 
robust performance makes it particularly �t for answering challenging advanced engineering design challenges.

�e Hypervolume (HV) values in Table 2 show the performance of MOEHO across di�erent constraint 
classi�cation problems, by comparison of its performance with other multi-objective optimization algorithms 
under the di�culty of the classi�cation. For the simple 10-bar algorithm, MOEHO obtained a HV of 0.64142, 
a value higher than that reached by other algorithms, showing its �rst step in generating a well-distributed 
solution set. �is trend continues with the 25-bar truss, where MOEHO achieved a HV of 0.69606, in line 
with its peers. As complexity rises with the 37-bar truss, MOEHO maintains its advantage, achieving an HV 
of 0.70015. �is consistent performance signals MOEHO’s ability to cover the objective space e�ectively while 
maintaining high solution quality. For the 60-bar truss, MOEHO demonstrated robust performance with an HV 
of 0.52869, indicating its adaptability to handle larger structural design challenges without compromising on 
e�ciency.

In the case of a 72-bar truss, MOEHO achieved a hypervolume (HV) value of 0.68197, maintaining its 
consistent performance in terms of convergence and diversity when compared to other algorithms. �is trend 
continued with the 120-bar truss, where MOEHO recorded an HV of 0.55443, further con�rming its capability 
to deliver high-quality solutions even as the complexity of the truss structures increased.

�e accuracy and reliability of MOEHO tend to greatly improve with the increasing complexity of the 
optimization problem in consideration. Regarding the 200-bar truss, MOEHO recorded an impressive 
hypervolume (HV) value of 0.76864, proving its capability of exploring and optimizing even in quite large 
design space. �is advantage was a�rmed during the execution of the highly complex problem of the 942-bar 
truss, where the value of the hypervolume generated by MOEHO algorithm was HV = 0.74213, which is better 
than that of all other algorithms under consideration. �ese �ndings demonstrate that MOEHO can provide 
optimization services in an e�ective and dependable way even in most complex problem situations.

As shown in the Table 3, MOEHO steadily attained the highest HV across all assessed truss con�gurations 
emphasizing its superior convergence and Pareto front solutions diversity. �is consistent execution illustrates 
its e�ciency and versatility in solving problems of structural optimization. MOEHO’s ability to optimize with 
respect to di�erent levels of problem di�culty, proves it as an e�ective algorithm for multi-objective optimization 
in structural engineering.

Table 3 showcases the remarkable strength of the MOEHO algorithm as the best performing algorithm 
for benchmark truss optimization problems considered in the research. Looking at the 10-bar truss, MOEHO 
records an excellent mean rank of 5.6667 which is much higher than the competing algorithms, with MOEA/D 
identi�ed as the next best. �e trend persists in the 25-bar truss where MOEHO also attains number one position 
with a score of six con�rming its competent in higher order problems. For the 37-bar truss problem, MOEHO 
has an e�ective rank of 5.4444 which is still better than the performance of rival methods. When solving the 

Test case M D NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO

10 elements 2 10 0.6218 ± 0.0070 0.6196 ± 0.0057 0.6401 ± 0.0027 0.6244 ± 0.0048 0.6368 ± 0.0024 0.6414 ± 0.0009

25 elements 2 8 0.6821 ± 0.0079 0.6887 ± 0.0020 0.6954 ± 0.0003 0.6886 ± 0.0033 0.6943 ± 0.0005 0.6961 ± 0.0002

37 elements 2 15 0.6636 ± 0.0117 0.6773 ± 0.0059 0.6989 ± 0.0061 0.6700 ± 0.0103 0.6919 ± 0.0056 0.7002 ± 0.0040

60 elements 2 25 0.5085 ± 0.0088 0.4661 ± 0.0150 0.5256 ± 0.0102 0.5065 ± 0.0089 0.5204 ± 0.0083 0.5287 ± 0.0085

72 elements 2 16 0.6625 ± 0.0124 0.6522 ± 0.0104 0.6799 ± 0.0078 0.6643 ± 0.0105 0.6816 ± 0.0057 0.6820 ± 0.0042

120 elements 2 7 0.5410 ± 0.0060 0.5166 ± 0.0134 0.5538 ± 0.0029 0.5419 ± 0.0042 0.5527 ± 0.0013 0.5544 ± 0.0008

200 elements 2 29 0.7276 ± 0.0147 0.7343 ± 0.0125 0.7571 ± 0.0110 0.7313 ± 0.0170 0.7465 ± 0.0154 0.7686 ± 0.0112

942 elements 2 59 0.6862 ± 0.0108 0.6686 ± 0.0184 0.7095 ± 0.0191 0.6846 ± 0.0107 0.6969 ± 0.0130 0.7421 ± 0.0139

Table 2. Hypervolume of various Truss structures for di�erent algorithms under consideration.
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60-bar truss problem, the associated rank for MOEHO is 5.2963 demonstrating again its capability of producing 
best optimization results. �e same trend persists in the 72-bar truss problem where MOEHO possesses a rank 
of 5 as well, further reinforcing its dominance in comparison to even the MOSAO approach. For 120-bar trusses 
that are even more intricate, MOEHO’s rank of 5.4074 indicates some upper hand over MOEA/D as it is also able 
perform well on more di�cult optimization problems as well.

�is dominance has also been observed in the problem concerning the truss of 200 bars when most of the time 
the algorithm obtaining the rank 2 is MOEHO and the rank of this algorithm is 5.7037. And also exhibited in the 
analysis of the 942-bar truss problem, the most complicated one assessed, the ranking assigned to MOEHO was 
the highest at 5.7778 indicating its e�ectiveness in solving very complicated structural designs. Five additional 
algorithms are compared to MOEHO: NSGA-II, MOEA/D, MOGNDO, MOMPA, and MOSAO, employing the 
mean ranks over eight test sets. Data collected from such a case supports the statistical rankings conferred, with 
p-values between 8.84E-25 and 2.60E-16, stressing the signi�cance of the MOEHO performance. �ese low 
p-values con�rm the algorithm’s.

Diversity analysis by IGD metric
“Inverted Generational Distance: Assuming P* is the set of points evenly spaced on the Pareto front, P as the 
solution set obtained from an EMO algorithm. �e Inverted Generational Distance (IGD) of the set P is given 
as follows:

 
IGD (P, P∗) =

∑
z∈P ∗

dist(z, P )

|P ∗|
 (13)

where dist (z; P) is the distance in Euclidean space from the point z to the closest point of the set P. To perform 
this calculation, however, it is necessary to sample enough points from the PF to construct P*.”

Inverted Generational Distance (IGD) is an evaluation metric that computes the distance between a given 
generated Pareto front and the true Pareto front by determining the average distance between the points of the 
given generated Pareto front and the closest points of the true Pareto front. It is better to say that lower IGD 
values signify better convergence, which means that generated Pareto front solutions are close to the true Pareto 
front. �is parameter is o�en employed for the evaluation and implementation of multi-objective optimization 
techniques as it o�ers a quantitative measure of how close the estimated Pareto front is to the considered ideal 
Pareto front63.

Boxplots present a simpli�ed but e�ective depiction of the performance of the algorithm in a way that 
allows understanding both performance over time and the extent of the performance across time. With speci�c 
regard to Inverted Generational Distance (IGD), the use of boxplots provides an e�ective means of depicting 
the performance of algorithms on various ranges of truss design optimization problems. Policymakers can use 
comparisons involving boxplots to evaluate algorithm reproduction, performance variability and outliers, for 
example. Rather this analysis assists to detect those algorithms which do not only perform well but can be relied 
upon to give a close estimation of the True Pareto front.

In the evaluation of the boxplots, an algorithm that has a consistently less median IGD, a low value in the 
interquartile range (IQR), and few if any outliers for every truss design problem, will have good stability and 
good reliability. Such algorithms perform better when it comes to the task of moving along the Pareto front, 
and hence solve both trivial and sophisticated optimization problems with ease. �e advantage of boxplots, 
in gauging how potent the algorithms are, is that they are used to record how well two performance metrics 
are sustained across di�erent degrees of complexity of the design problems from the easiest to the toughest. 
Such a system of evaluating and comparing the e�ciency of di�erent algorithms is quite useful to engineers in 
determining the appropriate algorithm for a particular design work.

�e boxplots represent results of the di�erent con�gurations of the truss in such a manner that it includes 
Truss10bar, Truss25bar, Truss37bar, Truss60bar, Truss72bar, Truss120bar, Truss200bar and Truss942bar. �is 
graphical representation analyses the performance and its deviation of the algorithms and complements other 
views of the Algorithm’s e�ectiveness including the overview of their use on truss optimization problems as 
shown in the Fig. 21.

�e Inverted Generational Distance (IGD) is a decisive metric for evaluating the e�ectiveness of solutions in 
approximating the True Pareto front. A lower IGD value implies a closer position of the obtained solutions to 

Test Case NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO P values

10 elements 1.8519 1.7407 5.2593 2.4444 4.037 5.6667 2.50E-23

25 elements 1.4444 2.2963 4.963 2.2593 4.037 6 8.84E-25

37 elements 1.3704 2.7037 5.2222 2 4.2593 5.4444 6.67E-23

60 elements 2.963 1 4.8148 2.6296 4.2963 5.2963 7.06E-20

72 elements 2.3704 1.4074 4.7407 2.5926 4.8889 5 9.28E-19

120 elements 2.4444 1.0741 5.2593 2.5556 4.2593 5.4074 1.19E-23

200 elements 1.8148 2.7037 4.5185 2.4074 3.8519 5.7037 2.60E-16

942 elements 2.7037 1.5185 4.5556 2.6296 3.8148 5.7778 5.52E-18

Table 3. P Values and RANK of various Truss structures for di�erent algorithms under consideration.
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the optimal front, implying better convergence and solution quality. In the Truss10bar optimization problem, 
MOEHO exhibits a remarkably low median IGD, featuring its strong convergence capabilities in simpler truss 
structures. Its boxplot shows the lowest IQR value among the algorithms, meaning a consistent performance with 
least variability between iterations and problems. In contrast, MOMPA and MOSAO have wider distributions of 
IGD, which imply failure to converge towards the Pareto front. MOEA/D, MOGNDO, and NSGA-II have higher 
values of IGD and wider spreads, which suggest that they cannot reliably approximate the optimal solutions.

Furthermore, this is further enhanced with the dominance of MOEHO in solving the Truss25bar problem. 
It showed the smallest median IGD and IQR, therefore, ensuring the stability and its repeat ability of generating 
high quality solutions. �e MOMPA and NSGA II could not deliver on convergence, as the boxplots that 
had a larger area with outliers show many inconsistencies for e�cient convergence toward the Pareto front. 
�ese outliers indicate the presence of a wide range of performance variability, while for MOEHO, the tight 
IQR in addition to the low median IGD indicated the potency of the algorithm in handling problems at any 
level of complexity. For Truss37bar, MOEHO persists with its superior performances. It becomes excellent in 
the treatment of structural optimization problems of moderate complexities that further ascertain its ability 
in dealing with challenging design landscapes. �e Truss60bar con�guration has very low median IGD and a 
narrow IQR; it is quite reliable concerning the handling of more challenging optimization tasks. �e increase 
in problem complexity by means of larger design spaces and more constraints generally results in the fact that 
median IGD values for all algorithms increase. �is pattern is very clear in the Truss72bar problem, where 
MOEHO continues to stand out by having a low median IGD and minimal variability, thus demonstrating 
consistency in producing reliable solutions despite increased complexity.

In the Truss120bar problem, the optimization task is more persistent. Although MOEHO achieves a 
competitive median IGD, its IQR expands by a small amount. Again, an increase in variance across all algorithms 
will be noted when applying the algorithms to more di�cult problems. Even with this minor increase, MOEHO 
remains an assured performer. In the Truss200bar con�guration, MOEHO again does a good job to achieve a 
low median IGD, though IQR increases a little. �e results con�rm that MOEHO is consistent in generating 
solutions close to the Pareto front even in large-scale structural optimization problems. Its performance is 
re�ected in its adaptability and reliability in dealing with high-dimensional and constrained design optimization 
problems.

�e Truss942bar problem is the most complex benchmark of the present work. Even at its extreme complexity, 
MOEHO displays a relatively low median IGD, just with a limited extension of the IQR. On the contrary, the 
distribution of the competitive algorithms shows more elevated IGD values, spreads, and an increased number of 
outliers, signalling that convergence might be problematic, especially for so di�cult a problem. �e performance 
of MOEHO on this complex problem highlights its amazing sturdiness and adaptability, making it a dependable 
algorithm even under the most challenging optimization conditions.

Consistent results with slight variability made MOEHO a dependable option for the solving of intricate 
problems in truss design optimization. �e performance metrics of various MOOAs integrated in NSGA-II, 
MOEA/D, MOMPA, MOGNDO, MOSAO, and MOEHO, which are compared with the performance of the 

Fig.21. Box plot of IGD values by considered algorithms for di�erent truss structures.
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eight benchmark truss structure problems as shown in Fig. 22 while the benchmark problems are composed 
of a simple 10-bar truss problem and the most complex 942 bar truss problem. Plot of the increase in Inverted 
Generational Distance (IGD) values with an increase in function evaluations. IGD values lower are better since 
it more approximates the True Pareto Front, hence solutions obtained are of better quality and convergence.

Looking at the results, some algorithms seem to have a higher rate of convergence, that is, lower IGD values 
are realized with fewer function evaluations. �e performances of MOEHO and MOSAO will always be at the 
upper range especially with respect to simple structures like the 10-bar and 25-bar trusses. �ey also exhibit a 
quick decrease in IGD and can get optimal solutions in a short time compared to others. However, this is not 
the case for MOMPA and NSGA II as they have a tendency of achieving lower convergence rate even with the 
simpler trusses. In the 200-bar and 942-bar trusses complex problems, the IGD values are still high indicating a 
poor approximation towards the Pareto front.

MOEHO outperforms others in all truss problems. Its IGDs remain minimum against the function evaluation 
over the problem complexity periphery. �is behaviour reinforces the observations concerning the e�ciency of 
MOEHO in addressing any given optimization problem. In addition, the way it achieves solutions within a short 
period of time with high accurateness for structural optimization problems makes this algorithm unique. On 
the other hand, while MOEA/D can compete well in simple designs problems. �e ability of MOEHO to endure 
such simple and very complicated trusses designs illustrates its �exibility.

�e results demonstrated in Fig. 22 illustrate more clearly the bene�ts of using MOEHO for multi-objective 
structural problems, its convergence curves show that the rate of convergence was faster and yet more stable. 
MOEHO produces diverse as well as the accurate approximations of the Pareto front. From these results, it may 
be concluded that MOEHO is an e�cient and e�ective multi-objective truss design optimization algorithm.

Test Case M D NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO

10 elements 2 10 7.3377e + 3 ± 3.25e + 3 4.5290e + 3 ± 2.56e + 3 1.2937e + 3 ± 9.33e + 2 6.9569e + 3 ± 2.19e + 3 2.0695e + 3 ± 1.10e + 3 9.6527e + 2 ± 3.30e + 2

25 elements 2 8 1.9200e + 3 ± 1.35e + 3 6.7497e + 2 ± 2.76e + 2 1.8729e + 2 ± 8.57e + 0 1.1788e + 3 ± 6.23e + 2 2.9783e + 2 ± 1.14e + 2 1.6456e + 2 ± 1.25e + 1

37 elements 2 15 2.3050e + 3 ± 7.01e + 2 8.7416e + 2 ± 2.29e + 2 2.8330e + 2 ± 1.37e + 2 1.9865e + 3 ± 6.48e + 2 9.0308e + 2 ± 3.86e + 2 2.7386e + 2 ± 1.17e + 2

60 elements 2 25 3.7754e + 3 ± 8.50e + 2 5.0672e + 3 ± 9.53e + 2 1.5495e + 3 ± 6.52e + 2 3.9095e + 3 ± 7.40e + 2 3.0565e + 3 ± 7.10e + 2 1.4243e + 3 ± 4.85e + 2

72 elements 2 16 6.3433e + 3 ± 2.58e + 3 5.5068e + 3 ± 1.22e + 3 1.2664e + 3 ± 4.54e + 2 5.9049e + 3 ± 2.20e + 3 3.7648e + 3 ± 1.08e + 3 1.2332e + 3 ± 4.13e + 2

120 elements 2 7 3.9881e + 4 ± 2.02e + 4 5.9940e + 4 ± 2.88e + 4 7.6640e + 3 ± 6.63e + 3 3.5039e + 4 ± 1.50e + 4 8.5419e + 3 ± 4.03e + 3 6.9759e + 3 ± 1.97e + 3

200 elements 2 29 3.5667e + 4 ± 4.89e + 3 2.9221e + 4 ± 7.39e + 3 9.7113e + 3 ± 2.63e + 3 3.4075e + 4 ± 6.35e + 3 2.9809e + 4 ± 6.45e + 3 7.8468e + 3 ± 2.56e + 3

942 elements 2 59 4.9414e + 6 ± 3.35e + 5 4.9622e + 6 ± 5.16e + 5 2.0822e + 6 ± 6.69e + 5 5.0188e + 6 ± 3.37e + 5 4.4727e + 6 ± 4.42e + 5 1.0793e + 6 ± 4.64e + 5

Table 4. IGD of various Truss structures for di�erent algorithms under consideration.

 

Fig. 22. Convergence plot of IGD by considered algorithms for di�erent truss structures.
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Table 4 contains a comprehensive evaluation of the e�ciency of MOEHO in the solution of the benchmark 
truss optimization problems anchored on the Inverted Generational Distance (IGD) metric. For the simple 
optimization problems such as the 10-bar truss, the algorithm exhibited an IGD of 9.5271e + 2. �is illustrates 
MOEHO’s e�ectiveness in handling simple structural optimization problems. �e algorithm is reliable and 
capable when dealing with simple truss structure problem–solution. �e same is true for the problems that are 
slightly di�cult, for instance, the 25-bar truss problem which had an IGD value of 1.6456 e + 2 for the MOEHO. 
�is is a good demonstration of the method’s adaptability and robustness to handle the more challenging 
optimization problems and to perform well. For more complex structures within the moderate range, such as 
the 60-bar and 72-bar trusses, MOEHO attained IGD values of 2.7386 e + 3 and 1.4243 e + 3, respectively. It can 
easily be observed that the algorithm performed e�ciently in solving the challenging optimization problem of 
approximating the Pareto optimal front.

In problems of very high complexity, MOEHO’s real strength can be observed. For the 942-bar truss structure, 
the algorithm has an IGD value of 1.0793 e + 6, indicating that it is capable of handling complex optimization 
problems. �ese results highlight the �exibility and robustness of MOEHO in handling di�erent levels of 
problem complexity. Despite MOEHO’s inability to regularly provide the least IGD for each test, its e�ciency in 
�nding approximate solutions makes it more suitable for addressing challenging optimization tasks. �e overall 
performance of this algorithm indicates how reliable and versatile it is. �is makes MOEHO an e�cient tool to 
solve multi-objective structural optimization problems.

Table 5 gives an extensive analysis of rank based on IGD values and comparison of p-values for MOEHO and 
various MOOAs over 8 di�erent truss optimization problems. �e p-values show the statistical signi�cance of 
MOEHO performance, which proves its e�ciency when is used in optimization problems. For example, during 
the solution of the 10-bar truss problem, MOEHO algorithm was ranked 1.5161 and scored a p-value of 4.16E-
25 giving strong signi�cance. �is general tendency is also observed in more complicated issues such as the case 
of 25-bar and 37-bar truss con�gurations where the ranks were 1.0968 and 1.6129 respectively and p-values were 
1.11E-28 and 1.63E-27. �ese results clearly indicate the superiority of MOEHO over its competitors in di�erent 
kinds of optimization processes.

As the Tusse structures become more complex, the MOEHO keeps giving better outcomes. For instance, 
consider the 60-bar and 72-way trusses. �e observed p values of 1.08E-24 and 8.61E-24 respectively shows a 
signi�cant e�ective di�erence in favour of MOEHO. In the complex 942-bar truss problem almighty MOEHO 
scored a p-value of 6.81E-24 again reinforcing its e�ectiveness under extreme cases. �e presence of this 
pattern of p-values, which are quite low for many problems, is further indicative of the applicability of MOEHO 
computational tool in multi-objective truss optimization to be carried out optimally.

Moreover, the Friedman test ranks analysis shown in Table 5 also helps to view the performance of MOEHO 
in quantitative terms. Scores in the Friedman test are inversely related to performance with MOEHO scoring 
1.5143 in 10-bar truss problem indicating best performance on simple problems. In the case of 60-bar truss 
problem, MOEHO scored 1.5429 con�rming it as excellent performer. Despite the intricacies of the 942-
bar truss problem, MOEHO earned a 1.1714 score evidencing its e�ciency in solving complex optimization 
problems that are very di�cult to solve.

From these observations, it can be inferred that besides ease of use, MOEHO is a �exible and strong tool when 
it comes to optimization procedures. Given the fact that it consistently records lower IGD values in addition to 
strong statistical performance in numerous truss setups, MOEHO is an e�ective optimization algorithm for 
solving complex problems in multi-objective optimization. MOEHO is combined with encouraging statistical 
results and e�ectiveness in its computation making it suitable for use by design engineers and researchers to 
solve problems in structural optimization.

Quality assessment of non-dominated solutions by spacing matrix
“Spacing (SP) measures the evenness of spacing between adjacent solutions along the Pareto front, aiming for 
a balanced distribution without clustering or excessive gaps. Lower SP values indicate more uniformly spaced 
solutions.

Test case NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO P Values

10 elements 5.2963 4.1852 1.8148 5.2963 2.8519 1.5556 1.24E-21

25 elements 5.5926 4.2593 1.9259 5.0741 3.0741 1.0741 6.42E-25

37 elements 5.5926 3.5185 1.5185 5.2963 3.4815 1.5926 1.33E-23

60 elements 4.2593 5.7037 1.6667 4.5556 3.2963 1.5185 1.73E-21

72 elements 4.7778 5 1.6296 4.5926 3.6296 1.3704 2.86E-20

120 elements 4.9259 5.4074 1.7778 4.5556 2.3333 2 1.18E-20

200 elements 5.2593 4.1481 1.6296 4.7778 3.8148 1.3704 1.61E-20

942 elements 4.5556 4.7037 1.8519 5.0741 3.6667 1.1481 1.41E-20

Table 5. P Values and Rank based on IGD of various Truss structures for di�erent algorithms under 
consideration.
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where, N0 denoted the number of pareto fronts and d
spacing

i  denotes the Euclidean distances between 
consecutive solutions in the objective space. Spacing assess the spread and distribution of solutions across the 
Pareto front”64.

�e box plots depicted in Fig. 23 illustrate the SP values corresponding to various optimization challenges in 
truss structures, as evaluated by multiple multi-objective algorithms, including NSGA-II, MOEA/D, MOMPA, 
MOGNDO, MOSAO, and MOEHO. �e SP metric is an essential indicator of the uniformity of solution 
distribution along the Pareto front; lower SP values signify a more evenly distributed set of solutions, which 
is generally preferred in optimization scenarios. MOEHO stands out for its consistently superior performance 
across all tested truss structures, demonstrating an impressive capacity for both SP distribution and convergence.

�e boxplots indicate that MOEHO provides more low and stable SP values in comparison to the other 
methods, which also support a more uniform set of solutions on the Pareto front. �is ability of the algorithm is 
critical to accurately locate the solution point, this helps to improve quality and reliability of the algorithm. �e 
consistency across diverse truss problems and capacity to preserve this uniformity makes MEHO applicable for 
complex optimization problems.

�e convergence graph presented in Fig. 24 indicates that MOEHO o�ers higher speed and a stable solution 
distribution. �e performance analysis of MOGNDO and NSGA-II shows that the convergence rate is slow 
and the solution’s reliable distribution cannot be achieved when MOGNDO and NSGA-II are used. �is result 
indicates that they lack the capacity to create systemic (widespread) solution on complex problems.

MOEHO’s capability to deliver lower development time, and sustainable solution plays a decisive role in 
truss design optimization. �is capability of MOEHO to search the solution space in an e�cient manner to 
yield diverse solutions for optimization problems of varying complexity makes it suitable for the multi-objective 
optimization problems of truss structures.

SP is quite important for multi-objective optimization since it measures the evenness of how the solutions 
are spread in the Pareto front. Very low values of SP suggest a good and desired distribution of solution set 
for optimum performance improvement. In optimization problems, uniform distribution is necessary because 
optimally it permits full representation of the Pareto front, since solutions are not overly dense in any area, but 
rather well and evenly spread throughout the solution space. A Comparative study of the SP values of some 
Algorithms: NSGA-II, MOEA/D, MOMPA, MOGNDO, MOSAO, MOEHO for several truss optimization 
problems shows how these algorithms could distribute the solutions satisfactorily. �e SP results are presented 
in Table 6, where the MOEHO outperforms all other truss design problems considered.

Fig.23. Box plot of SP values by considered algorithms for di�erent truss structures.
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As an example, in the 200-bar truss problem, the MOEHO algorithm yields a SP value of 4.3566e + 2, while 
for the second-best method, MOMPA is equal to 7.7962e + 2. Since the SP value is considerably low for MOEHO, 
it can be presumed that the solutions proposed by MOEHO are more diversi�ed and extended along the curve of 
the Pareto front, even in the more complicated and higher-dimensional optimization problems. It can therefore 
be inferred that the MOEHO executes its task extremely well. �e MOEHO produces the solutions which are 
widely scattered even in the challenging situation, which is a major requirement to guarantee full optimization.

�e di�erence in SP values between MOEHO and the rest of the algorithms con�rms that the other algorithms 
generate more clustered solutions, which are indicated by higher SP values. Such clustering tendencies would 
hinder the comprehensive nature of optimization algorithm. A statistical evaluation of p-values shows the 
e�ectiveness of MOEHO in comparison with other state of the art constrained multi objective optimization 
techniques used on eight di�erent truss designs. Analysis of the statistics produced p-values between 1.30E-24 
and 6.14E-15 implying that the observed di�erences in the relative SP performance are very large.

Such statistical evidence strengthens the assertion that MOEHO is better than competing algorithms at 
generating solutions which are evenly spaced on the Pareto front. Such a bene�t also demonstrates the potential 
of MOEHO in solving complex multi-objective optimization problems, particularly in design processes where 
the solutions must be evenly spread out and the entire solution space must be utilized. �is spanning superiority 
is consistent with how spaced this algorithm is, proving its strength and the optimum and dependable solutions 
it can render within many optimization problems.

Table 7 displays the outcomes of the Friedman rank test, showcasing MOEHO’s impressive performance with 
consistently lower average ranks across various truss design challenges using the SP metric. �ese lower average 

Test case M D NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO

10 elements 2 10 8.4674e + 2 ± 3.18e + 2 2.1041e + 3 ± 9.96e + 2 9.5951e + 2 ± 2.79e + 2 9.2411e + 2 ± 2.81e + 2 9.7549e + 2 ± 1.41e + 2 7.8041e + 2 ± 1.28e + 2

25 elements 2 8 3.7446e + 2 ± 1.38e + 2 4.5851e + 2 ± 8.97e + 1 3.0453e + 2 ± 3.43e + 1 4.7371e + 2 ± 1.20e + 2 2.8415e + 2 ± 1.88e + 1 2.9729e + 2 ± 2.90e + 1

37 elements 2 15 1.0771e + 2 ± 4.16e + 1 4.1503e + 2 ± 2.85e + 2 1.7648e + 2 ± 6.22e + 1 1.0157e + 2 ± 2.92e + 1 1.5098e + 2 ± 5.08e + 1 9.9412e + 1 ± 6.08e + 1

60 elements 2 25 1.9334e + 2 ± 1.49e + 2 1.5395e + 3 ± 1.06e + 3 3.8790e + 2 ± 2.14e + 2 1.8353e + 2 ± 8.51e + 1 4.1993e + 2 ± 2.05e + 2 1.3657e + 2 ± 4.75e + 1

72 elements 2 16 5.8980e + 2 ± 3.26e + 2 2.5063e + 3 ± 1.63e + 3 7.9969e + 2 ± 2.73e + 2 5.5207e + 2 ± 2.06e + 2 9.9047e + 2 ± 4.90e + 2 3.8155e + 2 ± 1.06e + 2

120 elements 2 7 5.2031e + 3 ± 1.49e + 3 2.8053e + 4 ± 1.35e + 4 6.4373e + 3 ± 1.17e + 3 6.3359e + 3 ± 1.39e + 3 6.5318e + 3 ± 1.60e + 3 5.7929e + 3 ± 6.27e + 2

200 elements 2 29 7.5171e + 2 ± 3.29e + 2 1.5243e + 3 ± 9.73e + 2 1.2471e + 3 ± 4.02e + 2 7.5447e + 2 ± 4.74e + 2 1.2260e + 3 ± 6.44e + 2 4.4252e + 2 ± 3.58e + 2

942 elements 2 59 4.9979e + 4 ± 1.72e + 4 1.3659e + 5 ± 7.40e + 4 9.9256e + 4 ± 2.35e + 4 5.1034e + 4 ± 1.99e + 4 1.1218e + 5 ± 1.86e + 4 3.9874e + 4 ± 9.85e + 3

Table 6. �e SP of various Truss structures for di�erent algorithms under consideration.

 

Fig. 24. Convergence plot of SP Values by considered algorithms for di�erent truss structures.
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ranks signify MOEHO’s superiority in maintaining a diverse and well-distributed range of solutions, crucial for 
e�cient multi-objective optimization in intricate engineering scenarios.

�e favourable ranks achieved by MOEHO a�rm its capacity to generate a broad spectrum of solutions that 
are appropriately distributed along the Pareto front the notable di�erence in ranks, supported by high P-values, 
underscores MOEHO’s dominance over its competitors concerning solution SP. �is exceptional performance 
underscores MOEHO’s e�ectiveness in handling solution diversity, a vital aspect for the reliability and adaptability 
required in tackling intricate structural engineering design and optimization issues. �e capability to produce a 
varied set of solutions not only enriches decision-making quality but also ensures a thorough exploration of the 
solution space.

�e computational runtime for di�erent truss structures across various algorithms reveals signi�cant 
variations, particularly for complex structures with a higher number of elements. While NSGA-II demonstrates 
the highest runtime in most cases, MOEHO and MOGNDO exhibit relatively lower computational costs for 
larger structures, indicating their e�ciency in handling increased complexity as shown in the Table 8.

In MO optimization, it is generally a compromise between e�ciency and solution quality. Although Table 
8 indicates that MOEHO is not always the quickest algorithm, its slightly longer runtime is worthwhile for its 
better convergence performance, evident in the HV, IGD, and SP metrics. �e extra computational expense 
comes from MOEHO’s adaptive strategies, such as dynamic parameter adjustment and an information feedback 
approach, that promote exploration and keep a diversi�ed Pareto front. Compared to algorithms such as MOSAO 
and MOGNDO, they might gain quicker runtimes but may lose in solution diversity and convergence quality. 
To demonstrate this balance, a comparative study of runtime and performance measures is given, showing 
that MOEHO provides a better trade-o� and, thus, is a competitive option for structural optimization with a 
moderate rise in computational time.

According to Table 8 the runtime analysis shows MOEHO does not achieve the fastest results for all truss 
structures. �e balance between solution quality and runtime serves as an essential reason to accept MOEHO’s 
elevated computational costs in particular situations. �e runtime performance of MOEHO shows slightly 
longer durations than MOSAO or MOGNDO for basic structures such as 10-bar and 25-bar trusses but proves 
its superiority through better solution quality and diversity when dealing with complex optimization problems. 
MOEHO shows competitive runtime performance across various complex structures such as the 200-bar and 
942-bar trusses but produces superior solutions as con�rmed through superior Hypervolume (HV) and Inverted 
Generational Distance (IGD) and Spacing (SP) metrics observations. MOEHO achieves an optimal balance 
between e�cient computing and excellent solution quality which proves bene�cial for cases requiring precise 
robust solutions that adequately explore diverse Pareto fronts.

�e ability of MOEHO to maintain proper exploration–exploitation balance in engineering design 
applications prevents it from converging prematurely towards suboptimal solutions while ensuring solution 
accuracy and reliability. �e success of traditional algorithms to produce diverse accurate Pareto front 
approximations becomes crucial in high-dimensional optimization problems with constraints. MOEHO’s 
slightly elevated computational requirements become worthwhile since it produces solutions that both match 

Test case M D NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO

10 elements 2 10 10.4 4.6 3.8 3.9 3.6 4.2

25 elements 2 8 16 9 8.9 8.9 8.7 10.1

37 elements 2 15 19.3 11.1 11 10.9 10.9 11.2

60 elements 2 25 34.9 24.2 23.5 40.1 23.1 21.6

72 elements 2 16 36.7 24.2 25.4 23.9 47.9 42.9

120 elements 2 7 112 53.6 59.3 86.7 62.7 49.8

200 elements 2 29 97.1 71.3 116 105 77.4 69.5

942 elements 2 59 495 503 399 478 444 445

Table 8. �e Runtime of various Truss structures for di�erent algorithms under consideration.

 

Test case NSGA-II MOEA/D MOSAO MOMPA MOGNDO MOEHO P values

10 elements 2.6296 5.5926 3.3704 3.2963 3.963 2.1481 8.83E-11

25 elements 3.4815 5.1111 2.8519 4.963 1.8889 2.7037 1.30E-12

37 elements 2.5556 5.9259 4.5185 2.3333 3.8519 1.8148 1.15E-18

60 elements 2.3704 5.7407 4.1481 2.5556 4.5185 1.6667 1.88E-18

72 elements 2.8148 5.6296 3.8889 2.8519 4.1852 1.6296 1.80E-14

120 elements 2.1852 5.9259 3.3704 3.3704 3.3333 2.8148 3.16E-12

200 elements 3.037 4.7037 4.8148 2.963 4.1111 1.3704 6.14E-13

942 elements 2.2222 5.037 4.5185 2.2963 5.2222 1.7037 1.56E-19

Table 7. P Values and Rank based on SP of various Truss structures for di�erent algorithms under 
consideration.
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the true Pareto front more precisely and distribute solutions uniformly which helps decision-makers make 
con�dent optimal design selections. MOEHO demonstrates robust performance through adaptive parameter 
controls together with dynamic strategy-based selection features which enhances its ability to resolve complex 
engineering problems better than most other algorithms.

�e analysis of essential trends in the �gure captions delivers a thorough performance review of MOEHO 
when optimizing truss structures. �e 10-bar truss problem in Fig. 11 demonstrates that MOEHO produces 
superior Pareto fronts than NSGA-II, MOEA/D, MOMPA, MOGNDO and MOSAO while maintaining excellent 
convergence and diversity. �is algorithm produces a well-organized set of solutions that closely follows the 
true Pareto front because it demonstrates robustness when dealing with small-scale structural optimization 
problems. MOEHO generates a denser Pareto front for the 25-bar truss problem which spans across a wider 
area in the objective space as illustrated in Fig. 12. �e algorithm proves its capability to solve medium-scale 
optimization problems while maintaining diverse solutions.

In the 37-bar truss problem of Fig.  13 MOEHO demonstrates a Pareto front with excellent distribution 
and minimal clustering because it e�ectively balances exploration and exploitation. �e algorithm enhances 
promising solutions while preserving diversity which makes it suitable for moderately complex structural 
optimization problems. �e MOEHO algorithm demonstrates scalability through its Pareto front generation 
for the 60-bar truss problem as shown in Fig.  14. �e optimization process demonstrates e�ective handling 
of complex problems because solutions are distributed evenly while gaps and clusters remain minimal. �e 
MOEHO algorithm demonstrates a uniform distribution of solutions in the Pareto front for the 72-bar truss 
optimization problem as shown in Fig.  15. �e optimization algorithm demonstrates excellent search space 
exploration capabilities with precise results which makes it suitable for high-dimensional problems.

MOEHO demonstrates its capability to produce a properly distributed Pareto front for the 120-bar truss 
problem through minimal computational requirements as shown in Fig. 16. �e algorithm manages exploration 
against exploitation activities to yield high-quality and diverse solutions. MOEHO demonstrates e�cient 
performance in large-scale optimization problems through Fig. 17 by maintaining convergence and diversity 
in the Pareto front when solving the 200-bar truss. �e results in Fig. 18 display how MOEHO outperforms 
competing algorithms with its exceptional ability to optimize the highly complex 942-bar truss system alike its 
superiority in solution quality alongside computational e�ciency. MOEHO generates a Pareto front that spans 
a wide area of the objective space thus demonstrating its ability to address complex high-dimensional multi-
objective optimization problems e�ectively.

�e superiority of MOEHO in truss structure optimization problems becomes evident through Fig. 19 which 
shows box plots of Hypervolume (HV) values. �e superior HV values obtained by MOEHO demonstrate its 
capability to e�ectively explore the objective space and create high-quality solutions. �e small interquartile 
range (IQR) con�rms both the stability and reliability of the results. Figure 20 illustrates how MOEHO achieves 
higher Hypervolume values during fewer function evaluations compared to alternative algorithms. �e 
algorithm demonstrates quick discovery of promising search areas during its early optimization period because 
of its e�cient space exploration capabilities.

�e assessment of Inverted Generational Distance (IGD) as a Pareto front approximation quality metric 
occurs in Figs. 21 and 22. �e box plots in Fig. 21 show MOEHO produces consistently lower IGD values which 
proves its superior ability to approximate the true Pareto front with diversity maintained. Figure 22 demonstrates 
that MOEHO e�ciently reaches low IGD values through minimal function evaluations thus proving its ability to 
solve complex multi-objective problems e�ectively.

�e spacing (SP) values presented in Figs. 23 and 24 demonstrate that MOEHO e�ectively produces solutions 
with uniform distribution. Figure 23 demonstrates MOEHO produces lower SP values throughout all trials which 
indicates its strong capability for maintaining solution diversity. Figure 24 shows that MOEHO �nds diverse 
well-spaced solutions using fewer function evaluations thus demonstrating its e�ciency in simultaneously 
reaching convergence and diversity.

�e interpretations detail MOEHO performance trends through evaluations which demonstrate its solid 
convergence and diverse results and computational e�ciency on di�erent structural optimization problems. �e 
algorithm shows potential for extending its application to various multi-objective optimization challenges which 
surpasses structural engineering �elds.

�e MOEHO algorithm proved to be successful in solving structural optimization problems of various 
complexity. It performs best in comparison with other algorithms since it has quality outputs, which are processed 
faster. �e above performance in handling problems of varying complexity shows that MOEHO has practical 
applications where speed and good-quality results are needed. However, on larger truss structures such as the 
Truss72bar con�guration, MOEHO su�ers somewhat in terms of computational speed, but its quality of solution 
increases with the size of the problem. �is balancing of computational speed and solution quality is important 
for the �eld of structural optimization where results need to be e�cient as well as e�ective. Although MOEHO 
has been shown to have excellent performance in structural optimization, its extension to other �elds is an open 
area for investigation. One of the limitations is its computational expense on large-scale problems, which, while 
compensated by better solution quality, can be further improved with parallel computing or surrogate-assisted 
modeling. Another area that has not yet been thoroughly investigated is the performance of MOEHO in �elds 
like energy systems, aerodynamics, and robotics. Subsequent studies may entail modifying MOEHO for real-
time and dynamic optimization problems and incorporating machine learning-based approaches to improve 
convergence rates and computational e�ectiveness, extending its applicability to a wide range of engineering 
disciplines.

�e fact that MOEHO maintains a proper distribution of solutions even when the computational requirements 
increase reinforces its status as an e�ective and reliable choice for more complex multi-objective optimization 
problems. �e consistency of MOEHO’s performance with problem sizes underlines its adaptability and 
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robustness, making it a very useful tool for engineers who are dealing with complex structural design tasks. 
�us, MOEHO is not only superior in providing solutions but also shows resistance in the face of increasing 
computational challenges.

MOEHO achieves fastest convergence speed against other algorithms during the optimization of benchmark 
truss structures. �e hypervolume (HV) and inverted generational distance (IGD) metrics show that MOEHO 
achieves better high-quality solutions more quickly than NSGA-II, MOEA/D, MOMPA, MOGNDO, and 
MOSAO algorithms. MOEHO demonstrates enhanced early-stage optimization e�ciency through its 
achievement of an HV value of 0.6414 in the 10-bar truss problem before other algorithms reach similar results. 
�e rapid convergence rate of MOEHO continues throughout the optimization process of the 942-bar truss 
despite its complex structural nature.

�e Pareto front diversity of MOEHO is demonstrated through its excellent performance in the spacing 
(SP) metric. �e algorithm generates solutions with equal distribution which leads to complete coverage of 
the Pareto-optimal set. MOEHO demonstrates superior solution distribution in the 200-bar truss problem 
through its SP value of 4.4252e + 2 which surpasses alternative algorithms. A diverse set of solutions stands 
essential for engineering design because it supports better decision-making by providing various trade-o�s 
between competing project objectives. �e performance of MOEHO maintains its strength when the truss 
structures become progressively more complex. In solving the 10-bar truss problem MOEHO achieves superior 
performance with an HV of 0.6414 and an IGD of 9.6527e + 2 compared to other tested algorithms. �e 942-bar 
truss structure presents no challenge to MOEHO which generates high-quality results with HV at 0.7421 and 
IGD at 1.0793e + 6. MOEHO displays its ability to expand into high-dimensional problems because of its �exible 
architecture that maintains operational reliability when handling multi-objective challenges.

�e Friedman rank test establishes MOEHO as superior by showing consistently low average ranks in every 
test scenario. In the 25-bar truss problem MOEHO obtains a ranking position of 6 which demonstrates superior 
performance compared to other algorithms. �e statistical signi�cance of MOEHO’s performance becomes 
evident through its low p-values which reach 8.84E-25 in the 25-bar truss problem.

�e study improves reproducibility by completely explaining MOEHO’s mathematical model which includes 
Pareto-Dominance Ranking and Crowding Distance Approach and Elite Retention and Adaptive Parameter 
Settings. �e implementation approach includes both pseudo-code and �owcharts to help developers. Future 
researchers can replicate the �ndings because this research provides complete information about all algorithm-
speci�c parameters and population size and maximum iterations. �e study provides comprehensive descriptions 
of benchmark problems which include multiple truss structures from 10-bar to 942-bar that specify design 
variables together with constraints and loading requirements. �e study de�nes HV, IGD, and SP formally to 
ensure consistent evaluation practices. �e conclusions bene�t from statistical robustness because the study 
employs the Friedman rank test together with p-values for validation.

�e paper advances previous research through its addition of �owcharts and visual aids which demonstrate 
the operations of EHO and MOEHO. �e optimization results become more understandable through visual 
representations of Pareto fronts that accompany each truss problem. �e mathematical descriptions of MOEHO 
components including the rutting season and calving season and selection mechanisms appear in a clear fashion 
to guarantee methodological transparency. �e research improves understandability through assessments 
utilizing boxplots and convergence plots as they display MOEHO’s e�ciency through visual charts. �e study 
de�nes technical terms alongside multi-objective optimization concepts in a way that makes the information 
understandable for both experts and non-experts in the �eld.

Conclusion and future scope
Based on its performance in solving challenging problems of multi-objective optimization, especially in 
engineering design, the MOEHO algorithm is a signi�cant development. �is work tests the performance of 
MOEHO on eight benchmark structural design problems: optimizing truss structures to minimize weight and 
compliance. MOEHO has demonstrated consistent superiority when compared to well-known algorithms, such 
as NSGA-II, MOEA/D, MOMPA, MOGNDO, and MOSAO, which demonstrates its e�ectiveness and reliability. 
Innovative in search process- MOEHO has one among its main properties, that being a dynamic approach 
of strategy-based selection. Its inclusion makes possible the convergence towards a point but at the same 
time keeping much diversity within that solution space as well. �us, this permits MOEHO to explore a large 
spectrum of possible solutions but focuses on the best ones at every iteration to gain high e�ciency in �nding 
Pareto-optimal solutions and therefore, more profoundly explore the solution space than traditional approaches. 
From the above representation, its overall performance can also be viewed as being highly competitive especially 
on the critical Hypervolume (HV) measure which it can capture a large proportion of objective space along 
the Pareto front. Admirable values of HV scores re�ect the capacities of MOEHO in producing high-quality 
solutions for a variety of optimization problems. Moreover, performance of MOEHO has further been tested 
using IGD, which is based on the closeness of obtained solutions to the ideal Pareto front.

�e low consistently achieved IGD values by MOEHO a�rm that the generated solutions are almost exact 
approximations to the true Pareto front and hence this is e�cient with consistency. Good SP metric shows 
how well uniform is the spread of solutions up the Pareto front. Overall, MOEHO is highly competitive with 
any of the used algorithms in each scenario of designing a truss and therefore quite scalable and robust in 
multiobjective optimization. �e quality of the overall optimization process improves with uniformity in the 
solutions by MOEHO, thus ensuring that the Pareto front is well represented. �e Friedman rank test for the 
validation of MOEHO’s statistical robustness was 1.129, which not only proves the superiority of the algorithm 
but also emphasizes its ability to deliver reliable solutions across a wide range of problem contexts. Moreover, the 
computational complexity of MOEHO is competitive for solving small to medium-sized truss design problems. 
�is makes it practical and relevant for real-world engineering applications.
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For MOEHO, innovative search operators and dynamic strategy-based selection mechanisms are used to 
further improve the integration between solution space exploration and exploitation of promising regions.

�is balanced strategy leads to rapid convergence rates and higher diversity of solutions with optimised 
runtime performance, making MOEHO an e�ective tool in constrained optimization for engineering problems. 
�is algorithm helps in the better management of trade-o� between exploration and exploitation. In the future, 
MOEHO might be able to surpass structural optimization in terms of adaptability and resilience toward high-
dimensional optimization problems in energy systems, aerodynamics, and other complicated applications in 
engineering.

Intensive validation of MOEHO based on performance metrics such as HV, IGD, and SP, along with 
comprehensive statistical analysis, vindicates its status as a reliable, general-purpose algorithm that can be faced 
for solving real-world multi-objective optimization problems. Further along the road of traversal of the algorithm, 
in addition, more performance improvements, with a view to widen its applicability, will make it a solution in 
preference for solving a vast array of challenges toward e�ciency and innovation in di�erent industries.

�e main drawback of MOEHO exists in its restrictions that apply to speci�c domains. �e structural 
optimization problems where MOEHO has been tested mainly demonstrate its capabilities while its e�ectiveness 
for handling complex evolving constraints found in energy systems and aerodynamics remains untested. 
MOEHO requires adaptation to handle optimization tasks that need nonlinear dynamical analysis and real-time 
adjustment capabilities which are common in certain domains. �e method faces di�culties when trying to scale 
up to problems with numerous dimensions. �e promising outcomes of MOEHO in truss optimization tasks of 
small-to-medium scale do not provide clear indications about its ability to maintain diversity and convergence 
in large-scale problems such as aerodynamic shape optimization and energy distribution networks. �e curse of 
dimensionality a�ects high-dimensional problems by reducing search e�ciency of algorithms. MOEHO faces 
issues with operational speed as yet another signi�cant challenge. Structural optimization tasks show runnable 
e�ciency with MOEHO but its practical application in demanding applications such as CFD and energy network 
optimization has not been proven yet. �e domain simulations demand high computational power along with 
notable processing times that might negatively a�ect MOEHO’s operational speed.

Future investigations should develop several new directions to expand the practical scope of MOEHO. Energy 
systems optimization represents an opportunity for MOEHO’s practical implementation. Multiple objectives 
occur within energy problems such as power grid stability and renewable energy integration and energy storage 
management due to opposing requirements that include cost reduction and e�ciency optimization alongside 
environmental sustainability concerns. �rough adaptation MOEHO can enhance the situating and control of 
renewable energy generation units and energy storage devices and grid stability mechanisms under unstable 
power supply and consumer patterns. Aerodynamic design optimization bene�ts from MOEHO because it 
solves airfoil shaping problems together with aircra� wing optimization by balancing the nonlinear objectives 
between drag reduction and li� increase and structural performance maintenance. MOEHO requires domain-
speci�c constraints and surrogate modeling techniques to become suitable for handling complex problems.

�e combination of MOEHO with machine learning approaches opens new opportunities to expand its 
e�ciency and scalability for big-dimensional optimization issues. Machine learning models including neural 
networks along with Gaussian processes would integrate with MOEHO to produce approximations of costly 
objective functions which shortens processing duration without reducing solution quality. MOEHO requires 
modi�cation to support dynamic and real-time optimization needs which enables its application in systems 
that need continuous re-optimization such as real-time energy management and adaptive control systems. 
�e adoption of dynamic solution adjustment capabilities in MOEHO according to changing constraints and 
objectives would boost its practical application potential.

�e general applicability of MOEHO should be con�rmed through extensive testing on multiple optimization 
problems from di�erent �elds. Extensive testing of MOEHO on problems beyond structural optimization 
will reveal its performance characteristics across di�erent scenarios and lead to required improvements. �e 
method requires thorough examination of how algorithm parameters a�ect the optimization process. �e 
robustness of MOEHO in structural optimization exists but its performance across other domains might require 
precise adjustments of bull rate and adaptive factors. More thorough parameter sensitivity tests would permit 
adjustments to maximize performance quality across di�erent application scenarios. MOEHO integration with 
multi-physics simulations would allow its use for problems involving multiple physical domains like �uid–
structure interaction and thermal-�uid dynamics. Future research in this area should focus on MOEHO as a 
potential solution because it handles complex multi-disciplinary problems with diverse constraints.

Future development of MOEHO through addressing its challenges and exploring new directions will make 
it a more versatile optimization tool that serves multiple engineering and scienti�c applications. �e practical 
application value of MOEHO increases while its contribution to multi-objective optimization methodology 
development supports its e�ectiveness in solving complex real-world problems.

Data availability
�e data presented in this study are available through email upon request to the corresponding author.
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