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Abstract

The objective of this paper is to introduce the concept of Weak Fuzzy Complex differential equations. We have
defined the general solution of the n-th order Weak Fuzzy Complex ordinary differential equation. That we have
used a special isomorphism transformation function to write the WFC-ODE as two Real ODEs and solved them
with respect to their own variables. Then, by the inverse of the transformation function, we have got the general
solution in F (J) as a structure of two general solutions in R. Therefore, we have shown some types of first-order
first-degree separable, exact, and linear WFC-ODEs. Also, we have found their general solutions with examples
to demonstrate them.

Keywords: Weak Fuzzy Complex (WFC) Numbers; Weak Fuzzy Complex Functions; Differential Equations
(DE)

1. Introduction

Real number extensions have always been the focus of attention of researchers from all over the world. In the year
2023, Weak Fuzzy Complex numbers appeared for the first time in [9], where they defined them as a new
generalization of classical real numbers by applying fuzzy operators [3][5] studied WFC vector spaces and
matrices. The necessary and sufficient conditions for Weak Fuzzy Complex Pythagoras triples and Weak Fuzzy
Complex Pythagoras quadruples have been handled in [2][7], as applications of Weak Fuzzy Complex numbers in
Diophantine equations. Also, [1] studied WFC linear Diophantine equations in two WFC variables. In addition, a
special transformation function that has an important role in working with variables from a Real number set instead
of a Weak Fuzzy Complex set was defined in [10], where the foundation of functions in WFC variables was
studied. Actually, one of the important results of using this type of numbers, modeling the solutions of some
vectorial equations defined by norms in 3-dimensional Euclidean space A-Curves [4]. However, Python introduced
Weak Fuzzy Complex numbers in [11].

On the other side, we know that DEs are important for modeling time dependent processes in many disciplines,
e.g. in engineering, physics, chemistry, and economics. For instance, in classical mechanics, if the position,
velocity, acceleration, and various forces acting on a body are given, Newton’s second law of motion allows us to
express these variables as a differential equation and, by solving it, to compute the position of the body as a function
of time. According to the important role of differential equations in a lot of fields, we study them in WFC variables.
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In section 2 of this paper, we mention the main concepts. Then, section 3 shows the definition of the WFC
differential equations and section 4 focuses on some types of first-order WFC-ODEs with some related examples.

2. Preliminaries
The foundational concepts that are important to get ODEs in WFC variables are presented in this section.

Definition 1 ([9]) The sef of Weak Fuzzy Complex numbers was defined as follows, where °J’ is the Weak Fuzzy
Complex operator (] € R ):

Fp= {xo+x.]; x,x, €ER,J* =t €]0,1[}

Properties of the Weak Fuzzy Complex numbers: ([9])

LetX =xo+x,],Y =y +y1JE F;, where x4, X1, ¥0,Y1 € R

¢ Addition: X +Y = (xo + yo) + (%1 + 1)/ .

& Multiplication X X Y = (xyyo + x391t) + (oy1 + x1Y0)] -

¢ The conjugate of X is: X = xy + x; J

Definition 2 ([9]) Let ¢ be the transformation function from F; to R X R, which we define as follows:
@:F,» R X R.

P(xg +x1]) = (g + %1 (=V1), %0 + 21 (+VE)) = (%o — %1 VE, %0 + x1V1) ;

where J2 =t €]0,1[ = J = ++/t and xg, X1, Yo, y1 € R (This map is an isomorphism).

Definition 3 Let ¢: F; » R X R such that: ¢(X) = (a, b), the inverse function of ¢ is defined as follows:
"R XRwF

97 (a,b) =;la+b]+=J[b—al.

Definition 4 On the ring of Weak Fuzzy Complex numbers F;, we define the Weak Fuzzy Complex function in one
variable as follows:

fiF = B,

f=r1X,

X=x9g+x1];%,x €ER

Remark 1 Let f: F; = F; be a Weak Fuzzy Complex function in one variable X = x, 4+ x;J; J* = t. Hence, f
can be written by using two classical functions in two variables as follows:

g:R?> > R, st.g=g(xy,%1)
h:R? v~ R,s.t.h=h(xy,x;)
where f(X) = g(xg,x,) + h(xg,x1)].
Definition 5 Let @: F; » R X R, f:F; » F; such that:
@(xo + %1 J) = (%o — %1 VE, %0 + x:38) 5 J> =t €]0,1],
f=fX),X=xo+x];%,% € R.
the canonical formula as follows:
FX) =9 e @(f(X)) = g(xo,x:) + Jh(x0,%1) .
Remark 2 For f: F; » Fjs.t. f = f(X), then
e(f (X)) = (fi(xo — 2.Vt ), fo( X0 + x:VE)): f1, f:R = R.

On the other hand, we have:

g(xo, %) = %[ﬁ(xo — X1 \/E) + f2(xo + xﬂﬁ)]'
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h(xo,x1) = Ziﬁ][fz(xo +x; \/E) = fi(xo — xl\/?)]'

Definition 6 Let X = xo + x; J, Y = yo + ¥, JE€ F;, we say that X <Y, if and only if:
{xo_xﬂ/ESYO_J’ﬂ/E
Xo + XVt S yo + ¥Vt

Definition 7 Let A = ay + a, J, B = by + b, J€ F;, we define the interval [A, B] if and only if A < B, according
to the definition of the partial order relation (<).

o If A £ B, then [A4,B] = ¢.
e We can understand [A4, B] as follows:
[A,Bl={C=cy+c] € F; A< C < B}.

Definition 8 Let X € F;, we say that X = x, + x; ] is not an invertible WFC element if one of its ¢ (X) components
at least is zero s.t.

Xo—xVE=0
or xo+ xV/t=0
and that depends on the value of v/t.
Definition 9 Let f be a Weak Fuzzy Complex function in one variable defined on F;, where
P(f(X)) = (fr(xo — %1 Vt), f(x0 + X1Vt )) € R X R;
then we say that
1) f is not invertible if at least one of its ¢ (f (X)) components is zero s.t.
f1(x0 - X \/E) =0
or fo(xg+x,VE)=0
s.t. f is invertible on F\{X; ¢ (f (X)) = (f1, f2) € R X R\{(0,0), (0, k), (k,0); k € R}

1— 1

= F\X; f(X) € F\G ¥ 5=k, 0;k € R}
1
2Vt
where 971(0,k) = 91(0,)k = G + Ziﬁ])k and 1 (k,0) = ™ (1,0)k = G — Ziﬁ])k.

1
= FAX (0 € {G +——=))k,0; k € R}}

2) a singular point of the WFC function is a point where the function is not defined or not invertible.
Definition 10 Let f: F; » F; be a Weak Fuzzy Complex function in one variable, where

P(f(X)) = (fr(xo — %1 Vt), f(x0 + X1Vt)); fi, fo: R = R, then we say:

1) f is continuous on F) if and only if fj, f, are continuous on R.

2) f is differentiable on F) if and only if fj, f, are differentiable on R, with respect to their own variables.
3) f is integrable on F; if and only if fi, f, are integrable on R.

Definition 11 Let f: F; — F; be a differentiable/ integrable function on F;. We define

D /X)) = 7' (f'1(xo = 21 VT ), f2 (%0 + x1VT))

2) [F(X).dX = @ ([ fi-d(xo — X, VD), [ fo-d( %o + x,VE)).

Definition 12 Let f: F; » F,; be a differentiable Weak Fuzzy Complex function on F;. We can derive f n-time as
follows:
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fOX) = ‘P_l(f1(n)(xo - X1 ‘/?)vfz(n)(xo +x1\/f)); neN.
3. The Differential Equations in F;

The derivative represents a rate of change quantity concerning the change in another quantity. We know that the
differential equation is an equation that contains at least one derivative of the dependent variable with respect to
the other variables (i.e., the independent variable). If the independent variable is a single, then we call the related
equation an “Ordinary Differential Equation” (ODE) which arises most commonly in the study of dynamical
systems and electrical networks. ODE is much easier to be treated than “Partial Differential Equation” (PDE),
whose unknown function depends on two or more independent variables. In this article, we will be interested in
studying ODEs on (WFC-ODEs) [6, 8, 12, 13,14,15,16,17,18,19,20,21,22,23-36].

Definition 13 Let Y be a dependent variable, and Y = f(X) represents an unknown weak fuzzy complex function
where the independent variable X = x, + x, J is a weak fuzzy complex variable. We define the weak fuzzy complex
differential equation of n-th order (the highest derivative appearing in the differential equation) as the following:

FX,Y, YY", .. Yy™)=0 60}

an - -
where Y™ = ﬁand Y=y +y) =0 (Vo —y1 Vt,¥o + y1 V) = @7 (fi(xg — %1 VE ), fo (%0 + x1V1)).

Remark 3 We can consider the differential operator is as follows:

an _I(d" an

— -1 —
axm d(xg—x1 VO™ d(x+x1 w/f)n) where X = @~ (xo — X1 Vt, %0 + x; V).

Remark 4 The WFC-ODE with the WFC independent variable X = x, + x; J is equivalent to two ODEs, the first
one is with the independent real variable x, — x; v/t and the second ODE is with the independent real variable
X + x1 VE.

Proof.

FX,Y,Y,Y",. .. ,Y(W)y=0

Flxo+x1], %0 +yi).Yo + Y'Y 0+ Y 'y ™ + 31 ™M) =0
By using the function ¢, we get

P H(F1(xo — x1VE Yo — iVE Yo — Y IVEY o = ¥ 1VE ., ¥ ™ — v IVE), Fao(xg + x:VE Yo + 11Vt Yo
+ Y'm/?.y”o + y”n/?,---,yo(") + Y1(n)\/f)) =0

{Tl(xo — XVt Yo — yiVEY o — Y 1VEY 1 =Y oV Ly ™ =y, WV =0 2-1)
Falxo + V8 Yo + YiVEY o + Y IVEY" 1 + ¥ 2Vt .oy + 9,V =0 (2 - 2)

- 1 1
where F = @~ (Fy, Fy) =;(T1+5F2)+2_\/;](T2—T1).

@)

Definition 14 The functions y, — y; Vt = f1(xo — x; Vt) and y, + y; VE = fo(xo + x; Vt) are called general
solutions to (2-1) and (2-2), respectively, on intervals where f;and f, are defined (domain of solutions) on I; € R
and I, € R if each of them is an n-times differentiable in the related interval with respect to their own variables
Xo — X VE, Xo + x1 \/T , respectively.

Remark 5. Each general solution of (2-1) and (2-2) contains in general n real arbitrary constants of integrations
respectively. Definition 15. A function

Y= FX) = 07 (fixo — %1 VE), fol %o + xVE)) = S (i + fo) + 52 (fa = f2)

is called the general solution of (1) on I = @~ (I; X I,) € Fy if fiand f;, are the general solutions for (2-1) and
(2-2), respectively. Such that (1) is satisfied identically when f(X) and its derivatives are substituted into F:

FX LX) "X, fPX)) =0 3)

where
FXY, YY", Y)Y =FX, X)), f'X),f"X),..., X))
=@ QFX, FX), /X)), [ X0, fXD))
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=@ '"F(e(X, f(X), QO f"(X) ..., F )

= @ F((xo — x1Vt, %0 + x1VT),

(fi(xo =, V), fo(x0 + x1VE)),

(f' (g =2, VE), f1, (%0 + 21V1E)),

(f" (g = 2, VE), ", (X0 + 21VE)) oy

(A™ 0 = %1 V), £ (%0 + 1:VE)))

= 97 (Fal(x0 — 11V, fi (ko = X1 V), £y (0 = 2 VO, f ", (o — X1 VE) oo, 1 (0 — 21 VD)),

Fal(xo + x1VE), oo + %1 V) , ', (%0 + %1 VE) , 7, (g + X1 VE) e, 2 (0 + 21 VO).

So that, 3) is equivalent to:
Fil(xo = x1VE), fio = X1 VO , f, (60 = %1 V), 7 (0 = 21 VE) , o, 1™ (0 = 30 VD] = 0 (4= 1) @
Fal(xo + x1VE), fo(xo + %1 VO , £, (o + %1 VE) , £, (%0 + X1 VE) e, 2 (%0 + 21 VO] = 0 (4 — 2)

where: F = @ 1(F;, F,), xo — x,Vt € I, x0 + x,Vt €1,

% In other words, Y = f(X) = cp_l(fl (%0 — x1 V), fo( %0 + x4\t )) is the general solution of (1) on I € F,
if Y is n-times differentiable WFC function on I and satisfies the equation on I.

4. First-order and First-degree ODEs in F;
Definition 16. The weak fuzzy complex differential equation of the first order is written as follows:
FX,Y,Y)=0 O]
JEN {T1(x0 — 0Vt Yo = vVt Yo =¥V =0 (6-1)

Fo(xo + 6Vt ¥ + Y1Vt Yo +¥' 1V =0 (6-2)
where Yo — 1 Vt = fi(xo — X1 V) , o + y1 VE = fo(x0 + %, VE)
Y= 2_; =f'(X) = (P_l(f’1(xo —x VE), f2 (%0 + xﬂﬁ))

6

d _1<d d )
ax ~® \d@o —x Vo) d(x + 11 VD)
al’ld T:(p_l(Tl,Tz)

Definition 17. Let v, — y; Vt = f1(xo — x1 Vt) and yy + y; \/t = f2(xo + x1 V/t) are the general solutions to (6-
1)onI; € R and (6-2) on I, C R with real arbitrary constants C,, C;, respectively, then

Y = f(X) = @' (fulxo — %1 VE), fo( X0 + x1E)) ,
is the general solution of (5) on I = @~ (I, x I,) S F; with a WFC constant C = ¢~*(C,, C;) if
FX,FX), /(X)) = 0 holds for all X,
where = @~ (xg — x; VE, X0 + X1 V), xg — x1 VE € I, Xo + x, \/T € I, and

T1[(x0 _x1‘/z)'f1(xo — %, Vt) S G0 — VD] =0
{Tz[(xo +2x,VE), fo(xo + x4 VE) S, +xVE)] = 0.

Therefore, the integrals of (6-1) and (6-2) with respect to x, — x; V/t, xo + x; /t respectively, are defined by the
following forms:

{fﬂ(xo — x2VE Yo = y1VE Yo — Y'1VDd (% — x,VE) = G
J Fyloxo + 21Vt y0 + Y1\/E'y’0 + y’lx/f)d(xo + xl\/?) =Cy .

Then, the integral can be written as follows:
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fT(X, Y,Y")dX = @1 (f Fid(xo — V), f Fod(xo +1:VE) )

1 1
= E(f Tld(xo - xl\/?) + f Tzd(xo + xl\/z)) + Z_ﬁ](f Tzd(Xo + xl\/f) - led(xO - xl\/z))
Which means that the solution of (5) equivalents to
(P_1 (f Tld(xo - x1\/E)va2d(xo + xl\/?)) = ‘P_l(CO: Cy).

+« In other words, Y = f(X) = <p‘1(f1 (xo — 1 VE), fo( %o + X1VE )) is the general solution of (4) on I € F,
if Y is a differentiable WFC function on I.

Definition 18. We consider the explicit WFC first order differential equation
Y =FXY) @)
where Y =y +y1J = @7 (Vo — y1 VE, Y0 + ¥1 V) = 07 (i (%0 — %1 V), f2(x0 + x1V1)),
I=@ YUy x1) SF, =@ (xg— 2% VEt,xg + 2, VE), xg —x; VEEL, S R, xg +x, VEEL, S R)

Definition 19. A function (X):1 — F, , is called the general solution to the differential equation (7) on I € F; if

fiand f, are differentiable in I;and I, with respect to their own variables x, — x; Vt, x, + x; v/t respectively,
ie., if

{(yo —yiVt) = Fi(xo — X1V, yo — y1 V) forallxy —x;Vt €1
o + y1Vt) = Falxo + 21Vt yo + ¥, V) forall xp + x;, Ve € I

N {}’o -yt = fT1d(xo - xlx/f)
Yo + ¥Vt = [ Fod(xo + x,7)

=Y =0 '~y Vt.yo +y1VE) = 07! (f Frd(xo — x,Vt), [ Fpd(xo + xﬂﬁ)) el
¥ = 30 Fad(r = 20V8) + J P + V) + 5 =TS P+ 2098) = (= 1)

I=@ I X)) SF, X =@ (xg—x, Vt, X0 + %, Vt), g —x, Vt €L, SR, %o +x, Vt €I, S R.
General Algorithm to solve 1% order 1% degree WFC-ODEs:

Stepl: Use ¢ to write the WFC-DE as two Real DEs

Step2: Solve each one of Real DEs with respect to their own variables

Step3: Write the WFC general solution as a structure of the two real solutions

Famous Types of First order and First degree WFC-ODEs:

4.1. Separable type
41.1.Y =h(X)g(Y) 1))
Stepl:

This ODE can be written as:
(YO - )’1\5) = h1(x0 - x1\/z)91(3’0 - )ﬁﬁ) 8-1

(}’o + Y1\/E) = hz(xo + xﬂﬁ)gz(}’o + 3’1\/3 8-2)
Dividing (8 —1) and (8-2) by g, and g5, respectively, where g; (yo — ¥1Vt) # 0 and g,(y, + y;Vt) # 0

@®)
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= md% V) = h (o = VB (X —1VD) (9= 1) ©)

d(yo + y1Vt) = hy(xo + VD) d (%o + x,VE) (9 = 2)

920 +Y1\/—)

It means EdY = h(X)dX (where g is invertible).

(9 —1), (9 — 2) are called separable ODEs where h4, h,, g;and g, are real functions.
Step2:

Integrating both sides with respect to x, — x; V't and x, + x; V/t respectively, we get

— y1Vt) d(xg — x;Vt)
U 1 d(yo + y1Vt)
92(¥o + y1Vt) d(xo + x,Vt)

N fg(ly) ZXdX fh(X)dX.

If 9 (y : d(yo - yl\/z)d(xo - x1\/f) = fh1(xo - x1\/f)d(xo - xl\/f)
N 1Wo

d(xo + x,Vt) = [ hy(xo + x,VO)d (%0 + x,VE)

Assuming that these integrals maybe evaluated, we get the general solutions to (10 — 1), (10 — 2) respectively:

{61(}’0 —y1VE) = Hi(xo — VD) + G (11-1)

G2 (Yo + y1Vt) = Hy (%o + x,7/t) +C; (11 -2)

where Cy, C; € R are arbitrary constants.

Step3:

@Gy, G2) = @7 (Hy, Hy) + 71 (Co, €1); € = @7 (Co, C1)
=6Y)=HX)+C.

(1n

Example 1.
Y =e'sin(X) o dY =e¥sin(X)dX

@t (d(}’O —nvt),d(yo + ylﬁ))

= @ (e " Vesin(xy — x,VE)d (%o — x,VT), €70 Vesin(xy + x,VE)d (X + X1VE))

1
S oivE d(yo — J’1‘/—) = sin(xy — xl\/_)d(xo - xl\/_)

eYo~Y1
1 .

kmd(% +y1Vt) = sin(xo + x,V)d (x + x,Vt)

by integrating both sides of the equation with respect to x, — x; v/t and x, + x; Vt, respectively:
1 .

{f md(yo —yt) = Jsm(xo — x;VE)d (%o — x,VE)
kf - +y\/_d(yo + V) = Jsm(x0 +x,VE) d(x + x1V)

—e~(0=V0) = —cos(xy — x,VE) — €,
B

—e~(vo+yVE) = —cos(xo + x,VE) — G

- {yo — yVt = —Infcos(xy — x;Vt) + Cy] (Where cos(xq — x,Vt) + Co > 0)
Yo + ¥Vt = —In[cos(x, + x1\/t) + C; ] (where cos(x, + x;/t) + C; > 0)
o1

1 1
= YZE()’O_Y1\/E+}’0 +Y1‘/E)+2—ﬁ](% + 1Vt — yo + y1V1))
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1 1
= E(—ln[cos(x0 — x1\/t) + Co] — In[cos(xy + x,/t) + C;]) + Z—ﬁ](—ln[cos(xo + x33t) + C;] + In[cos(x,
— x1VE) + Co)).
= @ Y(=In[cos(xy — x;t) + Co], —In[cos(xy + x;Vt) + Cy])
= —In(@cos(xg — x,Vt) + Co, cos(x, + x,3E) + C4])
= —In(¢~*(cos(xo — x,Vt), cos(x + x,Vt)) + 97 (Co, C1))
Thus, the general solution to the given WFC-ODE is
Y = —In[cos(X) + C] where cos(X) + C > 0.

4.12. V' = F(X) an
= dY = F(X)dX
Stepl:
d(yo — yﬂﬁ) =F1(xo — xﬂﬁ)d(xo - xﬂﬁ) (12-1)
e {d(yo +yWE) = By (o + VD (xo + VD) (12— 2) 12

Step2:
Solving the WFC-DE (1I) is equivalent to solve two Real separable DEs (12 — 1), (12 — 2):

Suppose the function F;,F, is continuous functions in intervals I, I,, respectively. Integrating both sides with
respect to X, — x; V't and x, + x; V/t respectively, we get

{f d(yo = y1Vt) = [ Fi(xo — VD) d (o — V) (13 = 1)
J o +y1vE) = [ Fo(xo + 21V d (%0 + x,7T) (13 = 2)
Assuming that these integrals maybe evaluated, we get the general solutions to (13 — 1), (13 — 2) respectively:
- {}’0 — yiVt =1 (x% — xVt) + Gy

Yo + ¥Vt = 13(x0 + x,Vt) +Cy
where Cy, C; € R are arbitrary constants.

Also,

J Fi(xg — 2,V d (xg — x,VE) = 13(xg — x,VE) + Cp and [ Fy(xq + x,VO)d (xg + x,VE) = 15(xx0 + 17T +
G

Step3:

Thus, the general solution to the DE (1) is:
@ (Yo = y1Vt,yo + y1VE) = @7 (11 (%o — X, VE) + Co, 72 (X + X1VE) + Cy)

=SY=rX)+C

where 7(X) = @~ 1(ry(xo — x,VE), 15 (% + x,t)) and C = ¢~ 1(C,, C;)

Example 2.

Y'=eX < dYy =e¥XdX

@ 1 d(yo — y1VE), d(yo + y1VE)) = (p'l(exﬂ"‘l‘/?d(xo - x;VE), e""J”‘l‘ﬁd(x0 + x;,Vt))

by integrating both sides of the equation with respect to x, — x; v/t and x, + x; Vt, respectively

et (f d()’o - Y1\/E)'f d(J’o + Y1\/E)) =o' (f exo_xlﬁd(xo - x1\/z)'fex°+x1ﬁd(xo + xﬂﬁ)):

= (P_l(YO - Y1\/E Yo t Y1\/E) = ‘P_l(exo_xl‘/Z + Co, eFotxit +Cy)

(13)
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1 1
= 5(3’0 -Vt +y, + Jﬁﬁ) + 2_\/?](3’0 +yVt—yo + }’1\/?)
_ 1 Xo—x1VT C Xo+x1VE I 1 Xo+x1VE C Xo—x1VT I
—E(e +lote + 1)+2—ﬁ](3 +Cli—e = Co)

1 1 1 1
— E(exo—xp/f + ex0+x1«/f) + _](ex0+x1ﬁ _ exo—xlw/f) + E(Co +C)+ 2—](C1 -Gy
t

24/t Vt
= Yo +y1J = e + (o + CyJ.
The general solutionis Y = e* + C.
Example 3.
(sin(X) + cos(X))dY + (cos(X) — sin(X))dX =0
@1 (sin(xg — x,VE) + cos(xg — x,Vt), sin(x, + x,Vt) + cos(x + x,VE)) (d(yo — ¥1VE), d(vo + y1V1))
+ (sin(xo — x,Vt) — cos(xg — x, V), sin(xq + x,V)
— cos(xg + x,Vt)) (d(xo — x,Vt), d (0 + x,VE)) = 0
=
{[sin(x0 — x;VE) + cos(xg — x,VE)]d (¥ — ¥1VT) = [sin(xy — x,VE) — cos(xg — x,VE)]d(xp — x1VT) (14 — 1)
[sin(xq + x,Vt) + cos(xq + x,VE)]d (v + y1VE) = [sin(x, + x,VE) — cos(xp + x,VE)]d (%0 + x,VE) (14 — 2)
Dividing (14 — 1) by sin(x, — x,t) + cos(xy — x;) # 0 and integrating both sides with respect to xo —
x;Vt. And dividing (14 — 2) by sin(x, + x,Vt) + cos(x, + %) # 0 and integrating both sides with respect
to xo + x,V/t , we get

cos(xg — x,Vt) — sin(xy — x,V/)

!f 4o =) = f sin(xo — x,Vt) + cos(xg — x,Vt) d(xo = x:Ve)
| 3 cos(xo + x,Vt) — sin(xg + x,Vt)
kf Ao+ y11) = f sin(xo + x;Vt) + cos(xy + x,V1) d(xo + V1),

cos(X) — sin(X)

sin(X) + cos(X) '

{yo — ¥Vt = In| sin(xy — x;VE) + cos(xg — x,VE) | + Co
Yo + y1VE = In| sin(xy + x;,VE) + cos(xg + x,VE) | + C;

= [dy =]

1 1
= E()’o —y1Vt + ¥ +J’1‘/E) +2—ﬁ]()’o +y1Vt — ¥ +J’1‘/E)

1
= E(lnl sin(x — x,Vt) + cos(xg — x,Vt) | + Co + In| sin(x, + x,Vt) + cos(x, + x,VE) | + C1)
1
24/t
= VYo + yiJ = In|sin(xy + x,J) + cos(xy + xJ)| + Co + C4J.

+——J(In| sin(xg + x,Vt) + cos(x + x,Vt) | + C; — In| sin(xy — x;VE) + cos(xg — x,Vt) |[—Co)

The general solution is

Y =—In|sin(X) +cos(X) |+ C; C=Cy+CyJ

Y =1 C; sin(X X 0.
n|sin(X)+cos(X)|+ sin(X) + cos(X) #

Example 4.
Y' = X3+ cos(X)
we write it in the following form:
dYy = (X3 + cos(X))dX
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o (f d(yo —ylx/?).f d(vo +y1\/f))
= ([ (G0 = x1V®)? + cosCxo — xiVENA (o = 2:VE), [ (G + BY? + cosay + (3o + 1,3E))

0™ (vo — y1VE yo + ¥1VE)

o (g — xVE)*
= I(f

(xo + x,V1)*

2 + sin(xo + x,Vt) + Cy)

+ sin(xy — x;Vt) + C,,

1
—J o + y1Vt — yo + y1Vt))

1
= = (Yo — ViVt + Yo + y1VE) +
2(370 3’1‘/_ Yo J/1\/_) NG

- 4 4
_1 (M + sin(xy — x;1/t) + M + sin(xy + x;Vt) + Co + Cy)

2 4
4 _ 4
](ﬂ + sin(xy + x,Vt) — M — sin(xy — x;Vt) + C; — Cp)
o 4 4
= Yo + ¥/
_ (- x D) N (%0 +x:VD)" n 1 (ot x D) N x/E)"
) 4 4 zﬁ] 4 4
+%(sin(xo xVE) + sin(xo + xlx/_)) (sm(xo + x;Vt) — sin(x, — xlx/_))
1
+5 (Co +C) +2\/— (€, = Co)
=Yty = M + sin(xg + x.J)+Cy + C,J

The general solutionis ¥ = X; +sin(X) + C.

4.13. Y' = F(Y) (I11)
=>dY = F(V)dX

Here is similar to the previous ODE(II) but with exchange roles of X and Y.

Stepl:
dyo — J’1\/E) =F (o — )’1\/?)d(x0 - xl\/z) 15-1)
11 15
(< {d(}’o + ¥Vt ) = Fa(yo + y1VE)d (% + x1Vt) (15-2) (s
Step2:

Solving the WFC-DE (II) is equivalent to solve two Real separable DEs (15 — 1), (15 — 2).

Suppose the function F,,F, is continuous functions in intervals I, I,, respectively. Integrating both sides with
respect to x, — x; Vt and x, + x; V/t respectively, we get

I fi(yoly 75400 —yivt) = Jd(xy —xVt) (16 -1) "

?Z(YO"'}/ \/_)d(y0+y1\/_) fd(xo +x1\/_) (16 — 2),
where F; (Yo — y1VE) # 0 and Fy(y + y1vE) # 0 (where F is invertible).

We get the general solutions to (16 — 1), (16 — 2), respectively:
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{51()’0 —y1Vt) = x0 — 3Vt + € = xo — XVt =5, (Vo — y1Vt) = Cp (17— 1) a7

S; (Yo + y1Vt) = xp + 1Vt + G = xo + %3Vt = S, (yo + y1VE) — €, (17 = 2)

where Cy, C; € R are arbitrary constants.

Note that in (17 — 1) we exchange roles of x, — x;+/t and y, — y;+/t and in (17 — 2) we exchange roles of x, +
x;Vt and y, + y;VEt.

Step3:
(P_l(xo - x1\/f' Xt xl\/f) = @_1(51()’0 - 3’1\/E) + Co, S2(yo + }’1\5) + Cy),
=X=SY)+C
where S(Y) = @~ (S1(¥o — ¥1V1), S; (v + y1V1)) and € = @~ *(Co, Cy).
Hence, the general solution Y (X) to the WFC-ODE (I11) is the inverse of the function X = X(Y).
Example S.
Y'=-2Y (18)
PN {d(yo —y1Vt) = =2(yo — y1V)d (%o — x,V1)
d(o + y1Vt) = =2(yo + y1Vt)d (%o + x,V1)
( 1
[ [ ————=dyo — y1Vt) = =2/ d(xo — x1Vt)
o — 1V

1
kf md(yo +y17t) = =2 d(xp + x,V0)
0 1

where y, — y;Vt # 0and yo + ¥Vt # 0.

o {lnb’o — Yt = =2(xg —x;VE) + C, S |yo — miVE| = eCo—2(xo=x1Vt)
Inlyo + y1VE| = —2(x + VE) + €, & |yo + yVE| = eC172Fo+xVe)

where Cy, C; € R are arbitrary constants.

The general solutions with +e¢, +e¢1 replaced with C,, C;, respectively:

— = —Z(X —X ‘/Z)
o 1Yo y1Vt = Coe 20o™x
Yo + 1Vt = Ce 2ForxnD)

The general solution to (18) is written as:

@ (Vo — y1VE Yo + y1VE) = @71 (Coe 207 1VD), ¢ e 20t 1V0) o ¥ = (e,

4.14.Y' = F(AX + BY + C) av)

This structure of the differential equation can be reduced by simple transformation to one of the previous types
already discussed. Assuming the function F is continuous in an interval I € F.

e (o — yVE), (o + y1VE)")

= ¢_1(T1[(A0 - A1\/E)(x0 - xﬂﬁ) + (Bo — Bﬂﬁ)()’o - )’1\/?) + (o — Cl\/z]'fz[(Ao + Aﬂﬁ)(xo + xl\/?)
+ (By + BiVt) (yo + y1Vt) + Co + C1vt])

B
(YO - )’1\/E )’ = T1[(A0 - A1\/E)(xo - xl\/f) + (Bo - Blﬁ)(YO - 3’1\&) +Co — Cﬂﬁ] 19-1 (19)
(}’o + Y1\/E)’ = Tz[(Ao + A1‘/E)(xo + xl‘/t_:) + (Bo + B1\/E)()’0 + }’1‘&) +Co + C1\/E] (19-2)

where A=Aq+ A, ], B=By+ B €F;, C=Cy+CJ EF,.
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We can say that solving (IV) is equivalent to solve the two ODEs (19 — 1 & 19 — 2) in real field with respect to
variables x, — x;1/t and x, + x;/t , respectively. For that, we suppose:

{U1(x0 - xﬂﬁ) = (4o — Aﬂﬁ)(xo - xﬂﬁ) + (By — B1\/E)(3’0 - }’1\/E) +Co — Cl\ﬁ
Uy (xo + x:1VE) = (Ag + A1) (%o + x1VE) + (By + BiVE) (yo + y1VE) + Co + GVt

- {Ul(xg —x,;VE) = (A — A1VE) (xo — x,VE) + (By — ByvVE)Yy(xg — x1VE) + Co — C1VE (20 — 1) 20
Uy (% + x1Vt) = (Ag + A1VE) (%0 + x,VE) + (B + B1vVE) Y (%0 + x,VE) + Co + €Vt (20 — 2) (20)

o — 3’1\/E ) = F;[Uy(xp — xlﬁ)]
o + 3’1\/E )" = Fy[Up(xo + xlﬁ)]

(v)= {
(We are interested in the case where By + B;\t # 0, By — Bj\V/t #0)
Y(X) = 7 (Y1 (xo — x1VE), Yo (%0 + x,V1)) € F;(X)

= ¢ (Vo — y1Vt, Yo + y1VE)

UX) = @ (Uy(xg — x1Vt), Uy (o + x1Vt)) € F;(X)
So that, we can write
UX) = AX +BY(X) + C @1 af
Y; is a solution to (20 — 1) and Y, is a solution to (20 — 2), then U; and U, satisfie
{U’1(xo — x,Vt) = (A4g — A1VE) + (By — Bivt) (yo — y1Vt)’

U'; (%o + x:Vt) = (Ao + AVE) + (By + BiVE) (¥ + y1Vt)'

Thus,
U'(X)=A+BY'(X)
U =A+BFU) (22)

which is a solvable equation of the type (III).

Conversely, from a solution U (X) to (22) we can get a solution Y (X) to (21).

Example 6.

Y =(X+Y)? (23)

S 07N o —mVE), (000 + 11V = @7 (o — 1 VE + Yo — 11V, (%0 + X1 VE + yo + y1VE)?).
To solve it, we use the following ansatz:

{Ul(xﬁ —x;Vt) = xg — 2Vt + yo — y1VE
Uy (% + 2,VE) = x + X,V + ¥p + y1VE

1 1 1 1
E(Ul + U,) + ﬁ](uz -Up) = E(xo + Yo + X0+ ¥) + Z_ﬁ](leﬁ — 2y1t),
UX) = ¢~ 1 (U, Uy) = (0 + yo) + (x5 + 1)/,

>UX)=X+YX).

Then, (23) becomes like

UX)=U?+1
a _ o av _
x Ur+1= Ue1 dX =0 (Separable ODE)

By integrating:
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arctan(U) =X =C = arctan(U) =C+ X = U = tan(C + X)
Going back to the old variables, we get the general solution:

Y =tan(C+X) — X.

4.1.5. The Homogeneous ODE

1—1

Y’=T() X € MG F 52/)k,0;k € R} )
- - — yiVt Yo + y1vt

oot VEY, (o +yND)) = 9 \(F ( ) 7 ( )

@ (o —yVE), (o + y1V1)) = o7 H(Fy Xt 2x0+x1\/f)
Supposing

Yo—¥y1Vt 3704'371\/E

Uy (xo — x,VE) = e and U, (xo + x,Vt) = v
Then, supposing U(X) = X and calculating the derivative

{yo -yt = (%o — x1\/E)U1(xo - xﬂﬁ) > o —yiVE) =Us + (xg — VDU’ (24— 1) (24)

Yo + ¥Vt = (xo + VO Uy (0 + 2,7E) = (yo + y1VE) = U, + (xo +x, VU, (24-2)
0o — y1\/f)’ =F1(Up)

Vo + y1Vt)' = Fo(Uy)

Tt means Y (X) = XU(X) = Y'(X) = U(X) + XU'(X) = F(U).

Then,

Iull(xo - xl\/E) =

But we have {

Fy(Uy) — Uy (x9 — x1V1)
Xo — XVt
F(Uz) = Up(xo + x:1VE)
Xo + XVt
Hence, we get ODEs for the new function with separated variables,
FWU) - UX)
—
Every solution U; (X) , U,(X) to last ODEs leads to a solution Y; (x, — x;vt) = (xo — x,VE)U; (%9 — x,VE) ,

Y, (xo + x1VE) = (xo + x:VE)U, (x0 + x,VE) of the homogeneous ODE (24 — 1) and (24 — 2), respectively, so
the general solutionis Y = @~ 1(¥;, Y,).

Ikulz(xo +x,Vt) =

U'X) =

Example 7.
Let the ODE:
2 —
V=2-2 1 XeFR\GFo- =)k, 0; k € R} (25)
2 2
_ Yo — iVt Xo = XVt\ " Yo + 1Vt [xo + x4Vt
= @ (o —y1Vt), (0o + y1V1)) = 97( _( ) ' -
° e Xo — XVt Yo—yivt) xo+xVt  \yo +yiVt
( 1
o — Y1\/E)’ =U——= F1(Uy)
Uy
=
, 1
k(}’o +Y1\/E) =U; - F = F,(U,)
2
Where
VE vt
Ul(xo - xl\/_) i:o—ylt al’ld Uz(xo + xl\/_) yo:zl\/_ ( (X) - m)
Y(X) = XU(X), (26)
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(3’0 - }’1\/E) =U; + (xo - xl\/E)Ull
(vo + y1\/f), = U, + (%0 + x,VT)U';
Then, the ODE (25) transforms into separable ODEs:

=Y'(X) =UX)+XU'X) <

(11 FiU) - U 1
|U1(x0—x1\/f)= 1 1 1:— 3
xO - xl\/E (xo - xl\/E)Ul U’ _ 1
, F,(Up) - U 1 ( __XU2>
Uz(xo +x1\/?)= 2 2 2 = — 5

N Xo + XVt (x0 + x,VE) U,

( d(xg — x1Vt

IUlszl = _—( 0 1‘\/—)
- o= (1w = -5

5 d(xy + x,Vt) X
kUZ dUz -
Xo + x1Vt
By integrating:
d(xg — x4Vt
fUlsz”fiio—xl\/\/E—):O x
o (fUZdU+f—=O)
| [ u,2du +f—d(x°+x1ﬁ)=o X
|/ 72 O Xo + XVt
U 3
Tl + log(xy — x13/t) = C, U3

= 3 (?+log(X)=C)

U.
k% + log (xo + x13t) = C;
{U13 = — 3log(xo — x13/t) + 3C,
U,® = — 3log(x, + x13/t) + 3C;

from(26) {Y13 = ((xo — 1V U1)? = (x9 — x,V)* [~ 3log (xp — x,Vt) + 3Co]
>
Y,% = ((xo + 6,V U,)? = (%0 + x,VE)3[— 3log (xo + x1VE) + 3C4]

Y, = i/(xo — x;3Vt)3 (=3 log (xy — x1Vt) + 3Cp)

=

Y, = i/(xo + x;Vt)3 (=3 log(x, + x,\/t) + 3C;)

The general solutionis Y = @~ 1(Y, Y,) = i/X3 (=3 log(X) + 3C).

4.2. Exact type

Definition 19. Let X € F; and Y (X) € F;(X), the following DE:

MX,Y)+NX, Y)Y =0

Or

MX,Y)dX + N(X,Y)dY =0 (27)

is called an Exact (or total) WFC-DE when there exists a function U(X,Y) of which it is the Exact differential, so
that 2 = M(X,Y) and 3 = N(X,Y), i.e. dU = M(X,Y)dX + N(X,Y)dY =2 dX + 22 dY, where U(X,Y) = C
is the general solution.

Remark 6. The previous definition is equivalent to say that (27) is an exact WFC-DE when its consequent equations
by using ¢ for (28 — 1), (28 — 2) are exact DEs:
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My (xo — x1‘/a3’o - }’1\/E)d(x0 - xl\/?) + Ny (% — xl\/E,YO - )’1\/E)d(3’0 - }’1\/E) =0(28-1)

27
@7 {Mz(xo + 23Vt Yo + y1VE)d (X + x1VE) + Na (X + x1Vt, yo + y1VE)d (Yo + y1Vt ) = 0 (28 — 2)

(28)
where M = ¢~ 1( My, M,),N = ¢ Y( Ny, N,) and U = ¢~ 1( Uy, Uy). Since,
dU; = My(xo — x1‘/a3’0 - J’1\/E)d(x0 - x1‘/?) + N;(xo — xl‘/?:YO - yl\/z)d(YO - }’1\/E)

= ———————d(xy — xVt) + ——————=d ¥ — y1Vt)
Ao —xVD) T e —yE)
dU, = My(xo + x1Vt,yo + y1VE )d (%o + x1VE) + Ny (%0 + x:1VE, Yo + y1VE )d (Vo + y1VE)
ouU. ou
2 d(xo + xﬂﬁ) + 2 d(yo + 3’1\5)

" 0 (xo + x1vE) 9 + V)

Theorem. If M(X,Y) and N(X,Y) are continuously differentiable WFC functions in a connected domain, then (27)
oM

is an exact differential WFC if and only if Z—Z =2
Proof.

We know that WFC functions M (X,Y) and N(X,Y) are continuous if and only if M;, M,, N;, N, are continuous
real functions. Also, (28-1) and (28-2) are exact DEs if and only if

aN, oM, AN, M,

D) 900yaVD)* Borxid® . 3Gty * OPECHVEly:
So that,
—_— (p ,
X d(xg — x:Vt) 3 (xo + x;VE)

1 oN, N, 1 N, N,
=5 + )+ - )

2°0(xg — xVE)  0(xo +x:VE) 2Vt 0(xg + xVT)  O(x0 — x1VE)

1 oM, oM, 1 oM, oM,
=3¢ + )+ - )

2°0(xg —x3VE)  0(xg +xVE) 2Vt 0(xp +xVE)  9(xg — x11)
_ <p_1< oM, oM, ) _ aﬂ

3 (xo — x:VE) 9 (xo + x,V/E) oy -

Example 8.
Y ax +2VXdy =0
77 =

. . ON _ oM Ny __ oMy Ny _ _ oMy
It is an exact WFC-DE since X = oy , because of e riTD — 30eyiTD 3GataiTD — 30ety i’
where

Y oM 1 B oM, oM, 1 1
M = \/_Y = W = ﬁ = 3 \/E ) P) i \/E = i ’
(xo = x1Vt) 0(xo + x1V1) \/xo—xﬁ/f \/x0+x1\/f
ON 1 N JN. 1 1
N=2Vk=>-—=—> —1( L 2 ):
X VX 7 \axo — VD) 9o + x:V0) ]

Xo — X1Vt \/xo + x4/t
To find the general solution, suppose

AUy = My (xo — x1‘/E'J’o - J’1\/E)d(xo - xl‘/t_:) + N; (%o — xl‘/z'yo - }’1\/E)d(yo - }’1\/E)

464
DOIL: https://doi.org/10.54216/1]NS.250338
Received: August 27, 2024 Revised: October 18, 2024 Accepted: November 10, 2024



https://doi.org/10.54216/IJNS.250338

International Journal of Neutrosophic Science (IINS) V0l 25, No. 03, PP. 450468, 2025

- yﬂ‘—yi‘/fd(xo —xVE) + zmd(yo = y1Vt)

’xo —x;Vt

dU, = My(xo + x1Vt,yo + y1VE )d (%o + x1VE) + Ny (%0 + x:1VE, Yo + y1VE )d (Vo + y1VE)
+ yit [
= &d(xo +x3VE) + 2 [xo + x,VEd (Yo + y1VE)

’xo + x4\t

dU—MXYdX+NXYdY—YdX+2\/YdY—6UdX+aUdY

where M = ¢~ Y( My, M;),N = ¢ Y( Ny, Ny) and U = @~ 1( Uy, Us)
SUXY) =/ %dX+f2\/YdY= 2YVX ;X > 0.

4.3. Linear type

Definition 20. Let Y is the WFC dependent variable, the following DE is called the standard form of a linear first-
order WFC-DE in the dependent WFC variable Y:

Y+ PX)Y =QX) 29)

assuming that the two given functions P(X) and Q(X) are both continuous on the interval I = ¢~ 1(I}, ;).
o = y1VE)' + (o = 1Vt )P (%o — x1VE) = Q1 (%o — x1V/E) (30 — 1)
o + y1Vt)' + o + y1VE )P, (%o + x:1VE) = Q2 (% + x:3VE) (30 —2)

where Q = ¢71(Q4,Q;), P = ¢ (P, P,) , Q1,P; are continuous functions on I; and Q,, P, are continuous
functions on I,.

(29) & { (30)

Remark 7. When Q (X) = 0, the linear equation (29) is said to be homogeneous; otherwise, it is nonhomogeneous,
ie., Q(xo — x;vt) = 0and Q,(x, + x,1/t) = 0. Such that, we have two homogeneous DEs:

Vo = y1Vt) + (Vo — y1VE )Py (xo — x13/t) = 0 B1-1)
o + y1VE) + o + y1VE )Py (g + x,7E) = 0 (B1-2)

Definition 21. Finding Y the solution to the WFC linear ODE (29) is equivalently to find the solutions y, — y;V/t,
Yo + y1/t to the linear ODEs (30 — 1), (30 — 2), respectively, where

Y = o7 (yo — 1Vt Yo + y1V0D).

Y+PX)Y =0 = { 31)

Find the General Solution to the Linear First-order WFC-ODE:
FIRST STEP: Solve the homogeneous equation Y'+ P(X)Y =0 32)

To do that we have to solve the homogeneous equations (31 — 1) and (31 — 2) which are equivalent to the
following separable DEs:

d(ZVO__Yi;/_E) + P1d(x0 _ xl\/f) =0 (33 - 1)

Yo=YVt (33)
d(yo+y1VE) +P d(x +x \/E) =0 (33-2)

Yo+y1Vt 2 0 !

by integrating and solving (33 — 1) and (33 — 2) for y, — y; vt and y, + y;V/t, respectively:

Y = Cle‘f Py (xo—x1V)d(x0~%1VE)
YhZ = Cze_f Pz(xo+x1\/?)d(x0+x1\/f)

= YV = 07 Yoy, Yiz) = 07 1(Cy, Gy~ (e 7T Prdleo—x1Ve) o =J Pad(xo+x12)y

After calculating:
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1 1
c =E[C1 + (] +2_\/EJ[C2 -G
o= PCOAC) — % [e‘f Pyd(xo—x1Vt) 4 o=f Pzd(x0+x1ﬁ)] + %][e‘f Pad(xo+x1VE) _ o= Pld(xo—xlx/?)]
t

We find that the solution to homogeneous WFC-DE (32) is as follows:
Y, = Ce—fP(X)dX

SECOND STEP: Find the particular solutions to the nonhomogeneous equations (30 — 1) and (30 — 2),
respectively are:

{ Y, = =S Pl(xo—xlx/f)d(xo—xlx/f)f Q,(x — xl\/f)efPl(xo—xl\/?)d(xo—xlx/f)d(xo _ xl\/z)
Y,, = e—f Pz(x0+x1\/f)d(x0+x1\/f)f 0, (xo + xl\/z)efPz(x0+ﬁ)d(x0+x1ﬁ)d(x0 + xlﬁ)
=Y, = 07 (YY) = 7 POK[ Qx)el POy
THIRD STEP: We know that the general solutions to each (30 — 1) and (30 — 2)is the sum of two solutions:
{yo — YVt = Yo + Y
Yo + iVt =Y + Y,
Then, the general solution to (29) can be written as the sum of two solutions:
Y=Y, +Y,
where = ¢~ (yo — y1Vt, yo + y11),
Yy, = @~ 1( Yy, Yaz) is the solution of the associated homogeneous equation (32) and
Y, = ¢~1(Y,,,Y,,)) is a particular solution to the nonhomogeneous (29).
Example 9
Let the WFC-DE is XY’ — 2Y — X3eX =0
We can write it as follows:
Y -2y = X2eX,
It is a Linear 1% order WFC-DE, we can solve it using the previous steps, where
2 2
Xo— tVE  xo+ xlx/f)

QX) = X%e¥ = 97" ((xo — xVD)?e™ ™Y, (g + x;D)2e 0 1T)

2
PO = -2 =97

The solution to homogeneous associated DE is Yj,(X) = ¢~ 1( Y1, Yy2) = CX?

J—2— d(xo—x1Vt)

th = Cle xXo—x1Vt = Cl(xo - xlx/f)z

J=———Fd(xe+x1VT) _

2 ;C =@ (€, C)
Ypo = Cye” Xo+xaVe = C,(xp + x1Vt)?

where

The particular solution to nonhomogeneous associated DE is
Y, (X) = el X*aX [ x2eXo-IX?aXgx — x2[ oXqx = X2X
where,
Vg = efmd(xo_xlﬁ)f (xo — x1‘/f)zex°_x1ﬁe_f md(xo_x“ﬁ)d(xo — V) = (%o — x;V/E)?eX01Ve
Y, = efmd(xoﬂlﬁ)f (xo + xlx/f)ze"o”‘l‘/fe_f xo%"iﬁd(xo”lmd(xo +x,VE) = (g + x,VE)2eXor Ve
The general solution to the given DE is
Y=Y,+Y,
= CX? + X?%eX.
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5. Conclusion

In this paper, we have defined the Weak Fuzzy Complex Differential Equation depending on a special isomorphic
transformation function which helps us to deal easily with two ODEs in R then come back to F; to get the general
solution to WFC-ODEs. Therefore, we introduce some types of WFC-ODEs of first-order first-degree (Separable
- Exact - Linear) with their general solutions and some explicit examples. In the future, we aim to solve WFC
Initial Value Problems.
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