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Higher education is essential because it exposes students to a variety of areas. The academic 
performance of IT students is crucial and might fail if it isn’t documented to identify the features 
influencing them, as well as their strengths and shortcomings. The student academic prediction 
system needs to be enhanced so that teachers can forecast their students’ performance. Numerous 
studies have been conducted to increase the prediction accuracy of IT students, but they encountered 
difficulties with unbalanced data and algorithm tuning. To address these issues, the study proposed 
different machine learning (ML) algorithms that handled imbalanced data by applying the synthetic 
minority oversampling technique (SMOTE) and employing hyperparameter tuning algorithms to 
enhance prediction during the training process. The ML models we used were decision tree (DT), 
k-nearest neighbor, and XGBoost. The models were fine-tuned by applying Ant colony optimization 
(ACO) and artificial bee colony optimization techniques. Subsequently, these optimization techniques 
further enhanced the performance of the models. After comparing them, the results showed that 
SMOTE and ACO combined with the DT model outperformed other models for academic prediction. 
Additionally, the study utilized the Kendall Tau correlation coefficient technique to analyze the 
correlation between features and identify factors that positively or negatively impact student success.

Keywords Student learning outcomes, Machine learning, Hyperparameter tuning, Decision tree, Artificial 
bee colony, Ant colony optimization, Kendall Tau

Indeed, one of the most challenging and extensively researched areas in machine learning (ML) revolves around 
modeling student performance1. Predicting IT students’ academic achievements is pivotal for educational 
planning and decision-making. Tailoring ML techniques to address the distinct challenges faced by these students 
offers promising avenues to enhance predictive accuracy and optimize educational outcomes. According to higher 
education studies, the high attrition rate demonstrates the ineffectiveness of the prior educational initiatives. 
Significant reforms in higher education are required to address the problem, increase student retention, and 
raise graduation rates. The crucial stage at which the research concentrated on the features significantly affecting 
the outcomes was performance prediction. In addition, the prediction models inside the designated domain 
experienced low efficacy and precision, necessitating modifications to yield superior outcomes suitable for real-
time analysis. Nonetheless, for the decision-maker to effectively manage their student, academic prediction from 
the student needs to be more accurate2.
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Despite significant progress in using ML for educational purposes, predicting student academic performance 
remains a pressing challenge due to the high complexity of factors influencing success and the limited 
effectiveness of existing prediction models3. Educational institutions face increasing pressures to identify at-risk 
students early, especially in IT programs with high attrition rates4. Integrating cognitive neuroscience, academic 
performance analysis, and machine learning opens the door to new avenues that can help improve the learning 
experience for students in IT. Cognitive neuroscience provides insights into the mechanisms of the brain when 
engaged in learning, memory, and problem-solving. Therefore, it allows a more nuanced understanding of how 
information gets processed and retained. Academic performance metrics are then associated with these insights 
to analyze novel strategies to optimize educational outcomes. This interdisciplinary approach is particularly 
relevant to IT education, where high cognitive demands and learning challenges often overlap with rapidly 
evolving technological content. Machine learning is now indispensable in education, providing robust methods 
to analyze complex datasets and uncover patterns that traditional approaches might miss. Predictive modeling 
allows for identifying at-risk students who may perform poorly, thus ensuring timely interventions. Machine 
learning algorithm-based personalized learning systems can adapt to individual student needs and provide them 
with tailored educational experiences. These applications benefit IT students, as their academic performance 
is affected by cognitive skills, technical aptitude, and study habits. Cognitive neuroscience integrated with 
machine learning in education is a high-end trend that can potentially transform education. Neuro-cognitive 
data, in the form of EEG or MRI measurements of brain activity, can hone ML models, providing insights into 
learning patterns with student precision5. These models will assess real-time cognitive load, supporting adaptive 
learning systems that respond according to the learner’s mental state6. Applying machine learning to monitor 
emotional states, engagement, and motivation also improves learning experience personalization, increasing the 
effectiveness of education for students7. However, while such developments are promising, they pose challenges in 
actual implementation, particularly with issues on ethical grounds regarding the privacy of data, especially when 
working with sensitive neuro-cognitive data8. Moreover, collaboration between cognitive scientists, educators, 
and ML experts is necessary to deliver practical and scalable solutions9. Therefore, the potential benefits of 
integration in IT education are very high. By aligning the insights of cognitive neuroscience with the capabilities 
of machine learning, this work aims to advance the analysis of academic performance and create new strategies 
for improving educational results in IT. Current predictive models often lack precision or fail to address issues 
such as imbalanced datasets, underrepresenting influential features, and inefficient hyperparameter tuning 
methods. Motivated by the urgent need for accurate and actionable insights, this research aims to bridge these 
gaps by developing a robust prediction framework for IT students. The study seeks to empower educators with 
practical tools to enhance academic outcomes and inform targeted interventions, ultimately improving retention 
rates and academic achievements in higher education.

Academic success is affected by myriad intricate features, rendering ML particularly appealing given the 
abundance of educational datasets available. Educational Data Mining (EDM) seamlessly integrates data mining 
(DM) techniques to refine and predict learners’ academic trajectories10. The EDM process helps educators and 
education researchers gather information by converting unprocessed data into understandable information. 
Using the EDM tools, student groups can employ classification techniques more successfully. Moreover, it 
impacts decision-making processes for administrators, aiming to yield high-quality outcomes11. ML employs 
computational methods to analyze and visualize educational data. They can help identify problematic student 
behaviors and offer guidance. Such models support educators in student recruitment, feedback acquisition, and 
curriculum design12. Data on education is sourced from various outlets, including surveys, heuristic evaluations, 
and online platforms. Several DM techniques are employed to tackle educational challenges, with EDM 
drawing upon various DM methodologies. For instance, classification emerges as a highly effective strategy for 
constructing predictive educational models, often augmented by optimization techniques to enhance model 
performance13,14. According to15, the primary prediction is to analyze the datasets because systems built using 
unbalanced data failed real-time testing. Furthermore, an imbalanced dataset obscures the optimal features 
that may harm a student’s performance. When imbalanced classes are handled, the model’s prediction accuracy 
increases throughout the training phase. El-kenawy, et al.16 presented a Greylag Goose Optimization (GGO) 
algorithm based on a swarm metaheuristic inspired by the efficiency of geese’s "V" flight formation. GGO was 
validated by experiments on UCI datasets and engineering benchmarks. It significantly outperformed other 
algorithms in terms of accuracy and reliability, as statistically certified by Wilcoxon’s rank-sum and ANOVA 
tests.

In ML, optimization strategies are critical to improving and fine-tuning the effectiveness of predictive models. 
These methods seek to optimize forecast accuracy, reduce mistakes, and fine-tune model parameters. Standard 
optimization methods are commonly used in various ML applications, including gradient descent, Adam 
optimization, stochastic gradient descent, and evolutionary algorithms such as genetic algorithms and particle 
swarm optimization. These algorithms modify the model’s parameters and progressively approach ideal values 
by evaluating a specified objective function iteratively. Practitioners can increase model efficiency, accelerate 
convergence, and improve predictive performance across various applications and domains by integrating 
optimization techniques into ML workflows. This study notably concentrates on two popular optimization 
techniques, ACO and ABC. The ABC algorithm aims for the best answers by imitating how honey bees forage. In 
ABC, potential solutions include bees searching the search space, assessing their fitness using a predetermined 
objective function, and communicating with one another via a waggle dance-like mechanism. This foraging 
behavior forms the basis of the ABC algorithm, particularly suited for discrete optimization problems, such as 
hyperparameter tuning for machine learning models. Figure 1 depicts the flowchart of the ABC technique. In 
this algorithm, the three main components are,
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• Employed bees: The employed bees are tasked with exploring the search space by leveraging existing solutions 
and realizing new ones through localized searches.

• Onlooker bees: These bees select solutions based on the information obtained from employed bees and per-
form local searches to improve these solutions.

• Scout bees: Scout bees are responsible for randomly seeking fresh solutions, primarily when employed and 
onlooker bees have exhausted their search efforts.

As shown in the figure, the algorithm begins with the initialization of parameters (Step 1). The parameters 
define the problem’s search space and include factors like population size, iteration limits, and other algorithm-
specific parameters. Once the parameters are initialized, the algorithm generates an initial population (Step 
2), where each solution corresponds to a set of potential hyperparameters for the machine learning model. 
The fitness of each solution is then evaluated (Step 3), which typically involves training the model with the 
given hyperparameters and evaluating its performance. Based on their fitness, the employed bees update their 
positions (Step 4) by exploring neighboring solutions to find better-performing solutions. The onlooker bees 
then update their solutions (Step 5) based on the fitness of the employed bees’ solutions, selecting the best-
performing ones. Next, the scout bees are employed (Step 6), searching for entirely new solutions when a specific 
solution has failed to improve after a certain number of iterations. After the bees have updated their positions 
and explored the search space, the algorithm checks whether the stopping criterion has been met (Step 7). The 
process ends if the algorithm has reached the predefined number of iterations or found a solution that meets the 
fitness threshold (Step 8). If the stopping condition is not satisfied, the algorithm returns to the fitness evaluation 
step (Step 3), continuing the search for optimal hyperparameters.

Another optimization technique, ACO, is inspired by the foraging behavior of ants and has been applied to 
various optimization problems, such as routing, scheduling, and combinatorial optimization. ACO is particularly 
effective for discrete optimization problems that involve large search spaces and complex constraints17. In nature, 
ants deposit a chemical substance called pheromone as they forage for food, which helps them remember and 
communicate the path to the food source. This behavior forms the basis of the ACO algorithm. Figure 2 depicts 
the flowchart of the ACO technique.

As shown in the figure, the ACO algorithm begins with the initialization of parameters (Step 1). Once the 
parameters are set, the algorithm generates random solutions (Step 2), where each solution represents a potential 
combination of hyperparameters for the machine learning model. The fitness of each solution is then evaluated 
(Step 3) based on model performance, typically measured by accuracy or another relevant metric.

Following this, the pheromone levels are updated (Step 4), reinforcing better solutions and guiding future 
iterations toward the optimal set of hyperparameters. The algorithm then applies a transition rule (Step 5) to 
decide whether to explore new solutions or exploit the best-performing ones. A new path is generated (Step 6), 
and the algorithm checks if the number of iterations has reached the predefined limit (Step 7). The process ends 
if the stopping criterion is met (Step 8). If not, the algorithm returns to the global random generation step (Step 
2) to continue exploring the search space.

Both ABC and ACO algorithms are metaheuristic optimization techniques known for their ability to explore 
complex solution spaces and find near-optimal solutions efficiently. These algorithms have found applications 

Fig. 1. ABC flowchart for hyperparameter optimization in machine learning models.
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in various domains, including ML, where they are utilized to optimize model parameters, feature selection, 
and hyperparameter tuning, among others. Alongside optimization techniques in ML, various techniques 
are employed to understand the relationship between features, such as the Kendall tau correlation coefficient 
(τ)18. This statistical method is utilized to assess the correlation between two ordinal features. It evaluates the 
resemblance in ordering data points between the variables, irrespective of their specific values.

This paper presents a novel model for assessing student performance, incorporating a unique set of attributes. 
Employing diverse ML techniques, the model precisely scrutinizes the dataset to comprehend how students’ 
attributes impact their academic success. Additionally, through the combination of ACO hyperparameter tuning 
and SMOTE for handling unbalanced datasets, this research study seeks to improve the academic prediction 
of students based on their performance. The analysis revealed that if the model parameters are appropriately 
adjusted and the data used is sufficiently balanced, the performance of the ML classifiers could improve. The 
Kendall-Tau correlation coefficient technique is also used in this study to evaluate the relationship between 
features and identify variables that are positively or adversely related to student progress. In light of earlier 
research, the following research objectives are laid for this study.

• To propose a systematic method for improving, developing, and refining ML models to accurately predict IT 
students’ academic performance, aiding educators in identifying students’ strengths and weaknesses early on 
in the ML classifier by incorporating distinct attributes.

• To assess the relationship between characteristics and determine features that positively or negatively con-
nected with academic success using the Kendall Tau correlation coefficient technique and implement the 
SMOTE to manage and correct imbalanced datasets effectively.

• Hyperparameter tuning using ACO and ABC techniques will be applied, and the performance of various ML 
classifiers, including DT, KNN, and XGB, will be evaluated.

• To illustrate the superior performance of the ACO-optimized DT classifier, combined with SMOTE, in pre-
dicting students’ academic outcomes and propose future research directions, including longer-term studies 
and incorporating additional features and advanced ML approaches.

The study addresses the crucial requirement for precise student academic performance prediction and has 
significant information for higher education, especially IT departments. With the implications from the study, 
teachers can more precisely predict student performance. Using the SMOTE, unbalanced datasets in educational 
data can be effectively managed, and predictions are made in a representative and trustworthy manner. ML 
performs better and is more successful in predicting academic results when hyperparameter optimization is 
incorporated using ACO and ABC approaches. The study offers a comparative analysis that identifies the best 
models for academic prediction by evaluating some ML classifiers, including DT, KNN, and XGB. Educators can 
better understand the elements that favorably or unfavorably affect academic success by applying the Kendall-Tau 
correlation coefficient to examine the connections between various features and student achievement. The study 
establishes the framework for future research to improve comprehension and student academic achievement 
forecasting by recommending new features, longer-term data collection, and investigating sophisticated ML 

Fig. 2. ACO flowchart for hyperparameter optimization in machine learning models.
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techniques. The study offers reliable techniques for forecasting student performance, advances educational data 
analytics, and helps teachers enhance students’ academic progress.

After the introduction in Section "Introduction", this paper is organized as follows: Section "Related works" 
provides an overview of pertinent literature. Section "Proposed methodology" explores the study’s proposed 
methodology. Section "Results and discussion" explains the experiment’s discussion and results. Finally, Section 
"Conclusions, limitations, ethical and privacy considerations, and future work" summarizes the findings from 
the analysis and outlines potential directions for future research.

Related works
This section explores previous research endeavors that have investigated the learning performance of students 
using traditional ML algorithms and studies that have investigated the integration of optimization techniques 
and the Kendall Tau correlation coefficient.

Najieha et al.19 introduced a website system built using PHP and Laravel that uses the C4.5 data mining 
method to forecast students’ academic performance. Using statistical patterns and reports protected by 
digital signatures helped lecturers monitor academic performance by predicting who may make the list and 
identifying students who might receive poor grades. Gunasinghe et al.20 assessed how well the UTAUT-3 model 
explained how internet-based technology, such as e-learning, changes education in response to the model’s 
inadequate instructional validity. To determine if one variable cause another, hypotheses were evaluated using 
a quantitative technique and a logical approach. Simple random selection was used to gather data, and 441 
academics were given a self-administered questionnaire using Google Forms. Structural equation modeling was 
used to analyze the data. In employment education data processing, Fang21 integrated classifiers, K-means, and 
Apriori algorithms to harness data mining technology effectively. Cohausz et al.22 scrutinized the significance of 
demographic features in at-risk prediction models and assessed their necessity alongside study-related features. 
Verger et al.23 introduced a novel metric, Model Absolute Density Distance, for analyzing model discriminatory 
behaviors independently of predictive performance, alongside visualization-based analysis for fine-grained 
human assessment of model discrimination between student groups. Alhazmi and Sheneamer1 analyzed features 
and predicted students’ GPA using clustering and classification algorithms, including the T-SNE algorithm for 
dimensionality reduction, aiming to provide insights into academic trajectories and enhance student outcomes. 
Bellaj et al.24 aimed to improve the accuracy of ML algorithms by employing eight ML classifiers, which were 
optimized through hyperparameter tuning, including various correlation coefficient techniques. Ouyang et al.12 
combined learning analytics techniques with an AI prediction model to improve student learning outcomes 
in a cooperative learning environment. Chen and Ding11 utilized ‘black box’ ML models enhanced with 
educational and socioeconomic data to forecast academic performance while mitigating the influence of logical 
associations, employing logistic regression, support vector machine, random forest, DT, and neural network 
techniques. Al-Alawi et al.25 investigated factors adversely affecting academic performance among students 
using supervised ML techniques, employing the Information Gain algorithm to identify influential features and 
ensemble methods such as Vote, Bagging, and Logit Boost. Wang13 proposed a singular optimized machine-
learning approach utilizing the Hybrid Cuckoo Search PSO to analyze factors influencing education. Nie and 
Ahmadi Dehrashid26 introduced two innovative algorithms, the Harris Hawk’s Optimizer, and the Earthworm 
Optimization Algorithm, to enhance student performance through a series of Adaptive Neuro-Fuzzy Inference 
System models.

In research that concentrated on ABC and ACO optimization techniques, Teodorović and Dell’Orco27 
examined the ABC metaheuristic, which is well-known for its suitability for combinatorial problems, especially 
uncertainty. The researchers emphasized the ABC algorithm’s versatility and usefulness in resolving real-world 
issues and its handling of a range of optimization tasks. Karaboga and ÇEtİNkaya28 presented a novel technique 
for creating adaptable finite and infinite impulse response filters using the ABC algorithm. To investigate 
noise cancellation, researchers ran simulations and evaluated the study approach’s efficacy against well-known 
gradient and evolutionary-based techniques. An improved version of the ABC algorithm designed especially 
for optimization problems was presented in the work by29. Deb’s rule was integrated into this adaptation. The 
researchers then applied the updated algorithm to four traditional engineering benchmark issues that included 
continuous and discrete variables.

In addition, Zhang17 improved the ACO algorithm and ML classification approach by creating a model for 
student entrepreneurship. In Ye et al.30 study, researchers proposed two novel approaches for selecting wrapper 
features by integrating hybrid rice optimization and ant colony optimization techniques. Based on ACO31, a 
framework for calculating the weight of each model within the ensemble of ML prediction models was devised, 
and Kendall tau was applied to analyze the features.

Numerous research endeavors have addressed challenges in predicting student academic achievement 
using ML and optimization techniques (refer to Fig. 3). However, only a few of these studies have incorporated 
techniques like ABC and ACO to enhance the learning process. Integrating these approaches aims to bolster the 
accuracy of results and yield more favorable outcomes.

Proposed methodology
The study aims to improve the ML model by using SMOTE to handle imbalanced datasets and ACO 
hyperparameter tuning to optimize performance and accuracy in student academic prediction. Three ML 
classifiers are used as the classification algorithms. The dataset used in this study was collected from three 
private colleges in Jabalpur, Madhya Pradesh state, India. A questionnaire was prepared and distributed to 
collect the data, with 1369 IT students responding. The questionnaire was designed using Google Forms for 
easy distribution and data collection. The dataset consists of 1369 records with 70 features previously. Using the 
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Chi-square technique, 21 optimal features were identified (Table 1). The framework of the proposed approach is 
illustrated in Fig. 4, followed by the algorithm.

Algorithm 1: Proposed Method

• Step 1: Start
• Step 2: Execute Data Preprocessing Steps
• Step 3: Feature Correlation Analysis using Kendall Tau
• Step 4: Add SMOTE
• Step 5: Training DT Model with baseline methods;
• Step 6: Training KNN Model with baseline methods;
• Step 7: Training XGB Model with baseline methods;

Feature name Feature Description

Gender GEN Student gender (female, male, or other)

Age AGE Student age (≤ 18 years, 19–25 years, > 25 years)

Number of children’s N_CHILD Student’s number of children (None, 1–2, 3–5, more than 5)

Admission type ADM_TYPE Student’s admission types such as (Regular and Private)

Co-curricular activities in college CLG_CURRACT Participated in Co-curricular activities in the college (high, medium, and low)

Attendance ATTEN Student’s attendance (≥ 75%, 55–74%, ≤ 54%)

Self-confident R_CONF Student’s self-confidence levels such as (1, 2, 3, 4, and 5)

Emotional stability R_EMOT Student’s emotional stability level such as (1, 2, 3, 4, and 5)

Single parent–child SIN_PAR Are students being a single parent–child (yes and no)

Father academic qualification FAT_ACDQUA Student’s father’s academic qualification (None, less than graduation, graduation, post-graduation, higher 
than post-graduation)

Mother academic qualification MOT_ACDQUA Student’s mother’s academic qualification (None, less than graduation, graduation, post-graduation, 
higher than post-graduation)

Part-time job PT_JOB Are students doing any part-time jobs (yes and no)

Total income TOT_INC Student’s total income status (< 50 k, 50 k–1 lakh, 1 lakh–2 lakh, 2 lakh–5 lakh, and more than 5 lakhs)

Father occupation FH_OCCUP Student’s father’s occupation (none, self-employed, private sector, government sector, business, and others)

Transportation problem TRANS_DIFF Are students facing transportation problems (yes and no)

Gender inequality GEN_INQ Are students facing gender inequality issues (yes and no)

Hours spent in coaching classes H_COCHCL Numbers of hours spent by the students in coaching classes such as (none, < 1 h, 1–2 h, 2–4 h, and > 4 h)

Hours spent in self-study H_SELFST Numbers of hours spent by the students in self-study such as (none, < 1 h, 1–2 h, 2–4 h, and > 4 h)

Hours spent on social sites H_SOCSITE Numbers of hours spent by the students on social sites such as (none, < 1 h, 1–2 h, 2–4 h, and > 4 h)

Hours spent playing video games H_VIDGAM Numbers of hours spent by the students playing video games such as (none, < 1 h, 1–2 h, 2–4 h, and > 4 h)

Hours spent in café, canteen, and campus H_CANCAF Numbers of hours spent by the students in café, canteen, and campus such as (none, < 1 h, 1–2 h, 2–4 h, 
and > 4 h)

Last year grade (target feature) TT Student’s first year grade (≥ 60%, < 60%)

Table 1. IT students’ dataset and their description.

 

Fig. 3. Analysis of challenges in student academic prediction.
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• Step 8: Repeat steps 4, 5, and 6 without and with SMOTE
• Step 9: Evaluate the performance
• Step 10: Tune DT hyperparameters with ABC and ACO without SMOTE
• Step 11: Tune DT hyperparameters with ABC and ACO with SMOTE
• Step 12: Tune KNN hyperparameters with ABC and ACO without SMOTE
• Step 13: Tune KNN hyperparameters with ABC and ACO with SMOTE
• Step 14: Tune XGB hyperparameters with ABC and ACO without SMOTE
• Step 15: Tune XGB hyperparameters with ABC and ACO with SMOTE
• Step 16: Evaluate the performance
• Step 17: End

Business and data understanding
This study focuses on second-year undergraduate IT students from three colleges. The courses included are 
BCA (Bachelor of Computer Applications) and B.Sc. CS (Bachelor of Science in Computer Science), B.Tech. IT 
(Bachelor of Technology in Information Technology), and B.Tech. CS (Bachelor of Technology in Computer 
Science). Figure 5 presents a chart illustrating the percentages of students from these courses who responded 
to the questionnaire. In the dataset, a grade of more than or equal to 60% indicates good performance, while a 
grade of less than 60% suggests unsatisfactory performance for a student.

Data preprocessing
Data preprocessing is the process of cleaning and preparing unprocessed data for analysis. This usually entails 
addressing missing information, standardizing formats, and eliminating duplicates32. This study had no missing 
values because all questions had to be answered, and any duplicates or outliers were identified and removed 
manually. The relevance and integrity of the dataset for analysis were also preserved by ensuring that only data 
from IT students was gathered. To enable seamless analysis, data transformation was carried out to guarantee 
consistency and compatibility across several platforms. For this, the Excel to CSV format conversion method was 
used, which streamlined data processing and improved accessibility for analytical needs.

Fig. 5. Demographics by UG courses.

 

Fig. 4. The study framework.
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The study utilized the Chi-square statistical technique to determine the optimal feature set that substantially 
impacts academic performance. This process ensures that only the most informative features are kept around 
for analysis. The Chi-square (χ2) method establishes the correlation between two category features in a dataset. 
The first step in the Chi-square feature selection algorithm is finding each feature’s Chi-square value. Higher 
Chi-square values for features signify a stronger correlation with the target variable and are therefore chosen 
for inclusion in the model, while lower values might be eliminated33. Following are the steps of this technique,

Algorithm 2: Chi-square technique

• Step 1: Start
• Step 2: Create a contingency table for each feature that cross-tabulates it against the target feature. This table 

displays the frequency distribution of the two features and aids in analyzing their connection.
• Step 3: For each contingency table, determine the chi-square value using the Eq. (1).

 
χ2 =

∑
(Oi − Ei)2

Ei

 (1)

where the expected frequency of a feature is represented by (Ei) and the observed frequency by (Oi) in the table.

• Step 4: Sort the features in descending order.
• Step 5: Choose the top-k features with the highest value as a final feature set.
• Step 6: End

Feature correlation analysis
Feature correlation analysis focuses on the relationships between the features to determine how various features 
in a dataset relate to one another. The Kendall Tau correlation coefficient was utilized to decide which features 
are positively or adversely connected with student success, as shown in Eq. (2).

 
τ = (nc − nd)√

(n0 − n1) (n0 − n2)
 (2)

Here, n0 signifies the overall number of pairings, nc indicates the count of discordant pairs and n1 and n2 indicate 
the number of tied values in feature 1 and feature 2, respectively.

Synthetic minority over-sampling technique (SMOTE)
After standardizing and normalizing the dataset, the study utilized SMOTE to find the imbalance in the data. 
Of the 1369 students, 456 had a success rate of less than or equal to 60%, while the remaining achieved above 
60%, with 456 and 913 records, respectively. The dataset exhibited an imbalance in class distribution, and to 
address this problem, the SMOTE was used. By randomly increasing minority class samples through replication, 
SMOTE achieves class distribution balance. Through neighborhood exploration and the creation of new data 
points, this algorithm creates synthetic data. The unbalanced data was successfully managed by using SMOTE 
before being divided into segments for the ML models’ training. Following are the steps of this method,

Algorithm 3: SMOTE steps
Let (X) represent the minority class record and (Xnn) represent one of its nearest neighbors.

• Step 1: Start
• Step 2: Calculate the Euclidean distance between X and all other minority class records to find its k nearest 

neighbors.
• Step 3: Randomly select one of the nearest neighbors, denoted as Xnn
• Step 4: Generate a synthetic record (Xnew) using the Eq. (3).

 Xnew = X + rand (0, 1) · (Xnn − X) (3)

where rand(0,1) is a random value between 0 and 1.

• Step 5: End

Table 2 shows the result of the dataset before and after the technique. The majority class possessed 913 records 
before SMOTE, compared to 456 records for the minority class. There are 913 records in each of the two classes 

Class Before SMOTE After SMOTE

Majority (> 60%) 913 records 913 records

Minority (≤ 60%) 456 records 913 records

Total 1369 records 1826 records

Table 2. Dataset before and after SMOTE.
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after using SMOTE to balance them. Because synthetic samples were created for the minority class, the total 
number of records in the dataset increased from 1369 to 1826.

Data splitting and cross-validation
Splitting data into separate training and testing sets is essential for evaluating model performance in ML34. The 
study used an 80:20 split ratio, setting aside 20% of the data for testing the predictive models and 80% of the data 
for training. eightfold cross-validation is used to assess the methods.

ML classifiers
Decision tree (DT)
A reliable predictive model that is frequently used to forecast student performance is the DT classifier. From a 
mathematical perspective, the DT algorithm divides the dataset into subsets based on Entropy or Gini impurity 
and iteratively chooses features until specific stopping conditions are satisfied35. The Gini impurity is shown in 
Eq. (4), used to calculate the importance of the particular tree(node),

 Important (p) node = SawL (p) × ImpL (p) − SawR (p) × ImpR (p) (4)

where Important(p)node is the importance of pth node, SawL(p) is the weighted sample of the node, ImpL(p) 
is the impurity value, and the left and right nodes after the split is denoted by Lp and R(p). The primary 
hyperparameters of a DT are ‘max_depth,’ ‘min_samples_leaf,’ and ‘min_samples_split.’ Each of these parameters 
has specific values that were tuned for the proposed model.

K-nearest neighbor (KNN)
An algorithm that does not require predefined parameters is the KNN method. It uses the dominant class of the 
k nearest neighbors in the feature space to forecast the class of a given data point. The most common label among 
a new data point’s k nearest neighbors determines its class, with Euclidean distance commonly used to compute 
the distance36, as shown in Eq. (5).

 y = mode (yi1, yi2, . . . , yik) (5)

where y is the predicted class label, yik are the labels of the k nearest neighbors of x, and mode()returns the 
most frequent label among the neighbors and has ‘n_neighbors,’ ‘weights,’ and ‘matric’ hyperparameters. It has a 
specific range of values that were tuned for the proposed model.

XGBoost (XGB)
XGB, short for Extreme Gradient Boosting, is an advanced ML algorithm that constructs an ensemble of weak 
prediction models, typically decision trees, to predict student outcomes. Optimizing the total of each weak 
learner’s predictions, which are updated by gradient descent iterations, it minimizes a loss function37. The XGB 
forecast for a given data point xi can be expressed by Eq. (6).

 
yi =

∑
k (k = 1) fk (xi) (6)

where the predicted result for data point xi is yi, the number of weak learners is k, and the prediction result of 
the weak learner is represented as fk(xi). The main hyperparameters are ‘n_estimators,’ ‘max_depth,’ and ‘min_
child_weight’ and are tuned to specific values.

Artificial bee colony (ABC) optimization technique
To improve model performance, ML classifiers use the ABC approach, which was inspired by the foraging action 
of the honey bees. By using bees to represent potential solutions, the algorithm searches the search space and 
evaluates their suitability according to a predetermined objective function. The algorithm iteratively updates 
potential solutions through communication and information sharing, progressively moving closer to the best 
answers. Mathematically, the ABC algorithm involves searching through possible solution vectors, calculating 
fitness values based on the objective function, and selecting the best solutions for further iterations, refer to 
Eq. (7).

 
F itness (xi) = 1

(1 + f (xi))
 (7)

where (xi) is a candidate solution (bee) in the population, Fitness(xi) is the fitness value assigned to the solution, 
showing its quality relative to other solutions, and f(xi) is the objective function for the solution. This Equation 
calculates the fitness value by inversely scaling the objective function’s value.

Ant colony optimization (ACO) technique
The ACO approach simulates the cooperative behaviour of ants in search of the best solutions when used 
in conjunction with ML classifiers to evaluate student datasets. Within ML workflows designed to predict 
student performance, ACO can be utilized to optimize feature selection, model selection, or parameter 
tuning. The features or parameters that have the biggest impact on predicting accuracy are chosen based on 
this algorithm’s pheromone trail updating Eq.  (8). Using performance input from each iteration, the system 
adjusts the pheromone levels on pathways that reflect various feature subsets or model configurations iteratively. 
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Pheromone concentrations rise along paths that lead to increasingly accurate predictions over time, directing 
further iterations toward better solutions.

 τij = (1 − ρ) · τij + ∆τij  (8)

where the pheromone level on the path between nodes i and j is represented by τij, the amount of pheromone 
deposited on the path by ants is determined by Δτij, and the pheromone evaporation rate, ρ, controls the 
degree to which pheromone levels decrease over time. Equation (8) depicts the iterative procedure that updates 
pheromone levels in response to each ant’s performance, leading to better solutions in subsequent iterations.

Performance measures of ML model
To assess the efficacy and predictive capacity of the model, the performance metrics considered, which include 
ROC (Receiver Operating Characteristic) curve analysis38 and it is a graph depicting True Positive Rate (TPR) 
versus False Positive Rate (FPR) across different threshold values and Accuracy, refer to Eq. (9)39, F1 score, refer 
to Eq. (10)40, Recall, refer to Eq. (11)41, Precision, refer to Eq. (12)42, r2, refer to Eq. (13)43.

 
Accuracy = (T P + T N)

(T P + T N + F P + F N)  (9)

 
F1score = (2 × (precision × recall))

(precision + recall)  (10)

 
Recall = (T P )

(T P + F N)  (11)

 
P recision = (T P )

(T P + F P )  (12)

 
r2 = 1 − (SStot)

(SSres)  (13)

where SSres is the sum of squared residuals and SStot is the total sum of squares.

Computational resources and performance
In our experiments, we utilized Google Colab, which provides cloud-based CPU/GPU resources, enabling 
efficient execution of machine learning models and optimization techniques. However, the computational burden 
varied significantly depending on the dataset size and model complexity. Integrating SMOTE and optimization 
techniques such as ACO and ABC further impacted the performance, especially regarding processing time, 
memory usage, and computational complexity. Table 3 summarizes each experiment’s processing times, 
memory usage, and computational complexity. While smaller datasets were manageable within Google Colab’s 
resources, the added complexity of SMOTE and optimization techniques may introduce scalability challenges 
when dealing with large-scale datasets.

Model Processing time Memory usage Computational complexity

DT without SMOTE 5–10 s Moderate (2–3 GB RAM) Low

KNN without SMOTE 5–10 s Moderate (2–3 GB RAM) Low

XGB without SMOTE 5–10 s High (4–5 GB RAM) High

DT with SMOTE 2 min High (4–5 GB RAM) Moderate

KNN with SMOTE 2.5 min High (4–5 GB RAM) Moderate

XGB with SMOTE 2.5 min Very high (6 GB RAM) Very high

ABC-DT without SMOTE 2.2 min High (4–5 GB RAM) High

ABC-KNN without SMOTE 2.5 min High (4–5 GB RAM) High

ABC-XGB without SMOTE 3 min Very high (6 GB RAM) Very high

ABC-DT with SMOTE 2.3 min High (4–5 GB RAM) High

ABC-KNN with SMOTE 2.4 min High (4–5 GB RAM) High

ABC-XGB with SMOTE 3 min Very high (6 GB RAM) Very high

ACO-DT without SMOTE 2.1 min High (4–5 GB RAM) High

ACO-KNN without SMOTE 2.2 min High (4–5 GB RAM) High

ACO-XGB without SMOTE 3 min Very high (6 GB RAM) Very high

ACO-DT with SMOTE 2.3 min High (4–5 GB RAM) High

ACO-KNN with SMOTE 2.4 min High (4–5 GB RAM) High

ACO-XGB with SMOTE 3 min Very high (6 GB RAM) Very high

Table 3. Processing time, memory usage, and computational complexity for each model.
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Table 3 shows that processing times for models without optimization ranged from 5 to 10 s, while models with 
SMOTE or optimization techniques (ACO, ABC) required approximately 2 to 3 min. Memory usage increased 
when applying SMOTE and optimization algorithms, particularly for models like XGBoost, which demand 
more computational resources. The computational complexity, especially with hyperparameter optimization, 
added a significant load, particularly with the XGBoost model. The hyperparameter optimization in models 
like XGBoost, ABC, and ACO adds significant computational load due to iterative processes, leading to longer 
processing times and higher memory demands. SMOTE further increases memory usage by generating synthetic 
data. While the models work well on medium-sized datasets in Google Colab, scalability may be a concern with 
large datasets, as processing time and memory usage will likely increase, requiring more powerful resources or 
parallelization for efficient performance.

Parameter settings
The parameters for each algorithm were carefully tuned to optimize their performance44. Parameters such 
as maximum depth and splitting criteria were considered for the Decision Tree. KNN was configured with 
a specific number of neighbors, while XGBoost utilized a learning rate and maximum depth based on prior 
experimentation. SMOTE was implemented with a predefined sampling strategy to address class imbalance. 
Optimization techniques, including ACO and ABC, were fine-tuned with specific values for the number of 
iterations, ants, and bees. A summarized table (Table 4) is provided below, detailing the baseline parameter 
settings for all models and techniques. These values were selected based on experimental trials to ensure 
consistent and reliable experiment comparisons.

Results and discussion
This study conducted eight experiments utilizing feature correlation analysis, feature relevance, SMOTE, ML 
classifiers, and hyperparameter tuning algorithms for student datasets. Three ML classifiers, DT, KNN, and XGB, 
were employed, and ABC and ACO techniques were also used as the hyperparameter tuning algorithms. All the 
experiments were conducted in Python, utilizing its libraries.

Experiment I: Feature correlation analysis
The degree of association between pairs of features was determined by computing correlation coefficients using 
the Kendall-Tau method. The analysis helps identify features that exhibit no connection, are negatively linked 
(move in opposite directions), or are positively associated (rise or decrease together). Table 5 presents the results 
of the analysis of each feature using the Kendall Tau method.

The observations regarding positive, negative, and no correlation among features are discussed in the 
following sub-sections.

Positive correlated features
The features with correlation coefficients greater than 0 in the Kendall Tau correlation matrix are categorized as 
positively correlated features and are depicted in Table 6. It includes the features that exhibit positive correlations 
with others.

The findings from the Kendall Tau correlation matrix, as shown in Table 6, reveal several key relationships 
between features,

• GEN and TOT_INC have a positive correlation of 0.11, suggesting that students from wealthier families may 
benefit from better access to educational resources, which can enhance their academic performance.

• The 0.197 correlation between AGE and PT_JOB indicates that older students, who are more likely to work 
part-time, may develop time management and financial independence skills contributing to academic suc-
cess.

• A correlation of 0.16 between ADM_TYPE and CLG_CURRACT suggests that the type of admission process 
a student undergoes may influence their choice of curriculum, which can impact academic outcomes.

Model Parameter Value

DT

Criterion Gini index

Max depth 10

Min samples split 2

KNN
Number of neighbors (k) 5

Distance metric Euclidean

XGB
Learning rate 0.1

Max depth 6

SMOTE Sampling strategy 0.5

ABC
Colony size 100

Maximum cycles 500

ACO
Number of ants 50

Number of iterations 100

Table 4. Parameter settings.
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Features GEN AGE PT_JOB SIN_PAR FAT_ACDQUA MOT_ACDQUA FH_OCCUP TOT_INC ADM_TYPE

GEN 1  − 0.005 0.001  − 0.006 0.081  − 0.028 0.039 0.11  − 0.079

AGE  − 0.005 1 0.197  − 0.073 0.037 0.016 0.056 0.009 0.113

PT_JOB 0.001 0.197 1 0.037 0.08 0.104  − 0.1 0.068 0.16

SIN_PAR  − 0.006  − 0.073 0.037 1 0.117 0.125  − 0.056 0.06 0.161

FAT_ACDQUA 0.081 0.037 0.08 0.117 1 0.455  − 0.189 0.221  − 0.043

MOT_ACDQUA  − 0.028 0.016 0.104 0.125 0.455 1  − 0.133 0.217  − 0.016

FH_OCCUP 0.039 0.056  − 0.1  − 0.056  − 0.189  − 0.133 1  − 0.042  − 0.079

TOT_INC 0.11 0.009 0.068 0.06 0.221 0.217  − 0.042 1  − 0.083

ADM_TYPE  − 0.079 0.113 0.16 0.161  − 0.043  − 0.016  − 0.079  − 0.083 1

CLG_CURRACT  − 0.021 0.034 0.048 0.031 0.026 0.097  − 0.045 0.157  − 0.103

N_CHILD 0.049 0.104 0.026  − 0.027 0.017  − 0.011  − 0.012 0.048 0.03

GEN_INQ  − 0.111 0.125 0.156 0.11 0.038 0.063  − 0.059  − 0.019 0.206

TRANS_DIFF  − 0.103  − 0.043 0.205 0.134  − 0.055  − 0.05  − 0.008  − 0.043 0.132

H_SOCSITE  − 0.034 0.03 0.022 0.009 0.096 0.097  − 0.042 0  − 0.055

H_VIDGAM 0.092  − 0.021 0.02 0.062 0.147 0.108 0.018 0.059  − 0.026

H_CANCAF 0.028  − 0.02  − 0.128  − 0.023 0.109 0.066 0.042  − 0.061  − 0.106

H_COCHCL  − 0.048  − 0.12  − 0.037 0.053 0.047 0.082  − 0.065 0.107 0.012

H_SELFST  − 0.065 0.037  − 0.044  − 0.105 0.016 0.031 0.084  − 0.014  − 0.059

R_CONF  − 0.065 0.021  − 0.022  − 0.006 0.055 0.117  − 0.055  − 0.029  − 0.029

R_EMOT 0.05 0.077 0.1 0.118 0.099 0.107  − 0.067 0.005 0.118

ATTEN  − 0.062 0.003 0.126  − 0.037 0.071 0.134  − 0.146 0.033 0.007

TT  − 0.042 0.032 0.112  − 0.009 0.037 0.044  − 0.172  − 0.013 0.154

Features CLG_CURRACT N_CHILD GEN_INQ TRANS_DIFF H_SOCSITE H_VIDGAM H_CANCAF H_COCHCL

GEN  − 0.021 0.049  − 0.111  − 0.103  − 0.034 0.092 0.028  − 0.048

AGE 0.034 0.104 0.125  − 0.043 0.03  − 0.021  − 0.02  − 0.12

PT_JOB 0.048 0.026 0.156 0.205 0.022 0.02  − 0.128  − 0.037

SIN_PAR 0.031  − 0.027 0.11 0.134 0.009 0.062  − 0.023 0.053

FAT_ACDQUA 0.026 0.017 0.038  − 0.055 0.096 0.147 0.109 0.047

MOT_ACDQUA 0.097  − 0.011 0.063  − 0.05 0.097 0.108 0.066 0.082

FH_OCCUP  − 0.045  − 0.012  − 0.059  − 0.008  − 0.042 0.018 0.042  − 0.065

TOT_INC 0.157 0.048  − 0.019  − 0.043 0 0.059  − 0.061 0.107

ADM_TYPE  − 0.103 0.03 0.206 0.132  − 0.055  − 0.026  − 0.106 0.012

CLG_CURRACT 1  − 0.016 0.002  − 0.007 0.05 0.063 0.053 0.071

N_CHILD  − 0.016 1  − 0.069  − 0.028 0.021  − 0.003  − 0.12  − 0.003

GEN_INQ 0.002  − 0.069 1 0.284  − 0.06  − 0.039  − 0.099 0.013

TRANS_DIFF  − 0.007  − 0.028 0.284 1  − 0.11  − 0.014  − 0.088 0.121

H_SOCSITE 0.05 0.021  − 0.06  − 0.11 1 0.068 0.107  − 0.106

H_VIDGAM 0.063  − 0.003  − 0.039  − 0.014 0.068 1 0.284 0.227

H_CANCAF 0.053  − 0.12  − 0.099  − 0.088 0.107 0.284 1 0.186

H_COCHCL 0.071  − 0.003 0.013 0.121  − 0.106 0.227 0.186 1

H_SELFST  − 0.063 0.053  − 0.004  − 0.035 0.074  − 0.25  − 0.037  − 0.061

R_CONF 0.076  − 0.023 0.006  − 0.018 0.036  − 0.067 0.04 0.191

R_EMOT 0.001 0.052  − 0.023 0.01 0.062  − 0.023  − 0.069  − 0.014

ATTEN 0.16  − 0.046 0.041 0.09  − 0.02  − 0.04  − 0.026 0.01

TT 0.125  − 0.075 0.236 0.091  − 0.06 0.069 0.083 0.09

Features H_SELFST R_CONF R_EMOT ATTEN TT

GEN  − 0.065  − 0.065 0.05  − 0.062  − 0.042

AGE 0.037 0.021 0.077 0.003 0.032

PT_JOB  − 0.044  − 0.022 0.1 0.126 0.112

SIN_PAR  − 0.105  − 0.006 0.118  − 0.037  − 0.009

FAT_ACDQUA 0.016 0.055 0.099 0.071 0.037

MOT_ACDQUA 0.031 0.117 0.107 0.134 0.044

FH_OCCUP 0.084  − 0.055  − 0.067  − 0.146  − 0.172

TOT_INC  − 0.014  − 0.029 0.005 0.033  − 0.013

ADM_TYPE  − 0.059  − 0.029 0.117 0.007 0.154

CLG_CURRACT  − 0.063 0.076 0.001 0.16 0.125

Continued
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• The 0.205 correlation between ADM_TYPE and GEN_INQ implies that certain admission types may be asso-
ciated with gender-related challenges in the academic environment, affecting students’ academic engagement 
and performance.

• The strong correlation of 0.455 between FAT_ACDQUA and MOT_ACDQUA underscores the significant 
role of parental education in shaping student outcomes. Educated parents are likely to provide higher expec-
tations and greater intellectual support, positively influencing their children’s academic success.

• The 0.216 correlation between TOT_INC and MOT_ACDQUA suggests that financial stability and higher 
parental education foster a supportive home environment that can enhance academic performance.

• A correlation of 0.28 between ATTEN and TT indicates that regular attendance and increased study time are 
positively related to academic success. Additionally, TRANS_DIFF correlates with ATTEN, suggesting that 
students facing transportation challenges may be more motivated to attend classes, driven by their determi-
nation to overcome these barriers.

• Lastly, the 0.283 correlation between GEN_INQ and TRANS_DIFF implies that students facing gender in-
equality in the academic environment may also experience transport-related challenges, reflecting broader 
social and logistical issues that can impact their academic journey.

Negative correlated features
Negatively correlated features in the Kendall Tau correlation matrix are those with correlation coefficients less 
than 0, as depicted in Table 7. These features exhibit negative correlations with others, suggesting that an increase 
in one feature is associated with a decrease in the other.

The negative correlations observed are,

Feature 1 Feature 2 Value

GEN AGE  − 0.004

PT_JOB SIN_PAR  − 0.100

FAT_ACDQUA FH_OCCUP  − 0.189

FH_OCCUP ADM_TYPE  − 0.078

ADM_TYPE TOT_INC  − 0.083

Table 7. Negative correlated features.

 

Feature 1 Feature 2 Value Feature 1 Feature 2 Value

GEN TOT_INC 0.11 ADM_TYPE CLG_CURRACT 0.16

AGE PT_JOB 0.197 ADM_TYPE GEN_INQ 0.205

PT_JOB SIN_PAR 0.037 CLG_CURRACT GEN_INQ 0.155

SIN_PAR FAT_ACDQUA 0.116 GEN_INQ TRANS_DIFF 0.283

FAT_ACDQUA MOT_ACDQUA 0.455 TRANS_DIFF ATTEN 0.089

MOT_ACDQUA TOT_INC 0.216 ATTEN TT 0.28

TOT_INC CLG_CURRACT 0.157

Table 6. Positive correlated features.

 

Features H_SELFST R_CONF R_EMOT ATTEN TT

N_CHILD 0.053  − 0.023 0.052  − 0.046  − 0.075

GEN_INQ  − 0.004 0.006  − 0.023 0.041 0.236

TRANS_DIFF  − 0.035  − 0.018 0.01 0.09 0.091

H_SOCSITE 0.074 0.036 0.062  − 0.02  − 0.06

H_VIDGAM  − 0.25  − 0.067  − 0.023  − 0.04 0.069

H_CANCAF  − 0.037 0.04  − 0.069  − 0.026 0.083

H_COCHCL  − 0.061 0.191  − 0.014 0.01 0.09

H_SELFST 1 0.242 0.082 0.047 0.087

R_CONF 0.242 1 0.137 0.115 0.162

R_EMOT 0.082 0.137 1 0.216 0.042

ATTEN 0.047 0.115 0.216 1 0.28

TT 0.087 0.162 0.042 0.28 1

Table 5. Features correlation analysis.
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• GEN and AGE have a negligible negative correlation of − 0.004, suggesting that there is almost no relationship 
between gender and age in this context.

• PT_JOB and SIN_PAR show a correlation of − 0.100, indicating that students with part-time jobs may be 
slightly less likely to come from single-parent households or vice versa.

• FAT_ACDQUA and FH_OCCUP have a negative correlation of − 0.189, suggesting that students whose fa-
thers have higher academic qualifications may have fathers in higher-status or more specialized occupations, 
as opposed to lower-status jobs.

• FH_OCCUP and ADM_TYPE show a correlation of − 0.078, implying a minimal negative relationship be-
tween the father’s occupation and the admission type, indicating that the two factors may not strongly influ-
ence each other.

• ADM_TYPE and TOT_INC correlate − 0.083, suggesting a slight negative relationship between the type of 
admission process and total family income, indicating that the admission process might have minimal influ-
ence on the family’s income level.

No correlated features
It is observed that no features have a correlation coefficient of exactly zero, indicating that every feature is at least 
weakly correlated with others in the dataset. While some correlations may be very weak or close to zero, the lack 
of perfectly zero correlations suggests that all features contribute, to some extent, to the academic performance 
prediction model. Even weak correlations can provide valuable insights into subtle relationships that may not be 
immediately apparent. These weak correlations could become significant when combined with other features or 
in different modeling contexts. Therefore, all features should be considered for further analysis and inclusion in 
the predictive model.

Experiment II: Feature relevance and interpretation
This experiment focused on analyzing the relevance of individual features to understand their impact on students’ 
academic performance. The analysis ranked features based on their relevancy scores, determined through the 
chi-square test, providing insights into their influence on the prediction outcomes. Figure 6 illustrates the top 21 
features ranked by their relevancy scores.

As depicted in the figure, Gender (418) plays a significant role in academic performance, reflecting differences 
in academic engagement, learning preferences, and social dynamics. Age (402) may be related to maturity and 
learning pace, with older students possibly demonstrating greater self-discipline and focus. A part-time job 
(400) can affect the availability of study time, as students must balance work and academic responsibilities. 
Being a single-parent child (392) may influence academic performance due to varying levels of parental support 
and household dynamics. Self-confidence (389) directly impacts a student’s ability to tackle challenges and 
persevere academically, while emotional stability (360) is critical for maintaining focus and resilience under 
academic pressure. Admission type (331) may affect the level of preparedness and alignment with academic 
expectations, and transportation issues (330) can affect attendance and energy levels, limiting a student’s ability 
to perform consistently. Attendance (291) ensures regular exposure to instruction, which positively impacts 
learning outcomes.

Fig. 6. Features relevance score.
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Perceived or real gender inequality (280) could influence confidence levels and opportunities for academic 
engagement. A father’s academic qualification (273) and a mother’s academic qualification (260) both shape the 
learning environment and encourage home. A father’s occupation (242) may influence economic stability and 
access to educational resources, while household income (216) determines access to extracurricular resources, 
technology, and private coaching. Co-curricular activities (202) enhance overall learning but may distract 
from academics if not managed well. The number of children in a family (198) can impact resource allocation 
and parental attention. Time spent in coaching classes (195) directly correlates with academic support and 
performance, whereas excessive time on social media (183), gaming (171), and in cafés (152) may detract from 
productive study hours. Finally, self-study hours (151) are crucial for understanding and reinforcing concepts, 
directly impacting academic performance, as dedicated self-study allows students to master material at their 
own pace and gain deeper understanding outside of class hours.

Experiment III: ML baseline models without SMOTE
The results of the ML baseline models are presented in Table 8 when applied to the student dataset without 
SMOTE. Based on the performance metrics, the DT exhibited the best performance among the three classifiers, 
achieving an Accuracy of 95.35%, an F1score of 95.25%, Recall and Precision of 95.15% and 95.35%, ROC_AUC 
of 95%, and r2 of 84%.

Experiment IV: ML baseline models with SMOTE
After Experiment II, the ML baseline models were analyzed with SMOTE. Based on the performance metrics in 
Table 9, once again, the DT exhibited the best performance among the three classifiers, achieving an Accuracy 
of 96.53%, an F1score of 98%, Recall and Precision of 96.50% and 96.52%, ROC_AUC of 96%, and r2 of 84.4%.

Experiment V: ABC hyperparameter optimization of ML classifiers without SMOTE
In this experiment, all three base classifiers were optimized using the ABC technique but without SMOTE, 
refer to Table 10. The results showed that the optimized DT achieved the best Accuracy of 97.15%, an F1score of 
97.25%, Recall and Precision of 97.15% and 97.35%, ROC_AUC of 96%, and Precision of 84.73%.

Metrics DT (%) KNN (%) XGB (%)

F1score 97.25 87.30 96.25

Accuracy 97.15 87.8 96.33

Precision 97.35 87.51 96.41

Recall 97.15 87.10 96.1

ROC_AUC 96 93 95

r2 84.73 48.62 85.36

Table 10. Results of optimized base classifiers using ABC without SMOTE.

 

Metrics DT (%) KNN (%) XGB (%)

F1score 98 86.15 96.06

Accuracy 96.53 86.18 96.11

Precision 96.52 86.21 96.12

Recall 96.50 86.10 96

ROC_AUC 96 93 95

r2 84.4 47.32 84.66

Table 9. Results of the base classifiers with SMOTE.

 

Metrics DT (%) KNN (%) XGB (%)

F1score 95.25 85.41 95.06

Accuracy 95.35 85 95

Precision 95.35 85.83 95.12

Recall 95.15 85 95

ROC_AUC 95 92 94

r2 84 46.22 83.2

Table 8. Results of the base classifiers without SMOTE.
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Experiment VI: ABC hyperparameter optimization of ML classifiers with SMOTE
All three base classifiers were optimized using the ABC technique but with SMOTE in this experiment. From 
Table 11, the results showed that once again, the optimized DT achieved the best Accuracy of 97.56%, an F1score 
of 97.51%, Recall and Precision of 97.56% and 97.46%, ROC_AUC of 97%, and r2 of 84.84%.

Experiment VII: ACO hyperparameter optimization of ML classifiers without SMOTE
For the second to last experiment, all three base classifiers were optimized using the ACO technique without 
SMOTE, refer to Table 12. The results showed that the optimized DT using ACO achieved the best performance, 
with an Accuracy of 97.91%, an F1score of 97.69%, Recall and Precision of 97.69% and 97.70%, ROC_AUC of 
97%, and r2 of 84.86%.

Experiment VIII: ACO hyperparameter optimization of ML classifiers with SMOTE
In the final experiment, all three base classifiers were optimized using the ACO technique with SMOTE. The 
results in Table 13 showed that the optimized DT using ACO with SMOTE achieved the best performance, with 
an Accuracy of 98.15%, an F1score of 98.10%, Recall and Precision both at 98.10% and 98.09%, respectively, a 
ROC_AUC of 98%, and an r2 of 85.75%.

Optimized parameters of decision tree without and with SMOTE
Table 14 shows the optimized parameters of the DT without and with SMOTE, using both optimization 
techniques: ABC and ACO. The maximum depth of the tree, without SMOTE for ABC-DT, is 19; hence, it can 
rise to 19 levels. The model can identify more intricate patterns in the data. One sample is the bare minimum 
needed at a leaf node. The tree may include leaf nodes with only one sample, which, if improperly managed, may 
result in overfitting. Three samples are the minimum needed to separate an internal node, which helps avoid 
overfitting caused by splitting nodes with relatively few samples.

Optimized parameters of K-nearest neighbor without and with SMOTE
Table 15 shows the optimized parameters of the k-nearest neighbor without and with SMOTE, using both 
optimization techniques: ABC and ACO.

Metrics DT (%) KNN (%) XGB (%)

F1score 98.10 89.01 97

Accuracy 98.15 89.05 97.2

Precision 98.09 88.98 97

Recall 98.10 89.05 97

ROC_AUC 98 95 97

r2 85.75 52.34 88

Table 13. Results of optimized base classifiers using ACO with SMOTE.

 

Performance metrics DT (%) KNN (%) XGB (%)

F1score 97.69 88.91 96.50

Accuracy 97.91 89 96.8

Precision 97.70 88.83 97

Recall 97.69 89 96

ROC_AUC 97 94 96

r2 84.86 50.22 87

Table 12. Results of optimized base classifiers using ACO without SMOTE.

 

Metrics DT (%) KNN (%) XGB (%)

F1score 97.51 88.29 96.39

Accuracy 97.56 88 96.49

Precision 97.46 88.37 96.48

Recall 97.56 88.21 96.3

ROC_AUC 97 94 96

r2 84.84 48.66 86

Table 11. Results of optimized base classifiers using ABC with SMOTE.
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Optimized hyperparameters of XGBoost without and with SMOTE
Table 16 shows the optimized parameters of the XGBoost classifier without and with SMOTE, using both 
optimization techniques: ABC and ACO.

The results effectively meet the study’s aim, which is to improve the prediction of IT students’ academic 
performance by ML techniques. The optimized settings and comparative performance measures highlight 
several vital conclusions. The study effectively illustrates how ML models’ predictive power is increased when 
SMOTE is used with optimization strategies like ABC and ACO. After concluding the experiment, the study 
determined that SMOTE and ACO can enhance students’ academic performance prediction. Among all the 
experiment results, the ACO-DT with SMOTE showed the best performance across all metrics compared to 
other models. The DT consistently performed best among the base models, followed by XGB and KNN. The 
optimal parameters for the ACO-DT with SMOTE were a max_depth of 18, a min_samples_leaf of 1, and a min_
samples_split of 6, contributing to its robust performance in predicting student academic performance. This is 
consistent with the research goal of assessing and contrasting ML classifiers to predict academic achievement. 
The best settings for every model, with and without SMOTE, offer insightful information about the advantages 
and disadvantages of each model in managing the complexity of student performance data. The study emphasizes 
how important it is to adjust hyperparameters using ABC and ACO to enhance model performance. The ACO-
DT model with SMOTE showed stability in measures including Precision, Recall and F1score, and achieving 
greater accuracy. This demonstrates how well optimization strategies work to improve ML models’ ability to 
anticipate and manage imbalances in student performance data accurately. The results highlight how ML may 
help educational stakeholders pinpoint and address the variables affecting students’ achievement, eventually 
leading to better educational outcomes and interventions.

Implications of the study
The research’s strategies and outcomes significantly impact many educational practices and policy areas, 
particularly IT departments. The implications extend to future research paths, student support systems, 
administrative decision-making, and instructional methodologies.

• Instructional Strategies: Teachers may create individualized lesson plans that meet each student’s strengths and 
weaknesses and precisely forecast student achievement. This makes implementing tailored treatments that 

Techniques n_estimators max_depth min_child_weight

Without SMOTE

ABC-XGB 3 100 4

ACO-XGB 4 100 2

With SMOTE

ABC-XGB 5 100 1

ACO-XGB 6 100 1

Table 16. Optimized parameters of XGB.

 

Techniques N_neighbors Weights Matric

Without SMOTE

ABC-KNN 3 Uniform Manhattan

ACO-KNN 4 Uniform Euclidean

With SMOTE

ABC-KNN 4 Distance_based Euclidean

ACO-KNN 5 Uniform Euclidean

Table 15. Optimized parameters of KNN.

 

Techniques Max_depth Min_samples leaf Min_samples_split

Without SMOTE

ABC-DT 19 1 3

ACO-DT 11 4 2

With SMOTE

ABC-DT 17 2 6

ACO-DT 18 1 6

Table 14. Optimized parameters of DT.
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raise student success and engagement possible. Early identification of pupils who are at risk of underperform-
ing allows teachers to give remedial instruction and tailored support, enabling students to overcome obstacles 
in the classroom and achieve better results.

• Administrative Decision-Making: Predictive analytics is a tool administrators may use to allocate resources 
better, focusing on academic and support services where they are most needed. This guarantees the cost-ef-
fectiveness and efficacy of treatments. Understanding the elements that influence students’ performance may 
help construct curricula, ensuring that classes are made to improve learning and tackle frequent problems.

• Student Support Systems: The study’s prediction algorithms may be included in early warning systems to 
enable proactive interventions before problems worsen and real-time student performance monitoring. Pre-
dictive insights may be used by academic advisers and counselors to better assist students in making decisions 
regarding their study methods, course choices, and career pathways.

• Educational Equity: All student groups, especially minorities and those historically underrepresented in IT 
areas, may expect accurate projections thanks to the fair and inclusive predictions made using SMOTE when 
handling unbalanced data. Institutions may lower dropout rates and increase completion and retention rates 
among IT students by identifying at-risk individuals early on.

• Technological Integration: The potential for incorporating advanced analytics and optimization techniques 
into educational data systems is demonstrated by the successful use of ACO and ABC optimization approach-
es, opening the door to more complex data-driven educational decision-making. The benefits of predictive 
analytics may be extended outside of IT departments by adapting and scaling the current methodology across 
other educational contexts and disciplines.

• Policy Implications: Policymakers may use the results of this study to develop evidence-based policies that 
improve overall educational quality, optimize resource allocation, and strengthen student support services. 
Establishing standardized frameworks for predictive analytics in education may ensure consistency, depend-
ability, and ethical concerns in using these technologies.

In addition to advancing educational data analytics, our work offers valuable tools and insights that have 
the potential to significantly enhance educational fairness, institutional effectiveness, and student outcomes. 
Implementing these approaches and insights may result in a more data-driven and student-centered approach to 
education, eventually promoting academic achievement and lifetime learning.

Conclusions, limitations, ethical and privacy considerations, and future work
Conclusions
This study illuminates the pivotal role of ML in forecasting the academic trajectories of IT students, presenting 
valuable insights for educational stakeholders and administrators. This study compares the effectiveness of ML 
classifiers for improved student academic prediction, utilizing hyperparameter tuning techniques and SMOTE 
to manage imbalanced datasets. Expanding upon the evaluation of three fundamental classifiers, DT, KNN, 
and XGB, it becomes evident that DT stands out prominently among the trio. Building on this revelation, 
we introduced two optimization techniques, ABC and ACO, aimed at augmenting the performance of the 
DT classifier. The ensuing results unequivocally illustrate the efficacy of both methods in bolstering classifier 
performance. Particularly striking is the exceptional performance exhibited by the ACO-DT model, boasting an 
Accuracy of 98.1%, an F1score of 96%, a Precision of 96.24%, a Recall of 96.19%, an ROC curve of 96%, and an 
r2 of 84.75%. The finely tuned DT, complete with hyperparameters in the outcomes, demonstrates how crucial 
fine-tuning is to model optimization.

Limitations of the study
The study offers insightful information, but the dataset may be unique to a particular institution or demography, 
restricting the generalizability of the findings to other contexts or demographics. The study’s characteristics 
could not have included all pertinent variables that affect academic achievement. The study did not investigate 
more sophisticated ML techniques, such as ensemble approaches or deep learning, that could provide higher 
predicted performance. Academic performance is dynamic and subject to change, so longitudinal studies are 
necessary to provide more comprehensive insights. Predictive modeling using student data presents ethical and 
privacy issues. It is essential to ensure student privacy and data are handled safely. The models run the danger of 
incorporating or maintaining biases, which might result in unfair or discriminating behaviors. Ensuring equity 
and justice in predictive analytics is a significant challenge.

Ethical and privacy considerations
Predictive modeling in educational contexts, mainly when dealing with sensitive student data, necessitates 
careful attention to ethical and privacy concerns. This study adheres to strict ethical standards to ensure students’ 
privacy is upheld and their data is handled securely. Below are the key considerations taken into account,

• Data Privacy: The data used in this study was anonymized to prevent the identification of individual students. 
All data collection and usage complied with applicable data protection regulations, ensuring student informa-
tion was protected throughout the research process. Secure storage methods were employed to safeguard the 
integrity and confidentiality of the data.

• Informed Consent: All participants were provided with clear information about the study’s purpose and how 
their data would be used. Informed consent was obtained before data collection, ensuring that participants 
were fully aware of their rights and the scope of the research.

• Mitigating Bias: Predictive models in machine learning can unintentionally perpetuate biases, especially when 
trained on historical data that may reflect existing inequalities. To address this, the study carefully selected 
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features and applied techniques such as SMOTE to handle class imbalances and reduce the risk of biased pre-
dictions. Regular audits of model performance were conducted to ensure the results were fair and equitable.

• Transparency and Interpretability: The models used in this study were committed to enhancing their inter-
pretability. Ensuring transparency in how models make predictions is crucial for fostering trust among stake-
holders, including educators, administrators, and students. Future work should continue to explore ways to 
make machine learning models more interpretable and explainable.

• Fairness in Predictive Analytics: It is essential to ensure that predictive models do not reinforce existing ed-
ucational inequalities. Careful attention was paid to the potential for unfair discrimination based on factors 
such as gender, socioeconomic status, or other demographic variables. The goal was to create models that are 
as equitable and inclusive as possible to benefit all students equally.

Addressing these ethical considerations will remain a priority in future studies, ensuring that machine learning 
applications in education are implemented responsibly and with respect for all individuals involved.

Future directions
The research on using ML to predict the academic achievement of IT students should concentrate on enlarging 
feature sets to include a wider variety of characteristics, such as socioeconomic determinants, mental health 
indicators, and engagement measures. Dynamic data-collecting techniques should record real-time changes in 
student behavior and performance to improve forecast accuracy and timeliness. Investigating cutting-edge ML 
strategies like ensemble methods and deep learning models may provide fresh perspectives on intricate patterns 
in educational data, enhancing prediction accuracy and resilience across student demographics and institutional 
settings. The ability to monitor and evaluate student performance over lengthy periods is made possible by 
longitudinal studies, which also provide insights into the factors that affect academic achievement over time and 
the efficacy of treatments. Building confidence and optimizing the valuable influence of predictive analytics on 
student outcomes and institutional decision-making will also require resolving ethical issues, improving model 
interpretability, and guaranteeing scalable deployment in educational contexts.

Data availability
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