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Abstract: Global carbon dioxide (CO2) emissions are increasing and present substantial
environmental sustainability challenges, requiring the development of accurate predic-
tive models. Due to the non-linear and temporal nature of emissions data, traditional
machine learning methods—which work well when data are structured—struggle to pro-
vide effective predictions. In this paper, we propose a general framework that combines
advanced deep learning models (such as GRU, Bidirectional GRU (BIGRU), Stacked GRU,
and Attention-based BIGRU) with a novel hybridized optimization algorithm, GGBERO,
which is a combination of Greylag Goose Optimization (GGO) and Al-Biruni Earth Radius
(BER). First, experiments showed that ensemble machine learning models such as CatBoost
and Gradient Boosting addressed static features effectively, while time-dependent patterns
proved more challenging to predict. Transitioning to recurrent neural network architectures,
mainly BIGRU, enabled the modeling of sequential dependence on emissions data. The em-
pirical results show that the GGBERO-optimized BIGRU model produced a Mean Squared
Error (MSE) of 1.0 × 10−5, the best tested approach. Statistical methods like the Wilcoxon
Signed Rank Test and ANOVA were employed to validate the framework’s effectiveness in
improving the evaluation, confirming the significance and robustness of the improvements
due to the framework. In addition to improving the accuracy of CO2 emissions forecasting,
this integrated approach delivers interpretable explanations of the significant factors of
CO2 emissions, aiding policymakers and researchers focused on climate change mitigation
in data-driven decision-making.

Keywords: CO2 emissions; deep learning; optimization algorithms; feature selection;
recurrent neural networks; gated recurrent unit (GRU)

MSC: 68T01; 68T07; 68T20

1. Introduction
Carbon dioxide (CO2) emissions worldwide continue to rise, and as a result, envi-

ronmental sustainability is at risk; using correct and accurate models to predict emission
rates of CO2 is central to reducing the impact of climate change. Sophisticated forecasting
models are essential not only for the development of specific strategies but also for the
tracking of emission dynamics on a macro level [1,2]. The traditional way of developing
prediction models is insufficient for such a case in general because of the nature of envi-
ronmental data, which carries non-linear and random characteristics and is time-variable.
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These limitations have led to a search for better methods, especially those reinforced with
artificial intelligence (AI) techniques based on fundamental concepts of machine learning
(ML), which have been improved with optimization techniques [3].

Machine learning models have recently been used widely in environmental data
analysis because of their ability to find patterns and correlations in the datasets. However,
the performance of these models has a strong link to the algorithms used in them, mainly
when it comes to time-variant sequences like CO2 emission [4–6]. This research’s first
approaches apply a set of preliminary yet sufficient ML models, namely Cat Boost, Gradient
Boosting, Extra Trees, and XGBoost, which are well known for their stability and versatility
in working with structured data. These ensemble learning methods, developed based on
gradient-based optimization, offer an excellent baseline for the predictions made. However,
they cannot model long-term dependencies effectively as they are inadequate in considering
essential sequential details of the time series dataset [7–9].

To address these limitations, this study advances to sophisticated Recurrent Neural
Network (RNN) architectures, particularly Gated Recurrent Unit (GRU) variants. Three
advanced architectures are emphasized: Bidirectional GRU (BIGRU), Stacked GRU, and
Attention-enhanced BIGRU. BIGRU processes sequences bidirectionally, enhancing tempo-
ral relation capture [10], while stacked layers enable hierarchical feature learning. Attention
mechanisms further improve focus on critical time steps [11–13].

The study introduces two novel optimization algorithms: Greylag Goose Optimization
(GGO) and Al-Biruni Earth Radius (BER). GGO mimics avian collective behavior to balance
exploration–exploitation [14–16], while BER employs geometric principles for convergence
in noisy optimization spaces [17–19]. Their hybridization in GGBERO enables robust
feature selection and model tuning.

The effectiveness of the proposed models and the optimization strategies is assessed
using statistical techniques such as the Wilcoxon Signed Rank Test and the Analysis of
Variance (ANOVA). The Wilcoxon test is useful when rating pairs of samples, allowing
the treatment of the interspersed improvements between the models to be significantly
improved [20–22]. In contrast, ANOVA makes it easier to compare several models based
on the given criteria and provide a general evaluation of the difference in performance.
Such statistical comparisons are essential to ensure that all the improvements recorded are
not because of random chances but the superior methods used in this research [23–25].

This study proposes a unified framework for CO2 emission prediction using advanced
machine learning structures and optimization techniques. The enhanced precision and
reliability of the BIGRU model, mainly when the GGBERO algorithm is applied, is a
significant finding. The study’s contributions to machine learning and environmental
science are substantial, demonstrating the potential of AI-derived models in addressing
global issues.

The subsequent sections of this research provide a comprehensive literature review
of earlier studies, details of the dataset used, selection of the features, GRU models, and
optimization techniques. The model’s success is critically evaluated in the experimental
results section, and the key findings are discussed, along with suggestions for further studies.

2. Literature Review
In the literature review, the author focuses on comparing various research works that

centered on forecasting carbon emissions with the various models and methodologies
applied to enhance the predictive abilities of the forecast models. When governments
across the globe press on the need to set ever-higher carbon reduction targets, accurate
emission forecasts are inevitable. Of late, with the help of new-age techniques in machine
learning and deep learning, efforts have been made to forecast better results. The following
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section reviews and compares these models across various sectors and regions, and how
deep learning may provide better acknowledgment in future emission prediction. Also,
the authors present studies that address carbon emissions in transportation, construction,
and industrial segments of the economy while stressing the use of model performance
indicators such as RMSE, MAPE, and R2. This review focuses on setting out an accurate
picture of the role these models can play in achieving improvements in carbon emission
mitigation methods.

Authors of [26] compared the effectiveness of econometric, machine learning, and
deep learning models for carbon emission forecasting. Their findings indicate that heuristic
neural networks (a deep learning approach) demonstrate higher predictability for future
emission forecasting compared to econometric models, though econometric models are
more suitable for estimating changes due to specific factors. Also paper [27] focused on
the building and construction sector in China, analyzing emissions across 30 provinces
with nine machine learning regression models. Their results show that a stacking ensemble
regression model outperformed others, identifying urbanization and population as key
drivers of emissions, thus supporting the development of targeted low-carbon policies.

Authors of [28] addressed embodied carbon emissions in construction by applying
artificial neural networks, support vector regression, and extreme gradient boosting to
estimate emissions at the design phase. Their models, tested on 70 projects, achieved strong
interpretability (R2 > 0.7) and low error, supporting practical tools for emission estimation
and reduction during construction. In addition, authors of [29] developed an interpretable
multi-stage forecasting framework using SHAP to analyze energy consumption and CO2

emissions in the UK transport sector. Their results indicate that road carbon intensity is
the most significant predictor, while population and GDP per capita have less impact than
previously thought.

Authors of [30] utilized XGBoost to analyze real-world driving data for heavy-duty
vehicles in the EU, demonstrating that on-board monitoring data enables more accurate
CO2 emission predictions than traditional fuel-based methods. Also paper [31] introduced
an interpretable machine learning approach using land use data to predict emissions in
the Yangtze River Delta. Their Extra Tree Regression Optimization model achieved high
accuracy (R2 = 0.99 on training, 0.86 on test data) and revealed spatial clusters of emissions,
with industrial land use contributing to regional hotspots.

Authors of [32] evaluated several machine learning models—including linear re-
gression, ARIMA, and shallow and deep neural networks—for long-term CO2 emissions
forecasting in the building sector across multiple countries. Deep neural networks provided
the best long-term prediction performance. Paper [33] proposed a hybrid deep learning
framework combining gated recurrent units (GRUs) and graph convolutional networks
(GCNs) to capture both temporal and spatial dependencies in Chinese urban clusters. Their
model outperformed baselines in both single- and multi-step forecasts and demonstrated
strong generalizability.

Authors of [34] developed and compared nine machine learning regression models for
national-level CO2 emissions, finding that optimized Gaussian Process Regression achieved
the highest accuracy (R2 = 0.9998). Paper [35] used ARIMA, SARIMAX, Holt-Winters, and
LSTM models to predict India’s CO2 emissions, with LSTM achieving the lowest MAPE
(3.101%) and RMSE (60.635), confirming its suitability for emission forecasting.

Paper [36] applied deep learning, support vector machines, and artificial neural net-
works to forecast transportation-related CO2 emissions and energy demand in Turkey,
finding strong correlations between economic indicators and emissions, and predicting
significant increases in both metrics over the next 40 years. Also Authors of [37] used
reinforcement learning to optimize ship routes, reducing fuel consumption and emissions.
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The DDPG algorithm achieved the best performance, demonstrating the potential of RL for
emission reduction in shipping.

Authors of [38] forecasted greenhouse gas emissions in Turkey’s electricity sector using
deep learning and ANN, achieving high accuracy across several metrics, and highlighting the
rapid growth of GHG emissions in recent decades. Also paper [39] used LSTM models for
high-frequency greenhouse gas emission prediction in transport networks, outperforming
clustering and ARIMA models and supporting the use of deep learning for detailed, real-time
emission forecasting. In addition paper [40] improved CO2 emission prediction in China
by combining factor analysis with a PSO-optimized extreme learning machine (PSO-ELM),
achieving higher accuracy than conventional ELM and backpropagation neural networks.
Their approach supports more effective economic policy design for emission reduction.

Table 1 shows a comparative analysis of various studies on forecasting carbon emissions
using different models and methodologies. The table captures key aspects, including the type
of model used (deep learning, machine learning, econometric models), the main sector or
region studied, performance metrics, and key findings. The comparison highlights that deep
learning and machine learning models often exhibit higher accuracy and better prediction
capabilities, particularly when applied to spatial–temporal data or in complex systems like
transportation and construction. Moreover, econometric models tend to excel at estimating
changes due to specific factors but may lack the predictive power of more advanced mod-
els. These findings align with the general trend in the literature, where machine learning
models, especially ensemble and deep learning approaches, are increasingly favored for their
adaptability and improved performance across diverse datasets and sectors.

Table 1. Comparative analysis of carbon emissions forecasting models and key findings.

Study Model Type Sector/Region Key Metrics

[26] Heuristic Neural Network Carbon Emissions Forecasting Predictability, Emission Estimation

[27] Stacking Ensemble Regression Construction Sector, China RMSE, R2, MAPE

[28] ANN, SVR, XGBoost Building Projects, China R2 > 0.7, Error < 5.33%

[29] SHAP, ML Ensemble Transport, UK Interpretability, Accuracy

[30] XGBoost Road Emissions, EU CO2 Emission Estimates

[31] Extra Tree Regression, SHAP Yangtze River Delta, China R2 = 0.99 (Training), R2 = 0.86 (Test)

[32] ARIMA, Neural Networks Global (Building Sector) Multivariate Accuracy

[33] GRU, GCN Urban Clusters, China Spatiotemporal Prediction Accuracy

[34] Gaussian Process Regression National Level (CO2 Forecasting) MSE = 106.68, RMSE = 10.328, R2 = 0.9998

[35] LSTM, SARIMAX India MAPE = 3.101%, RMSE = 60.635

[36] DL, SVM, ANN Transport, Turkey R2 > 0.86, rRMSE ≈ 10%

[37] RL (DDPG, DQN) Shipping Industry Fuel Consumption, Emissions Reduction

[38] ANN, DL Electricity Sector, Turkey RMSE, rRMSE, R2

[39] LSTM, ARIMA Transportation (Link-Level) RMSE = 30, Coefficient Accuracy

[40] PSO-ELM (Extreme Learning Machine
with Particle Swarm Optimization) Carbon Emissions, China (Hebei) Prediction Accuracy, Factor Analysis

As illustrated in this literature review section, various mitigation techniques and
technologies are highlighted above to show how diverse they are for reducing CO2 from
vehicles. The studies we analyzed above describe various strategies to reduce car emissions,
such as regulation, technological, and other policy options. Though there has been some
success in making transportation systems cleaner and more efficient, issues still need to
be addressed, including the lack of infrastructure and customer acceptance to implement
policies. A multidimensional strategy incorporating technological innovation, supportive
policies, and social participation will have to be employed in the future to achieve significant
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reductions of CO2 emissions from vehicles collectively. The insights gathered from these
studies thus create room for a greener and more effective transit environment. Policymakers
can use the studies, business stakeholders, and researchers to assist them in decision-
making as the world strives toward sustainability, promoting climate resilience.

Following the literature review, the key research gaps identified in this study are
summarized as follows:

• Inadequate handling of non-linear, time-dependent patterns in CO2 emissions data by
traditional models;

• Limited capacity of existing methods to capture long-term sequential relationships;
• Insufficient integration of advanced optimization techniques for feature selection and

hyperparameter tuning;
• Absence of a unified framework combining deep learning architectures with hybrid

optimization strategies.

To address these identified research gaps, this paper proposes the following method-
ological contributions:

• Development of a unified framework integrating advanced GRU architectures with
hybrid GGBERO optimization;

• Demonstration of GGBERO-optimized BIGRU’s superior performance (MSE: 1.0 × 10−5);
• Novel hybrid optimization strategy enhancing model robustness against local optima;
• Comprehensive validation using the Wilcoxon Signed Rank Test and ANOVA;
• Interpretable insights into emission drivers through attention mechanisms.

Collectively, these contributions fill the research gaps identified and enhance the
existing carbon emission prediction by presenting a reliable, interpretable, and statisti-
cally proven modeling framework. It makes a sound foundation for future studies and
applications in environmental data analysis and policymaking.

3. Materials and Methods
This section describes the research methods used in the study and the data used to

develop the models from the data collection. Therefore, this research aims to achieve a
high level of accuracy and reliability in predictions for CO2 emission levels and identify the
hidden links between vehicle attributes and emissions through data analysis and feature
selection methods coupled with state-of-the-art optimization techniques.

3.1. Dataset

The dataset adopted in this research provides clear insights into how different aspects
of a vehicle affect the emission of CO2, hence creating a platform to model and accurately
predict the same emissions. The dataset originates in the Canadian government’s official
open-data portal and is seven years long, where variables are represented in 7385 rows and
12 columns, respectively. Every row is associated with a specific vehicle entry and contains
crucial variables, which either interactively or non-interactively convey their impact on the
vehicle’s CO2 emissions. Since the data are collected over several years, identifying trends
and patterns that may be typical of old and newer models will be more precise [41].

The characteristics of the dataset cover aspects of basic vehicle description, including
model type, transmission system, refueling type, and fuel consumption rates, all of which
are crucial to defining a vehicle’s CO2 emission factors. All these features are named using
standard four-letter alphanumeric codes for ease of analysis. For instance, the vehicle model
is categorized based on its drivetrain configuration and body structure, including options
such as four-wheel drive (4WD/4 × 4), all-wheel drive (AWD), flexible-fuel vehicles (FFV),
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as well as short (SWB), long (LWB), and extended wheelbases (EWB). These distinctions are
critical, as they directly relate to the vehicle’s performance and, consequently, its emissions.

Transmission types are similarly encoded, covering a range of systems from fully auto-
matic (A) to automated manual (AM), continuously variable (AV), and manual transmissions
(M). Additionally, the dataset records the number of gears, reflecting the variability in gear
configurations that can influence fuel efficiency and emissions. The inclusion of this level
of detail allows for a more nuanced analysis of how transmission technology impacts CO2

output, acknowledging the complex interplay between gear ratios and driving conditions.
Fuel type is another critical variable, with categories including regular gasoline (X),

premium gasoline (Z), diesel (D), ethanol (E85), and natural gas (N). Each fuel type has
distinct properties affecting combustion efficiency and emission levels. For instance, diesel
engines, while typically more fuel-efficient than gasoline, emit higher levels of certain
pollutants, making this a key consideration in emission modeling. On the other hand,
ethanol-blended fuels present a different profile due to their renewable content, highlighting
the diverse factors influencing the dataset.

Fuel consumption is captured in city and highway conditions, expressed in liters per
100 km (L/100 km). A combined rating that blends 55% city driving and 45% highway driving
is also provided, along with an alternative measure in miles per gallon (mpg). This dual
metric approach offers a comprehensive view of a vehicle’s fuel economy, accommodating
metric and imperial systems and enhancing the dataset’s applicability across different contexts.
Accurate fuel consumption data is crucial, as it serves as a proxy for understanding how
efficiently a vehicle converts fuel into energy and, by extension, its emission levels.

The primary variable of interest in the dataset is CO2 emissions, which has the unit of
measurement as grams per kilometer (g/km). These figures depict the emissions during
the commission of urban and extra-urban driving cycles, which mimic real-world driving
typical of usage. The emphasis on CO2 output is essential for the present dataset as this
indicator is significant in global climate change talks.

The dataset is collected from various government portals, ensuring enough detail
and that the level of coverage is needed for model development. The qualities of the data
are well-suited to the training and testing of machine learning models to make emission
predictions based on vehicle features. Including all these features makes the dataset
versatile so that many aspects of the relations between car attributes and their impact on
the environment can be investigated.

3.2. Exploratory Data Analysis

Exploratory data analysis, or EDA, is the initial cost-effective step in the data analysis
process and forms the basis of understanding the entire dataset and the initial spotting of
relations, patterns, or even oddities. EDA is used to analyze the data’s intrinsic structure
and identify valuable features that would be used in constructing the subsequent analysis.
It makes it possible to establish relationships between variables and to determine the
presence of outlying points or potential data distribution patterns, which are crucial for
decisions throughout the analysis. To do this, EDA provides an understanding of complex
data by displaying it on a heatmap, bar chart, or histogram to combine or prepare such
data for a more complicated analysis [42,43].

Figure 1 represents a heat map of the correlation of several features of the raw data
feed of CO2 emissions and the model before the feature selection occurred, (color: dark
orange = strong positive, light = weak, dark blue = strong negative). This means that this
heatmap will show the detailed interaction between the variables, where the intensity of
the color is a function of the interacting variables. Looking at this heatmap, we can find out
if any features are very similar or those that are not contributing much to the model, and
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thus guide us on which features to keep in the model and which to discard. Sometimes,
indicators might be highly correlated; this could be problematic regarding model tuning,
particularly within machine learning algorithms.
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Figure 2 presents the percent share of CO2 emissions of vehicles, depending on the
number of gears. It arranges vehicles according to the gear count and then evaluates this
aspect’s impact on emissions. The story shows whether cars with more gears have higher
or lower emissions, which helps to understand the correlation between gear layout and
CO2 production. This analysis is essential to understanding how vehicle mechanics, such
as gear systems, influence environmental impact.
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Figure 3 indicates how CO2 emissions vary with each fuel type; how energy forms
contribute to emission levels is equally evident. A component-wise plot of gasoline, diesel,
ethanol, and natural gas compares them to give a direct perception about which fuel
type is emitting high or low emissions. This visualization is beneficial for comparing the
environmental impacts of various fuels and can be used to support the push for cleaner
energy in automobiles.
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Figure 3. CO2 emission by fuel type.

Figure 4 studies the trends in CO2 emissions for the variants in the transmission
type: automatic, manual, and continuously variable transmission (CVT). The plot enables
the comparison of how transmission technology affects emissions. It is thus essential to
determine these differences to evaluate which of the transmission systems is less hostile
to the environment and can give some clues to the compromises between power and fuel
consumption and emissions.
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Figure 5 presents the number of vehicles per the number of gears available in each vehicle
as a frequency distribution. This bar chart also, in a simple manner, presents information
on how frequently each gear configuration is encountered in the dataset. Analyzing gear
counts has value because it is a way of defining tendencies in values of vehicle design and
fixes for interpreting observed emissions in the analyzed dataset. It also assists in analyzing
the utilization of distinct gear configurations and their effect on the environment.
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Figure 6 gives a graphical representation of the dispersion of CO2 emissions in all the
vehicles in the dataset. The first plot shown is a histogram with a density curve that maps
out the distribution of emissions in terms of g/km and how frequent and dispersed they
are. The histogram is positively skewed, suggesting that most vehicles produced between
180 and 260 g/km, and few vehicles are in the other bracket. The density curve extends the
concept of the histogram more than it enlarges its value, as it smoothens the distribution
and looks at the density of data in pollution concentration within any given dataset while
amplifying any underlying trends.

The boxplot gives a brief description of the distribution’s most essential characteristics.
It provides a median CO2 emission value indicated by the line inside the box and the
interquartile range (IQR), which is the box’s overall spread. The whiskers go up to the
minimum and maximum of 1. Meanwhile, ‘Outliers’ are calculated as 1.5 times the Inter-
Quartile Range above the third quartile or below the first quartile. If ‘Outliers’ are calculated
in this methodology, this current dataset has no Outliers as it is less than five times the IQR.
From this point of view, this boxplot serves the purpose of quickly checking the variability
and symmetry of the given dataset and detecting if there is a skewness and/or outliers that
might influence further analysis.

Altogether, these visualizations comprise a comprehensive exploratory data analysis
that facilitates a deeper comprehension of the factors that shape the values of CO2 emissions
and subsequent accurate modeling.
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3.3. Feature Selection

Feature selection has emerged as an essential step in data analysis since it offers a
solution to the problem of high dimensionality by removing features that do not contribute
any meaningful information to the analysis. To this end, this optimization seeks to provide
the optimal features for the classification and reduction of error in different domains.
Feature selection can, therefore, be viewed as a minimization problem optimization [44].
The solutions are binary values, either zero or one, to enable the identification of features
to be included in the optimal model. To convert continuous values to binary ones, the
Sigmoid function is utilized:

xt+1
d =

{
1 if Sigmoid(m) ≥ 0.5
0 otherwise ,

(1)

Sigmoid(m) =
1

1 + e−10(m−0.5)
(2)

where xt+1
d represents the binary solution at iteration t and dimension d, and m is a

parameter reflecting the chosen features. The Sigmoid function scales the output solutions
to binary values, where the value changes to 1 if Sigmoid (m) is greater than or equal to 0.5;
otherwise, it remains at 0.

In the binary optimization algorithm, the quality of a solution is evaluated using the
objective equation Fn, which incorporates a classifier’s error rate (Err), a set of chosen
features (s), and a set of missing features (S):

Fn = αErr + β
|s|
|S| (3)

where β = 1 − α and α ∈ [0, 1]. The k-nearest neighbor (k-NN) classification strategy is
commonly used in feature selection to achieve a low classification error rate. While k-NN
selects features based on the shortest distance between query and training instances, this
experiment does not utilize a k-nearest neighbor model.
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Figure 7 presents a heatmap that visualizes the correlations between critical features
in the CO2 emissions dataset after the feature selection process, (color: dark red = strong
positive, light = weak, dark blue = strong negative). The heatmap focuses on variables
that are most relevant for predicting CO2 emissions, including engine size (L), number
of cylinders, fuel consumption (combined L/100 km), and CO2 emissions (g/km). The
strength of the correlations is represented by the color intensity, with darker red shades
indicating stronger positive correlations and lighter shades indicating weaker relationships.
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The heatmap reveals that CO2 emissions have a strong positive correlation with fuel
consumption (0.92), engine size (0.85), and the number of cylinders (0.83). This indicates
that larger engines, more cylinders, and higher fuel consumption are closely associated
with increased CO2 emissions. The engine size and number of cylinders are also highly
correlated (0.93), suggesting that these features are typically aligned in vehicle design.

This heatmap provides valuable insights into the relationships among selected features,
helping to confirm that the feature selection process effectively retains the most impactful
variables for predicting CO2 emissions. The strong correlations highlight vital factors driving
emissions, informing the development and optimization of machine learning models.

3.4. Gated Recurrent Unit (GRU) Models

Gated Recurrent Units (GRUs) are one of the most potent types of RNN developed
to overcome some of the problems connected with traditional RNNs: vanishing and
exploding gradients during training. As for GRUs, they have less architecture in contrast
with RNNs since they unify the ‘forget’ and ‘input’ gates into one entity—the ‘update’
gate—which makes them less computationally intensive but, at the same time, capable
of capturing dependencies over long sequences. This efficiency makes GRUs especially
useful for time series, sequential data, and modeling, where the short- and long-term
dependencies are critical to the prediction. In the context of CO2 emission forecasting, long
short-term memory deep bidirectional RNNs known as GRU are used to identify temporal
dependencies within the datasets and forecast emissions based on the vehicle data retained
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in the database. Their effectiveness in using gating mechanisms to control the stream of
information makes them very effective in this regard [45].

3.4.1. Bidirectional GRU (BIGRU)

Bidirectional GRU (BIGRU) is a variation of the basic GRU that simultaneously con-
siders past and future context during the training phase. Bidirectional encoding improves
the model for analyzing the sequential data because it can notice dependencies between
the data that may not be noticeable in a one-directional encoding. This is particularly so
in time series prediction tasks such as the study of CO2 emission forecast, where some
trends could only be perceived once other future data are available along with previous
data. BIGRU can make better predictions by integrating the information from both ends of
the sequence because what might be missed by a unidirectional model is complemented by
the information from the other end of the sequence. Therefore, BIGRU can capture more
relevant information in a given context, such as emission levels that depend on patterns that
are not easily identifiable from only a historical or future direction of the time series [46].

3.4.2. Stacked GRU

However, a single-layer GRU is weak in structure and can only capture simple tempo-
ral patterns. This disadvantage is fixed in the Stacked GRU model, which uses multiple
layers of GRU to learn hierarchical representations of the input at different levels. In
Stacked GRU, the output of each layer is passed on to the next layer, where learn features
are improved, and the layers can learn deeper relations in the data. In predicting CO2 emis-
sions, the Stacked GRU architecture allows the model to have a complex interdependence
between various time scales, ranging from short to long. Such layering provides the model
with granularity and makes the high-frequency identification more accurate and grounded
on the low-frequency understanding of a process. The same component also makes the
model learn better from the hierarchical form of the input sequences and thus generalize
well to the unseen data [47].

3.4.3. Attention-Based BIGRU

The Attention-based BIGRU model integrates attention mechanisms and BIGRU to
improve focus on the significant parts of the input sequence for the prediction. Contrary to
what happens in static models, in time-series forecasting, not all time steps contribute the
same output. The features help to give different importance to the steps, allowing the model
to focus on the moments that are more important for the final decision. When paired with
BIGRU, the attention mechanism can enhance the mechanism of employing past and future
contexts, with the capacity to weigh the most critical inputs in its present. In particular, the
combination of the two features proves helpful for CO2 emission prediction: the points
marked as significant by the model can be either specific fuel consumption changes or
variations in some driving conditions, which could be more relevant for CO2 emissions.
The attention mechanism allows for the dynamic selection of focused and unfocused parts
of the input, which increases the interpretability and accuracy of the model, so it is suitable
for sequential prediction problems [48].

3.5. Optimization Algorithms
3.5.1. Greylag Goose Optimization (GGO) Algorithm

The GGO algorithm has been derived from the Greylag goose, including successful
phases like the Embarking, Take-off, and Landing phases, as well as social behaviors
like V-formations, Wiggling, and Muscular trembling. As mentioned, geese form a very
tight-knit society and work together on most of the tasks used in the GGO algorithm.
Geese are monogamous, partners for life, and may even create a protective circle around
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their offspring. Such a coherent social organization can be seen in the GGO view of the
optimization process, where all people within the population contribute to the solution.

In the wild, there is a more prominent organization that they form known as gaggles;
the members act and protect one another, and they even take turns to employ themselves.
This is mimicked by the GGO algorithm, which partitions the population into exploration
and exploitation populations at different stages. All these groups must search the solution
space—the roles are shared by having everyone shift from exploring (finding new solutions)
to exploiting (fine-tuning solutions found already). They do this similarly to the geese,
achieving harmonized, efficient flight by flying in a ‘V’ formation so that the lead goose
helps create less resistance for the rest of the formation.

The GGO algorithm starts by creating a population of potential solutions. It is like
the population division in genetic algorithms, where individuals can be an exploration or
exploitation type, modified based on performance. Exploration is looking for new regions
within the solution space. In contrast, the leader (the best solution) guides the exploration
group, whereas exploitation works to enhance solutions in the leader’s proximity. The men-
tioned division enables the algorithm to prevent premature exploitation while providing a
reasonable level of exploitation.

Exploratory activities of GGO make a comprehensive exploration of the solution space
possible. The agents’ positions are changed after using the mathematical formulas that
guide promising search areas. After several iterations with no improvement, the algorithm
increases the number of agents under exploration, improving the search space for better
solutions rather than getting caught up in some local optima. On the other hand, it is
the exploitation phase where solutions are refined through the guidance of the agents
towards the best solution, which is brought about by the updates of the sentries that have
surveillance duties for the quality of solutions.

The GGO flexibility derives from the real-time capability of agents’ shift between
exploration and exploitation. The elitist approach used in the algorithm ensures that the
best solution is retained and that there is a way of bringing diversity to the population. To
accomplish this, the multi-agent architecture of GGO employs a process of continuous role
interaction among the agents to interleave the two phases of the search. This is performed
iteratively until there is a convergence, and the value with the optimum solution that
satisfies the constraints is the output [49].

3.5.2. Al-Biruni Earth Radius (BER) Optimization Algorithm

The Al-Biruni Earth Radius (BER) algorithm is named in this way because it is based
on the idea of the eleventh-century scholar Al-Biruni, who determined the Earth’s radius
by measuring the distance between the horizon and the ground from a hill. He initially
found out the mountain’s elevation by measuring the angles opposite the peak from two
different stations; then, he calculated the amount of Earth’s curvature, that is, the radius of
the Earth, by measuring the depression of the horizon from the peak.

Operation with the BER algorithm is based on the increase and decrease of the popula-
tion split between exploration and exploitation. At the outset, 70 percent of the people are
assigned to exploration and 30 percent to exploitation. However, the proportion changes
during the optimization stage because the model should pay more attention to refining
solutions towards the end. The algorithm also escapes from stagnation by exploring more
when no enhancements have been made over several iterations, thus not falling into local
optima. Candidate solutions are evaluated iteratively using the fitness function until the
best solution is found.

Exploration aims at searching new areas in a defined search space, and exploitation, on
the other hand, aims at acceptable tuning solutions. In the exploration strategy, the regions
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to be explored are chosen, and in the exploitation process, solutions are improved because
agents are guided to the best positions. There is also a mutation operation put in use to bring
diversification into the algorithm, so the problem of early convergence is not realized. By
minimizing and optimizing the size of the population and applying elitism, the BER algorithm
guarantees a stable search, along with the best-reported solution across iterations.

It is also important to note that, due to the nature of the algorithm, people switch
between exploration and exploitation tasks, which means that the search space does not
get approached from the same direction all the time [50].

3.5.3. GGBERO Algorithm: A Hybrid Approach Combining GGO and BER

The newly proposed GGBERO algorithm combines Greylag Goose Optimization
(GGO) and Al-Biruni Earth Radius (BER) to provide the solution set for the global optimiza-
tion problem. This synergistic approach combines the uncertainty and social interaction in
GGO with the exploration and exploitation of BER to improve optimization and accuracy.

The given GGO algorithm emulates how several parties operate to fine-tune how
they seek to accomplish their migration aims. Geese working in flight also forward and
backward switch their roles so that they can continue working for long distances. In this
regard, the GGO algorithm mimics this behavior by dynamically dividing the population
by establishing the exploration and exploitation groups. Although many people on the
move may end up implementing their ideas while they search for revolutionary solutions,
GGO provides constant fine-tuning of the best solutions and enhances the weaknesses
within the population based on real-time performance feedback rotation. This flexibility
allows the algorithm to escape from the local optima while it progresses towards reaching
the global optimum.

In contrast, the BER algorithm leverages an accurate and rather mechanical approach
that you shall later learn Al-Biruni employed to determine the Earth’s radius. It emulates the
cooperative optimization behaviors observed in swarms, like ant and bee colonies, in which
members act in sub-swarms to achieve the same goal. BER also underlines the progress of
switching the rates of exploration and exploitation as optimization goes on. This approach
moves from a broad exploration of the solutions space to narrow it down, allowing the
algorithm to move through the space as an optimization process; it avoids the problem of
overspecialization (up to 70%) to maximize the use of the identified solutions. Borrowing
from the evolutionary lessons, mutation mechanisms are introduced to guarantee diversity
and make the search less susceptible to stagnation, even if the rate of improvement declines.

These strategies complement each other, which is why their combination is possible
within the framework of the hybrid GGBERO algorithm, which makes this approach
multifunctional. Despite this, in GGBERO, the exploration phase can leverage the dynamics
of group-based cooperation that characterizes GGO to search within large solution spaces.
At the same time, BER allows fine-tuning processes such as exploration–exploitation,
adjusting the number of solution iterations to achieve excellent optimization, and excluding
local optima. The advantages and the use of these two approaches make it possible for
GGBERO to maintain a high exploration level while incrementally enhancing the quality of
solutions, and this delicate balance is crucial when addressing the given kind of task.

Combining the role adaptation, we put into GGO with the subgroup organization
and the dynamic rebalancing we proposed in BER, GGBERO improves performance in the
exploration and exploitation phases. That is why it is beneficial for solving multimodal
problems, for it is critical to keep diversification of solutions and prevent convergence to a
local extreme. GGBERO, therefore, is a significant step up from GGO and BER optimization
algorithms in that it brings the best of both to bear in optimizing different applications, as
shown in Algorithm 1.
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Algorithm 1: GGBERO (Hybrid GGO + BER) Optimization Algorithm

1. Initialize population Si (i = 1, 2, . . . , d ), size d, max iterations Max_iter, fitness function Fn.
2. Initialize GGO and BER parameters.
3. Set t = 1, exploration group size n1 (70%), exploitation group size n2 (30%).
4. Evaluate fitness Fn for each Si .
5. Identify best solution S*.
6. While t ≤ Max_iter do
7. % Update exploration phase (GGO-based search)
8. for each solution in the exploration group do
9. if t mod 2 == 0 then
10. if (random < 0.5) then
11. if | A |< 1 then
12. Update agent’s position:

S(t + 1) = S*(t)− A· | C · S*(t)− S(t) |
13. else
14. Select three random agents: S1, S2, S3.
15. Compute adaptation factor:

z = 1 − (t/Max_iter)2.
16. Update position:

S(t + 1) = w1 · S1 + z · w2 · (S2 − S3) + (1 − z) · w3 · (S − S1).
17. end if
18. else
19. Update position using a sinusoidal motion:

S(t + 1) = w4· | S*(t)− S(t) | ·eb·l · cos(2πl) + [2w1(r4 + r5)] · S*(t).
20. end if
21. else
22. Update individual positions:

S(t + 1) = S(t) + D(1 + z) · w · (S − S_ f lock1).
23. end if
24. end for
25. % Update exploitation phase (BER-based refinement)
26. for each solution in the exploitation group do
27. if t mod 2 == 0 then
28. Compute local adjustments using three sentry solutions:
29. S1 = S_sentry1 − A1· | C1 · S_sentry1 − S |.
30. S2 = S_sentry2 − A2· | C2 · S_sentry2 − S |.
31. S3 = S_sentry3 − A3· | C3 · S_sentry3 − S |.
32. Compute updated position:

S(t + 1) = (S1 + S2 + S3)/3.
33. else
34. Update position using a refined local search:

S(t + 1) = S(t) + D(1 + z) · w · (S − S_ f lock1).
35. end if
36. end for
37. Compute fitness Fn for each Si .
38. Update best solution S*.
39. % Adaptive exploration-exploitation adjustment
40. if (Best Fn remains unchanged for two consecutive iterations) then
41. Increase exploration group size n1.
42. Decrease exploitation group size n2.
43. end if
44. Set t = t + 1.
45. End While
46. Return best solution S*.

The performance of metaheuristic algorithms is fundamentally influenced by their
parameter settings, as these parameters govern critical aspects of the optimization process
such as convergence speed, global search capacity, and avoidance of local optima. In the
case of the hybrid GGBERO algorithm—an integration of Greylag Goose Optimization
(GGO) and Al-Biruni Earth Radius (BER)—parameter tuning plays a pivotal role in harmo-
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nizing the strengths of both component algorithms and ensuring a robust balance between
exploration and exploitation.

Parameter Tuning in GGO and BER Within GGBERO

For the GGO component, three core parameters are set: a population size of 30, a
maximum iteration count of 500, and 30 independent runs for performance evaluation and
statistical robustness. These choices align with the best practices in swarm intelligence,
where a moderate population size facilitates diverse solution generation without incurring
excessive computational overhead. The iteration count ensures that sufficient cycles of
exploration and refinement are allowed, supporting convergence to high-quality optima.

The BER algorithm also uses a population size of 30 and 500 iterations, matching the
GGO configuration for consistency in the hybrid framework. Additionally, BER introduces
a mutation probability of 0.5, which plays a central role in maintaining diversity and
escaping local optima. This probability ensures that half of the solutions are periodically
altered, introducing perturbations that increase the search radius when needed. The K
parameter, which begins at 2 and gradually decreases to 0 over time, modulates the intensity
of the local search, with higher values promoting broader exploration in early stages and
lower values enabling fine-tuning during later iterations.

These settings reflect a deliberate temporal adaptation strategy where the algorithm
begins with a stronger emphasis on global exploration and gradually transitions toward
local exploitation—a strategy often referred to as “exploration–exploitation annealing”.
The combination of mutation and decaying K in BER complements the adaptive agent-role
switching and flocking behavior in GGO, reinforcing a multi-phase optimization dynamic.

Balancing Exploration and Exploitation in GGBERO

The hybrid structure of GGBERO is explicitly designed to balance exploration and
exploitation dynamically, leveraging the respective strengths of GGO and BER. GGO is
inherently exploratory, mimicking the collective behavior of geese during migration, where
leadership changes and flock formation encourage broad search across the solution space.
In contrast, BER excels in local refinement, using historical and geometric cues to intensify
exploitation near promising regions.

GGBERO maintains this balance through an adaptive population division. At each
iteration, the total population is split between exploratory and exploitative subgroups.
If convergence stalls, the algorithm increases the number of individuals allocated to ex-
ploration (e.g., by shifting agents from the BER component to GGO-like behavior), thus
reinvigorating the search with greater diversity. Conversely, when progress is steady or
nearing optimality, the algorithm intensifies exploitation by allocating more agents to BER’s
precision-guided search mechanisms.

GGBERO’s feedback loop, based on exploratory objectives such as fitness stagnation
and improvement rate, keeps the search away from premature convergence and ensures
that the contextually activated global (exploration) and local (exploitation) search has a
chance to play a role. This combination of components provides us with the capability to
maintain both adaptiveness and resilience across complicated, multi-modal optimization
landscapes, especially those in CO2 emission prediction and model tuning.

The core parameter configurations for Greylag Goose Optimization (GGO) and Al-
Biruni Earth Radius (BER) algorithms integrated within the GGBERO hybrid optimization
framework appear in Table 2. The algorithms ran through a controlled environment of
synchronized population sizes along with a consistent iteration count to maintain stability
during the optimization process. GGO uses collective intelligence mechanisms along with
dynamic role adaptation, and BER operates through mutation procedures and gradually
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diminishing control parameters for local search management. The selected parameters
created a balanced environment between exploration and exploitation, which led to better
performance of the hybrid model during feature selection and hyperparameter tuning.

Table 2. Parameter settings for GGO and BER algorithms within the GGBERO framework.

Algorithm Parameter Value

Greylag Goose Optimization (GGO) Population size 30

Iterations count 500

Number of runs 30

Al-Biruni Earth Radius (BER) Population size 30

Iterations count 500

Mutation probability 0.5

K (decreases 2→0) 1

Number of runs 30

As a summary, the parameter settings in GGBERO are not only calibrated, but they
are also structured in a hybrid manner in the algorithmic side such that the search behavior
can be dynamically rebalanced and as a result converges faster, has higher accuracy, and is
also robust to both overfitting and getting trapped to local points.

4. Experimental Results
In this work, the methods from the experimental analysis are divided into several

layers to compare feature selection, the model’s ability to predict, and optimization. The
results prove that the developed bGGBERO and GGBERO algorithms better optimize both
the feature selection step and the model training. In the present research, by comparing
GGBERO to other approaches, the improved performance of this method in terms of
minimizing errors, feature selection, and stabilizing predictions is shown.

4.1. Feature Selection Results

Table 3 provides a comprehensive performance comparison between the proposed fea-
ture selection method (bGGBERO) and six other well-established optimization algorithms:
bGGO, bBER, bSCA, bPSO, bGWO, and bWAO. The metrics used for this evaluation include
the average error, average selected feature size, average fitness, best fitness, worst fitness,
and standard deviation of fitness. These metrics offer a balanced view of how effectively
each method optimizes feature selection while minimizing errors and maintaining robust
performance across multiple trials.

Table 3. The performance of the proposed feature selection method compared with other methods.

bGGBERO bGGO bBER bSCA bPSO bGWO bWAO

Average error 0.4067 0.4368 0.4417 0.4552 0.4778 0.4854 0.5026

Average Select size 0.4046 0.5048 0.5096 0.6046 0.6046 0.7680 0.5274

Average Fitness 0.5150 0.6152 0.6200 0.5312 0.5296 0.5374 0.5373

Best Fitness 0.4168 0.5170 0.5218 0.4515 0.5099 0.5015 0.5151

Worst Fitness 0.5153 0.6155 0.6203 0.5184 0.5776 0.5776 0.5913

Standard
deviation Fitness 0.3373 0.4375 0.4423 0.3420 0.3414 0.3436 0.3426

Figure 8 shows the average error between the proposed feature selection technique,
bGGBERO, and some conventional methods like bGGO, bBER, bSCA, bPSO, bGWO, and
bWAO. The chart also focuses on how bGGBERO repeats the lowest average of errors over
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the various runs, presenting a more accurate feature selection for the given dataset. This
outcome corroborates the relevance of the optimization of the Greylag Goose Optimization
and the Al-Biruni Earth Radius. As a hybrid model, bGGBERO has a better balance between
exploration and exploitation than the other models and is less likely to make suboptimal
selections of features, hence making it a better model.
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Table 4 showcases detailed statistical analysis results, including minimum, maximum,
range, mean, standard deviation, and standard error of mean for the feature selection per-
formance metrics across all methods. The data in this table further support the superiority
of bGGBERO, which consistently maintains lower variability in performance (low standard
deviation) and shows more stable results, as evidenced by its tight confidence intervals.
Such consistency is critical for applications requiring reliable and reproducible feature
selection processes.

Table 4. Statistical analysis of the proposed feature selection method compared with other methods.

bGGBERO bGGO bBER bSCA bPSO bGWO bWAO

Number of values 10 10 10 10 10 10 10

Minimum 0.4037 0.4297 0.4382 0.4485 0.4698 0.4605 0.4726

25% Percentile 0.4067 0.4368 0.4417 0.4552 0.4778 0.4842 0.4908

Median 0.4067 0.4368 0.4417 0.4552 0.4778 0.4854 0.5026

75% Percentile 0.4067 0.4375 0.4417 0.456 0.4783 0.4854 0.5026

Maximum 0.4097 0.4398 0.4487 0.4635 0.4888 0.4935 0.5126

Range 0.006 0.01009 0.01052 0.015 0.019 0.033 0.04

Mean 0.4067 0.4367 0.442 0.4557 0.4783 0.4833 0.4979

Std. Deviation 0.001414 0.002742 0.002585 0.003688 0.004551 0.008577 0.01144

Std. Error of Mean 0.000447 0.000867 0.000818 0.001166 0.001439 0.002712 0.003617

Sum 4.067 4.367 4.42 4.557 4.783 4.833 4.979

Table 5 provides the results from an ANOVA test applied to the feature selection
methods. The ANOVA reveals that the differences in performance between the methods
are statistically significant (p < 0.0001), indicating that bGGBERO’s superior results are
not due to random chance. This validation underscores the method’s effectiveness in opti-
mizing feature selection, making it a strong candidate for applications requiring enhanced
predictive accuracy and efficiency.
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Table 5. ANOVA test of the proposed feature selection method compared with other methods.

ANOVA Table SS DF MS F (DFn, DFd) p-Value

Treatment (between columns) 0.05984 6 0.009973 F (6, 63) = 273.9 p < 0.0001

Residual (within columns) 0.002294 63 3.64 × 10−5

Total 0.06213 69

Figure 9 demonstrates the diagnostic plots for the residuals from the feature selection
methods. The residual plot, homoscedasticity plot, and QQ plot collectively assess whether
the errors in predictions are normally distributed and whether homoscedasticity is main-
tained. In the case of bGGBERO, these plots indicate minimal deviation from normality
and no significant signs of heteroscedasticity, reinforcing the robustness of the proposed
method. This stability in residuals further supports the accuracy and reliability of the fea-
ture selection process, ensuring that the selected features truly enhance model performance
without introducing bias or variance issues.
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Figure 9. Illustrating the performance of the proposed feature selection method via residual plot,
homoscedasticity plot, and QQ plot.

Table 6 details the Wilcoxon Signed Rank Test applied to the feature selection methods.
This non-parametric test is suitable for comparing paired samples and determines whether
the differences in medians are significant. The results, with a p-value of 0.002 across all
comparisons, confirm that bGGBERO’s improvements over other methods are statistically
significant. The exact nature of the Wilcoxon test further validates that the observed
differences are consistent and not due to outliers or anomalies in the dataset (the symbol
(**) denotes a p-value less than 0.01, indicating a highly statistically significant result).
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Table 6. Wilcoxon test of the implemented feature selection methods.

bGGBERO bGGO bBER bSCA bPSO bGWO bWAO

Theoretical median 0 0 0 0 0 0 0

Actual median 0.4067 0.4368 0.4417 0.4552 0.4778 0.4854 0.5026

Number of values 10 10 10 10 10 10 10

Wilcoxon Signed Rank Test

Sum of signed ranks (W) 55 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0 0

p-value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact Exact

p-value summary ** ** ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.4067 0.4368 0.4417 0.4552 0.4778 0.4854 0.5026

Figure 10 displays the histogram comparing the average error across different feature
selection methods. The clear visual separation between bGGBERO and the other methods
indicates that it consistently achieves lower errors. This visual representation reinforces the
quantitative analysis, making it evident that bGGBERO is not only more accurate but also
maintains this accuracy across varying conditions and datasets.
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4.2. Machine Learning Models Results
4.2.1. Basic Machine Learning Models

Table 7 shows the AUC and F1-score for several different basic machine learning
algorithms, including Cat Boost, Gradient Boosting, Extra Trees, XGBoost, and others.
Formulas such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R2 are
used to determine the accuracy and efficiency of these models in predicting future values.
Such ensemble methods, such as Cat Boost and Gradient Boosting, were found to be most
effective, as they recorded the least error rate and the highest R2, showing the authors’
ability to model the intricate non-linear patterns in the data. Alas, Cat Boost represents a
slight improvement in terms of error and the model’s stability, which makes it good for
precise tasks. Traditional or simpler models, such as linear regression and SVR, on the
other hand, have relatively higher levels of error rates, pointing to the fact that they are
unable to model such complicated patterns from this dataset (The symbol (**) denotes a
p-value less than 0.01, indicating a highly statistically significant result.).
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Table 7. Evaluation of the regression results obtained from basic machine learning models.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI Fitted
Time

Cat Boost 0.0011 0.0332 0.0158 0.0076 0.9886 0.9773 7.0251 0.9757 0.9551 12.4626

Gradient Boosting 0.0011 0.0334 0.0152 0.0067 0.9881 0.9764 7.0794 0.9753 0.9566 13.0156

Extra Trees 0.0011 0.0337 0.0157 0.0064 0.9880 0.9761 7.1309 0.9750 0.9552 14.0010

XGBoost 0.0012 0.0346 0.0183 0.0078 0.9877 0.9755 7.3251 0.9736 0.9479 16.7040

Random Forest 0.0013 0.0359 0.0161 0.0064 0.9862 0.9725 7.6083 0.9715 0.9541 17.0162

Decision Tree 0.0013 0.0362 0.0189 0.0077 0.9863 0.9728 7.6679 0.9711 0.9463 20.5333

K-Nearest Neighbor 0.0016 0.0401 0.0222 0.0129 0.9840 0.9683 8.4866 0.9645 0.9368 22.3064

pipeline 0.0017 0.0407 0.0210 0.0095 0.9827 0.9658 8.6279 0.9634 0.9401 25.4114

MLP 0.0023 0.0477 0.0238 0.0151 0.9777 0.9560 10.1067 0.9497 0.9321 39.3969

SVR 0.0023 0.0481 0.0184 0.0087 0.9751 0.9509 10.1908 0.9489 0.9476 43.8055

Linear Regression 0.0032 0.0569 0.0373 0.0143 0.9671 0.9352 12.0544 0.9285 0.8938 46.0991

Figure 11 provides a parallel coordinates plot that visualizes the comparison of various
performance metrics across the basic machine learning models. Each line in the plot
represents a model, and its path through different axes shows its relative performance on
metrics like MSE, RMSE, and R2. The plot highlights how ensemble methods, particularly
Cat Boost and Gradient Boosting, consistently outperform other models across most metrics,
with lower MSE and RMSE values and higher R2 scores. The clear separation between the
top-performing models and the others underscores the effectiveness of advanced ensemble
techniques in this dataset.
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Figure 12 presents a radar plot that summarizes the performance metrics for each basic
machine learning model. The radar plot allows for a holistic view of model performance,
showing how each model fares across multiple criteria simultaneously. The tight, closer-
to-center points of Cat Boost and Gradient Boosting indicate superior performance across
all metrics, whereas models like k-nearest neighbor and linear regression are spread out,
showing variability in their effectiveness across different evaluation measures. This figure
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reinforces the narrative that boosting-based models have a clear advantage when dealing
with the CO2 emissions dataset.
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4.2.2. Deep Learning Models

Table 8 presents the performance metrics for deep learning models, including BIGRU,
Stacked GRU, and Attention BIGRU. The advanced models show a significant improvement
in prediction accuracy compared to the basic models, with BIGRU leading with the lowest
MSE (0.00021) and RMSE (0.00294). These results further emphasize the advantages of RNN
architecture, especially those that are designed to capture temporal dependencies that are
helpful in predicting such time-series data, such as CO2 emissions. The Attention BIGRU
model, though slightly less accurate than BIGRU, brings in the fundamental beneficial
aspect of focusing on certain time steps, which improves interpretability. These models
demonstrate a direct improvement in terms of learning in the case of sequential data
compared to the traditional methods.

Table 8. Evaluation of the regression results obtained from deep learning models.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI Fitted
Time

BIGRU 0.00021 0.00294 0.00358 0.00017 0.98453 0.98356 4.31249 0.98973 0.96370 10.00572

Stacked GRU 0.00067 0.00443 0.00526 0.00045 0.96646 0.98459 5.24590 0.88695 0.96565 11.00985

Attention BIGRU 0.00098 0.00662 0.00857 0.00071 0.98460 0.98547 6.25456 0.81742 0.96641 11.01036
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Figure 13 employs a parallel coordinates plot to display the performance of advanced
machine learning algorithms. The above figure shows how each model performs in terms of
metrics such as RMSE, MSE, and R2. The BIGRU model possesses a consistent lead with lines
shifting towards the best scores for any of the axes, while Stacked GRU and Attention BIGRU,
although good, are overshadowed by a little compromised slight deviation from the perfect
score, especially on the RMSE line. This visualization supports the argument of BIGRU as it
also shows that it is efficient in capturing both the long-term and short-term dependencies.
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Figure 14 is a radar plot that shows superior deep learning models in terms of several
aspects. The compact and centrally located BIGRU shape suggests it is better balanced and
has higher performance. The extended shape of Stacked GRU and Attention BIGRU suggests
some compromises between values such as RMSE and MAE. The radar plot even shows the
comparison between the performance of models, and the proposed BIGRU model is perfect
since it has better accuracy and high consistency with less time and computation required.
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Table 9 displays the results of an ANOVA test conducted to compare the prediction
results from the machine learning models. The highly significant p-value (p < 0.0001)
indicates that there are substantial differences between the models’ performance, affirming
that the variations in prediction accuracy are statistically significant and not due to random
noise. The ANOVA test confirms that the improvements offered by advanced models,
particularly BIGRU, are genuine and consistent across the dataset.

Table 9. ANOVA test applied to the prediction results obtained from machine learning models.

ANOVA Table SS DF MS F (DFn, DFd) p Value

Treatment (between
columns) 6.28 × 10−5 2.00 × 100 3.14 × 10−5 F (2, 27) = 284.9 p < 0.0001

Residual (within columns) 2.97 × 10−6 2.70 × 101 1.10 × 10−7

Total 6.57 × 10−5 2.90 × 101

Figure 15 illustrates diagnostic plots—residual, homoscedasticity, and QQ plots—that
evaluate the prediction errors from deep learning models. The residual plot shows how
prediction errors are distributed around zero, with minimal bias. The homoscedasticity
plot confirms that the variance of errors remains constant across predictions, while the
QQ plot shows that the errors follow a normal distribution closely. Together, these plots
indicate that the advanced models, particularly BIGRU, produce predictions with minimal
bias and consistent accuracy, validating their suitability for complex forecasting tasks.
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Table 10 shows the results of a Wilcoxon Signed Rank Test comparing the advanced
models. The significant p-values (p = 0.002) across all comparisons validate that the dif-
ferences in performance, particularly the advantage of BIGRU over other models, are
statistically significant. This non-parametric test further reinforces the robustness of the
BIGRU model, highlighting its superior performance across multiple datasets and test
conditions (the symbol (**) denotes a p-value less than 0.01, indicating a highly statistically
significant result).
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Table 10. Wilcoxon test of the implemented machine learning models.

BIGRU Stacked GRU Attention BIGRU

Theoretical median 0 0 0

Actual median 0.002939 0.004426 0.006618

Number of values 10 10 10

Wilcoxon Signed Rank Test

Sum of signed ranks (W) 55 55 55

Sum of positive ranks 55 55 55

Sum of negative ranks 0 0 0

p-value (two-tailed) 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact

p-value summary ** ** **

Significant (alpha = 0.05)? Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.002939 0.004426 0.006618

4.3. Optimization Results

Table 11 compares the performance of the BIGRU model when optimized using different
algorithms, including GGBERO-BIGRU, GGO-BIGRU, BER-BIGRU, SC-BIGRU, and PSO-
BIGRU. The table clearly shows that the hybrid GGBERO-BIGRU optimization yields the best
results, with the lowest MSE (1.0 × 10−5) and RMSE (3.2 × 10−5). These results underline
the value of combining GGO and BER in optimizing deep learning models, leading to higher
accuracy and faster convergence compared to traditional or single-approach optimizations.
The significant improvement in model accuracy when using GGBERO-BIGRU optimization
suggests that the hybrid approach effectively balances exploration and exploitation, resulting
in a more refined and robust feature selection process.

Table 11. Comparison of BIGRU-based model optimized by different algorithms.

Model Split mse rmse mae mbe r R2 RRMSE NSE WI Fitted
Time

GGBERO-BIGRU Train 6.11 × 10−6 0.002471 2.60 × 10−5 6.64 × 10−5 0.9993 0.9985 0.7395 0.9998 0.9971 1.5774

GGBERO-BIGRU validation 8.14 × 10−6 0.002854 3.16 × 10−5 9.30 × 10−5 0.9990 0.9981 0.8980 0.9998 0.9967 1.3954

GGBERO-BIGRU Test 1.02 × 10−5 3.24 × 10−5 3.71 × 10−5 1.33 × 10−5 0.9988 0.9976 1.0565 0.9997 0.9964 1.2134

GGO-BIGRU Train 2.18 × 10−5 0.004674 3.23 × 10−5 1.04 × 10−5 0.9979 0.9974 1.5634 0.9998 0.9870 2.8818

GGO-BIGRU validation 2.91 × 10−5 0.005397 3.93 × 10−5 1.46 × 10−5 0.9972 0.9965 1.8984 0.9997 0.9853 2.5493

GGO-BIGRU Test 3.64 × 10−5 3.58 × 10−5 4.62 × 10−5 2.08 × 10−5 0.9965 0.9956 2.2334 0.9997 0.9837 2.2168

BER-BIGRU Train 3.55 × 10−5 0.005961 3.69 × 10−5 1.49 × 10−5 0.9969 0.9972 1.9427 0.9997 0.9859 3.4462

BER-BIGRU validation 4.74 × 10−5 0.006883 4.49 × 10−5 2.09 × 10−5 0.9958 0.9963 2.3590 0.9996 0.9841 3.0486

BER-BIGRU Test 5.92 × 10−5 4.19 × 10−5 5.28 × 10−5 2.99 × 10−5 0.9948 0.9953 2.7752 0.9995 0.9823 2.6509

SC-BIGRU Train 4.33 × 10−5 0.006579 4.11 × 10−5 1.62 × 10−5 0.9955 0.9961 2.0929 0.9993 0.9850 4.7516

SC-BIGRU validation 5.77 × 10−5 0.007597 4.99 × 10−5 2.26 × 10−5 0.9940 0.9948 2.5414 0.9991 0.9831 4.2033

SC-BIGRU Test 7.21 × 10−5 4.81 × 10−5 5.87 × 10−5 3.23 × 10−5 0.9925 0.9935 2.9899 0.9990 0.9813 3.6550

PSO-BIGRU Train 4.84 × 10−5 0.006958 4.90 × 10−5 1.87 × 10−5 0.9962 0.9967 2.7990 0.9987 0.9853 4.7522

PSO-BIGRU validation 6.46 × 10−5 0.008035 5.95 × 10−5 2.61 × 10−5 0.9949 0.9957 3.3988 0.9984 0.9835 4.2039

PSO-BIGRU Test 8.07 × 10−5 6.60 × 10−5 7.00 × 10−5 3.73 × 10−5 0.9937 0.9946 3.9986 0.9982 0.9817 3.6556

Figure 16 provides a comparative view of RMSE across different BIGRU models opti-
mized by various algorithms. The chart clearly shows that GGBERO-BIGRU consistently
achieves the lowest RMSE, indicating that it offers the most precise predictions. This figure
reinforces the narrative that hybrid optimization methods, which incorporate elements from
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both GGO and BER, deliver superior performance by efficiently navigating the trade-offs
between accuracy and computational effort.
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Train 6.11 × 10−6 0.002471 2.60 × 10−5 6.64 × 10−5 0.9993 0.9985 0.7395 0.9998 0.9971 1.5774 

GGBERO-
BIGRU 

validation 8.14 × 10−6 0.002854 3.16 × 10−5 9.30 × 10−5 0.9990 0.9981 0.8980 0.9998 0.9967 1.3954 

GGBERO-
BIGRU 

Test 1.02 × 10−5 3.24 × 10−5 3.71 × 10−5 1.33 × 10−5 0.9988 0.9976 1.0565 0.9997 0.9964 1.2134 

GGO-BIGRU Train 2.18 × 10−5 0.004674 3.23 × 10−5 1.04 × 10−5 0.9979 0.9974 1.5634 0.9998 0.9870 2.8818 
GGO-BIGRU validation 2.91 × 10−5 0.005397 3.93 × 10−5 1.46 × 10−5 0.9972 0.9965 1.8984 0.9997 0.9853 2.5493 
GGO-BIGRU Test 3.64 × 10−5 3.58 × 10−5 4.62 × 10−5 2.08 × 10−5 0.9965 0.9956 2.2334 0.9997 0.9837 2.2168 
BER-BIGRU Train 3.55 × 10−5 0.005961 3.69 × 10−5 1.49 × 10−5 0.9969 0.9972 1.9427 0.9997 0.9859 3.4462 
BER-BIGRU validation 4.74 × 10−5 0.006883 4.49 × 10−5 2.09 × 10−5 0.9958 0.9963 2.3590 0.9996 0.9841 3.0486 
BER-BIGRU Test 5.92 × 10−5 4.19 × 10−5 5.28 × 10−5 2.99 × 10−5 0.9948 0.9953 2.7752 0.9995 0.9823 2.6509 
SC-BIGRU Train 4.33 × 10−5 0.006579 4.11 × 10−5 1.62 × 10−5 0.9955 0.9961 2.0929 0.9993 0.9850 4.7516 
SC-BIGRU validation 5.77 × 10−5 0.007597 4.99 × 10−5 2.26 × 10−5 0.9940 0.9948 2.5414 0.9991 0.9831 4.2033 
SC-BIGRU Test 7.21 × 10−5 4.81 × 10−5 5.87 × 10−5 3.23 × 10−5 0.9925 0.9935 2.9899 0.9990 0.9813 3.6550 

PSO-BIGRU Train 4.84 × 10−5 0.006958 4.90 × 10−5 1.87 × 10−5 0.9962 0.9967 2.7990 0.9987 0.9853 4.7522 
PSO-BIGRU validation 6.46 × 10−5 0.008035 5.95 × 10−5 2.61 × 10−5 0.9949 0.9957 3.3988 0.9984 0.9835 4.2039 
PSO-BIGRU Test 8.07 × 10−5 6.60 × 10−5 7.00 × 10−5 3.73 × 10−5 0.9937 0.9946 3.9986 0.9982 0.9817 3.6556 

Figure 16 provides a comparative view of RMSE across different BIGRU models op-
timized by various algorithms. The chart clearly shows that GGBERO-BIGRU consistently 
achieves the lowest RMSE, indicating that it offers the most precise predictions. This fig-
ure reinforces the narrative that hybrid optimization methods, which incorporate ele-
ments from both GGO and BER, deliver superior performance by efficiently navigating 
the trade-offs between accuracy and computational effort. 

 
Figure 16. RMSE comparison of optimized BIGRU models.

Figure 17 visually compares the performance metrics for BIGRU models optimized
by different algorithms using a parallel coordinates plot. The GGBERO-BIGRU model
consistently outperforms others across all metrics, demonstrating smoother and faster
convergence to optimal solutions. The plot highlights the robustness of the hybrid approach,
showcasing how combining GGO and BER effectively enhances the predictive capabilities
of the BIGRU model.

Mathematics 2025, 13, x FOR PEER REVIEW 28 of 34 
 

 

Figure 16. RMSE comparison of optimized BIGRU models. 

Figure 17 visually compares the performance metrics for BIGRU models optimized 
by different algorithms using a parallel coordinates plot. The GGBERO-BIGRU model 
consistently outperforms others across all metrics, demonstrating smoother and faster 
convergence to optimal solutions. The plot highlights the robustness of the hybrid ap-
proach, showcasing how combining GGO and BER effectively enhances the predictive 
capabilities of the BIGRU model. 

 

Figure 17. Parallel coordinates plot of model comparison for the BIGRU-based model optimized by 
different algorithms. 

Figure 18 presents a radar plot comparing the BIGRU models optimized by different 
algorithms across multiple metrics. GGBERO-BIGRU stands out with its compact and 
symmetrical shape, indicating its balanced performance across all evaluation criteria. The 
plot reaffirms the conclusion that the hybrid optimization strategy offers a significant im-
provement over single-method approaches, making it the most effective for enhancing the 
accuracy and stability of deep learning models in complex datasets. 

Figure 17. Parallel coordinates plot of model comparison for the BIGRU-based model optimized by
different algorithms.

Figure 18 presents a radar plot comparing the BIGRU models optimized by different
algorithms across multiple metrics. GGBERO-BIGRU stands out with its compact and
symmetrical shape, indicating its balanced performance across all evaluation criteria. The
plot reaffirms the conclusion that the hybrid optimization strategy offers a significant
improvement over single-method approaches, making it the most effective for enhancing
the accuracy and stability of deep learning models in complex datasets.



Mathematics 2025, 13, 1481 27 of 32
Mathematics 2025, 13, x FOR PEER REVIEW 29 of 34 
 

 

 

Figure 18. Radar plot of performance metrics for the BIGRU-based model optimized by different 
algorithms. 

Table 12 shows the results of an ANOVA test applied to the BIGRU models optimized 
by different algorithms. The highly significant p-value (p < 0.0001) confirms that the dif-
ferences between the models’ performances are statistically significant. The ANOVA re-
sults further validate that GGBERO-BIGRU’s enhanced performance is not coincidental 
but rather a consistent improvement across all test scenarios. 

Table 12. ANOVA test applied to the prediction results obtained from the BIGRU-based model op-
timized by different algorithms. 

ANOVA Table SS DF MS F (DFn, DFd) p Value 
Treatment (between 
columns) 6.865 × 10−9 4 1.716 × 10−9 F (4, 45) = 55.59 p < 0.0001 

Residual (within 
columns) 1.389 × 10−9 45 3.087 × 10−11   

Total 8.254 × 10−9 49    

Figure 19 includes residual, homoscedasticity, and QQ plots for the BIGRU models 
optimized by different algorithms. The plots indicate that GGBERO-BIGRU maintains the 
most consistent and normal distribution of errors, with minimal bias and constant vari-
ance. These diagnostic checks affirm the reliability and robustness of the hybrid optimi-
zation method in producing high-quality predictions. 

Figure 18. Radar plot of performance metrics for the BIGRU-based model optimized by different al-
gorithms.

Table 12 shows the results of an ANOVA test applied to the BIGRU models optimized
by different algorithms. The highly significant p-value (p < 0.0001) confirms that the
differences between the models’ performances are statistically significant. The ANOVA
results further validate that GGBERO-BIGRU’s enhanced performance is not coincidental
but rather a consistent improvement across all test scenarios.

Table 12. ANOVA test applied to the prediction results obtained from the BIGRU-based model
optimized by different algorithms.

ANOVA Table SS DF MS F (DFn, DFd) p Value

Treatment (between
columns) 6.865 × 10−9 4 1.716 × 10−9 F (4, 45) = 55.59 p < 0.0001

Residual (within columns) 1.389 × 10−9 45 3.087 ×
10−11

Total 8.254 × 10−9 49

Figure 19 includes residual, homoscedasticity, and QQ plots for the BIGRU models
optimized by different algorithms. The plots indicate that GGBERO-BIGRU maintains the
most consistent and normal distribution of errors, with minimal bias and constant variance.
These diagnostic checks affirm the reliability and robustness of the hybrid optimization
method in producing high-quality predictions.

Table 13 presents the results of the Wilcoxon Signed Rank Test applied to the prediction
results from BIGRU models optimized by different algorithms. The significant p-values
(p = 0.002) across all comparisons validate the statistical significance of the differences in
model performance, confirming that GGBERO-BIGRU offers a clear advantage in feature
selection and model optimization.
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Figure 19. Illustrating the performance of the proposed BIGRU-based model optimized by different
algorithms via residual plot, homoscedasticity plot, and QQ plot.

Table 13. Wilcoxon Signed Rank Test applied to the prediction results obtained from the BIGRU-based
model optimized by different algorithms.

GGBERO-BIGRU GGO-BIGRU BER-BIGRU SC-BIGRU PSO-BIGRU

Theoretical median 0 0 0 0 0

Actual median 0.0000324 0.0000358 0.0000419 0.0000481 0.000066

Number of values 10 10 10 10 10

Wilcoxon Signed Rank Test

Sum of signed ranks (W) 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0

p-value (two-tailed) 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact

p-value summary ** ** ** ** **

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.0000324 0.0000358 0.0000419 0.0000481 0.000066

Figure 20 shows the bar chart representing the mean error of BIGRU models based
on different algorithms. Once again, the average error of GGBERO-BIGRU remains the
smallest on average, thus proving its accuracy and competency. In this chart, it is seen that
the use of the combination of optimization techniques leads to high increases in the model’s
efficiency, which makes the combined strategy more suitable for providing solutions in
complicated modeling.

These comprehensive explanations offer insights into the significance of each figure
and table, emphasizing how the hybrid GGBERO approach stands out in various machine
learning and optimization scenarios.
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5. Conclusions
This study offers an extensive review of machine learning models and optimization

algorithms for estimating CO2 emissions with a concern for feature extraction and model
performance. The study presents a new optimization approach referred to as the GGBERO
optimization technique, which is a combination of the Greylag Goose Optimization (GGO)
and the Al-Biruni Earth Radius (BER) algorithms. The proposed combined GGBERO al-
gorithm, therefore, performed better than its counterparts in terms of selecting the best
features that greatly improved predictive measurements, minimized the rate of errors,
and improved efficiency in model development. Specifically, ensemble models like Cat
Boost and Gradient Boosting were used, where the given basic models delivered higher
AUC-ROC than traditional models in terms of identifying non-linear dependencies in
the dataset. These models had lower MSE and higher R2 incorporated for high-accuracy
tasks, as these models were more suitable. Nevertheless, in comparison with other con-
temporary recurrent neural network models such as BIGRU, the traditional models of the
given family had drawbacks, especially when working with time series that contain long
memory dependencies.

Huge performance enhancements were observed for the BIGRU, the Stacked GRU,
and the Attention BIGRU models. Among them, BIGRU owned superior performance
due to that it was designed to reveal the forward and backward relation between words
and achieved better predictability. The addition of an attention mechanism augments the
interpretable and attention-like property of the model and payload attentiveness towards
the most relevant temporal positions in the sequence. The BIGRU model used in the
proposed GGBERO fashion also provided splendid outcomes, which were far better than
the other optimization techniques like GGO-BIGRU, BER-BIGRU, SC-BIGRU, and PSO-
BIGRU. The BIGRU optimized for GGBERO was again the model with the lowest errors
and the most stable predictions, showing very high R, MSE, RMSE, and R2 values. The
discussed hybrid approach was successfully used to balance exploration and exploitation
of the solution space, so the model could not get stuck in local optima and had much better
convergence characteristics.

The analysis of variance (ANOVA) conducted on the collected results authorized the
significant improvements that the driver GGBERO optimization brought. These checks
confirmed that improvements in model performance were not accidental, but repeatable,
and statistically significant, for different datasets and scenarios.
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