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1. Introduction

Fixed point theory is one of the most celebrated and conventional theories in mathematics has comprehensive applications
in different fields. In the 20th century, it was because of Frechet [1] who entered on the notion of metric space, and further
because of its validity and practicable execution the notion has been extrapolated in various directions. The most pivotal principle
in fixed point theory was given by Banach [2] and kept the astonished status the same. In this principle, the contractive mapping is
necessarily continuous while it is not applicable in the case of discontinuity. The major drawback of this principle is how we apply
this contractive mapping in case of discontinuity. Kannan [3] previously addressed this issue by demonstrating a fixed point outcome
without continuity. In 1972, Chaterjea [4] proved a result independent of the Banach contraction principle and Kannan fixed point
theorem. Later on, Fisher [5] presented rational inequality in fixed point theory and established a fixed point result in all metric
spaces. Recent research has extended the concept of metric space and the Banach contraction principle to accomplish this result in
fixed point theory. Further, researchers have applied fixed point outcomes to ordinary differential and integral equations, ensuring
the uniqueness and existence of solutions. There are lots of extensions and generalizations of metric space. As a generalization of
metric space, Bakhtin [6] established the postulate of b-metric space which was further upgraded by Czerwik [7], and for more
novel information on can see [8-14].

In 2017, Several researchers [15] initiated concept of extended b-metric space. Exploring the metric space into an extended
b-metric space allows for a fresh examination of fixed points that satisfied multiple contraction axioms, ensuring their uniqueness
and existence see in [16-23]. As we know fixed point theory includes research on contraction mappings and generalized metric
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spaces, and we generalized the results of Singh et al. [24] and Almari and Ahmed [25]. Further, we provide the generalization
(Boyd-Wong) type and (S - N) rational type contraction in a extended b-metric space. We use 2D and 3D graphs to represent our
driven outcomes visually. In addition to this, we find the solution of the Fredholm integral equation with the help of our established
results.

2. Definitions and preliminaries

Definition 2.1 ([26]). “Consider a function § : Y XY — [1, c0) with a non-empty set Y # ¢.
A function w, : Y XY — [0, o) is an extended b-metric space if it satisfies the following axioms for all &, g, y € Y.
(@ 1) wy(&, ) = 0iff £ =
(@42) wy(&, )= wy(P, &)
(‘w93) ’Wg(g’ y) <0, 7)[”9(5; ﬁ)""’wg(ﬁ, 7).
So, the pair (Y, @) is a extended b-metric space”.
For more information about convergence, completeness and Cauchy see in [15].

Definition 2.2 ([27]). “Let T be self map on Y and « : Y XY — [0, o) be function. We say T is
a-admissible if &, pe Y, a(é, f)=>a(TE TH) > 17.

Definition 2.3 ([28]). “An a- admissible map T is said to be triangular a-admissible if
EPveY, alg, )21, aly, =1 = alg, f)>17.

Definition 2.4 ([29]). “Let F: R*—>R be a mapping satisfies:
(F1) F is strictly increasing.
(F2) For any sequence {f,} of positive numbers lim,_, ., (8,) = 0 iff lim,_, , F(8,) = - o
(F3). There exists ae(0, 1), such that lim,_y+ f*F(f) = 0”.

Definition 2.5 ([26]). “Let F: R*—>R be a increasing function and {$,} be a sequence of positive real numbers. Then the following
axioms hold:

(1) lim,_,, F(8,) = - oo then lim,_, (8,) = 0 .

(2)If infF= - « and lim,_, , (8,) = 0, then lim,_,  F(8,) = - o0”.

Secelean [26] reintegrated the condition (F2) by more elementary condition i.e. (F2') (F2’) infF = - oo or also by (F2"), there
exists a sequence {f,} of positive real numbers such that lim,_, . F(8,) = - oo”.

Currently, Piri et al. [30]“ used the following (F3') in place of (F3).

(F3'), F is continuous on (0, o)

We denote the set of all functions (F1), (F2'), (F3’) by A”.

Consider @ which is the set of functions ¢:[0, c0)—[0, o) with ¢ is monotonic increasing as well as continuous and ¢(a)<a for
any a> 0. Let ¥ symbolize the collection of non-increasing functions y:(0, c0)—(0, ).

Before discussing how we demonstrate the convergence of a sequence in a graph let us discuss the basic notions about graph
theory. Motivated by Jachmski [31], throughout in this note, let X be the diagonal product of Y'xY. Let G stand for a graph and
V(G) be the set of vertices that coincide with Y and E(G) be the set of edges containing all loops. Consider the set

E(G™D= {(&, )EYXY:(¢, a)€E(G)} and E(G) = E(G) |J E(G™1). Throughout in this note, graph G stands for G = (V(G), E(G).
For more axioms of graph and fixed point combination, see in [29,32,33].

Definition 2.6. Let (Y, w,) be an extended b-metric space and G symbolize a graph in which V(G) = Y and E(G) = {(&, a):(¢,
a)EY'XY'}. Then

(1) A sequence {&,} of Y is converges to a point & of Y if, (&,, £)e E(®), lim,_,  wy(&,, £)=0

(2) A Cauchy sequence is convergent iff (¢,, &,)€ E(G), lim, 0o @p(&,5 &) = 0

(3) A space (Y, @) is complete < any Cauchy sequence is convergent.

3. Main results
Here, we establish generalized (Boyd-Wong) type A F — contraction which is defined as:

Definition 3.1. A complete extended b-metric space (Y, wy) on Y# ¢ endowed with a graph G = (V,E)and Y = V(G), {(&, p):(¢,
AE Y x Y} = E(G), where a is triangular a-admissible map along with two self maps S, T' on Y. Then the pair (S, T) satisfies the
axiom of (Boyd-Wong) type A F — contraction, if ¢ € @, F €A, w €¥ and for any &, f € Y = V(G),

o, k> 1 with @,(S¢, TB) > 0

@y(& P&, HF(c*wy(SE TP)) < F(x(&,B)) — w(wy(&, f)) GB.D
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(3.2)

20

,T , S
1E.P) = maX{di(we(é, B, (@ (S, TE)), plwy(B), TH), ¢< & TP+ 7y(h. 52) ) }

Lemma 3.1. A complete extended b-metric space (Y, w,) (Y # ¢) endowed with a graph G and two self maps S, T on Y satisfies the
axioms (3.1) and (3.2). Then S or T have a fixed point ¢ € Y which is unique.

Proof. First of all, consider a point £ of Y = V(G) such that S(¢) = £ also we demonstrate i.e. T(£)= &. For this let @, (S, TE) > 0.
By using (3.1) and (3.2), we write

F(w,(SE,TE)) < wy(&, Pa(&, OF(c*wy(SE, TE) < F(y(£,) — w(wy(£,8) 3.3
where,

F(x(£.9) —w(@y(.9) =

@y, TE) + wy(&, SE)
20

F(max { D(@(&, ), p(@(&, TE)), p(wy(S), TE)), ¢(< > }) — (@ 9) <F(wmy(&. 5%) B4

From (3.3) and (3.4), we arrive at a contradiction. So w,(S&, TE) = 0 i.e. points are equal so ¢ is common fixed point for S and T.
In addition to this if w,(¢, £)= 0 and by replicating the same exercise as discussed above we derive F(w, (&, £))<F(wy(&, £)), which
is again contradiction implies w, (&, £)= 0. To prove ¢ is unique choose f to be also a fixed point of S and T. Further, let w,(¢, £)>
0 then from (3.2) and (3.3) we write,

F(w,(SE, TP)) < wy(&, P&, OF (6 wy(SE, TP)) < F(x (&, B) — w(wy(&, p)) < Fwy(&, ) (3.5)
thus F(wy (¢, #)) < F(wy(&, ). Hence we determine that w,(&, f) = 0 implies £ = 8. So S and T have unique fixed point. []

Theorem 3.1. A complete extended b-metric space (Y, w,) (Y # ¢) endowed with a graph
G = (V, E) and two self maps S, T on Y which please the axioms i.e. S is a-admissible, there exists & in Y such that a(¢, S&) > 1 and
S, T satisfies generalized (Boyd—Wong) type A F- contraction. Then S, T have a fixed point ¢ € Y which is unique.

Proof. Consider the point & of Y = V(G) and a(&y, S&) > 1. Now, we choose a sequence {&,} such that
SE, =&y and Téy,, =&y VNEN (3.6)

As S is « admissible map so a(&;, &) = a(&), S&)) > 1 implies a(é;, &)=>a(SE), S&;)> 1. Thus, we can write a(&,, £,,1)> 1V n eN.
Let ¢, = &,V m €N in addition to this if &, = &,,,; and wy(&,,, &,,1) = 0. Now, from F1 and using Definition 3.1, we write

F(wy(Eapr1s Eanin)) < F(o @y(SE,,. TEy 1))
S @e(Eons1s Soni2)(Eon> St )F(kae(sfzns T&41)
SF(y(ons1sEonr2)) — W (@g(Eans Sony1)) and 3.7
Also, we write,
X o> Eopn) = max{@(wy(&yy, $rpp1))} (3.8)

Using (3.7) in (3.6) and by the postulate of ¢ and y we obtain

F(wy(&rppts Eongn) < Fl@y(Erpprs Expyn), thus we get a contradiction so wy(&,y,, 1, &,40) = 0. This implies &, = &, = &40 =
&y43=-... which leads to S¢&,, = T&,, = &, Thus, &, is a fixed point of S and T. Now, we assume that &, # &, Vm €N and wy(&,,,,1,
&,40) = 0. Now, we using condition (3.1) of Definition 3.1 we write,

F(wy(&ni1- o)) < F0 @y (SE0. TEp1)
< Wy S22 20— F (6 @ (&3 TE2s-1))
SFr oy San-1)) — w(@y(ap, E2pmt)) (3.9)
Also,

@o($ans 2n) + @e(E2_1 Sanit)
20

X & Eopmy) = max { (@& E2u 1), P( @y (Exs Epp1)s ¢<

@G- En) + Dy(Ear Ernar) = WGy ooy + Ty, E2,)) ) }

= max { D(@p(E2n> E20-1))> (@S35 E2ns1))s P(@y(S215 $20))s d)( %

= max{qb(wg &> E0n1))s Py (&, §2n+| N}

Now, if
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X(&onrEon1) = P(@y(&y:60p1) YV REN U 0 and consider (3.9) we write

F(wy(&rp1s E0n) < F(wy(&sypprs E,)- Thus we arrive at a contradiction consequently,

X (& Eon1) = P(@y(&rps Erpi1)) (3.10)
Using (3.9) and by the property of ¢ and y we obtain
F(wy(&,41-Eon) < F(d(wy(&ays 62— 1)) — w(@g(&as E21—1))) (3.11)

This leads to
o Eont1>S2n) < @o(€ons S2n1)

Here, we observe that {wy(&,,,1, &,} is a decreasing sequence of positive real numbers and by using the condition of ¢ and (3.10),
we get

F(wy(&onr1- Ean)) < F(d(@y(8r-1: E20-2))) — W (@ (Erpmis Epn2)) — W(@y(E2 Eppai))- (3.12)
Since y is also non-increasing function, the above inequality

F(@o(Sont1>620)) < F(B(@o(Ean-15620-2)) = 2 (@ (215 E20-2)))
Repeat the above procedure, and we get

F(wy(&rn115€00)) < F(d(wy(&p, €1))) — 2w (wy(p, 1)) (3.13)
Also,

F(wy(&an12: Sons1)) < F(@(wy(Sp, £1)) — 2(n + Dy (wy(&p. €1))) (3.14)

Since FEA and n— oo in (3.13) and (3.14) we obtain
lim,_,  wy(&,, &,.1)= -o0. By using (F2') and Lemma3.1 we get

)LTO @y(€y, Epr1) = 0. (3.15)
In addition to this

lim w,(&,,&,) = 0. (3.16)

n—oo

Now, we examine that {¢,} is a Cauchy sequence in Y, for this, we have to exhibit that {&,,} is a Cauchy sequence in Y. On the
contrary, there 3 §>0 so that for any integer ¢ such that n(c)>m(k)> ¢ and

Dy Eomie)> Ean(e)) = O- 3.17)
Let m(c) be the least positive integer which exceeds n(c) and satisfies (3.17) and
@o(Eamieys Ean(e)=1) = 6- (3.18)

By using inequality of triangle and (3.17) we write

6 < @e(Eamieys Eonce)) < 0T9(Eamers Eante)-1) < 09 (Eomier—15 Eomic))
Let c—oo0 and using (3.18) we conclude

g < lim inf @y (Eomeys S2nie)-1) < M sup@p(Eameeys Soncey-1) < 6 (3.19)
Besides this from (3.18) and (3.19) we get

6 < nggo sup@y(Eamicy> San(e)-1) < 06. (3.20)
Now,

D Eomer+15 Eance)) < 0T9(Eamer+15 Eame)) T 0o (Eamcys Sance))

< 0T Eomiey+1s> Eome)) + 626 + 92179(-52m<c)—1 s Sone))-

Which gives

8 < lim supwy(Eameys1- ane) < 67.
Now we write,

Do(Eamer+1> Sanie) < 0o(Eamer1> Sam(e)) + 09 Eamcys Eancer-1)

< CILH; sup@y(Eomcr+1s Eaney—1) < 66.

Now, from above expression and (3.19) we write
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Cli{{.‘o Sup@o(Eam(ey San(ey-1) = 2 cllf{}o Sup@o(Eam(e): San(e)-1)-

] L
% < clg{.lolnfw9(§2m(c)’§2n(c)fl)
. 6
< 611%12j sup@y(Exmiey> Son(er-1) < 5 (3.21)

Corresponding, we write

L )

CILH; mfwg(fzm(c)»fzn((_-)) < E (3.22)
) L

% < clg{.lo infwyEomer1s Eonce))- (3.23)
. 06

Jim supmyComeeyi1- Eaner-1) 7 - (3.24)

Since
Dy Eome)s Eane)-1) = @0 Eamer+15 Ean(e)) > 0-

Then by contractive property (3.1) of Definition 3.1 along with axiom of y we derive
F(w@y(Emerr1- Sone) < FoF @y(SEiey Térnier-1))
< TpEmiey: Eanter- 1) Eamerys Eanter- 1 F O Do (SErpners Trnier-1))
S F(rCamiey Eoner-1)) = W (@ (Eapmicy Eanier-1))

S F(x amiey Sane)-1)) (3.25)
By the property y(&, p) of and using (3.21 —3.24), we get
clLrlgo Sul’}((fzm(g), fzn(c)_1)§~ (3.26)
On solving 2 Emiers an(er—1) We get
. o 1 160+6
Clirgj sup ¥ Eameys San(e)—1) < max 5,0, 0, %0 [T] } (3.27)

Moreover, using (3.23), (3.24) and (3.26) we make out
F(G%) < F(CILTO SuP)((fzm(c), fzn(c)fl))

S0 F(%)<F(g), this comes out a contradiction so {&,} is a Cauchy sequence in (Y, w,). Also (Y, w,) is complete the sequence (&,}
converges to £€ Y = V(G) so
lim,_, @, (&,, £)= 0 = lim,_,  w,(&, £). Now, we shall prove S& = T¢ = . As FE(F3') €A and F is continuous so we have discussed
the upcoming two cases,
Casel: For any n in N there 3 £, € N such that wy(&,,;, S) = 0 i.e. &, = S& and &,>¢,_; with & i.e.
£=lim ¢, = lim S¢ = S¢. (3.28)

Thus ¢ is fixed point of S.
Casell: Let nye N with w(&,,;, S&) # 0V n > ny, i.e. wy(,, S&) > 0. Now, by using inequality (3.1) of Definition 3.1, we deduce
that

F(wy(SE, £,12)) < Wo(SE, £ 2)a(E, &y ) P (0 @y (SE TSy, 1))
SF(E. &ony1) — w(@p(E, Erpy1)- (3.29)

Where
X(&. &) = wy(€, SE). (3.30)

Thus, we derive with the help of (3.29) and (3.30)
F(w@y(S¢,&r012)) < Fwy(S, SE)

for any n > n,. As F is continuous and letting n —oo in the above inequality, we arrive at,
F(wy(SE, &rp40)) < Fmy(E, SO).

Which is a contradiction and from Lemma(3.1) ¢ is a unique fixed point of S and T. [J

Example 3.1. Let Y# ¢ be a non empty set where Y = [0,30] = V(G) and
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2D View

I I I I
-30 -20 -10 0 10 20 30

Fig. 1. LHS is depicted by blue surface while RHS is red.

3D View

Fig. 2. LHS is depicted by blue surface while RHS is red.

E(G) = {(&, P):(&, P)e Y x Y} then the function on Y defined as w, = max{¢, p} is a complete extended b-metric space where
6 = 1, 6 = 2. Consider the maps S, T on [0, 30] which is defined as S(¢) = 101?105’(14' E)+ £ and T(o)= éfz exp(-£). Now, we
derive the map a : Y XY — [0, ) defined as = a(&, ) = 1, (&, ) €[0, 30]. Clearly, the map is a-admissible and «(0, SO) = «(0,0)
= 1. Consider the function y on (0, 30) defined as, y(¢£) = m,

¢ on [0, 30] given by, ¢(¢&) = ]0]5—2“ and F(&) = logé. Clearly, 0 is a unique fixed point of S and T. Now, we discuss the contractive
condition (3.1) of Theorem (3.1), for this, we assume that for any &, [0, 30] we consider &> g. If &, p€[0, 30] and k = 1.1 then
from contraction condition (3.1) of Definition 3.1 as shown in Fig. 1 and Fig. 2.(LHS with blue surface while RHS is red surface)
we write,

2
LH.S = wy(&. paic. HF(c* wy(SE.TP)) < F(zk—5max{ apllog(l +&)+ £ exp‘”} )

<FQ*max{¢, )%

= log(2k3¢2). (3.31)
Also,
1(&, B) = F(p(E) — w(max{&, f}%)
B 1082 + 1 B 1 B
= 10g< B Y 1)> =RH.S. (3.32)

Proposition 3.1. An extended b-metric space (Y, w,) equipped by graph G = (V,E).
Let 0 > 1 and considering two maps, S, T on Y. Derive a {&,} by {&,,,.1} = S&,, and
Erpqr = TEy,1q, Y 0= 0,1... If there 3 a function, h: Y’ XY —[0,1) which satisfies,
h(TSE, p) < h(& p) and h(&, STP,) < h(&, B), YV & B €Y. Then h(&y,, p) < h(&, p) and
(e, &,,1) < h(a, &).

Proof. Since ¢, peY'= V(G) and n = 0,1,2... so we write

1(gn: ) = (T Sy 2P) < 13y, )
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=T SEy, 4, P) < N(&opgs B) < -+ < o, B)-
In similar manner, we derive

h(a, &ypqr) = M, STE,,_») < M@, &y, )
=n(a, ST, 3) < W@, &,_3) < -+ < Ala,ap). O

Definition 3.2. If (Y, w,) is a extended b-metric space, § : Y XY — [1, ) and graph G = (V, E) which contains loops, where ¥ =
V(G), E(G)= {(&, P&, P)EY x Y} then the maps S, T on Y is called (S - N) rational type contractive mappings if there 3 control
functions

n, k, h: YXY—[0, 1) implies

@y(SETH) < 0. B)| hE. BYmy(B. SP) + K&, Plwy(&, TP) + wy(B, SO + A&, B) @& TOwo(b, F) (3.33)
ORos Rl =T IR R o L+ w6, SP) + wp(B, TE) + wy(E, B :

Theorem 3.2. Let (Y, w,) be a extended b-metric space, 6 : Y XY — [1,00) and graph G = (V, E) which contains loops and the maps
is (S - N) rational type which satisfies

(@) I(TSE, B) < h(E, p) and h(E, STP) < h(E, B)

K(T'SE, ) < k(& B) and k(& STP) <K, p);
WT SE, B) < A, B) and h(¢, STP) and A&, STP) < h(E, p)

() A, B) +20k(&, B) + 0n(E, ) < 1.
Then S and T have a unique fixed point.

Proof. Let &, €Y = V(G) and derive a sequence{¢,} by {&,,,1} = S&, and &5 = T&,415
vV n = 0,1... and by (3.33) we deduce
o (Eont1>Sanr2) = @o(SE0p Téopy1)
< o Sanr VKEons Eon 1) + [@980n: E2pi1]
@ (En> 20t 1)@ Eont 1> S2nt2)
+0n(,,, 5,
ConrS2ne1) 0+ wy(Enp1s Sons2)
< h(§2n’ §2n+l )w6(§2n’ §2n+1) + 9k(§2n’ §2n+1 )w9(§2n+1 ’ §2n+2)
+ 9h(§2n’ §2n+1 )w9(§2n7 §2ﬂ+] )

By using Proposition 3.1 we derive

wa(’on-H ’ §2n+2) < h(fzn, ’52n+l )Wg(fzns §2n+1 )ek(§2n’ §2n+1 )wé‘(an’ §2n+l)
+ k(&> E2nr 1) B9 (Eaps 15 Sanr2) + 016215 E2pi ) B9 Eap)-

Thus,
(o, &) + Ok(&p, §1) + 0A ). $D)

3.34
1 —0k(&y, &) ( )

o (Eons1>Sanr2) <
Also, in same way
Do(ans2s Eont3) < Motz E2ns VB9 (Eanr2s Eanst) + OK(Eons2s E2ni 1) P9(E0ns2s E2ne3)
+ 01(842: 20t 1) Do (Eons 15 S2nt2)-
From Proposition 3.1 we derive
@o(ans2s Eones) < Mo, E)Dp(ansas Eanat) + OK(Ey, ED®Y(Ernrns Sany3)
+ 018y, &))@y (Gapt15 Soni)-

h(&y, 1) + 0k(&y, &) + 0n(§y, &)
1 - 0k(&o. &)

&y, &)) + 0k(&y. &) + OR(&y, &) <k
1= 0k(&p,¢))

So by using (3.35) and (3.36), we write

wﬂ(fn’ §n+l) < Kwe(infl’én)'

Wy(Eant2> Sne3) < @y (Eant1> Sant2)- (3.35)

Let, (3.36)
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Now, we set up a sequence {£,} i.e
@&y Eni1) S KT(&u15 &) < o k"8, &) (3.37)
For m > n, we deduce
@y(En Em) S Olwy(Eys Eppt) + o6y Enn)]
< 0Ty (G &) T (Epy1 Epya) < oo+ 0" (G 1 ). (3.38)
Using (3.37) we get
@o(&ys &) < Wp(E9. 1) + 07K (&9, &) + - + 0" k" g (&, €p)
<Ok (14 @0 + 06 + -+ O | (6. £1)

Ok"

<
~1-6k

@y (&, &p)- (3.39)
As n—o0,
w€(§n’ fm) - 0.

Thus, the sequence {¢,} is a Cauchy and Y is a complete so there 3 é& Y = V(G) such that {¢,}—¢ or lim,_ &, = & Thus
lim,_, &, = ¢ and lim,_, &,,,, = & Here, now we show that ¢ is the fixed point of S and T, using (3.33) we get

wg(fa §¢) < 9[179(5, T§2n+1) + wg(T§2n+l’S§)]

< <w0(§7 Eni) + ne, ¢ Y&, &) + 0k(¢, &, N@y(E, &rp2) + @y(Eapt1> SE]

,88) + n+1°52n
+ 0k(&2s E2nt 1) o (Eani 15 Eanrn) + OR(E, é‘l)l D& 58) + @1 Sanv2) >

+ @y(S, San2) + Wp(Sans15 SE) + Wp(E Sany1)
As n—oo in above expression, we deduce
wy(&, SE) < Ok(E, &))my(E, SE)
< (M6, €) +20(K(E, &) + OR(E, &) (E, SO)
<wy(&, 5%
which comes out a contradiction so S¢ = ¢ and in the same way we also demonstrate S¢ = £&. Now, we prove that S and T have a

unique fixed point. Let § be any other fixed point of S and T where é# f and using (3.33)

wy(§, ) = wp(SE. TH) <O, ﬁ)(h(é‘, Bywy(B, SP) + K&, P)lwy(E. TH) + wy(B, SE)]

- hEp) @y (&, TEwy (B, SP) >

L+ @y, SP) +wy(B. TE) + wy(£, P)
S Pwy(E, P + 20k(E, p) + 0N, Prmy(€, p) < L.
Thus,
(€, p)=0=> &=p. O

Corollary 3.1. Let Y # ¢ and (Y, w,) be a extended b-metric space, 6 : Y XY — [1, ) and graph G = (V, E). Let S, T be the self maps
on Y and if there 3 control functions,
n, k: YXY—[0, 1) which satisfies

(@h (TSE,p) <h.p) and h (&, STP) < h(&,p)
KT S¢, p) < k&, Pandk(E, ST ) < k&, p);

() R(E. B) +20k(E, p) < 1,

(¢) wp(SE.TH) <O, ﬁ)<h(~§, Bymy(B, SP) + k(& Plwy(, TH) + wy(B, Sé)]) (3.40)

So, S and T have a fixed point.

Proof. If we choose (¢, f) = 0 in Theorem 3.2 we get the required result. []
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Corollary 3.2. Let Y # ¢ (Y, w,) be an extended b-metric space, 6 : Y XY — [1,00) and graph G = (V, E). Let S, T be the self maps
on Y and if there 3 control functions,
h, h: YX Y — [0, 1) which satisfies:

(@) WTSE, P) < h,p) and 1, STP) < h(E, B)

T SE, B) < h(&, p) and (&, STP) and A&, STP) < (&, B);

(b) (. p)+0nE p) <1

(3.41)

,T .S
(¢) wy(SE.TP) < 0C. ﬁ)<h(:, Bywo(B. SP) + hiE. ) w0 & To(h, SF) >

1+ @y(&, SP) + wy(B, TE) + wy(&, p)
Then S and T have a fixed point.

Proof. Let k(&, ) = 0 in Theorem 3.2 we deduce the required proof. []

Corollary 3.3. Let Y # ¢ and (Y, w,) be an extended b-metric space, 0 : Y xY — [1,0) and graph G = V((G), E(G)) which contains
loops. Let S, T be the self maps on Y and if there 3 control functions, h: Y XY — [0, 1) which satisfies:

(@) W(T'SE,p) < h(E.p) and h(, STP) < h(&,p)
(b) h(5, p) < 1.

(©) wy(SE,TP) < 0, PhE, Pmwy(B, SP), (3.42)
Then S and T have a fixed point.

Proof. Let k(&, p) = a(&, p) = 0 in Theorem 3.2 we deduce required proof. []

Corollary 3.4. Let Y+# ¢ and (Y, w,) be an extended b-metric space, 6 : Y XY — [1, ) and graph G = (V, E). Let S be the map on Y
and if there 3 control functions, h: Y’ XY —[0,1) which satisfies:

(a) (SE, ) < h(&, B) and h(, SP) < h(&, p)
(b) nE.p) < 1.

(¢) wo(&, TP) < 0, PN, Bywy(B, B), (3.43)
Implies S has a fixed point.

Proof. Let k(&, ) = a(&, p) = 0 and S = I (identity map) in Theorem 3.2 we deduce required proof. []

Example 3.2. Let Y = [0, 1) and w, : Y XY — C defined as:
@y (&, p) = |- pI°
V& B eY =V(), and E(G)) = {(& §):(&, AIEYXY}. Define 6(¢, ) = 2+ max{¢, f} then (Y, w,) is complete extended b-metric
space. Derive the maps S, T on [0, 1) as S(¢) = § and T(¢) = f‘:' Now, we define control functions, 7, k, #: YXY —[0,1) as h = f—7+2%,
k= %+% and
h= % Now, we prove conditions (a) and (b),

& B <& B _ S P S A
nTS¢E, p) = 704 T 20 < 5t = &, p) and n(, STP) = 7t 20 < 5t 50 = ne, p)
_i ﬁ i ﬂ_ _i i i ﬁ_
K(TS¢E, p) = TR < TR =k, p) and k&, STP) = TR < TR =k, p);
_ &8 _ &8 _ &8 _ &8
n(STp, &) = 168 < 39 = n(, p) and h(&, STP) and h(&,STP) = 168 < £l .S, STP)

Since, the condition (b) is also true i.e.
n(, p) + 20k(&, p) + 0n(, p) < 1.

Now,
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3D view
—HS
= RHS

Fig. 3. LHS is depicted by blue surface while RHS is red.

wy(SETP) = '§ -2
£ P £ P sl sl
2
(e (i N4 49
2 2
'5—5 e-2
L&
39 2 2
L+le=2) +le-2) +1p-pP

,T S
= <h(e:, Byog(B. S+ & Dlwo(E TH + o4, SO+ hE Dy ;bfg’; - fﬂ)w(z(’; 5)’2 —7 )
(S, oD, 0(S,

Hence, all the postulates of Theorem 3.2 are fulfilled and 0 is a unique fixed point of S and T and we depict here the comparison
of LHS and RHS of (S - N) contraction as shown in Fig. 3.

4. Application

Here, we confer the possibility of a solution to the Fredholm integral equation
1
(€)= / T(,0,7(£)do (4.1)
0

where T : [0,1] x[0,1] x R — R* is continuous function. Set Y = C[0, 1] which denotes the set of real continuous functions on [0,
1] also,

@y((£). 7(B)) = maxgepo 1;(17(S), (A"

VéEpeYandm>land 0 : Y XY — [1,00) = 2+ & If G = (V, E) is a graph with Y = V(G),
E(G) = {z(&), (B): 7(&)<z(h), V &, P[0, 11} then (Y, w,) is an complete extended b-metric space.

Theorem 4.1. Choose an Eq. (4.1), we propose that
T:[0,11%[0,11xR = R* is continuous function. (4.2)

1
IT : [0,1] % [0,1] xR — R* is continuous function suchthat / I1(&,0,)do < 1 (4.3)
0
there 3 control functions ,3 h : Y XY — [0,1) which satisfies : h(SE, B) < h(, ) and h(,SP) < h(,p)

VE, 0 € [0, 11%andé, B € [0,11Y,
[T, 0,7(8) — T(.6,5(0)| < h(, ﬂ)i I, 0)|z(6) - p6). 4.4

This implies (4.1) has a unique solutionr in Y.

10
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Proof. Set the map S i.e.

1
Sz(8) =/ T(.0,7(5)do (4.5)
0

Now, (&), f(£)EE(G) and £€[0,1] we deduce,
@y(#(©). A& = (170 - & )"

l m
< < /0 IT(.0.2()) - T(.0. ﬂ(0))|d0>

l m
< < /0 h(T. ) TT(E,0)(|(8) — ﬁ(e)l’")"lvdG)

l m
< ( /0 h(E. p)m TT(E. O)wy(c(E). (P d0>

< &, Pmy(z(£), 7(B) /O] (H(& 9))
< R, Prmy(z(§), ©(B))-
Thus we write,
@y(7(8), (&) < M, Pmy(E. B) (4.6)
Consequently, all postulates of corollary (3.4) are satisfied, and S has a unique fixed point in ¥ which is a solution of (4.1). []

5. Conclusion

This note, inspired by Singh et al. [24] and Almari and Ahmed [25] introduces the concept of generalized (Boyd-Wong) type A
F and (S - N) contractions in a extended b - metric space visualized by graphs. Furthermore, we present numerical representations
to support our findings. In addition, we introduce graphs in both 2D and 3D to contrast the (Boyd-Wong) type A F — contraction.
Fixed point theory relies heavily on metric space generalizations and contractive mappings. Here, we outline some of the future
goals of our findings.

(D) Apply Theorem 3.2 to both controlled metric type and doubled controlled metric type spaces

(II) To establish a non-trivial innovative use of corollary (3.4).
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