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ABSTRACT

This study aimed to improve daily streamflow forecasting by combining machine learning (ML) models with signal decomposition techniques.

Four ML models were hybridized with five families of maximum overlap discrete wavelet transforms (MODWTs). The hybrid models were

applied to predict daily streamflow at the Bir Ouled Taher station in northern Algeria. Model performance was evaluated using multiple stat-

istical metrics and compared to standalone ML models. The hybrid MODWT-Gaussian process regression (GPR) model using Symlet wavelets

(MODWT-GPR3 sym4) achieved the best performance, with R¼ 0.99 and NSE¼ 0.98 during validation. This significantly outperformed the

standalone models tested and other hybrid combinations. The MODWT-GPR3 sym4 model demonstrated a superior ability to capture non-

linearities and predict peak flows. Hybridization of ML models with wavelet transforms, particularly the MODWT-GPR approach, can

substantially improve daily streamflow prediction accuracy compared to standalone models. However, model performance may vary

between watersheds due to differences in hydrological characteristics. Consideration of catchment concentration time when selecting

model inputs could further enhance forecasting capabilities.
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HIGHLIGHTS

• Novel hybrid models combining MODWT and machine learning improve streamflow forecasting in semi-arid environments.

• Multi-scale analysis enhances the capture of complex streamflow patterns in semi-arid watersheds.

• Findings contribute to improved water management strategies under climate variability.
1. INTRODUCTION

Water management remains a significant challenge, particularly in arid and semi-arid regions where water resources are
scarce and rainfall patterns are unpredictable (Zerouali et al. 2024b). In response to this challenge, numerous efforts have

been made to enhance the accuracy and reliability of rainfall-runoff modeling. These efforts encompass a range of
approaches, including conceptual models, which simplify complex processes into a set of mathematical equations (Sugawara
1979). Physically based models, such as that assessed by Santos et al. (2003), attempt to represent the physical processes
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governing rainfall-runoff relationships in a more detailed manner. More recently, machine learning (ML) algorithms have

emerged as powerful in this domain, as highlighted by do Nascimento et al. (2022).
ML algorithms are increasingly favored over conventional models because they excel at handling the complex, nonlinear

relationships between rainfall and runoff data – relationships that are notoriously difficult to capture with traditional physical

equations. This capability has led to their widespread adoption in practical engineering applications, as noted by Saraiva et al.
(2021). However, the performance of ML models is highly dependent on the quality of the input data, necessitating the use of
various preprocessing techniques to enhance data quality and model performance (El-kenawy et al. 2022; Gomaa et al. 2023;
Zerouali et al. 2023a, b). Preprocessing techniques are essential for preparing data for ML algorithms, especially in complex

domains such as hydrology and water resource management (Farajpanah et al. 2024). One advanced preprocessing method
that has shown significant promise in enhancing the accuracy of rainfall-runoff models is the maximal overlap discrete wave-
let transform (MODWT) (Küllahcı & Altunkaynak 2024). The MODWT is a powerful tool for decomposing input data into

various frequency components, facilitating more nuanced analysis and superior feature extraction. This method improves
upon the traditional discrete wavelet transform (DWT) by retaining time alignment and better handling nonstationary
data, making it particularly suitable for hydrological applications where data characteristics can vary over time (Amini

et al. 2024).
The integration of MODWT in rainfall-runoff modeling allows ML algorithms to leverage both temporal and frequency

information, leading to more accurate and reliable predictions. Studies have demonstrated that the use of MODWT in pre-

processing significantly enhances the model’s ability to detect patterns and trends that may not be apparent in raw data,
resulting in improved predictive performance (Daif & Hebal 2024). This technique’s ability to capture multi-scale features
of hydrological processes makes it a valuable addition to the suite of preprocessing tools available for hydrological modeling
(Zerouali et al. 2023a, b). In addition to MODWT, other preprocessing techniques play crucial roles in preparing data for ML.

Normalization and standardization are fundamental steps that ensure that each feature contributes equally to the model’s
performance. Typically, normalization rescales data to a specific range of 0 to 1, which is essential for algorithms sensitive
to the scale of input features (Habib & Okayli 2024). Standardization adjusts the data to have a mean of zero and a standard

deviation of one, which is beneficial for algorithms that assume normally distributed data. Principal component analysis
(PCA) is another widely used technique that reduces the dimensionality of data. By transforming the original features into
a set of uncorrelated principal components, PCA helps eliminate redundant information and focus on the most significant

features (El-Rawy et al. 2024). This reduction in dimensionality not only simplifies the model but also enhances its efficiency
and accuracy, particularly when dealing with high-dimensional datasets. Feature selection methods, such as recursive feature
elimination (RFE) and mutual information, are employed to identify and retain the most relevant features (Zheng et al. 2024).
RFE iteratively fits the model and removes the least important features, while mutual information measures the dependency

between variables to select the most predictive features. By focusing on the most informative features, these methods improve
model performance and reduce the risk of overfitting.

In scenarios where data are limited, data augmentation techniques such as synthetic data generation can be employed to

increase the size and diversity of the training dataset. Techniques such as synthetic minority over-sampling technique
(SMOTE) generate synthetic samples by interpolating between existing data points, which is particularly useful for addres-
sing class imbalances in classification problems (Ni et al. 2024). Handling missing data is another critical preprocessing

step. Techniques such as the mean imputation, k-nearest neighbors (KNN) imputation, and regression imputation are used
to fill in gaps in the dataset, ensuring that the ML model has a complete and reliable set of inputs (Abnane et al. 2023).
Mean imputation replaces missing values with the mean of the available data, KNN imputation uses values from the near-

est neighbors, and regression imputation predicts missing values based on other features in the dataset (Li et al. 2024).
Finally, noise reduction methods such as smoothing and filtering help to remove unwanted fluctuations and outliers
from the data (Cloez et al. 2024). Smoothing techniques, such as moving averages, reduce short-term fluctuations and
highlight longer-term trends, while filtering methods, including low-pass filters and wavelet-based denoising, remove

high-frequency noise while preserving important signal characteristics (Dodig et al. 2024). These techniques lead to
more stable and accurate models by ensuring that the input data are clean and reliable. By integrating these advanced
preprocessing techniques, including MODWT, researchers and engineers can significantly enhance the performance of

ML algorithms in rainfall-runoff modeling. The robust framework provided by these preprocessing methods, combined
with powerful ML tools, offers a comprehensive approach to addressing the complexities of water management in chal-
lenging environments.
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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For example, Roushangar et al. (2017) presented different strategies to explore the spatiotemporal variation in the rainfall-

runoff process for a watershed in northwest Iran using an extreme learning machine (ELM), and DWT preprocessed the tem-
poral features. Quilty et al. (2019) proposed a stochastic data-driven ensemble forecasting framework for urban water demand
in Montreal, Canada, using wavelet-based forecasts as input data. Alizadeh et al. (2021) simulated the precipitation and runoff

data of the Shaharchay River basin, one of the most important basins of Lake Urmia in northwestern Iran, using a combined
ELM, differential evolution, and DWT. Alizadeh et al. (2020) integrated a new learning machine with DWT to predict runoff-
precipitation amounts in the same river basin. They tested several mother wavelets to identify the best family member. Roy
et al. (2021) proposed an integrated model, combining an equilibrium optimizer with an ELM, and a deep neural network for

one-day-ahead rainfall-runoff modeling. They tested the proposed models in two different catchments in the UK. They also
tested six other well-known ML models. The proposed models were combined with the DWT preprocessing technique to
improve their performance. Khan et al. (2021) compared the performances of single decision tree (SDT), tree boost (TB),

decision tree forest (DTF), multi-layer perceptron (MLP), and gene expression programming (GEP) methods in rainfall-
runoff modeling of a Pakistanian river basin. Additionally, they assessed the impact of wavelet preprocessing through
MODWT on the model performance.

Furthermore, Alizadeh et al. (2018) presented an integrated artificial neural network (IANN) model that incorporates
observed and predicted time series as input variables combined with wavelet transform to predict flow discharge at multiple
lead times. Gomes & Blanco (2021) developed a hybrid MODWT-ANN model for daily rainfall estimation, considering the

seasonality of rainfall data. The study demonstrated that this hybrid model performed well in forecasting daily rainfall using
both satellite and national water agency data, indicating its potential utility in similar applications for rainfall estimation in
other regions.

As noted by Freire et al. (2019), Freire & Santos (2020), and Abda et al. (2020), the selection of the mother wavelet may

influence the results. Thus, this study aims to enhance the accuracy and reliability of rainfall-runoff modeling in the Oued
Rouina Zeddine watershed by leveraging both ML techniques and signal decomposition methods. The focus is on evaluating
the performance of standalone ML models, such as Gaussian process regression (GPR), long short-term memory (LSTM),

general regression neural network (GRNN), and multi-layer perceptron neural network (MLPNN), in predicting daily stream-
flow at the Bir Ould Taher station. Additionally, the study explores hybrid models that integrate ML with different MODWT
wavelet families to enhance prediction accuracy, aiming to identify the most effective configurations for capturing streamflow

nonlinearities and improving water resource management in arid and semi-arid regions.
In arid and semi-arid regions, water management faces significant challenges due to streamflow variability and data scar-

city, exacerbated by sporadic rainfall and prolonged dry periods (Freire et al. 2019; Abda et al. 2020; Freire & Santos 2020).
Given that traditional rainfall-runoff models often struggle to capture the nonlinear and irregular hydrological patterns in

such settings, this challenge manifests particularly in the Oued Rouina Zeddine watershed, where these issues are prevalent.
To address these limitations, this study improves streamflow forecasts using varied ML and sophisticated signal decompo-
sition approaches. In this analytical framework, our study uses GPR, LSTM, GRNN, and MLPNN models to address

semi-arid hydrological complexities, in contrast to many humid studies. These models, selected for their ability to capture
nonlinear relationships, are further enhanced by integrating MODWT to decompose input data into multiple frequency com-
ponents, revealing underlying patterns that raw data may miss. Additionally, this study analyzes how mother wavelet families

affect prediction accuracy, thereby improving streamflow forecasting.
2. MATERIALS AND METHODS

2.1. Study area and data used

This paper utilizes data from the National Agency of Hydraulic-Resources (ANRH). The hydrometric station of Bir Ouled
Tahar (code 011905) was selected as a case study. This station is situated in the Oued Rouina Zeddine watershed. The

Oued Rouina Zeddine watershed covers an area of 891.46 km² and is part of the northern section of the larger Cheliff
basin (Supplementary Figure A1). It is located between longitudes 1°400 and 2°100 E and latitudes 35°500 and 36°100 N.
Oued Rouina Zeddine is a minor tributary of the Oued Cheliff. This watershed is monitored by both a rain gauge station

and a hydrometric station. The elevations in this watershed are moderate, rarely exceeding 1,700 m. Due to its geographical
location, it experiences a temperate semi-arid climate, with an average annual temperature of approximately 16.6 °C. The
average annual precipitation is 487 mm. Streamflow (Q) and precipitation (P) data are available at daily time scales (01
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September 2000 to 31 August 2010). The data were divided into training (70%) and validation (30%) sets. Therefore, the train-

ing and validation subsets were 2,555 and 1,094, respectively, for the Bir Ouled Tahar station. In Supplementary Table A1, in
terms of the statistical descriptions of (Q) and (P), the mean, maximum, minimum, standard deviation, and coefficient of vari-
ation were reported. According to the results of the statistical parameters in Supplementary Table A1, the table provides a

comprehensive overview of the streamflow and precipitation data, highlighting the variability and correlation of these par-
ameters across different subsets. The streamflow data show a maximum value of 25.84 m³/s in the training and all data
subsets, with a lower maximum of 14.62 m³/s in the validation subset. The mean streamflow values are relatively low, indi-
cating that high streamflow events are infrequent. The standard deviation of 1.22 m³/s suggests moderate variability in the

streamflow data. The coefficient of variation (Cv) values indicate high variability in the data, with the highest Cv observed
in the training subset.

For precipitation, the maximum value is 42.10 mm in both the validation and all the data subsets, with a lower maximum of

27.30 mm in the training subset. The mean precipitation values are low, similar to the streamflow data, indicating that high
precipitation events are rare. The standard deviation values suggest greater variability in precipitation than in streamflow. The
Cv values for precipitation also indicate high variability, with the highest Cv observed in the validation subset. The coefficient

of correlation (R) between streamflow subsets is 1.00 for all streamflow subsets, indicating a perfect linear relationship. In
contrast, the correlation values for precipitation are lower, approximately 0.30, indicating a weaker relationship between pre-
cipitation and streamflow.

2.2. Maximum overlap discrete wavelet transforms

The DWT was first introduced in the late 1980s by Daubechies (1988) and Mallat (1989). DWT is implemented using a dis-
crete set of scales and wavelet translations obeying certain rules. This transform decomposes the signal into a set of mutually

orthogonal wavelets. DWT analysis consists of performing a local comparison of a signal with wavelet patterns, such as a
mathematical microscope, allowing zooming in on the signal at different scales. Wavelet orthonormal bases allow a multi-
resolution analysis based on very fast decomposition and reconstruction algorithms for a finite discrete signal (Daubechies

1992). These are functions produced by the process of dilation and translation of a mother wavelet function ca, t(t), which
is given as follows:

ca, t(t) ¼ c
t� t

a

� �
(1)

One of the advantages of DWT is the flexibility in the selection of the mother wavelet, depending on the experimenter’s use
or the time series characteristics. The wavelet transform is generally written as follows:

Cx(a, t) ¼
ðþ1

�1
x(t)ca, t (t) d(t) (2)

This research employs the MODWT, which was applied as a combined approach with the various ML methods mentioned

above. The MODWT is a modified version of the DWT. The MODWT does not use the subsampling process during the filter-
ing and decomposition stage, which provides more information about the resulting wavelet coefficients than does the DWT,
which makes the MODWT more robust to boundary effects.

In its mathematical framework, the MODWT decomposes the time series Xt into an approximation component (Aj, t) using

a low-pass filter (~g j, 1 ¼ g j,1=2 j=2) and into a detail component (Dj, t) using a high-pass filter (~hj, 1 ¼ hj,1=2 j=2), where ~g j, 1 and
~hj, 1 are the jth of the MODWT (Seo et al. 2017). Following Percival & Walden (2000), the MODWT is expressed through the
following equations:

X ¼
XL
j¼1

Dj þAJ00 (3)

Dj,t ¼
Xn�1

l¼1

~h
0
j,lWj,tþ1modn0 (4)
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Aj,t ¼
Xn�1

l¼1

~g0j,lV j,tþ1modn0 (5)

Despite its advantages, critical analysis of the literature reveals that a key limitation of both DWT and MODWT lies in
selecting the appropriate mother wavelet. Therefore, this research employed the most commonly used mother wavelets,
including Haar, Debauchies, Symlet, Coiflets, and Fejer-Korovkin (Supplementary Figure A2). For comprehensive details

regarding the mathematical implementation of MODWT, readers are directed to the significant contributions of Seo et al.
(2017) and Barzegar et al. (2021).

2.3. Development methodology

To forecast daily streamflow (Q) at time (t), we selected specific time lags for both streamflow and precipitation (P) based on
autocorrelation and cross-correlation analyses. The ACF, PACF, and XCF plots for the Bir Ouled Tahar station are presented
in Figure 1. Based on the result, the optimal lags for streamflow were identified with the help of the ACF, whereas the PACF

revealed significant precipitation lags.
By using the XCF, the lagged correlation in precipitation and streamflow was analyzed to show the effect of past precipi-

tation representing future variation in streamflow. The procedure of this methodology enables us to select those combinations

of lags that have the highest predictive power and are suitable for this watershed, where current and previous precipitation
events affect streamflow.

This research focused on the daily streamflow forecast using precipitation and streamflow data only because

precipitation records are, even when incomplete, consistently more available than others. We then selected, as
illustrated in Figure 1, two streamflow lags, namely, (t� 1) and (t� 2), together with three precipitation lags, namely, (t),
(t� 1), and (t� 2), as input variables, while streamflow at the time (t) was the output variable. Thus, four combinations of

five components were considered in this study, as listed in Supplementary Table A2. Two modeling scenarios have been
considered:

The first was standalone modeling, for which four different ML models had been applied: MLPNN, GPR, GRNN, and
LSTM. Each model used the selected precipitation and streamflow lags independently without pretreatment. These

models were chosen based on their application strengths regarding streamflow prediction:

– MLPNN models the nonlinear relationships quite realistically, which is so significant in rainfall-runoff processes.

– GPR offers probabilistic predictions and accounts for uncertainty, enhancing its usefulness in streamflow forecasting.
– GRNN also adapts well and fast to new data, making it well-suited for dynamic and variable hydrological conditions.
– LSTM is used to capture the long-term dependency, which is essential in time series data for accurate predictions based on

historical rainfall.

The second scenario proposed a hybrid model to overcome the problem of nonstationarity in the streamflow data. All the

ML models from scenario 1 were coupled with MODWT. For this hybrid model, the sub-series produced by decomposing the
original time series was used as input for the ML models for further predictions. The MODWT decomposition stabilized such
sub-series signals and thus enabled a more in-depth look into the periodicity and structure of the data. Some of the major

points of the process are as follows:

1. This includes using PACF and XCF to decompose the selected precipitation and streamflow lags MRAs and residual com-

ponents by MODWT.
2. The application of various mother wavelets, such as Haar, Daubechies (db3), Symlet (sym4), Coiflets (coif1), and

Fejer-Korovkin (fk8) in analyzing streamflow and precipitation at t, t� 1, and t� 2 produced seven MRAs, namely
MRA1 to MRA7, and one residual signal denoted as RSD. Each wavelet has some unique strengths: Haar detects

jumps or discontinuities; Daubechies and Symlet provide a very good tradeoff between regularity and computational
efficiency; Coiflets symmetrically preserve the trends of data; and Fejer-Korovkin introduces the minimum phase
distortion.

3. Split the decomposed signals further into training and validation in order to optimize model learning.
4. The decomposed signals, specifically from db3, sym4, coif1, and fk8, were then used to train ML models for streamflow

forecasting at time t.
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Figure 1 | ACF for streamflow (Q), PACF for precipitation (P), and cross-correlation between precipitation (P) and streamflow (Q).
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This integration of the MODWTwith ML improved the performance of the models by capturing the short-term fluctuations
along with long-term patterns exhibited in streamflow variation. Supplementary Figure A2 describes the methodology in

detail, together with a flowchart for daily streamflow prediction by the MODWT-ML algorithm.
2.4. Performance assessment of the models

This study evaluated model accuracy in predicting daily streamflow through metrics including root mean square error
(RMSE), mean absolute error (MAE), correlation coefficient (R), and Nash Sutcliffe efficiency (NSE) (Ali et al. 2024;
Belletreche et al. 2024; El-kenawy et al. 2024; Ferkous et al. 2024; Ibrahim et al. 2024; Oulimar et al. 2024; Zerouali et al.
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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2024a, b), as defined in Equations (6)–(9):

R ¼
1
N

X
QiO �QiO

� �
QiP �QiP

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

QiO �QiO

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn

i¼1
QiP �QiP

� �2r
2
66664

3
77775 (6)

NSE ¼ 1�

PN
i¼1

QiO �QiP½ �2

PN
i¼1 QiO �QiO

� �2 (7)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
QiO �QiPð Þ2

r
(8)

MAE ¼ 1
N

XN

i¼1
QiO �QiPj j (9)

whereN represents the total number of data points,QiO is the average of themeasured daily streamflow,QiP is the average of the

forecasted daily streamflow, QiP is the forecasted daily streamflow, and QiO is the measured daily streamflow.
3. RESULTS

The performance metrics of the standalone ML models throughout the training and validation stages are shown in Table 1.
Initial analysis reveals the GPR3 model outperformed the LSTM1, GRNN1, and MLPNN1 models during training, obtaining
the lowest RMSE and MAE values of ≈0.032m³/s, ≈0.143 m³/s, and ≈0.993, respectively, as well as the greatest R and NSE

values. The best-performing models utilized either the first or third input variable combinations from Supplementary
Table A2, suggesting that incorporating both recent precipitation and streamflow data enhances model performance.

The validation phase results present a different outcome, as shown in Table 1, where the LSTM1 model achieved the high-

est level of accuracy, with R≈ 0.805, NSE≈ 0.642, RMSE≈ 0.729 m³/s, and MAE≈ 0.225 m³/s, closely followed by the
MLPNN1 model. The GPR1 model also performed well, achieving minimum values for the error metrics (RMSE and
MAE) and higher values for R and NSE during the validation period. This performance distinction between phases is signifi-
cant, as while GPR3 excelled during training, LSTM1 demonstrated superior generalization ability in validation, emphasizing

the importance of assessing models across both phases. This discrepancy suggests that GPR3 may be overfitting the training
data, while LSTM1 exhibits better generalization to unseen data.

The visualization in Figure 2(a) and 2(b) represents the performance metrics from Table 1 for the training and validation

phases, respectively. The figures clearly illustrate the superior performance of the GPR3 model during training and the
LSTM1 model during validation. These comparative results underscore the importance of selecting models based on vali-
dation results to ensure better generalization.

The integration of wavelet analysis with GPR models yielded compelling results. Table 2 presents the outcomes of hybri-
dizing the GPR model with different MODWT wavelet families. The hybrid MODWT-GPR models demonstrate excellent
predictive accuracy, with considerably reduced error measures (RMSE and MAE) and notably improved fit indices (R and

NSE) compared to the standalone GPR model. This systematic improvement across all wavelet families suggests that
MODWT preprocessing effectively captures underlying patterns in the streamflow data.

A detailed comparison of the best-performing hybrid MODWT-GPR model with the best standalone GPR model appears in
Figure 3(a) and 3(b) for both phases. The training phase results show the MODWT-GPR3 (haar) model achieved the maxi-

mum improvement, reducing the GPR RMSE and MAE to approximately ≈0.004 and ≈0.001 m³/s, respectively. This
significant improvement suggests that the Haar wavelet is particularly effective at capturing the underlying structure of the
streamflow data. The quantitative gains, as visualized in Figure 3(a), indicate that MODWT preprocessing addresses some

of the standalone GPR model’s limitations identified earlier.
Analysis of the validation phase revealed the MODWT-GPR3 (sym4) model as superior, with an RMSE of ≈0.171 m³/s and

an MAE of ≈0.117 m³/s, representing a significant improvement over the standalone GPR models. The differential
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Table 1 | Results of streamflow prediction obtained by various standalone ML models

Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

GPR1 0.990 0.979 0.175 0.043 0.743 0.551 0.816 0.261

GPR2 0.959 0.920 0.345 0.160 0.571 0.317 1.007 0.575

GPR3 0.993 0.986 0.143 0.032 0.551 0.293 1.025 0.487

GPR4 0.902 0.811 0.529 0.224 0.539 0.267 1.043 0.614

GPR5 0.922 0.849 0.473 0.126 0.363 0.080 1.266 0.861

GPR6 0.645 0.413 0.932 0.378 0.125 0.190 1.329 0.557

LSTM1 0.829 0.676 0.692 0.190 0.805 0.642 0.729 0.225

LSTM2 0.764 0.580 0.788 0.248 0.741 0.485 0.875 0.474

LSTM3 0.784 0.610 0.759 0.229 0.714 0.507 0.856 0.311

LSTM4 0.705 0.496 0.864 0.329 0.695 0.477 0.881 0.411

LSTM5 0.603 0.363 0.971 0.269 0.615 0.378 0.961 0.304

LSTM6 0.689 0.468 0.887 0.265 0.729 0.502 0.860 0.333

GRNN1 0.884 0.773 0.579 0.220 0.685 0.460 0.896 0.378

GRNN2 0.719 0.505 0.856 0.341 0.580 0.313 1.010 0.470

GRNN3 0.706 0.470 0.886 0.292 0.583 0.323 1.003 0.410

GRNN4 0.641 0.400 0.942 0.370 0.592 0.307 1.014 0.480

GRNN5 0.567 0.297 1.020 0.331 0.486 0.233 1.067 0.432

GRNN6 0.291 0.082 1.166 0.438 0.310 0.094 1.159 0.559

MLPNN1 0.690 0.475 0.882 0.258 0.749 0.557 0.811 0.290

MLPNN2 0.624 0.389 0.951 0.376 0.666 0.441 0.911 0.464

MLPNN3 0.611 0.371 0.965 0.269 0.640 0.409 0.937 0.282

MLPNN4 0.589 0.346 0.984 0.384 0.637 0.393 0.949 0.470

MLPNN5 0.559 0.312 1.009 0.278 0.616 0.378 0.960 0.301

MLPNN6 0.319 0.101 1.153 0.444 0.309 0.094 1.159 0.575

The bold values indicate the best performance metric achieved within each category of models (standalone or hybrid) during either the training or validation phase.
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performance of wavelets – MODWT-GPR3 (haar) in training versus MODWT-GPR3 (sym4) in validation – reinforces the
importance of prioritizing validation performance for model selection.

The investigation of LSTM hybridization presents additional insights. Table 3 demonstrates the results of combining LSTM
models with various MODWT families. Consistent with previous observations, the hybrid MODWT-LSTM models exhibit
improvements in terms of the numerical performance criteria R, NSE, RMSE, and MAE in both the training and validation

phases compared to the standalone LSTM model.
Performance visualization in Figure 4 illustrates the comparative results of the MODWT-LSTM hybrid models against the

standalone LSTM model. The analysis identifies the MODWT-LSTM3 (sym4) model’s superiority in both phases with respect

to RMSE and MAE. This consistency across both training and validation phases contrasts with the variable performance of
the standalone models observed earlier. The stability of MODWT-LSTM3 (sym4) indicates effective resolution of the pre-
viously identified generalization issues.

The application of MODWT to GRNN models yielded significant results, as shown in Table 4. The experimental data

demonstrates strong performance of the GRNN-MODWT hybrid models in terms of the numerical performance criteria
R, NSE, RMSE, and MAE during training phases. Among the hybrid models, four of the five best performers exceeded the
performance of the standalone model.

Comparative analysis in Figure 5 illustrates the performance metrics of the MODWT-GRNN hybrid models against the
standalone GRNN model. The validation results show three of the five best hybrid models outperformed the GRNN3
model in terms of R, NSE, RMSE, and MAE. This widespread improvement across different wavelet families indicates
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf



Figure 2 | The best performance criteria obtained by the standalone ML models. (a) Training and (b) validation.
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that GRNN models benefit significantly from the multi-resolution analysis provided by MODWT. These results parallel the
improvements observed in the MODWT-GPR and MODWT-LSTM models, suggesting a general trend of enhanced perform-
ance through MODWT preprocessing.

The MLPNN hybridization results reveal similar enhancements. Table 5 presents the outcomes of combining the MLPNN
model with various MODWT algorithms. The data indicate particularly strong performance from the MODWT-MLPNN5
model (sym4), which excelled in both the training and validation phases, significantly outperforming the standalone

MLPNN model.
The performance visualization in Figure 6 demonstrates the comparative metrics of the MODWT-MLPNN hybrid models

against the standalone MLPNN model. The exceptional performance of MODWT-MLPNN5 (sym4) in both phases is clearly
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Table 2 | Results of streamflow prediction obtained by hybrid MODWT-GPR models on a daily time scale for the Bir Ouled Tahar station

Mother wavelet Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Coiflets
wavelet
(coif1)

MODWT-GPR1 0.999 0.999 0.005 0.002 0.933 0.870 0.439 0.285
MODWT-GPR2 0.997 0.993 0.099 0.040 0.549 0.286 1.029 0.560
MODWT-GPR3 0.999 0.999 0.005 0.002 0.926 0.854 0.465 0.326
MODWT-GPR4 0.996 0.993 0.103 0.042 0.516 0.247 1.057 0.570
MODWT-GPR5 0.999 0.999 0.004 0.002 0.883 0.767 0.588 0.404
MODWT-GPR6 0.997 0.994 0.095 0.035 0.426 0.143 1.128 0.596

Daubechies
wavelet
(db3)

MODWT-GPR1 0.999 0.999 0.008 0.003 0.886 0.781 0.570 0.384
MODWT-GPR2 0.997 0.994 0.093 0.035 0.518 0.226 1.072 0.590
MODWT-GPR3 0.999 0.999 0.006 0.003 0.898 0.803 0.540 0.334
MODWT-GPR4 0.997 0.994 0.094 0.034 0.530 0.242 1.061 0.602
MODWT-GPR5 0.999 0.999 0.005 0.002 0.812 0.649 0.722 0.454
MODWT-GPR6 0.997 0.994 0.097 0.038 0.471 0.140 1.130 0.671

Symlet
wavelet
(sym4)

MODWT-GPR1 0.999 0.999 0.009 0.004 0.990 0.980 0.174 0.118
MODWT-GPR2 0.997 0.994 0.098 0.036 0.593 0.334 0.994 0.479
MODWT-GPR3 0.999 0.999 0.008 0.003 0.990 0.980 0.171 0.117
MODWT-GPR4 0.997 0.993 0.101 0.037 0.578 0.311 1.011 0.488
MODWT-GPR5 0.999 0.999 0.007 0.003 0.988 0.976 0.187 0.118
MODWT-GPR6 0.997 0.994 0.096 0.034 0.390 0.076 1.171 0.607

Haar wavelet
(haar)

MODWT-GPR1 0.999 0.999 0.004 0.001 0.605 0.313 1.010 0.645
MODWT-GPR2 0.999 0.999 0.022 0.006 0.173 �0.027 1.235 0.640
MODWT-GPR3 0.999 0.999 0.004 0.001 0.646 0.402 0.942 0.599
MODWT-GPR4 0.999 0.999 0.028 0.008 0.154 �0.053 1.250 0.644
MODWT-GPR5 0.999 0.999 0.004 0.001 0.623 0.362 0.973 0.643
MODWT-GPR6 0.999 0.999 0.040 0.010 0.140 �0.009 1.224 0.633

Fejer-Korovkin
wavelet
(fk8)

MODWT-GPR1 0.998 0.995 0.086 0.030 0.891 0.793 0.554 0.331
MODWT-GPR2 0.996 0.991 0.114 0.039 0.556 0.297 1.021 0.485
MODWT-GPR3 0.999 0.999 0.011 0.003 0.792 0.627 0.744 0.373
MODWT-GPR4 0.995 0.991 0.117 0.037 0.535 0.274 1.038 0.497
MODWT-GPR5 0.999 0.999 0.005 0.002 0.718 0.515 0.848 0.457
MODWT-GPR6 0.996 0.993 0.105 0.037 0.329 0.019 1.207 0.596

The bold values indicate the best performance metric achieved within each category of models (standalone or hybrid) during either the training or validation phase.
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evident. These findings align with our earlier observations about the sym4 wavelet’s effectiveness, as demonstrated in the

MODWT-LSTM3 (sym4) model.
A comprehensive evaluation appears in Supplementary Figure A3 through Taylor diagrams of the best standalone and

hybrid models during the validation phase. These diagrams provide a concise visual summary of model observation matches

in terms of correlation, root mean square difference, and variance ratios. The distribution pattern of hybrid models in the
optimal regions of the Taylor diagrams reinforces the consistent improvement achieved through MODWT hybridization.

Further validation appears in Figure 7 through scatterplots comparing predicted and observed daily flow values for the Bir

Ouled Tahar station during validation. The results confirm the positive effect of hybridization, as these models exhibit less
dispersion and linear trends closer to the yx line. This visual representation aligns with the numerical improvements observed
earlier and demonstrates enhanced prediction accuracy across all observation ranges.

The computational efficiency analysis in Supplementary Figure A8 presents processing times for various models with and

without MODWT decompositions. Baseline results indicate that the GRNN and MLPNN models achieve calculation speeds
of 8–11 s, making them suitable for rapid prediction applications. The hybrid implementations of MODWT-MLPNN5 (sym4)
and MODWT-MLPNN5 (fk8) maintain efficiency with calculation times of 8 s, while also improving predictive capabilities.

In contrast, the more complex GPR and LSTM networks require 48 and 46 s, respectively. Computational demands peak with
MODWT-GPR3 (haar) at 99 s, whereas MODWT-GPR3 (sym4) achieves an optimal balance, providing superior predictions
within 54 s of processing time.
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf



Figure 3 | The best performance criteria obtained by the hybrid MODWT-GPR models for daily streamflow prediction at the Bir Ouled Tahar
station. (a) Training and (b) validation.
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The temporal analysis in Figure 8 examines measured versus calculated streamflow variations during the validation period.
Results demonstrate that the MODWT-GPR3 (sym4) model successfully captures significant nonlinearities and accurately
predicts maximum values. This exceptional performance in capturing both trends and extreme events aligns with the superior

metrics observed earlier and has substantial implications for flood prediction and water resource management.
Finally, to underscore the significance of these findings, Supplementary Table A3 provides a comprehensive comparison of

data-driven and hybrid models applied in Algeria for streamflow forecasting. The proposed GPR-MODWT hybrid demon-

strates remarkable accuracy, with an R value of 0.990 for daily forecasts and an RMSE of approximately 0.174 m³/s.
These metrics surpass previous methods, including the neuro-fuzzy approach (RMSE≈ 3.61 m³/s, R≈ 0.90) and the wave-
let-support vector regression model (RMSE≈ 0.15 m³/s, R≈ 0.97).
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Table 3 | Results of streamflow prediction obtained by hybrid MODWT-LSTM models on a daily time scale for the Bir Ouled Tahar station

Mother wavelet Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Coiflets
wavelet
(coif1)

MODWT-LSTM1 0.950 0.898 0.388 0.188 0.896 0.790 0.559 0.365
MODWT-LSTM2 0.817 0.660 0.710 0.279 0.650 0.415 0.932 0.451
MODWT-LSTM3 0.932 0.861 0.453 0.179 0.852 0.725 0.638 0.361
MODWT-LSTM4 0.780 0.603 0.767 0.307 0.622 0.379 0.960 0.440
MODWT-LSTM5 0.945 0.885 0.412 0.170 0.848 0.717 0.648 0.374
MODWT-LSTM6 0.750 0.556 0.811 0.331 0.630 0.378 0.961 0.459

Daubechies
wavelet
(db3)

MODWT-LSTM1 0.885 0.772 0.581 0.231 0.825 0.676 0.694 0.418
MODWT-LSTM2 0.737 0.537 0.828 0.327 0.546 0.290 1.027 0.535
MODWT-LSTM3 0.910 0.821 0.515 0.209 0.837 0.699 0.669 0.392
MODWT-LSTM4 0.758 0.570 0.798 0.317 0.363 0.082 1.267 0.642
MODWT-LSTM5 0.926 0.849 0.473 0.182 0.868 0.734 0.628 0.364
MODWT-LSTM6 0.782 0.607 0.762 0.303 0.600 0.348 0.984 0.461

Symlet
wavelet
(sym4)

MODWT-LSTM1 0.949 0.892 0.399 0.137 0.951 0.901 0.383 0.220
MODWT-LSTM2 0.837 0.696 0.671 0.284 0.658 0.367 0.969 0.497
MODWT-LSTM3 0.959 0.914 0.356 0.113 0.960 0.919 0.347 0.181
MODWT-LSTM4 0.822 0.672 0.697 0.290 0.758 0.575 0.795 0.389
MODWT-LSTM5 0.946 0.883 0.417 0.111 0.966 0.929 0.325 0.182
MODWT-LSTM6 0.748 0.554 0.812 0.325 0.688 0.473 0.885 0.443

Haar wavelet
(haar)

MODWT-LSTM1 0.888 0.780 0.570 0.259 0.784 0.596 0.774 0.479
MODWT-LSTM2 0.672 0.451 0.902 0.362 0.233 �0.154 1.309 0.747
MODWT-LSTM3 0.898 0.800 0.544 0.264 0.792 0.623 0.748 0.489
MODWT-LSTM4 0.589 0.346 0.984 0.385 0.363 0.120 1.143 0.581
MODWT-LSTM5 0.904 0.805 0.537 0.220 0.724 0.412 0.934 0.567
MODWT-LSTM6 0.633 0.399 0.943 0.355 0.247 0.037 1.196 0.575

Fejer-Korovkin
wavelet
(fk8)

MODWT-LSTM1 0.858 0.731 0.631 0.266 0.757 0.571 0.798 0.403
MODWT-LSTM2 0.755 0.564 0.803 0.304 0.644 0.410 0.936 0.462
MODWT-LSTM3 0.852 0.719 0.645 0.255 0.810 0.654 0.717 0.367
MODWT-LSTM4 0.753 0.563 0.805 0.324 0.537 0.271 1.040 0.486
MODWT-LSTM5 0.858 0.727 0.635 0.227 0.861 0.737 0.625 0.316
MODWT-LSTM6 0.726 0.526 0.838 0.333 0.621 0.383 0.957 0.482

The bold values indicate the best performance metric achieved within each category of models (standalone or hybrid) during either the training or validation phase.
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The model’s adaptability is evident across diverse datasets. For example, while wavelet-ANN models applied to Algeria’s
semi-arid and humid regions show higher RMSE (¼2.46 mm) but stronger correlation (R≈ 0.994), the current approach main-
tains consistent performance across varying conditions. The integration of MODWT with advanced ML techniques enhances
hydrological forecast accuracy, demonstrating broad applicability across Algerian watersheds.
4. DISCUSSION

The results presented in this study underscore the effectiveness of hybrid models, particularly the MODWT-GPR algorithm
(sym4), in predicting daily streamflows at the Bir Ouled Taher station. The hybrid model’s superior performance is evident
when compared to the standalone models, as it consistently yields lower error metrics and higher fit indices during both
the learning and validation phases. This performance aligns with previous research that highlights the advantages of

hybrid models in handling complex hydrological data. The MODWT-GPR (sym4) model outperformed several advanced
ML models reported in the literature. For instance, Gomaa et al. (2023) introduced a hybrid EMD-MLP-PSO model, achiev-
ing an R value of 0.982 and an NSE of 0.961. However, the MODWT-GPR (sym4) model in this study achieved even higher R
and NSE values of 0.99 and 0.98, respectively. This suggests that the wavelet transform, when combined with GPR, can
enhance model performance beyond what is possible with empirical mode decomposition (EMD) and other optimization
techniques like PSO.
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf



Figure 4 | Thematic maps showing the best performance criteria obtained by the hybrid MODWT-LSTM models for daily streamflow pre-
diction at the Bir Ouled Tahar station. (a) Training and (b) validation.
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One possible reason for the superior performance of the MODWT-GPR (sym4) model in the validation phase is its ability to

capture multi-scale hydrological patterns. The sym4 wavelet, in particular, excels at approximating both the low- and high-
frequency components of the time series, providing a better balance in capturing both short-term fluctuations and long-
term trends in streamflow data. The sym4 wavelet’s capacity to separate high- and low-frequency components allows the

GPR model to perform better by effectively predicting streamflow under various hydrological conditions.
Similarly, Chakraborty & Biswas (2023) developed wavelet-based models, showing that hybridization with wavelet trans-

forms significantly improved predictive accuracy. Their models achieved high NSE values, such as 0.9985 at the Teesta
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Table 4 | Results of streamflow prediction obtained by hybrid MODWT-GRNN models on a daily time scale for the Bir Ouled Tahar station

Mother wavelet Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Coiflets
wavelet
(coif1)

MODWT-GRNN1 0.996 0.991 0.115 0.034 0.767 0.583 0.787 0.377
MODWT-GRNN2 0.982 0.964 0.229 0.086 0.382 0.121 1.142 0.464
MODWT-GRNN3 0.988 0.975 0.191 0.071 0.803 0.640 0.731 0.368
MODWT-GRNN4 0.966 0.929 0.324 0.135 0.406 0.155 1.120 0.460
MODWT-GRNN5 0.964 0.927 0.329 0.141 0.803 0.635 0.736 0.388
MODWT-GRNN6 0.796 0.606 0.764 0.280 0.391 0.107 1.151 0.489

Daubechies
wavelet
(db3)

MODWT-GRNN1 0.996 0.992 0.109 0.030 0.678 0.446 0.907 0.421
MODWT-GRNN2 0.984 0.967 0.222 0.088 0.295 �0.005 1.221 0.511
MODWT-GRNN3 0.989 0.978 0.182 0.063 0.782 0.607 0.764 0.381
MODWT-GRNN4 0.968 0.933 0.314 0.137 0.310 0.055 1.184 0.495
MODWT-GRNN5 0.968 0.935 0.310 0.129 0.772 0.591 0.779 0.398
MODWT-GRNN6 0.857 0.702 0.664 0.270 0.480 0.221 1.075 0.488

Symlet
wavelet
(sym4)

MODWT-GRNN1 0.997 0.994 0.093 0.017 0.866 0.707 0.660 0.275
MODWT-GRNN2 0.988 0.976 0.190 0.069 0.541 0.284 1.031 0.433
MODWT-GRNN3 0.995 0.990 0.121 0.034 0.910 0.805 0.538 0.257
MODWT-GRNN4 0.970 0.939 0.300 0.114 0.574 0.325 1.001 0.422
MODWT-GRNN5 0.981 0.962 0.239 0.076 0.920 0.821 0.515 0.267
MODWT-GRNN6 0.825 0.656 0.713 0.264 0.343 0.004 1.216 0.468

Haar wavelet
(haar)

MODWT-GRNN1 0.993 0.985 0.148 0.041 0.664 0.433 0.918 0.442
MODWT-GRNN2 0.934 0.859 0.456 0.127 0.282 0.068 1.176 0.500
MODWT-GRNN3 0.971 0.941 0.295 0.103 0.641 0.404 0.941 0.454
MODWT-GRNN4 0.867 0.716 0.649 0.203 0.331 0.097 1.158 0.496
MODWT-GRNN5 0.921 0.844 0.481 0.189 0.704 0.484 0.876 0.455
MODWT-GRNN6 0.471 0.139 1.129 0.406 0.104 0.010 1.212 0.562

Fejer-Korovkin
wavelet
(fk8)

MODWT-GRNN1 0.995 0.991 0.118 0.022 0.647 0.406 0.939 0.357
MODWT-GRNN2 0.983 0.965 0.229 0.071 0.425 0.156 1.119 0.437
MODWT-GRNN3 0.989 0.977 0.183 0.048 0.685 0.446 0.907 0.355
MODWT-GRNN4 0.948 0.892 0.400 0.133 0.481 0.195 1.093 0.434
MODWT-GRNN5 0.946 0.891 0.401 0.120 0.633 0.375 0.963 0.378
MODWT-GRNN6 0.833 0.631 0.739 0.257 0.500 0.197 1.092 0.451

The bold values indicate the best performance metric achieved within each category of models (standalone or hybrid) during either the training or validation phase.
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Bazaar station. The current study’s MODWT-GPR model, with an NSE of 0.98, shows comparable effectiveness, further
validating the utility of wavelet-based hybrid models in streamflow prediction. Shabbir et al. (2023) proposed a hybrid

method using HD-SVR, HD-KNN, and HD-ARIMA models, reporting RMSE values as low as 7.9314 m³/s in the
Indus River basin. While the RMSE values from the MODWT-GPR (sym4) model in this study are much smaller,
especially during the validation phase (≈0.171 m³/s), it is clear that the proposed model’s ability to reduce error metrics

is superior. This advantage can be attributed to the effectiveness of MODWT in capturing the multi-scale characteristics
of hydrological time series, which might not be fully exploited by decomposition techniques like EMD. Moreover, Wang
et al. (2021) developed the VMD-LSTM-PSO model and demonstrated its high accuracy and stability. Although this

model showed strong predictive performance, particularly in the Yellow River basin, the MODWT-GPR (sym4) model pre-
sented in this study achieved even lower RMSE and higher NSE values, highlighting its robustness across different
hydrological contexts.

This study marks a significant advancement in the application of hybrid models for streamflow prediction. By integrating

MODWT with GPR, the study introduces a novel approach that outperforms both traditional ML models and other hybrid
models previously documented. The superior performance of the MODWT-GPR (sym4) model suggests that it can effectively
capture the complex, nonlinear relationships inherent in hydrological data, making it a valuable tool for accurate streamflow

prediction.
The findings align with the growing body of research advocating for the use of hybrid models in hydrology. For instance, Hu

et al. (2020) and He et al. (2019) both emphasized the importance of combining decomposition techniques like VMD with
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf



Figure 5 | Thematic maps showing the best performance criteria obtained by the hybrid MODWT-GRNN models for daily streamflow pre-
diction at the Bir Ouled Tahar station. (a) Training and (b) validation.
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advanced ML models to improve forecasting accuracy. The current study supports this view, demonstrating that the combi-
nation of MODWT and GPR offers a powerful approach to improving predictive accuracy. In their paper, Xie et al. (2019)
used a new hybrid model, VMD-DBN-IPSO, to improve the accuracy of runoff forecasting at the Yangxian and Ankang
hydrological stations in the Han River basin, China. Variable mode analysis (VMD) is used to analyze the original daily
runoff series, and then, using the hybrid model combining the improved particle swarm optimization (IPSO) algorithm

and the deep belief network (DBN), runoff is predicted. The results show that the VMD-DBN-IPSO model can still achieve
the best performance in the training and testing phases and has good stability and representation; moreover, the NSE coeffi-
cient remains above 0.8, and the peak flow prediction error is less than 20%.
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Table 5 | Results of streamflow prediction obtained by hybrid MODWT-MLPNN models on a daily time scale for the Bir Ouled Tahar station

Mother wavelet Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Coiflets
wavelet
(coif1)

MODWT-MLPNN1 0.923 0.817 0.521 0.235 0.890 0.787 0.562 0.344
MODWT-MLPNN2 0.664 0.436 0.914 0.399 0.656 0.424 0.925 0.512
MODWT-MLPNN3 0.931 0.851 0.469 0.220 0.892 0.794 0.553 0.354
MODWT-MLPNN4 0.640 0.408 0.936 0.389 0.690 0.461 0.894 0.444
MODWT-MLPNN5 0.939 0.878 0.425 0.226 0.887 0.786 0.563 0.348
MODWT-MLPNN6 0.513 0.262 1.045 0.409 0.543 0.292 1.025 0.491

Daubechies
wavelet
(db3)

MODWT-MLPNN1 0.884 0.775 0.577 0.251 0.879 0.771 0.583 0.360
MODWT-MLPNN2 0.636 0.401 0.942 0.402 0.597 0.355 0.978 0.524
MODWT-MLPNN3 0.837 0.686 0.681 0.297 0.817 0.644 0.727 0.463
MODWT-MLPNN4 0.653 0.423 0.924 0.379 0.511 0.254 1.052 0.525
MODWT-MLPNN5 0.926 0.857 0.461 0.212 0.863 0.701 0.666 0.388
MODWT-MLPNN6 0.515 0.238 1.062 0.392 0.531 0.251 1.054 0.494

Symlet
wavelet
(sym4)

MODWT-MLPNN1 0.984 0.960 0.245 0.068 0.984 0.967 0.221 0.138
MODWT-MLPNN2 0.600 0.350 0.981 0.370 0.639 0.389 0.952 0.451
MODWT-MLPNN3 0.952 0.904 0.377 0.100 0.972 0.945 0.285 0.147
MODWT-MLPNN4 0.657 0.431 0.918 0.352 0.630 0.393 0.949 0.458
MODWT-MLPNN5 0.991 0.980 0.171 0.056 0.985 0.968 0.218 0.128
MODWT-MLPNN6 0.491 0.231 1.067 0.374 0.523 0.256 1.051 0.487

Haar wavelet
(haar)

MODWT-MLPNN1 0.894 0.783 0.567 0.263 0.794 0.628 0.743 0.444
MODWT-MLPNN2 0.562 0.315 1.007 0.458 0.347 0.106 1.152 0.612
MODWT-MLPNN3 0.888 0.776 0.576 0.268 0.824 0.676 0.693 0.405
MODWT-MLPNN4 0.520 0.267 1.042 0.445 0.341 0.097 1.158 0.609
MODWT-MLPNN5 0.873 0.750 0.608 0.267 0.821 0.674 0.695 0.388
MODWT-MLPNN6 0.305 0.091 1.160 0.461 0.047 �0.056 1.252 0.617

Fejer-Korovkin
wavelet
(fk8)

MODWT-MLPNN1 0.810 0.639 0.731 0.272 0.836 0.690 0.679 0.330
MODWT-MLPNN2 0.625 0.390 0.950 0.382 0.580 0.336 0.993 0.501
MODWT-MLPNN3 0.775 0.598 0.772 0.273 0.827 0.677 0.692 0.339
MODWT-MLPNN4 0.605 0.359 0.974 0.386 0.548 0.299 1.020 0.505
MODWT-MLPNN5 0.863 0.737 0.624 0.285 0.846 0.701 0.666 0.314
MODWT-MLPNN6 0.521 0.268 1.041 0.386 0.534 0.279 1.035 0.473

The bold values indicate the best performance metric achieved within each category of models (standalone or hybrid) during either the training or validation phase.
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This study also shows that regardless of the base algorithm – whether GPR, LSTM, GRNN, or MLPNN – integrating
MODWT preprocessing consistently enhances model performance. This finding aligns with earlier studies advocating wave-

let-based hybridization for improving hydrological modeling accuracy.
An interesting observation emerged when comparing standalone and hybrid models. While the GPR3 model performed

best during training, the LSTM1 model excelled in validation. This highlights the importance of evaluating models on inde-

pendent datasets to avoid overfitting, as seen with the GPR3 model, and ensure predictions remain reliable.
The study’s computational efficiency analysis reveals practical considerations. While MODWT-MLPNN5 (sym4) and

MODWT-MLPNN5 (fk8) models provide superior predictions with rapid calculation speeds of approximately 8 s, more com-

plex models like GPR and LSTM require longer processing times between 46 and 99 s. This tradeoff suggests that the
MODWT-MLPNN models are ideal for real-time applications, while the MODWT-GPR (sym4) model may be better
suited for in-depth offline analyses that prioritize accuracy.

The model’s exceptional performance in capturing both trends and extreme events has promising implications for flood

prediction and water management, as shown in the temporal analysis in Figure 8. By accurately forecasting peak and low
flows, the model supports effective flood mitigation and sustainable water distribution.

Overall, the MODWT-GPR (sym4) hybrid model’s accuracy in predicting daily streamflows, along with its adaptability

across different regions of Algeria, marks significant progress in hydrological forecasting. The study’s findings point to the
future potential of integrating wavelet analysis with ML in water resource management and the continued development of
data-driven hydrological models.
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf



Figure 6 | Thematic maps showing the best performance criteria obtained by the hybrid MODWT-MLPNN models for daily streamflow
prediction at the Bir Ouled Tahar station. (a) Training and (b) validation.
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5. CONCLUSION

The goal of this study was to improve the predictability of daily streamflow in the Oued Rouina Zeddine watershed in north-
ern Algeria, focusing on enhancing water flow predictions using hybrid models that combine signal analysis techniques with
ML. The methods applied in this study were designed to explore the benefits of combining signal decomposition with ML

techniques for streamflow prediction. Initially, four standalone models –GPR, LSTM, GRNN, and MLPNN –were developed
and tested using historical data on streamflow and precipitation. These models were evaluated based on key performance
metrics, such as R, NSE, RMSE, and MAE. Next, the MODWT was applied to decompose the data into various components,
om http://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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Figure 7 | Scatter plot of measured vs. calculated daily streamflows for the best (a) standalone and (b) hybrid ML models in the validation
stage for the Bir Ouled Tahar station.

Figure 8 | Comparison between measured and predicted daily streamflow using the hybrid model MODWT-GPR3 (sym4) at the Bir Ouled
Tahar station.
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which were then fed into hybrid models. The study tested different wavelet families (coif1, db3, sym4, haar, and fk8) to deter-

mine which combination would yield the best results for streamflow prediction. The performance of the hybrid models was
compared with the standalone models in both learning and validation phases to identify the most effective approach.

The results showed a clear improvement in prediction accuracy with the hybrid models, especially in comparison to the

standalone models. Among the standalone models, the GPR3 model performed the best during the learning phase, achieving
the highest correlation (R¼ 0.993) and NSE (0.986) values, along with the lowest RMSE (0.143 m³/s) and MAE (0.032 m³/s).
In the validation phase, the LSTM1 model, with an R value of 0.805 and NSE≈ 0.642, had the best performance among the
://iwaponline.com/jh/article-pdf/26/12/3266/1517349/jh2024263.pdf
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standalone models, though its RMSE (≈0.729 m³/s) and MAE (≈0.225 m³/s) were higher than those of the GPR3 model

during training.
When combining MODWT with ML models, especially using the Symlet wavelet family (sym4), significant improvements

were achieved. The hybrid model MODWT-GPR3 (sym4) emerged as the top performer, with superior accuracy in both the

learning and validation phases. During validation, it reduced RMSE to 0.171 m³/s and MAE to 0.117 m³/s, outperforming the
best standalone model (LSTM1). Other hybrid models, such as MODWT-LSTM3 (sym4), MODWT-GRNN5 (sym4), and
MODWT-MLPNN5 (sym4), also showed notable improvements over their standalone counterparts.

The results were consistently supported by scatterplot analysis and performance graphs, which highlighted the superiority

of the MODWT-GPR3 (sym4) model. This hybrid model was particularly effective in capturing nonlinear patterns in the data
and accurately predicting peak flow values, as evidenced by the time series comparisons of measured and predicted
streamflow.

Overall, this study provides strong evidence for the effectiveness of the MODWT-GPR (sym4) hybrid model in streamflow
prediction. It highlights the potential for combining signal decomposition with ML techniques to enhance hydrological fore-
casts. To further enhance these findings, future research should explore other wavelet families and hybrid models, extending

this approach to diverse hydrological environments.
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