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Abstract: In this paper, we study the oscillation of a class of second-order nonlinear differential
equations with mixed neutral terms in the non-canonical case. New criteria are derived that ensure the
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results reported in previous studies. To illustrate this, we present some examples.
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1. Introduction

This paper is concerned with the oscillatory behavior of solutions to a nonlinear second-order
neutral differential equation

QW Q)Y +q)# () =0, =& >0, (1.1)

where ¥ ({) = % (0) + p1 (O % (1 () + p2 ()« (u (L)), €, are the ratios of odd natural numbers. The
following assumptions are satisfied:

(G1) ¢ € C(|&y, ), (0, 0)) satisfies the condition (i.e., the non-canonical case)

|

(G2) & € C([£,©),(0,0)), &) < ¢, & () >0, and lim;—, £ ({) = o0


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2025332

7257

(G3) p1,pr € C([Ly,),[0,1)), g€ C([Ly,),[0,))and g () is not identically zero in any interval
Of [é/()’ OO)’

(G4) 7, € C([§0,),(0,00)),7({) <&, u({) 2  and limy,o T ({) = 0.

By a solution of (1.1), we mean a function x € C ([, ),R) &, > {, which has the property
()W () € CH ([, ) ,R) and satisfies (1.1) for all > £,. We consider only those solutions x ()
of (1.1) satisfying sup{|» ()| : { > ¢,} > O for all {, > ¢, and we assume that (1.1) possesses such
solutions.

A solution of (1.1) is called oscillatory if it has arbitrarily many zeros on [, 0); otherwise, it is
termed non-oscillatory. If every solution to Eq (1.1) is oscillatory, then the equation is considered
oscillatory.

Oscillation theory has grown significantly since this phenomenon appears in various real-world
models; for example, the papers [1-3] that discuss biological mechanisms (for models from
mathematical biology where the oscillation and deviation scenarios may be formulated by means
of external sources and/or nonlinear diffusion, perturbing the natural evolution of related systems).
Neutral functional differential equations have also drawn a lot of interest since they are used in
a wide range of disciplines, including economics, physics, biodynamics, mechanical engineering,
control theory, and communication (see [4-8] and the references therein). The oscillation area for
several classes of second-order difference equations; see [9-12], second-order differential equations;
see [13—17] and second-order dynamic equations; see [18, 19] was the focus of researchers due to the
aforementioned observations.

The oscillation and asymptotic behavior of different forms of second-order differential equations
have been discussed. Some of them are given below.

Dzurina et al. [20] investigated the oscillation of the second-order differential equation

(EO @ +pr @%@ @QN)) +qQ)# ) =0, {2 &, (13)

under the condition (1.2), where 0 < « < 1 is a ratio of odd natural numbers. They found sufficient
conditions to ensure that all solutions to (1.3) oscillate.

Li and Rogovchenko [4] and Shi and Han [21] studied the oscillation of the half-linear neutral
differential equation of second-order

O +prQx@@))) +qx () =0, { = &, (1.4)
under the condition (i.e., the canonical case)
¢

L ﬂ/f—@dfzooasg—wm, (1.5)

where €({) > { and 7({) < ¢. They obtained sufficient conditions for the oscillation of the studied
equations by the inequality principle and the Riccati transformation.

Grace et al. [22] considered the oscillatory behavior of all solutions of second-order nonlinear
differential equations with positive and negative neutral terms

(EO @ +p @%@ Q) - P2 Qx> T @QN)) +q)#F () =0. 24, (1.6)
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under the condition (1.5), where «; and k, are the ratios of positive odd integers. They introduced new
oscillation criteria, by which they proved that equation (1.6) is oscillatory.
Moaaz et al. [23] focused on studying the differential equation

(EQ) (e (D) + pr©Qx @)+ pa@)x@)))) +q Q)% () + g2 (D x (e2(0) =0, £ = &,
(1.7)
in the non-canonical case, where &, ({) > £, ¢2 ({) € C([{y, ), [0, )), and g, () is not identically
zero for large {. They created criteria with one condition through which they guaranteed the oscillation
of the differential Eq (1.7). To illustrate the importance of the results they obtained, they presented the
following differential equation as an example:

({2 (% () + pix (%) + pon (74“)) ) +qi% (g) + g% (00) =0, £ 2 o, (1.8)
where vy, 0 > 1. They proved using Theorem 2 in [23] that (1.8) is oscillatory if
* * Q
htH> T (1.9)
LR I —ypi-ps

Wau et al. [24] studied the oscillatory properties of a second-order delay differential equation with a
sublinear neutral term

(€@ (@@ +prQx TN +q@# @) =0, {2 &, (1.10)

where 0 < « < 1 is a ratio of odd natural numbers. They introduced oscillation criteria that extend
and improve some of the well-known results in the literature. Here we mention one of their results for
clarification.

Theorem 1.1. [24, Corollary 2.1] Let k = 1, € = 8, and

max {Pl (). p1 () ffzf” - (g)dg} <1 1.11)
Jop €1 © d€
If
fma @ O =, (1.12)
and

- [0 Ve @ de) - oo (L)
1-pi(eQ) =% ()(f Ve @) )— — df =00 (1.13)
f [( p1(e(d fg@) RTRPP: q( ; & dé f( 1 @) dé ¢

hold, then (1.10) is oscillatory.

In light of these considerations, our goal is to study the oscillatory behavior of Eq (1.1), and find new
oscillation criteria, where we obtain these criteria by deducing some monotonic properties and some
new inequalities between the solution and the corresponding function. By verifying these criteria, we
can ensure that Eq (1.1) is oscillatory. To see the effectiveness and importance of the criteria we have
obtained, we present some examples and compare them with some previous studies.
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2. Main results

Let us introduce the following notation:

| |
h = ,% = s
@ f( g RO L g

and
B h(r(e(0)) R (u(e))
@) =pi1 () 7z Q) +p2(e(Q) %(8(§)) :
Theorem 2.1. If
00 1 0 1/e
f[l (m (L g W) (e () (1 —cD(u))ﬁdu) )d@: 00, (2.1)

where © (#) < 1, then (1.1) is oscillatory.

Proof. Assume that (1.1) is not oscillatory. In this case, it has solutions that eventually do not change
sign. Without loss of generality, we can suppose that x ({) is a positive solution of (1.1). Then, we see
that % (7({)) > 0 and % (£ ({)) > O for all { > £;. From (1.1), we obtain

QW Q)Y =-q)* () <0, (2.2)

thus, the function € () (4’ (£)) is nonincreasing on [y, o) and of one sign, i.e., ¥’ () < 0 ory’ ({) > 0.
First, assume that ¢’ ({) < 0. From the monotonicity of € ({) (¥’ ({))¢, we obtain

QW @) <tQ)W ) =-K<0,=z4. (2.3)
We know that ¥ () = % () + p1 (O) % (7 () + p2 () % (u (L)), therefore, we obtain
X =) -p1Dx@)—p2ODxW@N)2¢ ) —p1 DY) —p2 DY ). (24)

Since ¢’ () < 0 and (£(0) (W ())) < 0, we see that

<]
VO > - L e (v @) ds

> Oy OrQ), (2.5)
using (2.5) and (2.3), we have
v Q)= K"R(Q). (2.0)
From (2.5), we obtain )
g(w@)) _Q QY+ @) >0, 2.7
df \ () m2 () £V Q)
using (2.7), (2.4), and (G4), we have
YO Q) ) L hE@Q)
%) =2y () - pi (()T{)—pz(i)l//(é) =yl -p1 D "m0 P2,
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and so,

h(t(e())

%) = ¥ () (1 —PE@) =)

-p2(e(d ))) ;
from (2.2), we obtain

h(r ()

A
h(e(2)) ’

—p2(e(d ))) (2.8)

COW @)Y <-q@)y (8({))(1 —p1(e(d)

from (2.6), we obtain

, n g
COW Q)Y <-q@ K9 (=) (1 PO T E e (4))) @9
Since R’ (¢) > 0, we obtain
RuE)=R(EQ). (2.10)
By integrating (2.9) from ¢, to £, and using (2.10), we find
‘ i (r (e W) R (u @)Y’
’ € __wBle _ _
QW ) <-K L q W) (g (W) (1 p1(ew) e W) P2 (e(u)) R (e () ) du.

(2.11)
Integrating (2.11) from ¢; to £, we obtain

e ¢ 1 f e
v < @) - (k7<) f (m( f q(u)hﬁ@(u))(l—@(u))ﬁdu) )de, (2.12)
4] &

combining (2.1) and (2.12), we see that ¢ ({) — —oo as { — oo, a contradiction.
Next, assume that ¥ () > 0. Hence,

e 1 ) . ) e
VO = wE+ L e (W @) ds > (0w ©) L s
> QY QR
and so, y
d (@) ROy Q) -y Q)
_ - 0, 2.13
dé(%@)) OO &13
combining (2.4) and (2.13), we see that
YR W) _ R u©)
%({)Zlﬁ(f)—pl(f)l//(()—Pz(g)%—@—lﬁ({)(l—Pl({)—Pz(f) R Q) ),
and so, %
%(8(5))2111(8({))(1—171 (8({))—172(8(4’))%%;)))-
From (2.2), we obtain
, R g
(€W D)) S—Q(é)wﬂ(s(éf))(l—m () — p2(e(Q) %g;))) : (2.14)
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Since %’ ({) < 0, we obtain

h(r(e() 2nh(e(]), (2.15)
integrating (2.14) from ¢ to { and using (2.15), we find
4 R B
(W r < - [ e (1 ~ P (e (@) - pa (e (w) M) du
a (& (W)
+C(4) (W' (D))
Y4 B
< PP E) | g (1 — p1 (eW)) — p2 (& () w) du
a (& (W)
+C(&) (W' (D))
4 f B
<~ @) q(u)(l - <e<u>)% (@) %) du
141
+0(4) (W (D) (2.16)
Since A’ ({) < 0, we obtain
Y4 s
f 7 (e (W) g ) (1 - @) du < hﬁ(S(&))f g w) (1 — @ (W)’ du. (2.17)
141 141

It follows from (2.1) and (G1) that f; g (e (u) (1 — @ (1))? du must be unbounded. Hence, from
(2.17), we find ’

e
fq(u)(l—q)(u))ﬁdueooas{eoo. (2.18)
4|
Thus, from (2.16), we see that ¥’ ({) — —oo as { — oo, a contradiction. Then, the proof is completed.
O
Theorem 2.2. Assume that
1 Y 1/€
w'(§)+£1,5—({)(f g)(1 - 0wy du| ¢ @)=0 (2.19)
4|
is oscillatory and
f g ) (1 —® W)’ du = oo, (2.20)
)

where © ({) < 1. Then, (1.1) is oscillatory.

Proof. We can proceed exactly as in the proof of Theorem 2.1. Then, € () (¥’ ({))€ is of one sign
eventually. Now, suppose that ¥’ ({) < 0. Then, we find that (2.8) and (2.10) are satisfied. Integrating
(2.8) from ¢, to ¢ and using (2.10), we have

;
EQO W (@) <L) W ) —f gy’ (e @) (1 = © W)y’ du,

4]
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and so,

Ble e 1/€
v 0 <m0 [qwa-ewra)
14

Hence, we find that

1/e
Y+ (f g W) (1 —‘D(u))ﬂdu) W) <0 (2.21)

f”e(é“)

has a positive solution, hence, we conclude that (2.19) has a positive solution, a contradiction; see [25,
Lemma 1].

Next, let ¥’ (¢) > 0. Hence, we find that (2.20) leads to (2.18), and in light of this, the rest of the
proof of this theorem is similar to the proof of Theorem 2.1. O

We can now obtain other oscillation criteria for (1.1) by using the results given in [25-27].

Corollary 2.1. Assume that € = 5. If

4 1 0 1/e 1
lim inf f S ( f w) (1 = @ () du) do > -, 2.22
& Jug 0@\, e (2:22)

and (2.20) hold, where @ ({) < 1, then (1.1) is oscillatory.

Corollary 2.2. Assume that € > 3. If

. Y4 1 v 1/e
lim sup j; W( fg q(u)(l—cb(u))ﬂdu) do = co (2.23)

{—00

holds, where @ ({) < 1, then (1.1) is oscillatory.

Corollary 2.3. Assume that B > € and (2.20) holds. Let

ﬁw E)e )

im0 "
and
e @O /e
héglm = O ( f gw) (1 - W) du) > 0. (2.24)

Then, (1.1) is oscillatory, where ® () < 1, @w () € C'([{,),R) such that @’ (/) > 0
and lim;_,, @ ({) =

Example 2.1. Consider the neutral differential equation

(65 (1% @ + 4 200> + Bx o] ) ) + o' (e0) = 0, (2.25)
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where { > 1, e = 1/5,8 = 1/7,6(0) = {*°, p1 () = A, p2({) = B, A,B € [0,1), 7()) = 704,
w(Q) = pol, £(0) = g0l To, &0 € (0,1), o > 1, and g (¢) = go. Now, we see that

4 1

0= | @wwwfw_z (o—j“@wymm@— L1 where = 1,

1
R(() = “al T LR uE@) =

To 0{ " LoEo

h(e({) = _g“ h(r(e()) =

+1,

and

RuE@) (metl) el-n

RE@Q) (- +1) el -1

Set Q({) = (80l = L)/ (e0f = 1), since lim; Q. (£) = 1, there exists £ > £ such that Q () < 1+¢
for all € > 0 and every { > .. By choosing € = yy — 1, we obtain

e — 7

Q(g“):[g ”10)<,u0f0r311§2{*.

ol —

Therefore, the condition (2.1) becomes

” 1 0 1/e
L (gl/e ) (L Q(M)hﬁ(é‘(u))(] —(D(u))ﬁdu) )d@
- [ ! o1\ | 17 NS
) L W (L 10 (go_u) (1 —A (T_o) - B,Uo) du) do
= ¢ 1 ST N (1 9 11\ 5 )
= q (1 —A (:0) - B,Uo) (8—0) L 7 L (;) du| |dO = oo,

1
A(—)+B,u0 < 1.
7o

Thus, by using Theorem 2.1, we see that (2.25) is oscillatory.

where

Example 2.2. Consider the neutral differential equation

(gz [% @) + 11—6% (g) ; 3%% 30) ) T qox (i) 0, (2.26)

where { > le=f=1,0() = pi1(Q) =1/16, p2({) = 1/32,7(0) = {/3, u({) = 3¢, () = /4,
and g () = qo. Now, we see that

12
T(8(§))—£ p(e@) = g , h(e (5))—2 h(t () =—,

¢

K@) = —; +1, R(u(E@)) = —% +1,
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and
)¢~
Je-1

Set ®(0) = ((i)g - %) / ((i)( - 1), since lim; .0 () = 1, there exists £, > £ such that ©® () <
1 + ¢ forall ¢ > 0 and every > . By choosing €, = 3 — 1, we obtain

(:)¢-
(§)¢-1

Therefore, the condition (2.20) is satisfied, where

. R (1 (g (1)) R (@)Y
L q(u) (1 — pi1(e(u)) e P> (e () R ) du

1 1 0
= 610(1—E(3)—3—2(3))f{0 du = oo,

and the condition (2.22) becomes

(1 9 1 (t (e () RuEw)f -
lim inf f( T® ( L q(u)(l—pl E W) oy~ P2 W) = )du) de

Rueo) _(%+1) |
R (2+1)

1
4
1
4

®(§)=[ )<3f0rall§2§*l.

1 1 1
= qO(l T 3—2(3))ln4 >

thus, by using Corollary 2.1, we see that (2.26) is oscillatory if gy > 0.36921.
Now, by comparing (1.8) with (2.26), we notice that p] = 1/16, p5 = 1/32,y = 3,0 =4, q] = qo
and g5 = 0. By using (1.9), we see that

4

qo> ——————
1-3) & -5

therefore, we find that (2.26) is oscillatory if gy > 5.12.
From the above, we notice that our results improve the results of [23].
Example 2.3. Let us assume the special case

(o)) @0 e

for Eq (1.1), where € = f = 3, £() = {*, p1() = 1/4. p2 () = 0. 7)) = {/2. £()) = {/3, and
q () = 2£%. Now, we see that

3 6 1
T(e(0) = % h(e(4) = A h(t(e()) = 7 and @ (0) = 5.
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Therefore, the condition (2.20) is satisfied, where

a 1 (7 (e ())) R (u (e @)Y’
L q(u) (1 - pi(e(u)) W — p2(e(u)) W) du
= % wdu = oo,
2o

and the condition (2.22) is satisfied, where

L 9 1 (t (e () RuEw)f )
llgr_l)glfLoé,l/E—@(L Q(M)(l - P (S(M))m - p2(e(w)) m) d”) do

1\(2\" 1
= [1=Z|(2] In3>-
(-3)(5) m-e

thus, by using Corollary 2.1, we see that (2.27) is oscillatory.
Now, using Theorem 1.1, we find that condition (1.13) is not satisfied, where

. [, Ce @Y . s (L)
1= p1(e(0)) =& (4)( f f‘”f(f)df) - F dz
/ [[ T e | O\ [eve@ e

()

From the above, we notice that our results improve the results of [24].

Remark 2.1. From the previous examples, the following can be concluded.:

1) From Example 2.2, we note that using the results we obtained, we proved that differential
Eq (2.26) is oscillatory if gy > 0.36921, while using the results of [23], they proved that differential
Eq (2.26) is oscillatory if gy > 5.12.

2) From Example 2.3, we note that using the results we obtained, we proved that differential
Eq (2.27) is oscillatory, while the results of [24] fail to study the oscillation of differential Eq (2.27)
due to the failure to meet condition (1.13).

Thus, we find that our results improve the results of [23] and [24].

3. Conclusions

In this paper, the oscillatory and asymptotic behavior of second-order neutral differential equations
is studied. New conditions are introduced to ensure that all solutions of (1.1) are oscillatory.
Furthermore, we provide examples that demonstrate the theoretical significance and practical
application of our criteria. These examples demonstrate how well our method improves and extends
some previous theorems in this field and provides new directions for future studies. We recommend that
future research investigate when our techniques can be applied to higher-order differential equations

(CO (@ +pr@Qx@@)+p2 % @@ON")) + g () =0, £ 2 &,

where n > 4 is even.
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