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Abstract  

This paper presents a modified homotopy perturbation method (HPM), which aimed at solving systems of ordinary 

differential equations (ODEs). The MHPM, which combines the HPM, Laplace transform, and Padé approximants, 

offers an alternative approach to address the challenges associated with solving such problems. By employing this 

method, it becomes feasible to overcome these challenges and obtain a dependable approximation for the exact 

solution. The effectiveness and applicability of the proposed scheme are demonstrated through preliminary results 

derived from illustrative examples, all of which correspond to exact solutions. 

Keywords: Numerical Approximation; HPM; MHPM; Laplace transformation; Padé approximants 

1 Introduction 

Solving systems of ODEs is a critical task in various fields of applied science and engineering. Whether one is 

modelling physical phenomena or optimizing industrial processes, accurately solving these equations is essential 

for understanding the behaviour of dynamic systems. However, finding analytical solutions can be challenging 

and even impractical, especially for complex systems with nonlinearities. In such cases, numerical methods offer 

a powerful range of tools for approximating the solution. There are different numerical schemes in fields of 

numerical analysis that are used in finding approximate solutions for various types of equations [1-20, 28-30]. The 

solutions resulting from these schemes are excellent and agree with the exact solutions in all cases. However, the 

difference between them lies only in the structure of the method, which reflects the ease of calculations or requires 

more effort and time. 

In this study, we present a novel enhancement to the utilization of the HPM for resolving systems of ODEs. Our 

approach can be applied to any given problem, providing exact solutions, opposite the HPM solution that converge 

towards the exact solution as the number of approximation terms increases. It is noteworthy to acknowledge that 

the accuracy of our approach does not depend about the approximation employed, which may require additional 

computational resources and time, especially when dealing with nonlinear problems. Consequently, researchers 

are continuously striving to develop or adapt numerical techniques to achieve higher accuracy or exact solutions.   

The primary objective of this paper is to improve the accuracy of the HPM through the application of an alternative 

methodology. This methodology entails modifying the series solution of the HPM by utilizing the Laplace 
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transform on the truncated HPM solution. Subsequently, the transformed series is converted into a meromorphic 

function using Padé approximants. Lastly, the inverse Laplace transform is employed to derive the desired solution 

for the given problem. This approach is simple, requiring minimal effort and is highly efficient in obtaining 

accurate results. 

This work organized as follows: Section 2 introduces the fundamental concept of the HPM, along with a brief 

explanation of the Pade approximants. In Section 3, numerical examples are presented to demonstrate the 

effectiveness of the discussed procedure in obtaining the exact solution for systems of ODEs. The results highlight 

that accurate solutions can be obtained with only a few terms. The final section summarizes the conclusions of this 

work. 

2. Fundamental Idea of HPM Procedure 

To demonstrate the fundamental concept of the HPM procedure [21-25], let's examine the following equation. 

𝐴(𝑢) − 𝑓(𝑟) = 0,   𝑟 ∈ Ω,                                                  (1) 

where  𝐴 is the integral operato consiste of the linear and nonlinear operator 𝐿 and 𝑁,respictively, while 𝐵 is a 

boundary operator, 𝑓(𝑟)is a known function, and 𝛤 is the boundary of the domain 𝛺. Eq.  (1) can be rewritten as 

𝐿(𝑢) −  𝑁(𝑢) −  𝑓(𝑟) =  0.                                                      (2) 

A homotopy equation  𝑣 ∶ 𝛺[0, 1] →R which satisfies 

𝐻(𝑣;  𝑝) =  𝐿(𝑣) −  𝐿(𝑣0) +  𝑝𝐿(𝑣0) +  𝑝[𝑁(𝑣) −  𝑓(𝑟)] =  0,                         (3) 

or 

𝐻(𝑣;  𝑝) =  (1 −  𝑝)[𝐿(𝑣) −  𝐿(𝑣0)] +  𝑝[𝐴(𝑣0) − 𝐹(𝑟)] =  0,               (4) 

is constructed, here,  𝑟 𝜖 𝛺, 𝑝 𝜖 [0, 1] is the homotopy parameter, and 𝑣0(𝑥) is an initial approximation of Eq. (1). 
It is noted that 

(𝑣;  0) =  𝐿(𝑢) − 𝐿(𝑣0) =  0,     𝐻(𝑣;  1) =  𝐴(𝑣) − 𝐹(𝑟) =  0.               (5) 

The changing process of 𝑝 from 0 to 1, include the changing of 𝐻(𝑣;  𝑝) from 𝐿(𝑢)–  𝐿(𝑣0) to 𝐴(𝑣) −  𝐹(𝑟) that  

is called deformation, Moreovere,  𝐿(𝑢) − 𝐿(𝑣0)and 𝐴(𝑣)–  𝐹(𝑟) are called homotopic. Note that,  0 ≤ 𝑝 ≤ 1 it 

is considered as a small parameter, the solution of Eqs. (3) or (4) can be expressed as a series in 𝑝, as follows: 

𝑣 =  𝑣0  +  𝑝𝑣1  +  𝑝
2𝑣2 + 𝑝

3𝑣3 + . . .                         (6) 

when 𝑝 → 1, the approximate solution of Eq. (1). i.e., 

           𝑢(𝑥) =  lim
𝑝→1

𝑣(𝑥) =  𝑣1 + 𝑣2 + 𝑣3 +⋯                                            (7) 

3. Padѐ approximation 

For the function 𝑢(𝑥) [26, 27], the Padé approximation of order  [
𝐿

𝑀
] , can be formulated as follows,  

[
𝐿

𝑀
] =

𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
, 

where 𝑃𝐿(𝑥) and 𝑄𝑀(𝑥), are two polynomials of the highest degree 𝐿 and 𝑀. The power series is given in form of  

𝑢(𝑥) =∑𝑎𝑖𝑥
𝑖.

∞

𝑖=1

 

The coefficients of the polynomials 𝑃𝐿(𝑥) and 𝑄𝑀(𝑥), can be obtained from  

𝑢(𝑡) −
𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
= 𝑂(𝑥𝐿+𝑀+1).                                                                                  (8) 

When the denominator and numerator's functions 
𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
 is multiplied by a constant that is not zero, the fractional 

values stay the same, such that we can set up the normalization requirement as                                                  

           QM(0) = 1.                                                                                                  (9) 
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It observed that the polynomial for the functions 𝑃𝐿(𝑥) and 𝑄𝑀(𝑥) has no public factors.  The coefficients of the 

polynomial 𝑄𝑀(𝑥)  and 𝑃𝐿(𝑥)  aregiven by                                                                                         

𝑃𝐿(𝑡) = 𝑃0 + 𝑃1𝑡 + 𝑃2𝑡
2 +⋯+ 𝑃𝐿𝑡

𝐿 ,                                                                              

𝑄𝑀(𝑡) = 𝑞0 + 𝑞1𝑡 + 𝑞2𝑡
2 +⋯+ 𝑞𝑀𝑡

𝑀,                                                                               
 (10) 

the following linear systems of coefficients can be obtained by multiplying Eq. (8) by 𝑄𝑀(𝑥) in light of Eq. (8).  

{
 
 

 
 𝑎𝐿+1 + 𝑎𝐿𝑞1 +⋯+ 𝑎𝐿−𝑀+1𝑞𝑀 = 0
𝑎𝐿+2 + 𝑎𝐿+1𝑞1 +⋯+ 𝑎𝐿−𝑀+2𝑞𝑀 = 0.

.
𝑎𝐿+𝑀 + 𝑎𝐿+𝑀−1𝑞1 +⋯+ 𝑎𝐿𝑞𝑀 = 0 }

 
 

 
 

,                                                         (11) 

{
 
 

 
 

𝑎0 = 𝑃0
𝑎0 + 𝑎0𝑞1 = 𝑃1

𝑎2 + 𝑎1𝑞1 + 𝑎0𝑞2 = 𝑃2
.
.

𝑎𝐿 + 𝑎𝐿−1𝑞1 +⋯+ 𝑎0𝑞𝐿 = 𝑃𝐿}
 
 

 
 

,                                                     (12) 

 

 These equations will be solved using Eq. (11), It is seen as a set of linear formulas for the unidentified 𝑞`𝑠  . When 

the 𝑞'𝑠 are identified, then (12) have an explicit formula for the unknown p`s, this concludes the solution to the 

problem. If (11) and (12) are non-singular, then we can solve them directly and get Eq.  (13) . 

[
𝐿

𝑀
] =

𝑑𝑒𝑡

[
 
 
 
 

𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+2    … 𝑎𝐿+1
. . … .
. . . .
𝑎𝐿 𝑎𝐿+1 . 𝑎𝐿+𝑀

∑ 𝑎𝑗−𝑀𝑋
𝑗𝐿

𝑗=𝑀 ∑ 𝑎𝑗−𝑀+1𝑋
𝑗𝐿

𝑗=𝑀−1 … ∑ 𝑎𝑗𝑋
𝑗𝐿

𝑗=0 ]
 
 
 
 

𝑑𝑒𝑡

[
 
 
 
 
𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+2 … 𝑎𝐿+1

. . . .

. . . .
𝑎𝐿 𝑎𝐿+1 … 𝑎𝐿+𝑀
𝑋𝑀 𝑋𝑀−1 … 1 ]

 
 
 
 

,                    (13)           

 

 

4. Applications of HPM 

In the following section, we present two illustrative examples of systems of ordinary differential equations (ODEs), 

both linear and nonlinear. The purpose of displaying these examples is to demonstrate the effectiveness and 

reliability of the Modified HPM procedure. 

Example 4. 1 Consider the following system of first-order linear equations [23]. 

 

     𝑢1
′ (𝑡) = 𝑢2(𝑡),  

  𝑢2
′ (𝑡) = 𝑢3(𝑡), 

                         𝑢3
′ (𝑡) =  

1

𝑡
𝑢1(𝑡) + 𝑢3(𝑡),                                                              (14) 

Subject to 

 𝑢1(0) = 0, 𝑢2(0) =  1,  and  𝑢3(0) = 2, with exact solutions 𝑢 = (𝑢1(𝑡), 𝑢2(𝑡)) = (𝑡𝑒𝑡 , ⅇ𝑡(1 + 𝑡), ⅇ𝑡(2 + 𝑡)), 
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We will now formulate the following set of homotopy equations, following the algorithm outlined in Section 2. 

(1 − 𝑞)
𝑑𝑣1(𝑡; 𝑝)

𝑑𝑡
= (ℎ; 𝑞)(

𝑑𝑣1(𝑡; 𝑝)

𝑑𝑡
− 𝑣2(𝑡; 𝑝)  

 (1 − 𝑞)
𝑑𝑣2(𝑡;𝑝)

𝑑𝑡
(ℎ; 𝑞) [

𝑑𝑣1(𝑡;𝑝)

𝑑𝑡
− 𝑣3(𝑡; 𝑝)],  

(1 − 𝑝)[
𝑑𝑣3(𝑡;𝑝)

𝑑𝑡
= (ℎ; 𝑞) [

𝑑𝑣3(𝑡;𝑝)

𝑑𝑡
−

1

𝑡
𝑣1(𝑡; 𝑝) − 𝑣3(𝑡; 𝑝)]                                       (15) 

Following the same process in example one, we have the 5th -order HPM approximate solution 

𝑢̃1(𝑡) = 𝑡 + 𝑡
2 +

𝑡3

2
+
𝑡4

6
+
𝑡5

24
+
𝑡6

120
+
167𝑡7

151200
+

𝑡8

20160
,                                 

𝑢̃2(𝑡) = 1 + 2𝑡 +
3𝑡2

2
+
2𝑡3

3
+
5𝑡4

24
+
𝑡5

20
+
13𝑡6

1350
+
59𝑡7

50400
+

𝑡8

20160
.                    

𝑢̃3(𝑡) = 2 + 3𝑡 + 2𝑡2 +
5𝑡3

6
+
𝑡4

4
+
7𝑡5

120
+
1403𝑡6

129600
+
433𝑡7

352800
+

𝑡8

20160
.                 (16) 

Tables (1), (2) and(2)   present a comparison between HPM process and exact solutions. We observed that the 

accuracy of the results varied depending on the order of the approximations. Therefore, to enhance the precision 

of the HPM procedure, we will begin by applying the Laplace transformation to the initial terms in the HPM series 

solutions. Next, we will utilize the Pade approximants and finally, we will conclude by implementing the inverse 

Laplace transformation. The process is outlined below 

𝐿(𝑢̃1(𝑡)) =
2

𝑠9
+
167

30𝑠8
+
6

𝑠7
+
5

𝑠6
+
4

𝑠5
+
3

𝑠4
+
2

𝑠3
+
1

𝑠2
, 

𝐿(𝑢̃2(𝑡)) =
2

𝑠9
+

59

10𝑠8
+
104

15𝑠7
+
6

𝑠6
+
5

𝑠5
+
4

𝑠4
+
3

𝑠3
+
2

𝑠2
+
1

𝑠
, 

                     𝐿(𝑢̃3(𝑡)) =
2

𝑠9
+

433

70𝑠8
+

1403

180𝑠7
+

7

𝑠6
+

6

𝑠5
+

5

𝑠4
+

4

𝑠3
+

3

𝑠2
+

2

𝑠
,                                 (17) 

Use  𝑠 =
1

𝑧
 , leads to 

𝐿(𝑢̃1(𝑡)) = 𝑧
2 + 2𝑧3 + 3𝑧4 + 4𝑧5 + 5𝑧6 + 6𝑧7 +

167𝑧8

30
+ 2𝑧9, 

𝐿(𝑢̃2(𝑡)) = 𝑧 + 2𝑧
2 + 3𝑧3 + 4𝑧4 + 5𝑧5 + 6𝑧6 +

104𝑧7

15
+
59𝑧8

10
+ 2𝑧9, 

𝐿(𝑢̃3(𝑡)) = 2𝑧 + 3𝑧
2 + 4𝑧3 + 5𝑧4 + 6𝑧5 + 7𝑧6 +

1403𝑧7

180
+
433𝑧8

70
+ 2𝑧9,                    (18) 

 

   The Pade approximates of order  [
3

3
] in term of 𝑥 =

1

𝑠
 , gives 

[
3

3
] =

1

(1 +
1
𝑠2
−
2
𝑠
) 𝑠2

, 

[
3

3
] =

1

(1 +
1
𝑠2
−
2
𝑠
) 𝑠
, 

                                         [
3

3
] = −

1

(1+
1

𝑠2
−
2

𝑠
)𝑠2
+

2

(1+
1

𝑠2
−
2

𝑠
)𝑠

                                           (19) 
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 The exact solutions  𝑢 = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) = (𝑡𝑒
𝑡 , ⅇ𝑡(1 + 𝑡), ⅇ𝑡(2 + 𝑡)).,  are obtained by applying the 

inverse Laplace transform to the [
3

3
] Pade approximate. 

Example 𝟒. 𝟐: Given the system of nonlinear first-order equations [24], 

  𝑢1
′ (𝑡) = 2𝑢2

2(𝑡), 

  𝑢2
′ (𝑡) = 𝑒−𝑡𝑢1(𝑡),   

                           𝑢3
′ (𝑡) =  𝑢2(𝑡) + 𝑢3(𝑡),                                                 (20) 

subject to 

 𝑢1(0) = 1, 𝑢2(0) =  1,  and  𝑢3(0) =0, with  exact solutions 𝑢 = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) = (𝑒2𝑡 , 𝑒𝑡 , 𝑡 𝑒𝑡).   

We will now construct the following homotopy equation, which is based on the algorithm presented in Section 2. 

(1 − 𝑝)[
𝑑𝑣1(𝑡;𝑝)

𝑑𝑡
=  (ℎ; 𝑞) [

𝑑𝑣1(𝑡;𝑝)

𝑑𝑡
− 2𝜈2

2(𝑡; 𝑝)], 

(1 − 𝑝)[
𝑑𝑣2(𝑡;𝑝)

𝑑𝑡
= (ℎ; 𝑞) [

𝑑𝑣2(𝑡;𝑝)

𝑑𝑡
− 𝑒−𝑡𝜈1(𝑡; 𝑝)] 

(1 − 𝑝)[
𝑑𝑣3(𝑡;𝑝)

𝑑𝑡
= (ℎ; 𝑞) [

𝑑𝑣3(𝑡;𝑝)

𝑑𝑡
− 𝑣21(𝑡; 𝑝) − 𝑣3(𝑡; 𝑝)]                                         (21) 

 

The problem of zeroth order is expressed in Eqs. (22) as given below 

𝑢′1,0(𝑡) = 0, 𝑢1,0(0) = 1,   

      𝑢2,0
′ (𝑡) = 0,           𝑢2,0(0) = 1,         

                        𝑢3,0
′ (𝑡) = 0,         𝑢3,0(0) = 0,                                                   (22) 

and their solutions are   

   𝑢1,0(𝑡) = 1,                            

    𝑢2,0(𝑡) = 1,                             

            𝑢3,0(𝑡) = 0.                                                                             (23) 

According to the HPM procedure, we have the approximate solution of the 8’th order. 

𝑢̃1(𝑡) = 1 + 2𝑡 + 2𝑡2 +
4𝑡3

3
+
2𝑡4

3
+
4𝑡5

15
+
4𝑡6

45
+ 
8𝑡7

315
+
2𝑡8

315
, 

𝑢̃2(𝑡) = 1 + 𝑡 +
𝑡2

2
+
𝑡3

6
+
𝑡4

24
+
𝑡5

120
+
𝑡6

720
+

𝑡7

5040
+

𝑡8

40320
, 

                         𝑢̃3(𝑡) = 𝑡 + 𝑡
2 +

𝑡3

2
+

𝑡4

6
+

𝑡5

24
+

𝑡6

120
+

𝑡7

720
+

𝑡8

5040
,                                                               (24) 

which provides the precise solution of Eq. (20) as the number of terms approaches infinity, i.e. 

lim
𝑛→ ∞

𝑢̃𝑛(𝑡) = (𝑒
2𝑡 , 𝑒𝑡 , 𝑡𝑒𝑡), which are the.  In order to enhance the accuracy of the HPM solution, we apply the 

Laplace transform to the first few terms of HPM solutions (24), as follows:  

                      𝐿(𝑢̃1(𝑡)) =
128

𝑠8
+
64

𝑠7
+
32

𝑠6
+
16

𝑠5
+
8

𝑠4
+
4

𝑠3
+
2

𝑠2
+
1

𝑠
, 

                      𝐿(𝑢̃2(𝑡)) =
1

𝑠9
+
1

𝑠8
+
1

𝑠7
+
1

𝑠6
+
1

𝑠5
+
1

𝑠4
+
1

𝑠3
+
1

𝑠2
+
1

𝑠
, 

                                  𝐿(𝑢̃3(𝑡)) =
8

𝑠9
+

7

𝑠8
+

6

𝑠7
+

5

𝑠6
+

4

𝑠5
+

3

𝑠4
+

2

𝑠3
+

1

𝑠2
.                         (25)                                                             

Taking  𝑠 =
1

𝑧
 , gives 
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                   𝐿(𝑢̃1(𝑡)) = 𝑧 + 2𝑧2 + 4𝑧3 + 8𝑧4 + 16𝑧5 + 32𝑧6 + 64𝑧7 + 128𝑧8, 

𝐿(𝑢̃2(𝑡)) = 𝑧 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + 𝑧7 + 𝑧8 + 𝑧9,       

                                𝐿(𝑢̃3(𝑡)) = 𝑧
2 + 2𝑧3 + 3𝑧4 + 4𝑧5 + 5𝑧6 + 6𝑧7 + 7𝑧8 + 8𝑧9,        (26) 

in term of 𝑧 =
1

𝑠
 , the Pade approximates of  [

3

3
],  are 

[
3

3
]

1

(1−
2

𝑠
)𝑠
,   

[
3

3
] =

1

(1 −
1
𝑠
) 𝑠
, 

[
3

3
] =

1

(1 +
1
𝑠2
−
2
𝑠
) 𝑠2

,                                                     (27) 

By applying the inverse, Laplace transforms into Eqs. (27), respectively, we obtain the exact solutions.   

5. Results and Discussion 

From the HPM solutions, we tabulated and formulated numerical results and discussions in Tables 1-6 and Figures 

1-6. Our observations indicate that the accuracy of the solutions depends approximately the approximation terms, 

and the solutions converge to the exact ones when an infinitely large number of terms are considered. This implies 

that achieving higher accuracy necessitates additional computational work and effort. Consequently, to obtain 

accurate results, modifications should be made to the HPM procedure by incorporating Laplace transformations 

and Pade approximations, which provides exact solutions without the need to increase the number of 

approximation terms in the standard HPM. 

 

Table 𝟏: Numerical result of example 1 

𝑥 Exact Solution 

𝑢1(𝑡) = tⅇ
t 

Approximate Solution HPM 

Absolute 

Error 

0.0 0.0000000000 0.0000000000 0.00000000 

0.2 0.2442805516 0.2442805476 4.04×10−9 

0.4 0.5967298791 0.5967293088 5.70×10−7 

0.6 1.0932712802 1.0932605520 1.07 × 10−5 

0.8 1.7804327428 1.7803444852 8.83 × 10−5 

1.0 2.7182818285 2.7178207672 4.61 × 10−4 

 

Table 𝟐: Numerical result of example 1 

𝑡 Exact Solution 

𝑢1(𝑡) = (𝑡 + 1)𝑒𝑡 
Approximate Solution HPM 

Absolute 

Error 

0.0 1.0000000000 1.0000000000 0.00000000 

0.2 1.4656833098 1.465683299 1.17×10−8 

0.4 2.0885545767 2.0885533934 1.18×10−6 

0.6 2.9153900806 2.9153708834 1.92 × 10−5 

0.8 4.0059736713 4.0058288383 1.45 × 10−4 

1.0 5.4365636569 5.4358498677 7.14 × 10−4 

 

 

 

Table 𝟑: Numerical result of example 1 
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𝑡 Exact Solution 

𝑢1(𝑡) = (𝑡 + 2)𝑒𝑡 
Approximate Solution HPM 

Absolute 

Error 

0.0 2.0000000000 2.0000000000 0.00000000 

0.2 2.6870860680 2.687086042 2.59×10−8 

0.4 3.5803792743 3.580377052 2.22×10−6 

0.6 4.737508881 4.737476270 3.26 × 10−5 

0.8 6.2315145998 6.231284915 2.30 × 10−4 

1.0 8.1548454854 8.153769211 1.07 × 10−3 

 

Table 𝟒: Numerical result of example2 

               t Exact Solution 

𝑢1(𝑡) = 𝑒2𝑡 
Approximate Solution HPM 

Absolute 

Error 

            0.0          1.00000000000         1.00000000000 0.00 

            0.2 1.4918246976 1.4918246969 7.52×10−10 

            0.4   2.2255409285 2.2255405267 4.02×10−7 

            0.6 3.3201169227 3.3201007909 1.61 × 10−5 

            0.8 4.9530324244 4.9528076759 2.25 × 10−5 

            1.0 7.3890560989 7.3873015873 1.75 × 10−3 

 

Table 5: Numerical result of example 2 

              𝑡  Exact Solution 

𝑢1(𝑡) = 𝑒
𝑡 

Approximate Solution HPM 

Absolute 

Error 

0.0 1.000000000 1.000000000 0.0 

0.2 1.2214027581 1.2214027581 1.44×10−12 

0.4 1.4918246976 1.4918246969 7.53×10−10 

0.6 1.8221188004 1.8221187709 2.95 × 10−8 

0.8 2.2255409285 2.2255405267 4.02 × 10−7 

1.0 2.7182818285 2.7182787698 3.06 × 10−6 

 

Table 𝟔: Numerical result of example 1 

t Exact Solution 

u1(t) = tⅇt 
Approximate Solution HPM 

Absolute 

Error 

0.0 0.0000000000 0.0000000000 0.00 

0.2 0.2442805516 0.2442805516 1.30×10−11 

0.4 0.5967298791 0.5967298723 6.80×10−9 

0.6 1.0932712802 1.0932710126 2.67 × 10−7 

0.8 1.7804327428 1.7804290926 3.65 × 10−6 

1.0 2.7182818285 2.7182539683 2.79 × 10−5 
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Figure 1.  Plot of   a) Exact and approximate solutions   b) Absolute errors for example 1 

https://doi.org/10.54216/IJNS.250214


 

International Journal of Neutrosophic Sciences (IJNS)                                        Vol. 25, No. 02, PP. 165-175, 2025 

173 
DOI: https://doi.org/10.54216/IJNS.250214    
Received: February 12, 2024 Revised: April 30, 2024 Accepted: August 04, 2024 

 

 

 

  

 

Figure 2.  Plot of   a) Exact and approximate solutions   b) Absolute errors for example 2 
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6. Conclusion 

 

In this research study, we present a novel methodology based on the HPM for solving a system of ordinary 

differential equations. This methodology not only demonstrates effectiveness and reliability, but also offers distinct 

advantages over alternative techniques. It is capable of accurately providing solutions for complex systems, 

making it a valuable tool for researchers and practitioners involved in the analysis of dynamic phenomena 

governed by such systems. Through illustrative examples and comparisons with numerical outcomes obtained 

from existing literature, we demonstrate that this methodology can achieve the exact analytical solution by using 

only a limited number of terms from the HPM truncated series solution. In conclusion, we firmly assert that this 

methodology proposes a robust and promising approach for handling various types of differential equations.  
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