
Citation: Aamer, Z.; Jawad, S.; Batiha,

B.; Ali, A.H.; Ghanim, F.; Lupaş, A.A.
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Abstract: Contracting cancer typically induces a state of terror among the individuals who are
affected. Exploring how glucose excess, estrogen excess, and anxiety work together to affect the
speed at which breast cancer cells multiply and the immune system’s response model is necessary
to conceive of ways to stop the spread of cancer. This paper proposes a mathematical model to
investigate the impact of psychological panic, glucose excess, and estrogen excess on the interaction
of cancer and immunity. The proposed model is precisely described. The focus of the model’s
dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is
possible to establish four equilibrium positions. The stability analysis reveals that all equilibrium
points consistently exhibit stability under the defined conditions. The transcritical bifurcation occurs
when the glucose excess is taken as a bifurcation point. Numerical simulations are employed to
validate the theoretical study, which shows that psychological panic, glucose excess, and estrogen
excess could be significant contributors to the spread of tumors and weakness of immune function.

Keywords: psychological panic; glucose risk; estrogen effect; breast cancer model; stability analysis

1. Introduction

A group of disorders collectively referred to as cancer are those in which cells divide
uncontrollably at a faster rate than healthy cells and have the potential to metastasize
to other parts of the body [1]. The data indicate that the number of fatalities caused by
cancer was approximately 8.2 million in the year 2010. It is anticipated that the mortality
rate attributed to cancer will persistently increase, resulting in approximately 13 million
fatalities by the year 2030 [2]. Breast cancer is the second most frequent type of cancer in
women, second only to skin cancers, among many others. A little under 12% of women
will develop invasive breast cancer in their lifetime [3]. There are three primary risk factors
for breast cancer: genetic factors (such as family history), hormonal imbalance (namely
estrogen), and environmental factors (including alcohol intake, poor diet, exposure to toxins,
smoking, etc.) [4]. In order to study the dynamic behavior of cancer cells in the presence
of different stimuli, numerous mathematical models have been developed throughout the
years. For instance, Dehingia et al. developed a mathematical model to assess the impact
of obesity on tumor growth and immune response, considering it as a risk factor in a study
demonstrating that the accumulated fat in the body of an obese individual significantly
contributes to the formation of tumors, hence elevating the risk factors associated with
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survival [5]. An elevation in estrogen levels could potentially expedite the rate of tumor
formation [6,7]. Sorofa et al. [8] evaluated how estrogen affects the dynamics of normal
immunological cells and breast cancer. The results showed that elevated estrogen levels
can slow immune system development and enhance tumor initiation.

It has been demonstrated that the majority of the energy for breast cancer cells comes
from glycolysis wherein glucose is transformed to lactate for energy throughout the gly-
colysis process [9,10]. Multiple studies have verified that cancer cells have a high need
for glucose as a source of nourishment. Therefore, the effect of glucose is incorporated
into the tumor model to assess its impact on breast cancer cells. For instance, Sun et al.
investigated the impact of glucose deprivation on the apoptosis of breast cancer cells in
a study demonstrating that consuming an excessive amount of glucose can promote the
development and proliferation of cancer cells, whereas restricting glucose consumption can
decrease and suppress the growth of cancer cells [11]. A pathological state and impaired
functionality of the immune system may result from a high glucose intake. However, main-
taining an adequate amount of glucose is critical for the functioning of the immune system.
As a result, the infiltration of a substantial amount of glucose into immune cells may have
detrimental effects on the immune system. Consequently, this results in compromised
immune system functionality, which initiates pathological conditions [12]. Alharbi et al.
created a model that offers a fundamental understanding of the process of breast cancer
in patients who already have risk factors related to hyperglycemia. They determined that
their findings have the potential to be advantageous for the future delivery and treatment
of breast cancer drugs [13].

On the other hand, a growing body of literature highlights the use of mathematical
models for investigating the effects of anxiety on disease transmission [14,15]. Research in
the medical field has shown that emotional distress might hasten the metastasis of cancer
cells in a patient. Stress on a psychological level widens and thickens blood vessels, which
in turn speeds up the migration of cancer cells and makes disease spreading easier [16].
According to recent research, hormones produced by stress accelerate cancer cell growth
in the “lymphatic system”, which in turn makes it easier for these cells to spread to other
parts of the body, a process known as metastasis [17–19].

To sum up, most of the prior research has shown that a high-glucose diet and high
estrogen levels might promote the growth and proliferation of breast cancer cells, making
it more likely that the disease would progress rapidly. The impact of high estrogen levels
and glucose on the human immune system, on the other hand, has been the subject of
very few investigations. Experimental evidence suggests that immune cells are vulnerable
to the harmful effects of either high or low blood glucose levels as well as high estrogen
levels [8,20]. Moreover, there is a lack of research regarding the impact of anxiety on the
immune cells–breast cancer model. Therefore, we must investigate this phenomenon, as it
plays a role in minimizing the occurrence of disastrous situations. Hence, this investigation
is focused on examining the influence of anxiety on immune-compromised cancer patients,
which may serve as a substantial factor in the proliferation of tumors and the impairment
of immune system efficacy.

This research aims to investigate the dynamics of the immune cells–breast cancer
model as a result of the combined influence of the psychological panic factor, increased
glucose consumption, and high estrogen levels and their harmful effects on normal, cancer,
and immune cells. Considering these effects, we propose a PPIGCNE model of psycho-
logical panic–immune–glucose–cancer–normal estrogen interaction. This paper’s findings
provide additional context for [8] by

(1) Analyzing the impact of glucose as a risk factor on the progression of breast cancer.
(2) Examining the influence of psychological panic on the immune system of breast

cancer patients, which may play a key role in the progression of malignancies and the
impairment of immune function.

Following a description of the model’s construction, we intend to determine how the
above effects impact the dynamics of a PPIGCNE model. Furthermore, this paper will
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explore the understanding of the nonlinear dynamics exhibited by our model through the
utilization of various methodologies, including stability and bifurcation analysis techniques.
In conclusion, we will validate the precision of our analytical findings through a numerical
simulation of the proposed system.

2. Assumptions of the Model

In this part, we will construct a model by integrating many experimental investigations
and mathematical models [21–23] that elucidate the dynamics of tumor progression. The
psychological panic, increased glucose consumption, and high estrogen levels interaction
model are formulated. The dynamics of the PPIGCNE model significantly influence the
development of breast cancer, making it a substantial risk factor. Furthermore, we analyze
the interactions among the above factors with breast tumor cells. The relationships between
immune cells I(t), cancer cells C(t), normal (breast) cells N(t), and the effect of estrogen
E(t), are depicted in Figure 1.
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The response of the immune system is critical for safeguarding breast tissue against ma-
lignant tumors and ensuring an appropriate response upon tumor cell recognition. Tumor
cell presence stimulates the activation of the immune system. The dynamic representation
of immune cells is

dI
dt

=

∧
1 + pC

+
e1 IC

p1 + C
− e2 IC − e3 IE − (g + µ1)I. (1)

The term
∧

/(1 + pC ) denotes the consistent generation of immune cells within the organ-
ism, which is negatively influenced by the psychological fear factor p in the presence of
cancer. The fear function is integrated using the decreasing function σ(p, C) = 1/(1 + pC),
a concept that Wang et al. [24] first proposed. Given its biological implications, σ(p, C) is
deemed suitable since

σ(0, C) = 1, σ(p, 0) = 1, lim
p→∞

σ(p, C) = 0, lim
C→∞

σ(p, C) = 0,
∂σ(p, C)

∂p
< 0,

∂σ(p, C)
∂C

< 0.
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In (1), e1 IC/(p1 + C), denoted by the Michaelis–Menten term [25], indicates the pres-
ence of tumor cells that elicit an immune response [26]. e2 IC denotes the measure of the
impact of tumor cells on immune cells by suppressing the immune response with cancer
cells [26]. e3 IE refers to the rate of immune suppression induced by estrogen [8]. (g + µ1)I
refers to the decline of immune cells due to excess glucose and natural death rate [13].

The breast cancer cells T(t) consist of aberrant cells characterized by inflammation and
fast proliferation of breast cells, leading to the formation of tumors. Therefore, we define
the equation representing the tumor as:

dC
dt

= α1C(1 − k1C)− e4 IC + e5NE − µ2C + gC. (2)

The term α1C(1 − k1C) represents the logistic tumor cell’s growth function, where α1 is the
breast cancer intrinsic growth rate and k1 stands for the carrying capacity of breast cancer
cells. The term e4 IC means eradicating cancerous cells by the body’s immune system. The
outcome of DNA damage caused by estrogen is that normal cells that have been harmed
will transform into tumor cells, causing the tumor cell population to increase at a rate of
e5. This leads to a growth factor of e5NE on the tumor cell population [8]. µ2C designates
the death rate of cancer breast cells. gC indicates the formation of new cancer cells due to
elevated glucose levels within the patient’s body [13].

Healthy breast cells possess unmodified DNA that governs the activities of all breast
cells during their growth, division, and demise [27]. Healthy breast cells and malignant
breast cells compete for nutrition and other resources. Healthy breast cells are depicted by

dN
dt

= α2N(1 − k2N)− e6NC − e7NE. (3)

The term α2N(1 − k2N) represents the logistic healthy breast cell growth function. The
term e6NC represents the degradation rate of healthy breast cells caused by tumor cells.
The decrease in healthy breast cells due to a higher level of estrogen causes the conversion
of normal cells into tumor cells, which occurs at a rate of e7NE [8].

Estrogen, a female steroid hormone, is produced at low levels by the placenta in
women and the testes in men. It serves several important purposes, including facilitating
sexual development, controlling a woman’s menstrual cycle, and managing the physical
changes associated with puberty. Therefore, it is regarded as a crucial hormone for the
optimal transformation of the breast tissues. Estrogen is recognized as a risk factor that is
linked to the development of breast cancer. Estrogen has a role in activating other hormones,
such as relaxin, which in turn stimulates the proliferation of breast cells [28]. Estrogen has
promoted the proliferation of tumor cells when tumor cells are present. It functions as a
carcinogen by damaging DNA and converting normal epithelial cells into cancerous tumor
cells [29,30]. The dynamics of estrogen can be described as follows:

dE
dt

= s − µ3E. (4)

where s represents the rate at which increased estrogen is produced, and µ3 represents the
rate at which estrogen is being washed out from the body system.

Upon careful evaluation of these factors, we propose the subsequent set of differential
equations to determine the behavior of breast cancer cells:

dI
dt =

∧
1+pC + e1 IC

p1+C − e2 IC − e3 IE − (g + µ1)I,
dC
dt = α1C(1 − k1C)− e4 IC + e5NE − µ2C + gC,
dN
dt = α2N(1 − k2N)− e6NC − e7NE,

dE
dt = s − µ3E.

(5)

The model’s parameters and their interpretations are clarified in Table 1.
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Table 1. The interpretations of the PPIGCNE model’s parameters.

Parameter Interpretation Values Unit Source∧
Body’s immune cell rate production. 0.5 (cells/day) [30]

p Psychological panic rate from cancer. 0.1 dimensionless Estimated
e1 Elicitation rate of immune cells by cancer cells. 0.1 1/(cells·day) [30]
p1 Half-life of effector cells 0.4 (day) [30]
e2 Inactivation rate of immune cells due to the effect of tumor cells. 0.2 1/(cells·day) [30]
e3 Inhibition rate of the immune cells due to high levels of estrogen. 0.09 1/(mg/dL·day) [8]
g Immune cell suppression rate by high blood glucose. 0.2 1/(mg/dL·day) [30]

µ1 Death rate of effector cells. 0.2 (cells/day) [30]
α1 Breast cancer intrinsic growth rate. 0.4 (cells/day) [8]
k1 Carrying capacity of breast cancer cells. 1.5 (cell) [8]
e4 The rate at which effector cells eliminate tumor cells. 0.2 1/(cells·day) [30]

e5
The transformation rate of damaged normal cells into tumor cells caused

by estrogen. 0.2 1/(ng/mL·day) [8]

µ2 Death rate of breast cancer cells. 0.05 (cells/day) [8]
α2 Intrinsic growth rate of healthy breast cells. 0.35 (cells/day) [8]
k2 Carrying capacity of healthy breast cells. 1 (cell) [8]
e6 The degradation rate of healthy breast cells caused by tumor cells. 0.25 1/(cells·day) [30]
e7 The decrease in healthy breast cells caused by a higher estrogen level. 0.1 1/(ng/mL·day) [29]
s The rate of higher estrogen production. 0.19 ng/mL/day [8]

µ3 The wash-out rate of estrogen from the body. 0.05 ng/mL/day [8]

3. Dynamical Evaluation Results
3.1. Positivity and Boundedness of the Solution

In the following theorems, the positivity and uniformly bounded of all the solutions
of the PPIGCNE model in R4

+ are confirmed.

Theorem 1. All of the solutions of the PPIGCNE model I(t), C(t), N(t) and E(t) with the initial
conditions (I(0), C(0), N(0), E(0))∈ R4

+ are positively invariant.

Proof of Theorem 1. Let L = (I, C, N, E)T∈ R4
+ and F(L) = [ f1(L), f2(L), f3(L), f4(L)]T ,

where F(L) : R4
+ → R4 and fi∈ C∞

+ (R4
+), i = 1, 2, 3, 4. Then the PPIGCNE system becomes:

.
L = F(L),

with L(0) = (I(0), C(0), N(0), E(0)) = L0. It is clear for any L(0)∈ R4
+, such that Li = 0,

then [ fi(L)]Li=0 ≥ 0 (for i = 1, 2, 3, 4). Now for any solution of
.
L with L0∈ R4

+, say
L(t) = L(t; L0), is such that L(t)∈ R4

+, for all t > 0. Thus, the PPIGCNE system is
positively invariant [31]. □

Theorem 2. All the solutions of the PPIGCNE model are uniformly bounded.

Proof of Theorem 2. Let (I(0), C(0), N(0), E(0))∈ R4
+ be an initial condition for the

PPIGCNE, then, by using the Bernoulli method, we obtain

dN
dt

= α2N(1 − k2N)− e6NC − e7NE ≤ α2N(1 − k2N) =⇒ N(t) ≤ 1
k2 + N(0)e−α2t

Thus,

Lim
t→∞

sup[N(t)] ≤ 1
k2

.

Using the standard comparison theory [32] on the last equation of the PPIGCNE, we obtain

Lim
t→∞

sup[E(t)] ≤ s
µ3
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From the second equation of the PPIGCNE, we have

dC
dt

= α1C(1 − k1C)− e4 IC + e5NE − µ2C + gC ≤ α1C − α1k1C2 + gC.

Using the Bernoulli method, we obtain

C(t) ≤ α1 + g
α1k1 + (α1 + g)N(0)e−(α1+g)t

Thus,

Lim
t→∞

sup[C(t)] ≤ α1 + g
α1k1

.

Now, by using the standard comparison theory [32], we obtain

dI
dt

=

∧
1 + pC

+
e1 IC

p1 + C
− e2 IC − e3 IE − (g + µ1)I ≤ ∧− (g + µ1)I

Lim
t→∞

sup[I(t)] ≤
∧

(g + µ1)
.

Therefore, the corresponding domain region for the PPIGCNE model is

φ =

{
(I, C, N, E)∈ R4

+ : I(t) ≤
∧

(g + µ1)
, C(t) ≤ α1 + g

α1k1
, N(t) ≤ 1

k2
, E(t) ≤ s

µ3

}
.

□

3.2. Existence of Equilibria

Resetting the left-hand side of the PPIGCNE model to zero will bring the solutions of
the model equations to equilibrium:

1. Tumor and breast cells-free equilibrium point L1 =
(

I, 0, 0, E∗), where I =
∧

µ3
e3s+(g+µ1)µ3

and E∗ = s
µ3

. It is important to mention that the expression E∗ remains constant for
all equilibrium points that have E∗ in their composition.

2. Tumor-free equilibrium point L2 =
(

Î, 0, N̂, E∗), where Î =
∧

s
e3µ3+(g+µ1)s

, and N̂ =
α2s−e7µ3

α2k2
. For N̂ > 0, we must have

α2 >
e7µ3

s
(6)

In biological terms, this point refers to a healthy case because the tumor vanishes while
the immune system and normal cells remain. The following justifies this point. The low
estrogen level causes the tumor environment to be improper for growth, hence promoting
the eradication of cancer cells by immune cells.

3. Breast cells-free equilibrium point L3 =
(

Ǐ, Č, 0, E∗), where Ǐ = α1−α1k1 č−µ2+g
e4

and Č
is the root of the following equation:

f (C) = N1C4 + N2C3 + N3C2 + N4C + N5,

where
N1 = α1k1e2 p,
N2 = −α1e2 ps + α1k1e2s + α1k1e2 p1 ps + α1k1e3µ3 p + µ2e2 p − ge2 p,
N3 = α1e1 ps − α1e2s − α1e2 p1 ps − α1e3µ3 p − α1k1e1s + α1e2k1 p1s − α1k1e3µ3

+α1k1µ3 p1 p − µ2e1 ps + µ2e2s + µ2e2 p1 ps + µ2e3µ3 p + e1gps − e2gs
−e2 p1gps − e3µ3gp,

N4 =
∧

e4s + α1e1s − α1e2 p1s − α1e3µ3 − α1e3µ3 p1 p + α1k1e3 p1µ3 − µ2e1s + µ2e2 p1s
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+µ2e3µ3 + µ2e3µ3 p1 p − e1gs − e2 p1gs − e3µ3g − e3µ3 p1gp,
N5 = [

∧
e4s − e3µ3(α 1 + µ2 + g)]p1. Clearly,

f (0) = N5,
f (k1) = N1k1

4 + N2k1
3 + N3k1

2 + N4k1 + N5,
f
′
(C) = 4N1C3 + 3N2C2 + 2N3C + N4.

Thus, if any of the following criteria holds, then f (C) has a unique positive root, say
C = Č, in the interval (0, k1) according to the intermediate value theorem

f (0) > 0, f (k1) < 0 and f
′
(C) < 0, (7)

f (0) < 0, f (k1) > 0 and f
′
(C) > 0 (8)

For Ǐ > 0, we must have
g > g1, (9)

where g1 = α1
(
k1Č − 1

)
+ µ2. Biologically, condition (9) means this point is classed

as a glucose risk. This is because the level of glucose (g) is higher than the rate of
tumor growth, which is a factor that leads to the growth of cancer cells at a rate
that is significantly higher than that of normal cells. As a result of the spread of the
tumor, the patient is placed in a severe situation, which ultimately results in either a
mastectomy or the patient’s death.

4. The coexisting point L4 = (I∗, C∗, N∗, E∗), where N∗ = α2µ3−e6µ3C∗−e7s
α2k2

, I∗ = b1C∗2+b2C∗+b3
e4C∗ ,

and
b1 = −α1α2k1k2,
b2 = α2k2(α1 + g − µ2)− e5e6,
b3 = −e5µ3(e6 + e7), and C∗ is a root of the following equation

f (C) = l1C5 + (l1 + l2 p)C4 + (l2 + l3 p)C3 + (l3 + l5 p)C2 + (
∧

e4 + pl4 + l5)C + l4

where
l1 = −pe2b1,
l2 = −(p1e2 + g)b1 − se3

µ3
− (µ1 + e2)b2,

l3 = b1(e1 − p1e3
s

µ3
− gp1 − p1µ1) + b2(e1 − p1e2 − e3

s
µ3

− g − µ1)− e2b3,
l4 = −b3(p1e3

s
µ3

+ gp1 + p1µ1),
l5 = −b2(p1e3

s
µ3

+ gp1 + p1µ1) + b3(e1 − p1e2 − e3
s

µ3
− g − µ1).

Clearly,
f (0) = l4 > 0
f (k1) = l1k5

1 + (l1 + l2 p)k4
1 + (l2 + l3 p)k3

1 + (l3 + l5 p)k2
1 + (

∧
e4 + pl4 + l5)k1 + l4

f
′
(C) = 5l1C4 + 4(l1 + l2 p)C3 + 3(l2 + l3 p)C2 + 2(l3 + l5 p)C + (

∧
e4 + pl4 + l5).

Thus, if the following criteria hold, then f (C) has a unique positive root, say C = C∗,
in the interval (0, k1) according to the intermediate value theorem

f (k1) < 0 and f
′
(C) < 0, (10)

For N∗ > 0 and I∗ > 0, we must have

α2µ3 > e6µ3C∗ + e7s, (11)

b1C∗2 + b2C∗ + b3 > 0. (12)

The coexisting point signifies the stage of interaction among immune cells, malignant,
normal, and estrogen. Every cell engages in a fierce struggle for survival during this
phase. Tumor appearance triggers the activation of immune cells.
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3.3. Stability Analysis

The local stability behavior around the previous equilibrium points is examined in
this section. The Jacobian matrix of PPIGCNE model can be expressed as follows:

J =



∂ f 1
∂I

∂ f1
∂C

∂ f1
∂N

∂ f1
∂E

∂ f2
∂I

∂ f2
∂C

∂ f2
∂N

∂ f2
∂E

∂ f3
∂I

∂ f3
∂C

∂ f3
∂N

∂ f3
∂E

∂ f4
∂I

∂ f4
∂C

∂ f4
∂N

∂ f4
∂E

 =
(
aij
)

4×4,

where a11 = e1C
(p1+C) − e2C − e3E − (g + µ1), a12 = −∧ p

(1+pC)2 +
p1e1C
(p1+C) − e2 I,

a13 = 0, a14 = −e3 I, a21 = −e4C, a22 = α1 − 2α1k1C − e4 I − µ2 + g,
a23 = e5E, a24 = e5N, a31 = 0, a32 = e6N, a33 = α2 − 2α2k2N − e6C − e7E,
a34 = −e7N, a41 = a42 = a43 = 0, a44 = −µ 3.

The local analysis of the PPIGCNE system at the three equilibrium points mentioned
above is computed as

(1) The Jacobian matrix at L1 =
(

I, 0, 0, E∗) is given as:

J(L1) =


−e3E∗ − (g + µ1)

e1 I
p1

− e2 I 0 e3 I
0 α1 − e4 I − µ2 + g e5E∗ 0
0 0 α2 − e7E∗ 0
0 0 0 −µ3


The eigenvalues of J(L1) are λ11 = −e3E* − (g + µ1) < 0, λ12 = α1 − e4 I − µ2 + g,

λ13 = α2 − e7E*, and λ14 = −µ3 < 0. Then, L1 is a locally asymptotic stable if

α2 < e7E∗, (13)

g < g2 (14)

where g2 = e4 I + µ2 + α1. Condition (13) shows a mastectomy could happen when the
rate of decrease in healthy breast cells caused by a higher estrogen level is greater than the
healthy breast cell’s intrinsic growth rate. Further, from a biological standpoint, condition
(14) means that cancer cells are dependent on their capacity to absorb glucose and reproduce.
Consequently, a glucose rate that is lower than g2 will substantially inhibit cancer cells,
thereby reducing their strength and ability to reproduce and spread. Conversely, for g > g2,
L1 is a saddle point. For g = g2, then J(L1) has zero eigenvalue, making L1 a nonhyperbolic
point.

(2) The Jacobian matrix at L2 =
(

Î, 0, N̂, E∗) is given as:

J(L2) =


−e3E∗ − (g + µ1) −∧ p + e1 Î

p1
− e2 Î 0 −e3 Î

0 α1 − e4 Î − µ2 + g e5E∗ e5N̂
0 e6N̂ α2 − 2α2k2N̂ − e7E∗ −e7N̂
0 0 0 −µ 3


The eigenvalues of J(L2) are
λ21 = −e3E∗ − (g + µ1) < 0,
λ22 + λ23 =

(
α1 − e4 Î − µ2 + g + α2 − 2α2k2N̂ − e7E∗),

λ22.λ23 = α1α2 − 2α1α2k2N̂ − α2e7E∗ − α2e4 Î − 2α2e4 Î N̂ + e4e7 ÎE∗ − µ2α2 + 2α2µ2k2N̂
+e7µ2E∗ + α2g − 2α2k2gN̂ − e7gE∗ − e5e6N̂E∗

r λ24 = −µ 3 < 0.
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That means L2 is a locally asymptotical stable point if, and only if, the following
conditions are satisfied:

g < g3
λ22.λ23 > 0

}
, (15)

where g3 = 2α2k2N̂ + e7E* + e4 Î + µ2 − (α1 + α2).

(3) The Jacobian matrix at L3 =
(

Ǐ, Č, 0, E∗) is given as:

J(L3) =


e1Č

p1+Č
− e2Č − e3E∗ − (g + µ1)

∧
p

(1+pČ)
2 +

p1e1 Ǐ

(p1+Č)
2 − e2 Ǐ 0 −e3 Ǐ

e4Č α1 − 2α1k1Č − e4 Ǐ − µ2 + g e3E∗ 0
0 0 α2 − e6Č − e7E∗ 0
0 0 0 −µ3


Then, J(L3) has the following eigenvalues

λ31 + λ32 =

(
e1

p1 + Č
+ e2 + 2α1k1

)
Č + 2g + µ1 + α1 −

(
e3E∗ + e4 Ǐ + µ2

)
,

λ31.λ32 =

(
e1Č

p1 + Č
− e2Č − e3E∗ − g − µ1

)(
α1 − 2α1k1Č − e4 Ǐ − µ2 + g

)
−

∧
pe4Č(

1 + pČ
)2 +

p1e1e4 ǏČ(
p1 + Č

)2 + e2e4 ǏČ,

λ33 = α2 − e6Č − e7E∗,

λ43 = −µ3 < 0.

That means L3 is a locally asymptotical stable point if, and only if, the following
conditions hold:

λ31 + λ32 < 0, and λ31.λ32 > 0, (16)

α2 > e6Č + e7E∗. (17)

(4) The Jacobian matrix at L4 = (I∗, C∗, N∗, E∗) can be written as:

J(L4) =


b11 b12 0 b14
b21 b22 b23 b24
0 b32 b33 b34
0 0 0 −µ3

,

where

b11 = e1C∗

p1+C∗ − e2C∗ − e3E∗ − g − µ1, b12 = −∧ p
(1+pC∗)2 +

p1e1 I∗

(p1+C∗)2 − e2 I∗,

b14 = −e3 I∗, b21 = −e4C∗, b22 = α1 − 2α1k1C∗ − e4 I∗ − µ2 + g, b23 = e5E∗,
b24 = e5N∗, b32 = −e6N∗, b33 = α2 − 2α2k2N∗ − e6C∗ − e7E∗, b34 = −e7N∗.
So, the characteristic equation of J(L4) can be written as:

(−µ3 − λ)
(

λ3 + B1λ2 + B2λ + B3

)
= 0, (18)

where

B1 = −(b11 + b22 + b33),
B2 = b11(b23 + b32 − b22 − b11b33)− b22b33 + b23b32,
B3 = b11(b22b33 − b23b32),
∆ = B1B2 − B3 = −(b11 + b22 + b33)[b11(b23 + b32 − b22 − b11b33)− b22b33 + b23b32]
−(b11(b22b33 − b23b32)).
Thus, according to the Routh–Hurwitz rule, L4 will be asymptotically stable if

B1 > 0, B2 > 0, and ∆ > 0. (19)
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To reach a healthy state, we will examine the global stability surrounding L2 to explore the
dynamics of the PPIGCNE system at regions far from the equilibrium point L2.

Theorem 3. L2 is a global asymptotic stable provided the following conditions hold:

α2k2 ≥ max
{

4e2
6

α1k1
, 4e2

7
µ3

}
g ≥ g4

, (20)

where g4 = max


4
(

e1 Î
p1+C −

∧
p

1+pC −e2 Î
)2

α1k1
− e3E∗ − µ1, 4e2

3
µ3

− e3E∗ − µ1

.

Proof of Theorem 3. Let us contemplate the positive definite function given below:

Y =

(
I − Î

)
2

2

+ C +

(
N − N̂ − N̂1ln

N
N̂

)
+

(E − E∗)2

2
.

Thus,

dY
dt =

(
−∧ p
1+pC + e1 I

p1+C − e2 I
)

C
(

I − Î
)
− e3(E − E∗)

(
I − Î

)
−
(

I − Î
) 2

(e3E∗ + g + µ1)

+α1k1C2 − e4 IC + e5N(E − E∗) + e5E∗(N − N̂
)
− µ2 + g

−α2k2
(

N − N̂
)2 − e6C

(
N − N̂

)
− e7(E − E∗)

(
N − N̂

)
− µ3(E − E∗)2

Therefore,

dY
dt ≤ −

[√
e3E∗+g+µ1

2
(

I − Î
)
+
√

µ3
2 (E − E∗)

]2

−
[√

α2k2
2
(

N − N̂
)
+
√

µ3
2 (E − E∗)

]2

−
[√

e3E∗+g+µ1
2

(
I − Î

)
+
√

α1k1
2 C

]2

−
[√

α2k2
2
(

N − N̂
)
+
√

µ3
2 (E − E∗)

]2
+ e5N(E − E∗)

+e5E∗(N − N̂
)
+ g − e4 IC − µ2.

Then, dY
dt < 0 can be transformed into a negative definite form under conditions (20). Hence,

Y is a Lyapunov function and L2 is a GAS. □

Thus, the cancer-free steady state L2 fulfills the requirements for local stability, render-
ing the point globally stable. From a biological perspective, the immune system refers to
the process of selectively eliminating tumor cells if conditions (20) are met.

3.4. Transcritical Bifurcation

A transcritical bifurcation occurs when two equilibrium points collide and exchange
their stability. In the following theorems, we will investigate the possibility of a transcritical
split occurring. Many scholars use Sotomayor’s theorem to determine the existence of
transcritical bifurcation TB, for instance, see [31–38]. For this determination, the PPIGCNE
model can be rephrased in the following vector forms:

dL
dt

= F(L) with L =


I
C
N
E

, and F =


f1(I, C, N, E)
f2(I, C, N, E)
f3(I, C, N, E)
f4(I, C, N, E)

,
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where fi, i = 1, 2, 3, 4 are the equations on the right-hand side of the PPIGCNE system.
We possess the subsequent outcomes concerning the local bifurcation around the breast
cells-free equilibrium point L3. Now, for non-zero vector W = (w1, w2, w3, w4)

T :

D2(W, W) =


2
[

p1e1

(p1+C)2 − e2

]
w1w2 − e3w1w4 +

[
2
∧

p2

(1+pC)3 −
2p1e1 I
(p1+C)3

]
w2

2

−2e4w1w2 − 2α1k1w2
2 + 2e5w3w4

−e6w2w3 − 2α2k2w2
3 − 2e7w3w4

0

,

The following theorem determines the TB of the PPIGCNE model near L3.

Theorem 4. For g = g∗, the PPIGCNE model, at L3 has a transcritical bifurcation if the following
conditions are met

e4 Ǐ2 = x11Č
w[1]

1 ̸= x11
e4 Ǐ

(B)T[D2Fg(L3, g∗)(W, W)
]
̸= 0

. (21)

Proof of Theorem 4. The PPIGCNE model, at L3, has a zero eigenvalue, say λ31 at g = g∗,
where g∗ can be calculated using the subsequent equation:

λ31.λ32 =

(
e1Č

p1 + Č
− e2Č − e3E∗ − g − µ1

)(
α1 − 2α1k1Č − e4 Ǐ − µ2 + g

)

−
∧

pe4Č(
1 + pČ

)2 +
p1e1e4 ǏČ(
p1 + Č

)2 + e2e4 ǏČ = 0.

Here, λ31.λ32 is given in the local stability of L3. The Jacobian matrix J∗(L3) = J(L3, g∗), becomes:

J∗(L3) =


x11

−∧ p

(1+pČ)
2 +

p1e1 Ǐ

(p1+Č)
2 − e2 Ǐ 0 −e3 Ǐ

−e4Č x22 e5E∗ 0
0 0 α2 − ě6Č − e7E∗ 0
0 0 0 −µ3

,

where x11 = e1Č
p1+Č

− e2Č − e3E* −
(

g* + µ1
)

and x22 = α1 − 2α1k1Č − e4 Ǐ + µ2 − g*. Now,

let W =
(

w[1]
1 , w[1]

2 , w[1]
3 , w4

[1]
)T

and B =
(

b[1]1 , b[1]2 , b[1]3 , b[1]
)T

represent the eigenvectors

corresponding to the zero eigenvalue of J*(L3) and J*T
(L3), respectively. Direct compu-

tation gives W =
(

α1−2α1k1Č−e4 Ǐ+µ2−g*

e4Č
, 1, 0, 0

)T
and B =

(
1, x11

e4 Ǐ
, −e5E*x11
(α 2−ě6Č−e7E*)e4 Ǐ

, −e3 Ǐ
µ3

)T
,

where α2 − ě6Č − e7E* ̸= 0. Then,

∂F
∂g

= Fg(L, g) =
(

∂ f1

∂g
,

∂ f2

∂g
,

∂ f3

∂g
,

∂ f4

∂g

)T
= (−I, C, 0, 0)T .

So, Fg
(

L3, g*) = (− Ǐ, Č, 0, 0
)T and hence,

(B)T Fg(L3, g∗) =

(
1,

x11

e4 Ǐ
,

−e5E∗x11

(α 2 − ě6Č − e7E∗)e4 Ǐ
,
−e3 Ǐ

µ3

)T(
− Ǐ, Č, 0, 0

)T
= − Ǐ +

x11Č
e4 Ǐ

.

(B)T[DFg(L3, g∗)W
]
=

(
1,

x11

e4 Ǐ
,

−e5E∗x11

(α 2 − ě6Č − e7E∗)e4 Ǐ
,
−e3 Ǐ

µ3

)T(
−w[1]

1 , 1, 0, 0
)T

= −w[1]
1 +

x11

e4 Ǐ
.
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(B)T
[

D2Fg(L3, g∗)(W, W)
]
= 2

(
w[3]

1

(
p1e1(

p1 + Č
)2 − e2

)
− b[3]2 (e4 + α1k1)

)
+

(
2
∧

p2(
1 + pČ

)3 − 2p1e1 Ǐ(
p1 + Č

)3

)
.

Therefore, transcritical bifurcation requirements are met under condition 21. □

3.5. Numerical Simulation and Discussions

Numerical verification is essential for completing analytical studies. In this section,
we visually confirmed the accuracy of our analytical findings for the PPIGCNE system
using the software MATLAB R2021b [39–44]. The simulations were conducted using the
parameter values specified in Table 1. The equilibrium values corresponding to the data
given in Table 1 are I∗ = 1.74, C∗ = 0.41, N∗ = 0.59 and E∗ = 0.37. See Figure 2.
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Figure 2. The solution of the PPIGCNE system with the data is given in Table 1. The
initial conditions of immune cells, breast cancer cells, normal cells, and estrogen level are
I(0) = 0.25, 0.75, 1.3, 2.7 (cells/ng), C(0) = 0.8, 1.4, 1.6, 2.4 (cells/ng), N(0) = 0.94, 0.84 (cells/ng),
0.74, 1.4, and E(0) = 0.5, 1, 1.5, 2 ng/mL.

We will now examine three scenarios in order to understand the dynamic behavior
of the PPIGCNE model and evaluate the impact of the psychological scare, high levels of
estrogen, and high levels of glucose on tumor progression. The results of the three cases
will then be compared. The following three cases are:

(a) The effect of a psychological panic

The objective of this case is to demonstrate the impact of psychological scare levels
on the interaction between immune cells and breast cancer cells. Figure 3 explains the
performance of the PPIGCNE model with various values of the psychological panic rate
from cancer, i.e., p. Psychological panic has been discovered to have a negative impact on
the immune system’s efficiency. Increased stress leads to a significant decline in immune
cells. As a result, the tumor cells grow faster. Notwithstanding the notable decline in
immune system efficacy, the PPIGCNE model, despite the excess in psychological scare
levels, did not attain chaos, but it came close asymptotically to the coexisting point L4.
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Furthermore, Figure 4 illustrates the impact of psychological distress on the functionality
of immune cells and the rate of malignant cell growth and division with more precisely
rendered. To mitigate the health risks faced by breast cancer patients, psychiatric treatment
is needed. Further, some external strategies are needed to improve the immune system’s
performance.

(b) The impact of glucose excess

In the absence of tumor cells, the impact of excess glucose was observed to impair the
functionality of the immune system (Figure 5). Furthermore, the solution of the PPIGCNE
system, for various values of g, initially experiences growth before converging asymptot-
ically to the free cancer point L2. Furthermore, there was a significant drop in immune
cells in the presence of tumor cells, as illustrated in Figure 6. In addition, the solution
of the PPIGCNE system, as a consequence of excess glucose, drops off into the breast
cells-free equilibrium point L3 =

(
Ǐ, Č, 0, E∗) = (0.51, 1.24, 0, 0.37) for g ≥ 046. This

result confirms the outcome of Theorem 4 which states that the PPIGCNE system faces a
transcritical bifurcation at the glucose parameter g∗ = 0.46 (please see Figure 6). The above
ultimately results in either the patient’s death or a mastectomy. Based on the findings, it
can be inferred that there exists a direct correlation between elevated glucose levels and the
proliferation and rate of division of cancer cells. Conversely, an inverse relationship can be
observed between increased glucose levels and the immune system’s response to combat
malignant cells. Please see Figure 7 for a better idea of what happens when glucose levels
are high, both when there are no cancer cells and when there are.

Computation 2024, 12, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 3. The solution of the PPIGCNE system with various values of psychological scare rate 𝑝 

and the initial conditions of immune cells, breast cancer cells, normal cells, and estrogen level are 

𝐼(0) = 0.25 (cells/ng), 𝐶(0) = 0.3(cells/ng), 𝑁(0) = 0.3 (cells/ng), and 𝐸(0) = 0.12 ng/mL. 

 

Figure 4. The dynamics of immune and cancer cells with various values of 𝑝 and the initial condi-

tions of immune cells, breast cancer cells, normal cells, and estrogen level are 𝐼(0) =

1.6 (cells/ng), 𝐶(0) = 1.4(cells/ng), 𝑁(0) = 0.8 (cells/ng),  and 𝐸(0) = 0.8 ng/mL . (∗)  represents 

Figure 3. The solution of the PPIGCNE system with various values of psychological scare rate p
and the initial conditions of immune cells, breast cancer cells, normal cells, and estrogen level are
I(0) = 0.25 (cells/ng), C(0) = 0.3 (cells/ng), N(0) = 0.3 (cells/ng), and E(0) = 0.12 ng/mL.
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Figure 4. The dynamics of immune and cancer cells with various values of p and the
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tial conditions of immune cells, breast cancer cells, normal cells, and estrogen level are
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Figure 7. The performance of the PPIGCNE system with various values of g (a) The dynamics of im-
mune and normal cells in the absence of tumor cells with various values of g and the initial conditions
are I(0) = 1.6 (cells/ng), C(0) = 1.4 (cells/ng), N(0) = 1.5 (cells/ng), and E(0) = 0.8 ng/mL.
(b) The dynamics of immune and cancer cells with various values of g and the initial conditions are
I(0) = 1.6 (cells/ng), C(0) = 2.4 (cells/ng), N(0) = 1.5 (cells/ng), and E(0) = 0.8 ng/mL.

In this scenario, the simulation is conducted by varying the values of the rate of higher
estrogen production s both in the absence and presence of tumor cells. In the absence of
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tumor cells, the solution of the PPIGCNE system approaches asymptotically to the free
tumor equilibrium point L3 with various values s (see Figure 8). While in the presence of
tumor cells, the solution of the PPIGCNE system converges to the coexisting point L4 when
s < 0.12. For s ≥ 0.12, the solution of the PPIGCNE system settles down asymptotically to
the breast cells-free equilibrium point L3 =

(
Ǐ, Č, 0, E∗) = (1.01, 0.41, 0, 2.59). Please see

Figure 9. The numerical solutions generally showed that in the presence of excess estrogen,
immune cells, and normal cells decrease, with normal cells being the most affected (see
Figure 10a), while tumor cells grow (see Figure 10b).
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I(0) = 0.25 (cells/ng), C(0) = 0.3 (cells/ng), N(0) = 0.3 (cells/ng), and E(0) = 0.12 ng/mL.
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Figure 10. The performance of the PPIGCNE system with various values of s. (a) The dynamics of im-
mune and normal cells in the absence of tumor cells with various values of s and the initial conditions
are I(0) = 0.5 (cells/ng), C(0) = 1.4 (cells/ng), N(0) = 1.4 (cells/ng), and E(0) = 0.8 ng/mL.
(b) The dynamics of immune and cancer cells with various values of s and the initial conditions are
I(0) = 0.6 (cells/ng), C(0) = 1.3 (cells/ng), N(0) = 1.4 (cells/ng), and E(0) = 0.8 ng/mL.

Remark 1. The biological interpretation of the initial values that are smaller than one in a cancer
system that have been used in Figures 2–10, and refer to a parameter associated with cancer cell
development or spread, such as the proliferation rate or growth factor in a mathematical model. If
this initial value is less than one, cell division is slower than cancer cell death. This may imply a
less aggressive cancer initially (and vice versa if the initial value is greater than one). The same
interpretation is for the rest of the variables.

4. Conclusions

The dynamics of breast cancer in the presence of psychological scare, glucose excess,
and estrogen excess have been presented in the form of a system of differential equations.
The positivity and boundedness of the proposed system were established. Conditions of
existence and local stability of the possible equilibria were illustrated. The global stability
around the free breast cancer equilibrium point has been studied. The necessary threshold of
glucose level to achieve a state of health has been determined. In terms of mathematics, this
threshold is equivalent to a transcritical bifurcation. The numerical simulations validated
the analytical findings. Precisely, the threshold value for the transcritical bifurcation was
calculated, indicating the point at which normal cells (breast cells) transition from persisting
to eradicating. The development of breast cancer in an individual relies on the immune
system’s capacity to fight against tumor cells. It has been determined that an abundance
of estrogen and glucose in the body leads to instability. This suggests that an increase
in the amount of estrogen and glucose leads to a higher rate of tumor growth, thereby
contributing to the development of breast cancer. It can be inferred that unregulated levels
of estrogen and glucose can result in an immune system that is unable to effectively combat
cancer cells, leading to a failure to control the disease. The results of the findings in this
research could potentially result in the development of an optimal protocol for cancer
therapy, which would greatly assist oncologists in their practice.

Our upcoming research will focus on augmenting the immune system through regular
vitamin intake.
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