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ABSTRACT
The optimization of parameters in proton exchange membrane fuel cell (PEMFC) models is essential for enhancing the design and
control of fuel cells and is currently a vibrant area of research. This involves a complex, nonlinear, and multivariable numerical
optimization challenge. Recently, various metaheuristic approaches have been applied to efficiently identify optimal configura-
tions for PEMFC models, capable of exploring a broad search space to locate ideal solutions promptly. In this study, the recently
developed hierarchical population-based differential evolution (HPDE) was employed for parameter optimization of PEMFCs due
to its robustness and demonstrated superiority over other optimization algorithms. This research tested the proposed optimiza-
tion algorithm by identifying parameters for 12 distinct PEMFCs, including BCS 500 W PEMFC, Nedstack 600 W PS6 PEMFC,
SR-12500 W PEMFC, H-12 PEMFC, STD 250 W PEMFC, and HORIZON 500 W PEMFC, four variants of 250 W PEMFC, and two
variants of H-12 12 W PEMFC. The performance of HPDE was also benchmarked against other advanced evolutionary algorithms
(EAs), such as E-QUATRE, iLSHADE, CRADE, L-SHADE, jSO, HARD-DE, LSHADE-cnEpSin, DE, and PCM-DE. Despite its
simplicity, the results reveal that HPDE can precisely and swiftly extract the parameters of PEMFC models. Furthermore, the
voltage–current (V–I), power-current (P–I), and error characteristics derived from the HPDE algorithm consistently align with
both simulated and experimental data across all seven models of PEMFCs. Additionally, HPDE has shown to outperform various
versions of DE algorithms, providing superior results.
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1 | Introduction

For the past years, the desire for more energy throughout the
world, fall down of traditional sources of fuel and care about the
environment has been so good that it has led to great emphasis on
fuel cell technology [1, 2]. Fuel cells are highly acclaimed because
they can help cure energy shortage; these cells generate electric-
ity by means of electrochemical reactions, as opposed to con-
ventional combustion processes [3]. Modeling proton exchange
membrane fuel cells (PEMFCs) have become popular as it allows
better prediction of cell performance and understanding of differ-
ent phenomena than experimental approaches [4]. On the other
hand, it is not easy to predict PEMFC characteristics correctly due
to their strong dependence on operational conditions [5]. Tradi-
tional modeling methods often fail to cope with complex, non-
linear, and multivariable PEMFCs and their interdependencies
[6]. Hence, metaheuristic (MH) optimization algorithms, which
have shown adaptability and robustness, are becoming increas-
ingly common in PEMFC modeling [7].

Much research has been done on parameter optimization mod-
eling for PEMFCs by using normal methods and also sophisti-
cated MH algorithms. The classification of V –I characteristics
from these models into steady state and dynamic states is made.
Both these states are well captured in a comprehensive math-
ematical model recommended in [8]. For example, referring to
Nernst voltage or thermodynamic potentials as static elements
alongside concentration and activation voltages as transient com-
ponents renders the steady state V –I characteristics through
an electrochemical model. Second-order least square polynomi-
als represent static components, while the transient elements
use fifth-order polynomials with coefficients obtained from the
least square method. Consequently, steady state V –I character-
istics are determined by combining both static and transient
components, whereas dynamic characteristics are indicated by
first-order time delay.

Moreover, this is a PEMFC system that is semi-empirical sin-
gle input and single output and provides for real-time parameter
identification as described in [9], while PEOFC parameters esti-
mation by means of particle swarm optimization (PSO) algorithm
can be found in [10]. In the parameter identification phase, the
Levenberg–Marquardt algorithm and Gauss–Newton method
are other traditional methods used to solve nonlinear equations.
For both noisy and noise-free cases, 20,000 iterations were done
on different operational settings to obtain solutions.

Using MATLAB, a Nexa 1.2 kW model that consists of 47 cells
has been simulated allowing for the evaluation of five different
PEMFC parameters as indicated in [11]. Additionally, this calls
for brief review discussion on parameter estimation using genetic
algorithm (GA) variations and other methods in this field found
in [12]. For example, thermal conductivity and relative humidity
are determined after performing simulations under four pressure
levels that are significantly distant from each other and satisfac-
tory results are received by 250 iterations.

PEMFCs have been observed to possess higher power outputs
upon the inclusion of nano coolants, as seen from the V –I
characteristics given [13]. However, this study compares the
performance of GAs in estimating parameters to conventional

curve fitting techniques explained in [14]. To ensure an exten-
sive analysis, various V –I characteristic curves were plotted at
different operating points to verify parameter identification and
verification.

In [15], the maximum power point method is recommended for
parameter identification, while Transferred Adaptive Differen-
tial Evolution (TRADE) is employed for parameter estimation
of both SOFCs and PEMFCs [16]. Bee swarm algorithm (BSA),
used in extracting PEMFC parameters [17], registers negligible
error margins against PSO, revealing its improved efficiency due
to variation in scaling factor.

For PEMFC parameter estimation, Grey Wolf Optimization
(GWO) outperforms other algorithms, as shown in [18]. On
top of using GWO to optimize performance further, a chaotic
enhancement technique has been incorporated into it with a
view of enhancing the convergence rate while maintaining diver-
sity within the SOFC population, as studied by [19]. Moth flame
optimization algorithm (MFOA) was used for extracting PEMFC
parameters, which favorably competed with PSO and sine cosine
algorithm (SCA), respectively, using four statistical metrics but
achieved the lowest standard deviation for SR-12 and Nedstack
PS-6 PEMFC models [20].

Salp swarm algorithm (SSA) is implemented for parameter identi-
fication [21], validating the optimization method’s efficacy across
varied operating pressures and temperatures for two commer-
cial PEMFC models, aligning closely with experimental curves.
The bald eagle search (BES) algorithm, mimicking the preda-
tory strategies of bald eagles, is used in [22] for PEMFC parame-
ter estimation. This three-phase method (Selection, Search, and
Swooping) has demonstrated a reduced error rate and improved
convergence across diverse operational scenarios. BES achieved
an exceptionally low fitness value of 0.01136 in extracting param-
eters for the BCS 500 W and Nedstack PS6 models, as noted
in [23].

An advanced version of the Barnacles Mating Optimizer (BMO)
incorporating Levy Flight mechanics and chaos theory is pro-
posed in [24] for enhanced parameter identification. This innova-
tive approach, drawing inspiration from barnacles’ mating behav-
iors, utilizes the Hardy Weinberg equilibrium for progeny genera-
tion, showing significant error reduction when compared against
other prominent algorithms such as Elephant Herding Optimiza-
tion, Emperor Penguin Optimizer, and World Cup Optimization,
particularly for the Nedstack PS6 and Horizon 500 W FC systems.

Parameter estimation in PEMFCs is further refined using the
Slime Mould Algorithm (SMA) [25], and parameters are extracted
employing the Marine Predator Algorithm (MPA) and Politi-
cal Optimizer (PO) algorithm, which operate in three and five
phases, respectively, as detailed in [26]. The polarization curves
for PEMFC are documented under varying conditions. Addi-
tionally, the Mayfly Optimization Algorithm (MOA), enhanced
with chaotic mapping, is tailored for optimal parameter design in
PEMFC, as presented in [27]. This innovative hybrid algorithm
ensures optimal operational parameters, enhancing overall effi-
ciency and performance.

Chaotic mapping reduces the initial population size, enhancing
the optimization process with the disorder mayfly method. The
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MOA represents an adaptation of PSO. The literature showcases
a plethora of bio-inspired algorithms employed for parameter
estimation in PEMFC models. These include the Tree Growth
Algorithm [28], Whale Optimization Algorithm [29], Chaos
Owl Search Algorithm (COSA) [30], Artificial Bee Swarm Opti-
mization (ABSO) [31], Modified Farmland Fertility Optimiza-
tion Algorithm (MFFA) [32], Developed Sunflower Optimization
Algorithm [33], Improved Harris Hawks Optimization Algorithm
(IHHO) [34], Hunger Games Search Algorithm [35], Pathfinder
algorithm (PFA) [36], Black Widow Optimization (BWO) [37],
Ant lion Optimizer (ALO) and Dragon Fly Algorithm (DA) [38],
and Improved Chicken Swarm Optimization Algorithm [39].

System identification for the PEMFC stack has been effectively
carried out in [40] using a hybrid configuration of PSO and
Emperor Penguin Operator to ascertain optimal parameters that
reflect true output voltage values. Despite the extensive devel-
opment of MH algorithms, details on their specific applications,
suitability, and efficiency often remain fragmented. The utility of
MHs in extracting parameters for PEMFC models showcases the
diverse array of optimization methods developed by researchers.
There is an ongoing imperative to innovate or refine existing
algorithms to meet diverse challenges. Present efforts are aimed
at devising a unique, more accurate, and reliable metaheuristic
algorithm (MA) capable of addressing various optimization chal-
lenges comprehensively, highlighting the challenge that while
one technique may excel in certain scenarios, it might underper-
form in others. In the past few years, many optimization tech-
niques have been applied to improve the efficiency and effec-
tiveness of energy systems, such as Combined Cooling, Heat-
ing, and Power (CCHP) systems and microgrid scheduling. An
improved mother optimization algorithm to evaluate the effi-
ciency of CCHP systems in the Xinjiang Uygur Autonomous
Region is proposed by Li et al. [41]. In this approach, energy
distribution within integrated energy systems was refined, result-
ing in significant operational improvements. In the same way,
economic scheduling for microgrids is important, particularly
in renewable energy environments. This issue was addressed by
Jiang et al. [42], who developed an energy hub model coupled
with demand response and an improved water wave optimiza-
tion algorithm to solve the problem. As renewable energy integra-
tion into microgrids becomes more intense, this model presents
a robust framework for efficient scheduling. In watersport com-
plexes, Chen et al. [43] investigated optimization inside com-
bined cooling, heating, and power systems using the African Vul-
ture Optimization Algorithm. They showed that energy manage-
ment strategies are effective, but that specialized optimization
approaches are necessary for specific use cases, such as recre-
ational or commercial facilities. The advancements in fuel cell
modeling include progress in fuel cell modeling through machine
learning techniques. Proton-exchange membrane fuel cells were
modeled by combining a convolutional neural network with an
extreme learning machine, optimized by an improved Honey
Badger algorithm [44]. The hybrid approach allowed for pre-
cise identification and performance prediction in fuel cells, with
the value of AI-based optimizations demonstrated. Innovative
configurations for maximum efficiency are needed for renew-
able energy systems, especially those that include wind, solar,
and fuel cell power sources. An amended Dragon Fly optimiza-
tion algorithm for structuring such hybrid systems was devel-
oped by Bo et al. [45] for combined wind, photovoltaic, and fuel

cell systems. The results showed that optimized structures could
greatly improve energy outputs under different environmental
conditions. Decarbonization requires the evolution of energy
grids to smart grids or an Internet of Energy. Ghiasi et al. [46] pro-
vide a conceptual model for this transformation, which includes
enhanced interconnectivity and digitalized energy management,
and clearly defines the path toward deep decarbonization in the
energy sector. In addition, recent research advances which are
related to the application of HPDE algorithm in PEMFC opti-
mization will be included in the literature review to strengthen
it. For example, health management of PEMFC systems during
long-term operation studies shows the importance of optimal
temperature trajectory optimization to maintain performance,
supporting the need for robust parameter optimization meth-
ods such as HPDE to maintain stability over long periods of
time [47]. Further, recent advances in online diagnostic meth-
ods [48], including water management fault detection using
hybrid-frequency electrochemical impedance spectroscopy, high-
light the need for advanced optimization algorithms for real-time
PEMFC management. Including these references will also help in
giving a broader context of the latest challenge and the key advan-
tage that HPDE offers to PEMFC parameter identification for use
in the field.

In the present paper, one of the MAs that is most useful for param-
eter identification in PEMFCs is hierarchical population-based
differential evolution (HPDE) with a novel diversity metric [49].
The algorithm has been validated extensively on 88 benchmark
functions from CEC2013, CEC2014, and CEC2017 suites, where
it either matched or outperformed six leading DE variants. In this
paper, we examine performance of HPDE algorithm in extract-
ing PEMFC parameters against established DE variants like
E-QUATRE [50], iLSHADE [51], CRADE [52], L-SHADE [53],
jSO [53], HARD-DE [54], LSHADE-cnEpSin [55], DE [56] and
PCM-DE [57].

The complex, nonlinear, and multivariable nature of PEMFC
models makes the application of the majority of parameter esti-
mation methods, such as the Levenberg–Marquardt algorithm
and the Gauss–Newton method, difficult. Due to the strong
dependence of PEMFC performance on operating conditions
and the inherent limitations of these conventional techniques
in handling nonlinear dynamics, these conventional techniques
are less effective for accurately capturing PEMFC performance.
The PEMFC parameter estimation is a complex, multivariable
problem, and therefore MAs have proven to be robust tools for
handling such problems. Traditional methods cannot cover a
wide search space, and they provide the adaptability needed to
explore diverse operating conditions. As such, MH approaches
are being increasingly used to optimize PEMFC models, and this
research is motivated to extend the capability of this by devel-
oping a novel, more effective algorithm. Estimation of PEMFC
parameters is critical to improving the performance, efficiency,
and reliability of fuel cells in practical applications. As a sustain-
able energy solution, PEMFCs are poised to be used in the real
world; optimal parameter estimation plays an important role in
determining power output, durability, and control accuracy, and
is a key factor in advancing PEMFC technology for real-world
use. Due to the high expectations of efficiency and conver-
gence in PEMFC modeling, current methods tend to suffer from
convergence speed, error minimization, and consistency across
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different PEMFC models. Such a high-performance optimization
algorithm that consistently achieves these goals can propel fuel
cell technology and deployment. In this study, HPDE is intro-
duced as a newly developed algorithm that specifically addresses
the need to improve the convergence, accuracy, and stability of
the parameter estimation. A structured population hierarchy and
novel mutation strategies are used by HPDE to achieve a balanced
exploration and exploitation. The hierarchical design is intended
to improve convergence rates while remaining robust to prema-
ture convergence, a common problem in other MAs. To demon-
strate the effectiveness and superiority of HPDE, the study rigor-
ously benchmarks HPDE against several other well-regarded evo-
lutionary algorithms (EAs), including E-QUATRE, iLSHADE,
and others. This work aims to show that HPDE not only achieves
but outperforms these benchmark algorithms in terms of accu-
racy, convergence speed, and stability across a variety of PEMFC
models. The real-world applicability of HPDE is validated against
experimental and simulated data of 12 different PEMFC types.
Comparisons of voltage current (V –I) and power current (P–I)
characteristics are made, and they match well with experimen-
tal results, demonstrating that HPDE is effective in practically
real-time PEMFC parameter estimation. PEMFCs are a promis-
ing technology as the world looks for sustainable energy sources.
Maximizing PEMFC efficiency requires accurate and efficient
parameter estimation, and HPDE’s contributions are directly rel-
evant to the broader energy landscape. The objective of this study
is to improve PEMFC performance and to support the transition
to cleaner, more sustainable energy solutions.

The notable feature of HPDE is its robustness and superior
performance in optimizing PEMFC parameters. In this study,
various PEMFC models have been considered, including BCS
500 W PEMFC [58], Nedstack PS6 [59], S-12500 W PEMFC [60],
H-12 PEMFC [61], STD 250 W PEMFC [62], and HORIZON
500 W PEMFC [63]. This research makes several important
contributions:

1. Introduction of HPDE for PEMFC Parameter Optimization:
HPDE is an innovative approach to the DE algorithms for
the challenging PEMFC parameter estimation task. To the
best of our knowledge, this is the first application of HPDE
in this domain, differentiating it from previously known DE
variants, as well as other EAs. The hierarchical population
mechanism and novel mutation strategies are designed to
well balance the exploration and exploitation, which can
improve the convergence rate and accuracy. These capabili-
ties are critical for PEMFC modeling, where parameter esti-
mation precision directly translates into performance and
operational efficiency.

2. Novel Hierarchical Population Structure: HPDE is a
dynamic two-layer hierarchical population structure that
divides the population into elite and ordinary layers accord-
ing to individual performance. The hierarchical arrange-
ment of HPDE enables the concentration of resources on
promising solutions (elite layer) while preserving diversity
in the entire population (ordinary layer), which is a com-
mon problem of DE algorithms: premature convergence.
The structural innovation encourages robust convergence,
which is critical in the highly nonlinear, multivariable envi-
ronment of PEMFC models.

3. Innovative Diversity Metric and Control Mechanisms:
Another contribution presents a novel diversity metric
introduced in HPDE to optimize the population diversity
dynamically during the evolution. This metric allows us to
tune the algorithm to adapt to the measurements of the
diversity of the search space and spread of the population. In
PEMFC parameter estimation, such adaptability is essential
because of the variations in operating conditions, requiring
a flexible optimization approach that is able to cope with a
large spectrum of system dynamics.

4. Enhanced Mutation and Selection Strategies: HPDE’s muta-
tion strategy, which distinguishes between elite-guided and
ordinary-guided mutation, enables a finer exploration of the
solution space, improving both convergence speed and solu-
tion quality. Moreover, the selection strategy involves sub-
optimal solutions to enhance the ability of the algorithm to
get out of local optima, a crucial enhancement compared
to conventional DE strategies. These improvements guaran-
tee that HPDE can generate solutions with little error and
therefore more trustworthy parameter estimates than other
methods.

5. Comparative Analysis with Leading DE Variants and EAs:
HPDE is compared to nine well-known EAs, including
the best DE variants, such as E-QUATRE, iLSHADE, and
CRADE. This thorough comparison shows HPDE’s effec-
tiveness and its superiority in terms of minimum error, run-
time, and stability. HPDE always performs better, making it
a competitive advantage and proving its novelty as a better
optimization tool for PEMFCs.

6. Practical Validation Across Multiple PEMFC Models: In this
study, HPDE is used for parameter estimation in 12 different
PEMFC types from commercial to laboratory models, and
consistent alignment between estimated and experimental
V –I and P–I characteristics is obtained. Extensive valida-
tion confirms the practical applicability and effectiveness of
HPDE over a wide range of PEMFC configurations, which is
a significant step forward in view of the wide range of oper-
ating conditions and performance requirements in PEMFC
systems.

The paper is structured to provide a succinct overview of the
PEMFC stack model and the optimization goals in Section 2, an
introduction to the HPDE algorithm in Section 3, detailed experi-
mental analyses and discussions in Section 4, and conclusions in
Section 5.

2 | Problem Formulation

In this section, we provide an overview of the PEMFC stack model
utilized in this study, followed by the specification of the objective
function to be optimized.

2.1 | PEMFC Stack Model

PEMFC stack model described in [62] is based on an electro-
chemical framework for predicting steady-state performance and
is specifically developed to be computationally manageable and
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suitable for engineering optimization tasks. This model consists
of basic PEMFC components such as the electrochemical reaction
sites (cathode and anode), membrane, and related voltage losses.
The model makes essential assumptions of ideal gas behavior of
reactants, uniform temperature, and pressure distribution across
the stack, and simplifications for water management and ther-
mal effects. The formulation of the model includes calculating the
stack output voltage as a function of current, anode and cathode
pressures, and reaction kinetics, with overpotential losses (acti-
vation, ohmic, and concentration) included. The model can be
adjusted by parameters to match empirical data and is flexible
in engineering applications and practical in optimizing perfor-
mance under different operating conditions. The PEMFC stack
model referenced in [62] is employed in this study. For a stack
comprising n cells connected in series, the terminal voltage can
be determined using [63]:

𝑉s = 𝑛 ⋅ 𝑉FC, (1)

where 𝑉FC is the output voltage of a single cell, which can be for-
mulated as [64].

𝑉FC = 𝐸Nernst − 𝑉act − 𝑉ohm − 𝑉con, (2)

𝐸Nernst is the thermodynamic potential defined by

𝐸Nernst = 1.229 − 0.85 × 10−3 ⋅ (𝑇 − 298.15) + 4.3085 × 10−5 ⋅ 𝑇 ⋅ ln
(
𝑃 ∗

H2

√
𝑃 ∗

O2

)
,

(3)

where 𝑇 is the cell temperature (K), 𝑃 ∗
H2

and 𝑃 ∗
O2

are the hydrogen
and oxygen partial pressures (atm), respectively. They are given
by [65].

𝑃 ∗
H2

= 0.5 ⋅ RHa ⋅ 𝑃
sat
H2O ⋅

⎛⎜⎜⎜⎝
1

RHa⋅𝑃
sat
H2O

𝑃a
exp
(

1.635(𝑖cell∕𝐴)
𝑇 1.334

) − 1
⎞⎟⎟⎟⎠, (4)

𝑃 ∗
O2

= RHc ⋅ 𝑃
sat
H2O ⋅

⎛⎜⎜⎜⎝
1

RHc⋅𝑃
sat
H2O

𝑃c
exp
(

4.192(𝑖cell∕𝐴)
𝑇 1.334

) − 1
⎞⎟⎟⎟⎠, (5)

where RHa and RHc are the relative humidity of vapor in the
anode and cathode, Pa and Pc are the anode and cathode inlet
pressures (atm), respectively. 𝐴 is the effective electrode area
(cm2) and icell is the cell current (A). 𝑃 sat

H2O is the saturation pres-
sure of water vapor (atm), which is defined as a function of the
temperature T as follows [62, 66].

log10

(
𝑃 sat

H2O

)
= 2.95 × 10−2 ⋅ (𝑇 − 273.15) − 9.19 × 10−5

⋅ (𝑇 − 273.15)2 + 1.44 × 10−7 ⋅ (𝑇 − 273.15)3 − 2.18. (6)

According to reference [67], the activation overpotential 𝑉act,
including anode and cathode, can be expressed by the following
formula

𝑉act = −
[
𝜉1 + 𝜉2 ⋅ 𝑇 + 𝜉3 ⋅ 𝑇 ⋅ ln

(
𝐶∗

O2

)
+ 𝜉4 ⋅ 𝑇 ⋅ ln

(
𝑖cell
)]
, (7)

where 𝜉1, 𝜉2, 𝜉3, 𝜉4 are the parametric coefficients for each cell
model, and 𝐶∗

O2
(mol/cm3) is the concentration of oxygen in the

catalytic interface of the cathode, given by [62, 64].

𝐶∗
O2

=
𝑃 ∗

O2

5.08 × 106 ⋅ exp(−498∕𝑇 )
. (8)

The ohmic voltage drop 𝑉ohm can be determined by the following
expression [67].

𝑉ohm = 𝑖cell ⋅
(
𝑅M + 𝑅C

)
, (9)

where 𝑅M is the equivalent membrane resistance to proton con-
duction, and 𝑅C is the equivalent contact resistance to electron
conduction. 𝑅M is defined by [62].

𝑅M =
𝜌M ⋅ 𝓁
𝐴

, (10)

𝜌M =
181.6 ⋅

[
1 + 0.03 ⋅

(
𝑖cell
𝐴

)
+ 0.062 ⋅

(
𝑇

303

)
⋅
(
𝑖cell
𝐴

)2.5
]

[
𝜆 − 0.634 − 3 ⋅

(
𝑖cell
𝐴

)]
⋅ exp
[
4.18 ⋅

(
𝑇−303
𝑇

)] , (11)

where 𝜌M is the membrane-specific resistivity for the flow of
hydrated protons (Ω cm), and 𝓁 is the thickness of the mem-
brane (cm), which serves as the electrolyte of the cell. The
parameter 𝜆 is an adjustable parameter with a possible range of
references [66, 68].

The concentration overpotential 𝑉con caused by the change in the
concentration of the reactants at the surface of the electrodes as
the fuel is calculated by [64].

𝑉con = −𝐵 ⋅ ln
(

1 − 𝐽

𝐽max

)
, (12)

where 𝐵 (𝑉 ) is a parametric coefficient, which depends on the
cell and its operation state. 𝐽 is the actual current density of the
cell (A/cm2), and Jmax is the maximum value of 𝐽 .

The aim of parameter identification is to extract the unknown
parameters of the PEMFC stack model to achieve a bet-
ter fit for a given stack model. Similar to the approaches
in [68–70], this work identifies seven parameters, that is,
𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜆,RC, and 𝐵, will be identified by the HPDE
algorithm.

2.2 | Objective Function

In order to determine the optimal values for the seven unknown
parameters mentioned above through optimization techniques,
an objective function must be defined. In this study, the objective
function is the SSE (sum of squared errors) between the actual
output voltage of the PEMFC stack and the model output voltage,
defined as [23]:

min 𝑓 (x) =
𝑁∑
𝑘=1

(
𝑉sm,k − 𝑉so,k

)2
, (13)
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where 𝑥 =
{
𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜆, 𝑅𝐶, 𝐵

}
: This vector 𝑥 represents the

seven unknown parameters to be identified within the PEMFC
model. These parameters affect various aspects of the model,
such as activation overpotential, ohmic resistance, and concen-
tration overpotential, which influence the fuel cell’s voltage out-
put. 𝑉sm,𝑘: The actual stack voltage from experimental data at
the kth measurement point. This value serves as the reference
voltage for the model, reflecting real PEMFC performance under
specific conditions. 𝑉so,𝑘: The modeled output voltage at the kth
measurement point. This is the voltage predicted by the PEMFC
model based on current parameter values.𝑁 : The number of data
points available from experimental measurements, used to calcu-
late the error between actual and modeled voltages across various
operating points. The objective function aims to find the optimal
parameter values that minimize the total error between the exper-
imental (actual) and modeled voltages across all data points. The
error at each data point 𝑘 is represented as

(
𝑉sm,𝑘 − 𝑉so,𝑘

)2, and
summing these errors over all 𝑁 data points provide the overall
SSE. minimizing SSE, the overall discrepancy between the actual
PEMFC performance and the modeled performance is reduced,
thus improving the accuracy of the model in representing the fuel
cell behavior.

3 | The Proposed HPDE Algorithm

This section provides an in-depth explanation of the newly devel-
oped dynamic HPDE algorithm, which introduces a novel diver-
sity metric. The description is divided into four parts: the first
part describes the dynamic hierarchical population mechanism;
the second part introduces the diversity metric; the third part
explores innovative mutation strategies; and the fourth part dis-
cusses enhancements in parameter control through dimension
improvement.

3.1 | The Dynamic Hierarchical Population

In the HPDE algorithm, the population is divided into two layers:
the elite layer laye and ordinary layer layo, based on the perfor-
mance of each individual within the population. Two parameters,
EP and OP, represent the sizes of these two layers, respectively.
Additionally, a parameter, IS (Individual Status), is introduced to
categorize individuals into different layers. The value of IS is cal-
culated using via Equation (14):

IS =
∣ 𝑓
(
x𝑔aver
)
− 𝑓
(
x𝑔
𝑖

)
∣

𝑓
(
x𝑔worst
)
− 𝑓
(
x𝑔best

) , (14)

where 𝑓
(
x𝑔
𝑖

)
, 𝑓
(
x𝑔best

)
, and 𝑓

(
x𝑔worst
)

denote fitness value
of current individual, best individual, and worst individual,
respectively. The IS value is constrained to the range [0, 1]
throughout the entire evolution process. Individuals with an
IS value exceeding a certain threshold are placed in the elite
layer, while the remaining individuals are assigned to the
ordinary layer. The lower and upper bounds calculated using
Equations (15) and (16), respectively:

Low𝑖 =
⌊
𝑤1 ⋅ ps ⋅

(
1 −

nfe
nf𝑒max

)⌋
, (15)

Up𝑖 =
⌈
𝑤2 ⋅ ps ⋅

(
1 −

nfe
nf𝑒max

)⌉
+ 𝛿, (16)

where Low𝑖 and Up𝑖 represent the upper bound and lower bound
of the algorithm. The pseudo-code for generating the dynamic
hierarchical population is provided in Algorithm 1.

ALGORITHM 1 | The pseudo-code of the population dynamic divi-
sion mechanism.

1: Input: P,ps,nfemax,nfe,oct, D
2: Output: The two layers lay, layo and their size EP, OP
3: Initial value oct = 0, EP= 0, OP= 0;
4: for i= 1 to ps do
5: Calculation of IS as shown in Eq. (14);
6: if IS < 0.1 then
7: EP = EP + 1;
8: end if
9: end for
10: if EP > Upi or EP < Lowi then
11: EP =

[
(Upi − Lowi) ⋅ nfemax−nfe

nfemax
+ Lowi

]
;

12: end if
13: Calculate the size of ordinary layer: OP = ps – EP
14: Sort the current parent population P in ascending order
15: according to the fitness values; Return EP, OP, and layers

laelayo of individuals;
16: Return EP, OP, and layers laye layo of individuals

3.2 | The Diversity Metric

This section introduces a novel diversity metric for the population
within our HPDE algorithm, based on the computation of two
hyper-volumes: one hyper-volume, 𝑉lim corresponds to the bound
constraints of the search space, while the other, 𝑉pop relates to
the spatial distribution of the population during evolution. The
calculation formulas of 𝑉lim and 𝑉pop are given in Equations (17)
and (18):

𝑉lim = ln

(
1 +

𝐷∏
𝑑=1

||𝑢𝑑 − 𝑙𝑑
||
)
, (17)

𝑉pop =

√√√√ 𝐷∏
𝑑=1

𝑦𝑑, (18)

where 𝑢𝑖 and 𝑙𝑖 are the upper and lower bound of the ith dimen-
sion, and 𝑦𝑖 denotes the distance between the maximum and min-
imum values of the ith dimension in the population. After the
calculation of 𝑉lim and 𝑉pop, the diversity metric 𝑑vol can be cal-
culated via Equation (19):

𝑑VOL =

√
𝑉pop

𝑉lim
. (19)

This simple equation shows that the diversity metric essentially
calculates the ratio of the current population’s diversity to that of
the initial population. For further clarity, the proposed metric is
described in detail in Algorithm 2.
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ALGORITHM 2 | Calculation of the dVOL.

1: Data: Individuals X1, G, . . . , Xi, G, . . . , Xps, G in the
population;

2: Vpop= 1
3: for j= 1 to D do
4: q1 = min(X(:,j))
5: q2 = max(X(:,j));
6: Vpop = Vpop ⋅ (q2 – q1)
7: end for

8:
Vpop = ln(1 − Vpop)

dVOL =
√

Vpop
𝑉 lim

9: return Diversity metric dVOL

Furthermore, the individual is updated according to a greedy
strategy shown in Equation (20):

𝑈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹con ⋅
(
𝑋better
𝑟1 ,𝐺

−𝑋𝑖,𝐺

)
. (20)

The performance improvement is bigger than 𝑁 , ct > 𝑁 , diver-
sity improvement of the population should be launched accord-
ing to Equation (21):{

𝑋𝑖,𝐺+1 = 𝑋𝑖,𝐺 + 𝐹div ⋅
(
𝑋𝑠1 ,𝐺

−𝑋𝑠2 ,𝐺

)
if seed ≠ ∕

𝑋𝑖,𝐺+1 = 𝑋𝑙 + rand ⋅
(
𝑋𝑢 −𝑋𝑙

)
otherwise

. (21)

The diversity improvement factor,𝐹div follows a fixed Cauchy dis-
tribution 𝐹div ∼ 𝐶(0.5,0.1), 𝑋𝑠1 ,𝐺

and 𝑋𝑠2 ,𝐺
are two unique seed

individuals selected at random, while XX𝑢 and 𝑋𝑙 represent the
upper and lower bounds of the population. The pseudo-code for
the diversity metric-based population enhancement is provided
in Algorithm 3.

ALGORITHM 3 | Pseudo-code of the diversity metric based popula-
tion enhancement.

1: Input: D,Xl,Xu,N,𝜉,ct,f,ps,nfe,nfemax
2: Output: nfe,nfemax,ct,ps,f
3: while nfe < nfemax do
4: if round(dvol * 10) == 5 then
5: num = round(0.15 * ps);
6: nums = ceil(ps * rand( num)):
7: numst = pbest ( nums, );
8: seedstore = [ seedstore ;numst];
9: end if
10: seed = size(seedstore);
11: Calculate dvol using Eq. (19);
12: if dVOL > 𝜉 then
13: for i= 1: ps do
14: if ct(i) > N and Xi,G ≠ Xgbest then
15: 𝑈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹con ⋅(

𝑋better
𝑟1 ,𝐺

−𝑋𝑖,𝐺

)
;

16: Evaluate fitness value f (Ui,G)
17: nfe = nfe + 1;
18: if f (Ui,G) < f (Xi,G) then
19: Xi,G+1 = Ui,G, ct(i) = 0;
20: end if
21: end if
22: end for

23: else
24: for i= 1: ps do
25: if ct(i) > N and Xi,G ≠ Xgbest then

26: if seed ≠ ∅ then
27: 𝑋𝑖,𝐺+1 = 𝑋𝑖,𝐺 + 𝐹div ⋅(

𝑋𝑠1 ,𝐺
−𝑋𝑠2 ,𝐺

)
;

28: else

29: Xi,G+1 =Xl + rand ⋅ (Xu – Xl)

30: end if
31: Calculate fitness value

f (Xi,G+1),ct(i) = 0;
32: nfe = nfe + 1;
33: end if
34: end for
35: end if
36: end if
37: return nfe,nfemax,ct,ps,f

3.3 | The Novel Mutation Strategies

The mutation strategy is a crucial factor in the effectiveness
of the DE algorithm. The development of a robust DE variant
often begins with the design of its mutation strategy. Typically,
a successful DE variant strikes a balance between exploration
and exploitation exploring the solution space in the early stages
of evolution and focusing on local areas in the later stages. In
the HPDE algorithm, elite individuals employ a novel mutation
strategy designed to explore the objective landscape, while ordi-
nary individuals utilize an enhanced “DE/target-to-best/1/bin”
strategy to effectively explore the solution space. The ratio-
nale behind these strategies is that elite-guided mutation
accelerates convergence and enhances exploitation, whereas
ordinary-guided mutation increases population diversity and
facilitates exploration. This approach ensures a balanced consid-
eration of both exploration and exploitation in mutation strate-
gies. The specifics of these two mutation strategies are detailed in
Equation (22):

⎧⎪⎨⎪⎩
𝑉𝑖,𝐺 = 𝑋𝑟𝑒,𝐺

+ 𝑝𝑤 ⋅
(
𝑋
𝑟𝑜

best,𝐺 −𝑋𝑟𝑒,𝐺

)
+ 𝐹 ⋅

(
𝑋𝑟𝑒,𝐺

−
̂
𝑋𝑟2 ,𝐺

)
𝑉𝑖,𝐺 = 𝑋𝑟𝑜,𝐺

+ 𝐹 ⋅
(
𝑋
𝑝

best,𝐺 −𝑋𝑟𝑜,𝐺

)
+ 𝐹 ⋅

(
𝑋𝑟1 ,𝐺

−
̂
𝑋𝑟2 ,𝐺

) .
(22)

𝑋𝑟𝑒,𝐺
refers to a randomly selected individual from the elite

layer, while 𝑋
𝑟𝑜

best,𝐺 is a randomly chosen individual from the
top EP, also known as secondary elites, of the ordinary layer.
The selection probability 𝑝𝑤 is determined by the formula 𝑝𝑤 =(
𝑝𝑠ini − ps

)
∕𝑝𝑠ini,𝑋𝑟𝑜,𝐺

represents a randomly selected individual
from the ordinary layer, and 𝑋𝑟1 ,𝐺

is a randomly selected indi-
vidual from the current population. The term 𝑋

𝑝

best,𝐺 denotes a
randomly selected individual from the top 100p% of the popu-

lation, and
̂
𝑋𝑟2 ,𝐺

refers to a randomly selected individual from
the combined pool of the current population and an external
archive that uses a time-stamp mechanism, similar to the PaDE
algorithm.
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3.4 | Dimension Improvement-Based
Parameter Control

In our algorithm, the process for generating control parame-
ters 𝐹 and CR varies according to the different layers of the
population. For individuals in the ordinary layer, we establish
a memory pool containing 𝐻 entries that record recent 𝜇𝐹
and 𝜇CR pairs. The 𝐹 and CR values are generated based on a
semi-fixed Cauchy distribution𝐹 ∼ 𝐶

(
𝜇𝐹 , 0.1

)
and Gaussian dis-

tribution CR ∼ 𝑁
(
𝜇CR, 0.1

)
with the ⟨𝜇𝐹 , 𝜇CR⟩ pairs being ran-

domly selected from the memory pool. Additional adjustments
are needed to ensure that the scale factor 𝐹 and the crossover rate
CR stay within their respective ranges 𝐹 ∈ (0, 1] and CR ∈ [0, 1].
These adjustments are detailed in Equation (23).

𝐹𝑖 =
⎧⎪⎨⎪⎩
𝐶
(
𝜇𝐹 , 0.1

)
while 𝐹𝑖 ≤ 0

1 if 𝐹𝑖 > 1
𝐹𝑖 otherwise

(23)

CR𝑖 =
⎧⎪⎨⎪⎩

0 if 𝜇CR ≤ 0 ∥ CR𝑖 < 0
1 if 𝜇CR > 0&&CR𝑖 > 1
CR𝑖 otherwise

(24)

For individuals in the elite layer, smaller CR and 𝐹 values can
enhance the algorithm’s exploitation ability. Therefore, we pro-
pose a new approach using wavelet basis functions for generating
𝐹 and a Gaussian-based method for generating CR, as outlined in
Equations (25) and (26).

CR𝑖 = rand𝑛𝑖
(

2 ⋅
ps
𝑝𝑠ini

⋅ IS
)
⋅ CR𝑖, (25)

⎧⎪⎨⎪⎩
𝐹𝑖 =
(

1 − 0.5⋅nfe
nf𝑒max

)
⋅ 2√

3
⋅ 𝜋− 1

4 ⋅
(
1 − 𝜇2) ⋅ 𝑒− 𝜇2

2

𝜇 = 2.5 ⋅ nfe
nf𝑒max

⋅ IS
, (26)

where ps denotes the current population, 𝑝𝑠ini denotes the initial
population, IS denotes the individual status. the success rate is
computed using Equation (27):

𝑅ℎ =
⎧⎪⎨⎪⎩

𝑛2
𝑠,ℎ

𝑛𝑠⋅(𝑛𝑠,ℎ+𝑛𝑓,ℎ) if 𝑛𝑠,ℎ > 0

ε otherwise
, (27)

where 𝑅ℎ represents the success rate of the hth entry, where 𝑛𝑠
indicates the total number of successful individuals in the popu-
lation. 𝑛𝑠,ℎ refers to the number of successful individuals utilizing
the control parameter pair ⟨𝜇𝐹 , 𝜇CR⟩ from the hth entry, and 𝑛𝑓,ℎ
denotes the number of individuals who failed while using the
same control parameter pair. The adjustments to 𝜇𝐹 and 𝜇CR are
then calculated using Equations (28) and (29).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑤𝑠 =
std(𝛥lo𝑐𝑖)∑∣𝑆𝐹 ∣

𝑠=1 std(𝛥lo𝑐𝑖)
𝛥lo𝑐𝑖 = loc

(
𝑈𝑖,𝐺 −𝑋𝑖,𝐺

)
mea𝑛WL

(
𝑆𝐹
)
=
∑∣𝑆𝐹 ∣

𝑠=1 𝑤𝑠⋅𝑆
2
𝐹
(𝑠)∑∣𝑆𝐹 ∣

𝑠=1 𝑤𝑠⋅𝑆𝐹 (𝑠)

𝜇𝐹,idx,𝐺+1 =

{
mea𝑛WL

(
𝑆𝐹
)
, if 𝑆𝐹 ≠ ∅

𝜇𝐹,idx,𝐺, otherwise

. (28)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑤𝑠 =
std(𝛥lo𝑐𝑖)∑∣𝑆𝐹 ∣

𝑠=1 std(𝛥lo𝑐𝑖)
𝛥lo𝑐𝑖 = loc

(
𝑈𝑖,𝐺 −𝑋𝑖,𝐺

)
mea𝑛WL

(
𝑆CR
)
=
∑∣𝑆CR ∣

𝑠=1 𝑤𝑠⋅𝑆
2
CR(𝑠)∑∣𝑆CR ∣

𝑠=1 𝑤𝑠⋅𝑆CR(𝑠)

𝜇CR,𝑘,𝐺+1 =
⎧⎪⎨⎪⎩

mea𝑛WL
(
𝑆CR
)
, if 𝑆CR ≠ ∅&max{CR} > 0

0, if 𝑆CR ≠ ∅max{CR} = 0
𝜇CR,𝑘,𝐺, otherwise

. (29)

The symbols used in these equations carry the same meanings
as previously described. The operator loc

(
𝑈𝑖,𝐺 −𝑋𝑖,𝐺

)
measures

the dimension improvements between the trial vector 𝑈𝑖,𝐺 and
the target vector XX𝑖,𝐺. When it comes to population size ps,
a rapid reduction at the start of the evolution often impairs
effective exploration of the landscape. We further refined the
PaDE reduction scheme, as outlined in Equation (30).

ps =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌈
𝑝𝑠min−𝑝𝑠ini(

2
3

nf𝑒max−𝑝𝑠ini

)2 ⋅
(

nfe − 𝑝𝑠ini
)2 + 𝑝𝑠ini

⌉
,

if nfe ≤ 0.5 ⋅ nf𝑒max⌊
𝑝𝑠min−

1
3
𝑝𝑠ini

1
3

nf𝑒max
⋅
(

nfe − nf𝑒max
)
+ 𝑝𝑠min

⌋
,

otherwise

(30)

A step-by-step explanation of the HPDE algorithm:

1. Population Initialization: The initial population for the
HPDE algorithm is generated by random sampling through-
out the feasible search space of the PEMFC parameters. This
population consists of each individual as a potential solu-
tion vector with parameters to be optimized. This initial
population must be diverse enough to cover as broad area of
the search space as possible preventing it from converging
upon suboptimal solutions too early.

2. Dynamic Hierarchical Structure: The hierarchical structure
of the HPDE algorithm is introduced by dividing the pop-
ulation into two main layers, the elite layer and the ordi-
nary layer. In this, individuals are being divided based on
the fitness values of the individuals of each generation. The
individuals with higher fitness values (top performing) are
assigned to the elite layer and the remaining individuals are
assigned as ordinary individuals. Individuals are in dynamic
motion between layers for the duration of the optimization
process as their fitness values change from one generation
to another.
• Individual Status (IS) Calculation: The Individual Status

(IS) is calculated for each individual as the relative differ-
ence between the individual’s fitness value and the best
and worst fitness values in the population. This IS value
places an individual in either the elite or the ordinary
layer of the hierarchical structure, and helps the structure
to adapt.

3. Ranking-Based Mutation Operator: The mutation strategy
used by the HPDE algorithm is unique and is designed to
balance exploration and exploitation to deal with the com-
plex landscape of PEMFC parameter optimization.
• Elite-Guided Mutation: The elite layer individuals use

a specialized mutation strategy to exploit high-quality
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regions in the solution space. This mutation is an
elite-guided mutation that focuses the algorithm on the
areas with promising solutions and hence increases the
convergence speed and accuracy of optimization.

• Ordinary-Guided Mutation: On the contrary, people in
the ordinary layer use a mutation strategy that favors
diversity, and thus encourages exploration of new areas
in the solution space. This approach keeps the population
diversity in the algorithm and prevents premature conver-
gence, and helps the algorithm escape local optima.

• Greedy Selection Mechanism: The mutation strategy is
complemented by a ranking-based selection mechanism
that retains only the best solutions between the mutated
and original individuals. The selection mechanism of this
algorithm guarantees that the quality of each generation
of the population is steadily improving, by refining the
parameters of solutions of higher ranks.

4. Control Parameter Adaptation: In HPDE, control param-
eters like mutation factor (F) and crossover rate (CR) are
dynamically adjusted using a novel method based on the
distinction between elite and ordinary layers. Smaller F and
CR values are used to fine-tune solutions for the elite layer,
encouraging exploitation. On the other hand, larger F and
CR values in the ordinary layer promote diversity for more
exploration. Historical memory is then used to tune the
control parameters further, incorporating successful past
parameter values and improving adaptability and conver-
gence stability.

5. Diversity Metric and Population Management: HPDE
employs diversity metrics based on population spatial dis-
tribution in order to monitor and maintain diversity dur-
ing the evolutionary process. The calculation of this metric
via hyper volume comparisons allows the population to be
effectively managed, allowing the algorithm to dynamically
adjust the balance between exploration and exploitation.

4 | PEMFC Parameter
Optimization—Experimental Analysis

In addition to the evolution matrix, the HPDE algorithm intro-
duces a novel selection operator. This operator incorporates some
suboptimal solutions during the evolution process, akin to select-
ing the top percentage of individuals in the population as part
of the mutation strategy. This selection mechanism enhances
the algorithm’s ability to escape local optima during its evolu-
tionary course. To validate the algorithm, a comprehensive test
suite of 12 PEMFC fuel cell utilized, and the results underscore
the enhanced performance of HPDE algorithm over the leading

DE variants, including E-QUATRE [50], iLSHADE [51], CRADE
[52], L-SHADE [53], jSO [53], HARD-DE [54], LSHADE-cnEpSin
[55], DE [56], and PCM-DE [57], with default parameter settings
are given in Table 1. All algorithms compared were set to their
recommended to estimate the parameter of a PEMFC fuel cell
BCS 500 W PEMFC [58], Nedstack PS6 [59], PEMFC, S-12500 W
PEMFC [59], H-12 PEMFC [60], STD 250 W PEMFC [61], and
HORIZON 500 W PEMFC [60] presented in Table 2. All the exper-
iments are carried out on Matlab 2021a of a PC with Windows
Server 2019 operating system CPU i7-11700k@3.6 GHz, maxi-
mum iterations 500, number of runs 30, and population size 40.

In order to evaluate the performance of HPDE compared to other
benchmark algorithms, we analyze various metrics, including
minimum, maximum, mean, standard deviation (std), runtime
(RT), and Friedman Rank (FR), as presented in Table 3. HPDE
achieves the best results with a minimum value of 0.0254927,
the same as the best-performing algorithms like E-QUATRE,
iLSHADE, CRADE, L-SHADE, jSO, and LSHADE-cnEpSin, and
superior to PCM-DE and DE. The maximum value for HPDE
is 0.0254927, indicating a consistent performance across differ-
ent runs, outperforming other algorithms, which have higher
maximum values like PCM-DE at 0.1757013 and E-QUATRE at
0.1924899. The mean value of HPDE is the lowest at 0.0254927,
demonstrating its robustness and efficiency compared to others,
with the next best mean being 0.0255143 from DE. The standard
deviation of HPDE is 7.42E−09, showcasing an extremely sta-
ble performance, whereas other algorithms like HARD-DE and
PCM-DE show higher variability with std. values of 0.0099976
and 0.045335, respectively. HPDE also excels in runtime, with an
RT of 0.3451812 s, significantly faster than all other algorithms,
with the closest being DE at 4.4975652 s. The Friedman Rank
further confirms HPDE’s superiority with a rank of 1, indicat-
ing the best overall performance among the algorithms evaluated.
In comparison, algorithms like PCM-DE and E-QUATRE have
much higher Friedman Ranks of 9.4 and 9.2, respectively. Overall,
In Tables 3 and 4, HPDE not only shows exceptional performance
across all metrics but also demonstrates remarkable stability and
efficiency, clearly establishing it as the top-performing algorithm
in this evaluation shown in Figure 1.

In order to evaluate the performance of FC1, HPDE com-
pared to other benchmark algorithms, we analyze various met-
rics, including minimum, maximum, mean, standard deviation
(std), runtime (RT), and Friedman Rank (FR), as presented in
Table 5. HPDE achieves the best results with a minimum value
of 0.275211, indicating superior performance compared to other
algorithms like E-QUATRE, iLSHADE, CRADE, L-SHADE, jSO,
HARD-DE, LSHADE-cnEpSin, DE, and PCM-DE. The maximum
value for HPDE remains consistent at 0.275211, demonstrating

TABLE 1 | Recommended parameter settings of all these contrasted algorithms.

Algorithm Parameters initial settings

LSHADE 𝜇F = 0.5, F∼C (𝜇F,0.1), 𝜇CR= 0.5, CR∼C (𝜇CR,0.1), ps= 18⋅D∼4, rrac= 2.6, p= 0.11, H = 6
iLSHADE H,F,CR&rrac same as LSHADE, 𝜇F = 0.8, 𝜇CR= 0.5, 𝜇FH =𝜇CRH = 0.9, ps= 12⋅D∼4, p= 0.2–0.1
jSO F,CR&rrac same as iLSHADE, 𝜇F = 0.3, 𝜇CR= 0.8, ps= 25⋅lnD⋅D∼4, p= 0.25–0.125, H = 5
HARD-DE 𝜇F = 0.3, 𝜇CR= 0.8, F&CR same as LSHADE, p= 0.11, ps= 25⋅lnD⋅D∼4, rrac, A= 1.6, rrac, B= 3, k= 4
HPDE 𝜇F =𝜇CR= 0.5, rrac= 1.6, psini= 18⋅D, psmin= 4, n= 2⋅D, ξ= 0.001, H = 5, p= 0.2–0.05
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TABLE 2 | Characteristics of 12 PEMFCs used in this work.

Sl. no. PEMFC type Power (W) Ncells (no) A (cm2) l (𝛍m) T (K) Jmax (mA/cm2) PH2 (bar) PO2 (bar)

FC1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095
FC2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0
FC3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095
FC4 H-12-1 12 13 8.1 25 323 246.9 0.4935 1.0
FC 5 Ballard Mark V 5000 35 232 178 343 1500 1.0 1.0
FC 6 STD-1 250 24 27 127 343 860 1.0 1.0
FC 7 Horizon 500 36 52 25 338 446 0.55 1.0
FC8 STD-2 250 24 27 127 343 860 1.5 1.5
FC9 STD-3 250 24 27 127 343 860 2.5 3.0
FC10 STD-4 250 24 27 127 353 860 2.5 3.0
FC11 H-12-2 12 13 8.1 25 302 246.9 0.4 1.0
FC12 H-12-3 13 13 8.1 25 312 246.9 0.5 1.0

TABLE 3 | Parameters estimated for FC1.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −0.9840126 −1.1770707 −0.8532 −0.8710833 −1.1564251 −0.9553534 −1.0713703 −1.0620494 −1.1975945 −0.9919514

𝜉2 0.00301 0.0032509 0.0030794 0.002331 0.0033698 0.0025771 0.0035716 0.0031181 0.0037194 0.0026047

𝜉3 6.454E−05 4.233E−05 9.387E−05 4.229E−05 5.396E−05 4.176E−05 8.338E−05 5.6E−05 6.911E−05 3.65E−05

𝜉4 −0.0001814 −0.0001919 −0.0001929 −0.0001921 −0.000193 −0.0001935 −0.0001928 −0.0001929 −0.0001787 −0.000193

𝜆 20.681348 20.167951 23 21.588182 20.888681 21.555674 21.468502 20.820627 17.286624 20.877244

𝑅𝑐 0.0007508 0.0001198 0.0002816 0.0002173 0.0001051 0.0001573 0.0001644 0.0001016 0.0003703 0.0001

B 0.0136 0.0155994 0.0162647 0.0159267 0.0161076 0.0159731 0.0161855 0.0160809 0.0136 0.0161261

Min. 0.0550084 0.0261388 0.0256558 0.0259422 0.0255046 0.0261796 0.0256142 0.0254995 0.0665078 0.0254927

Max. 0.1924899 0.0319448 0.085535 0.0333606 0.025796 0.0499675 0.0261432 0.025561 0.1757013 0.0254927

Mean 0.1133755 0.0281778 0.0468485 0.0292157 0.0256313 0.0335568 0.0258695 0.0255143 0.1251737 0.0254927

Std. 0.053443 0.0024462 0.0226263 0.0036953 0.0001194 0.0099976 0.0001972 2.616E−05 0.045335 7.42E−09

RT 4.2058874 6.7180226 3.1583165 3.0451559 6.187678 4.541507 3.5360303 4.4975652 6.0141956 0.3451812

FR 9.2 5.8 7.4 6.4 3 6.6 4 2.2 9.4 1

its reliability, whereas other algorithms exhibit higher maximum
values, such as PCM-DE at 0.414214 and E-QUATRE at 0.5139.
The mean value for HPDE is the lowest at 0.275211, underscor-
ing its efficiency and stability across multiple runs, outperform-
ing others like E-QUATRE with a mean of 0.355667 and DE
with 0.287025. The standard deviation of HPDE is 1.44E−16,
showcasing unparalleled consistency, while other algorithms like
PCM-DE and E-QUATRE show higher variability with std. val-
ues of 0.055274 and 0.100594, respectively. In terms of runtime,
HPDE is significantly faster with an RT of 0.081078 s, outperform-
ing all other algorithms with the next closest being CRADE at
3.551627 s. The Friedman Rank further highlights HPDE’s domi-
nance with a rank of 1, indicating the best overall performance
among the evaluated algorithms. In comparison, other algo-
rithms like PCM-DE and E-QUATRE have much higher Fried-
man Ranks of 9.2 and 7.8, respectively. In Tables 5 and 6, HDPE
not only consistently outperforms other algorithms in terms of
key metrics but also demonstrates unparalleled stability and effi-
ciency, making it the most effective algorithm in this evaluation
shown in Figure 2.

In Table 7, HPDE demonstrates superior performance with
a minimum value of 0.242284, indicating its efficiency rela-
tive to other algorithms like E-QUATRE, iLSHADE, CRADE,
L-SHADE, jSO, HARD-DE, LSHADE-cnEpSin, DE, and PCM-DE
on FC2. The maximum value for HPDE remains consistent at
0.242927, highlighting its reliability, whereas other algorithms
show higher maximum values, with PCM-DE reaching 0.430216
and E-QUATRE at 0.816536. The mean value for HPDE is the
lowest at 0.24267, underscoring its effectiveness and stability
across multiple runs, outperforming others like E-QUATRE with
a mean of 0.458016 and DE at 0.242358. The standard devia-
tion of HPDE is 0.000352, showcasing exceptional consistency,
while other algorithms, such as E-QUATRE and PCM-DE, exhibit
higher variability with std. values of 0.221732 and 0.078617,
respectively. In terms of runtime, HPDE is significantly faster
with an RT of 0.055785 s, outperforming all other algorithms,
with the next closest being CRADE at 2.485698 s. The Friedman
Rank further highlights HPDE’s dominance with a rank of
3.2, indicating strong overall performance among the evalu-
ated algorithms. In comparison, other algorithms like PCM-DE
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 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.13065 by M

oham
m

ad K
hishe - B

isha U
niversity , W

iley O
nline L

ibrary on [19/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 4 | Performance metrics of HPDE algorithm for FC1.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.6 29 28.997221 17.4 17.398332 0.0027792 0.0095836 4.291E−07
2 2.1 26.31 26.305939 55.251 55.242472 0.004061 0.0154352 9.162E−07
3 3.58 25.09 25.093559 89.8222 89.834942 0.0035591 0.0141853 7.037E−07
4 5.08 24.25 24.254625 123.19 123.2135 0.0046254 0.0190738 1.189E−06
5 7.17 23.37 23.375422 167.5629 167.60178 0.0054224 0.0232024 1.633E−06
6 9.55 22.57 22.584622 215.5435 215.68314 0.0146224 0.0647867 1.188E−05
7 11.35 22.06 22.071335 250.381 250.50966 0.0113354 0.0513844 7.138E−06
8 12.54 21.75 21.758472 272.745 272.85124 0.0084718 0.038951 3.987E−06
9 13.73 21.45 21.461271 294.5085 294.66325 0.0112712 0.0525466 7.058E−06
10 15.73 21.09 20.987751 331.7457 330.13732 0.1022493 0.4848236 0.0005808
11 17.02 20.68 20.694519 351.9736 352.22071 0.0145189 0.0702073 1.171E−05
12 19.11 20.22 20.230996 386.4042 386.61433 0.0109959 0.0543812 6.717E−06
13 21.2 19.76 19.770954 418.912 419.14422 0.0109535 0.0554329 6.666E−06
14 23 19.36 19.366035 445.28 445.41881 0.0060353 0.031174 2.024E−06
15 25.08 18.86 18.866477 473.0088 473.17125 0.0064772 0.0343434 2.331E−06
16 27.17 18.27 18.274732 496.3959 496.52446 0.0047317 0.0258988 1.244E−06
17 28.06 17.95 17.953322 503.677 503.77022 0.003322 0.0185071 6.131E−07
18 29.26 17.3 17.292888 506.198 505.98991 0.0071118 0.0411085 2.81E−06

Average value 0.0129191 0.0613903 3.61E–05

FIGURE 1 | HPDE algorithm characteristic curves of FC1: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.
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TABLE 5 | Parameters estimated for FC2.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE LSHADE-cnEpSin DE PCM-DE HPDE

𝜉1 −0.92873 −0.94569 −0.8532 −0.85929 −1.00202 −1.06121 −1.15198 −1.04589 −1.09404 −0.98321

𝜉2 0.003022 0.00296 0.003266 0.002822 0.002954 0.003576 0.003991 0.003013 0.003933 0.003221

𝜉3 6.48E−05 5.69E−05 0.000098 6.5E−05 4.47E−05 7.68E−05 8.76E−05 3.96E−05 9.55E−05 6.76E−05

𝜉4 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05 −9.5E−05

𝜆 14 14 14 14 14.00912 14 14 14.15152 15.06894 14

𝑅𝑐 0.000122 0.000109 0.0001 0.000115 0.000114 0.000114 0.00011 0.000144 0.0001 0.00012

B 0.016118 0.018416 0.019593 0.017632 0.017895 0.01758 0.017726 0.015808 0.029847 0.016788

Min. 0.275635 0.275436 0.2759 0.275302 0.275408 0.275359 0.275886 0.277689 0.285484 0.275211

Max. 0.5139 0.291685 0.276061 0.321702 0.280392 0.281342 0.280165 0.293302 0.414214 0.275211

Mean 0.355667 0.279778 0.275996 0.291059 0.277505 0.277454 0.276858 0.287025 0.342327 0.275211

Std. 0.100594 0.00696 8.8E−05 0.021765 0.002328 0.002424 0.001856 0.006797 0.055274 1.44E−16

RT 4.210993 4.207103 3.551627 3.723225 7.769565 4.103148 4.110283 4.804308 8.454202 0.081078

FR 7.8 4.4 4.2 5.6 4.6 5.2 5.2 7.8 9.2 1

and E-QUATRE have higher Friedman Ranks of 9.4 and 9.6,
respectively. In Tables 7 and 8, overall, HDPE not only consis-
tently excels in performance across all metrics but also demon-
strates superior stability and efficiency, establishing it as the
top-performing algorithm in this evaluation shown in Figure 3.

In Table 9, HPDE demonstrates superior performance with
a minimum value of 0.1029149, which is identical to the
best-performing algorithms such as E-QUATRE, iLSHADE, and
CRADE. The maximum value for HPDE remains consistent
at 0.1029149, indicating its stability, whereas other algorithms
show higher maximum values, with PCM-DE reaching 0.1071709
and HARD-DE at 0.1046349. The mean value for HPDE is the
lowest at 0.1029149, underscoring its effectiveness and stabil-
ity across multiple runs, outperforming others like E-QUATRE
with a mean of 0.1040502 and HARD-DE at 0.1036719. The stan-
dard deviation of HPDE is 7.28E−17, showcasing exceptional
consistency, while other algorithms, such as E-QUATRE and
PCM-DE, exhibit higher variability with std. values of 0.002532
and 0.0012265, respectively. In terms of runtime, HPDE has an RT
of 5.9580159 s, which, while not the fastest, still indicates a bal-
ance between speed and performance. The Friedman Rank fur-
ther highlights HPDE’s dominance with a rank of 1.2, indicating
strong overall performance among the evaluated algorithms. In
comparison, other algorithms like PCM-DE and E-QUATRE have
higher Friedman Ranks of 9.8 and 5, respectively. In Tables 9 and
10, overall, HDPE not only consistently excels in performance
across all metrics but also demonstrates superior stability and
efficiency, establishing it as the top-performing algorithm in this
evaluation shown in Figure 4.

In Table 11, HPDE demonstrates superior performance with a
minimum value of 0.1486318, which is equal to CRADE and
the lowest among all algorithms, indicating its optimal per-
formance. The maximum value for HPDE is also 0.1486318,
showing its consistent performance, whereas other algorithms
like E-QUATRE and HARD-DE have higher maximum values
of 0.1704443 and 0.1572388, respectively. The mean value for
HPDE is the lowest at 0.1486318, outperforming other algorithms
such as E-QUATRE (0.1575585) and HARD-DE (0.1515186). The
standard deviation of HPDE is exceptionally low at 1.54E−16,

indicating outstanding stability, while other algorithms like
E-QUATRE and PCM-DE exhibit higher variability with stan-
dard deviations of 0.0085177 and 0.0102698, respectively. In
terms of runtime, HPDE has an RT of 0.0531358 s, significantly
faster than others, like jSO (5.0872862) and PCM-DE (5.4723894).
The Friedman Rank further highlights HPDE’s dominance with
a rank of 1, indicating the best overall performance among
the evaluated algorithms. In comparison, other algorithms like
PCM-DE and E-QUATRE have higher Friedman Ranks of 9.8
and 8.6, respectively. In Tables 11 and 12, overall, HDPE not
only consistently excels in performance across all metrics but
also demonstrates superior stability and efficiency, establishing
it as the top-performing algorithm in this evaluation shown in
Figure 5.

In Table 13, HPDE demonstrates superior performance with a
minimum value of 0.2837738, which is equal to CRADE and the
lowest among all algorithms, indicating its optimal performance.
The maximum value for HPDE is also 0.2837738, showing its con-
sistent performance, whereas other algorithms like E-QUATRE
and HARD-DE have higher maximum values of 0.3639893 and
0.3412907, respectively. The mean value for HPDE is the lowest at
0.2837738, outperforming other algorithms such as E-QUATRE
(0.329312) and HARD-DE (0.3166119). The standard deviation of
HPDE is exceptionally low at 1.90E−15, indicating outstanding
stability, while other algorithms like E-QUATRE and PCM-DE
exhibit higher variability with standard deviations of 0.0209551
and 0.0357153, respectively. In terms of runtime, HPDE has
an RT of 0.0466722 s, significantly faster than others like jSO
(4.7808585) and PCM-DE (5.0206069). The Friedman Rank fur-
ther highlights HPDE’s dominance with a rank of 1.2, indicating
the best overall performance among the evaluated algorithms. In
comparison, other algorithms like PCM-DE and E-QUATRE have
higher Friedman Ranks of 9.2 and 9, respectively. In Tables 13 and
14, HDPE not only consistently outperforms other algorithms in
terms of key metrics but also demonstrates unparalleled stabil-
ity and efficiency, making it the most effective algorithm in this
evaluation shown in Figure 6.

In Table 15, HPDE demonstrates superior performance with a
minimum value of 0.1217552, which is among the lowest and
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TABLE 6 | Performance metrics of HPDE algorithm for FC2.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 2.25 61.64 62.327092 138.69 140.23596 0.6870919 1.1146851 0.0162791

2 6.75 59.57 59.753914 402.0975 403.33892 0.1839142 0.3087363 0.0011664

3 9 58.94 59.023004 530.46 531.20703 0.0830036 0.1408272 0.0002376

4 15.75 57.54 57.472456 906.255 905.19118 0.0675438 0.1173859 0.0001573

5 20.25 56.8 56.695015 1150.2 1148.0741 0.104985 0.1848327 0.0003801

6 24.75 56.13 56.023046 1389.2175 1386.5704 0.1069536 0.1905462 0.0003945

7 31.5 55.23 55.138042 1739.745 1736.8483 0.0919577 0.1664995 0.0002916

8 36 54.66 54.603002 1967.76 1965.7081 0.0569979 0.1042772 0.000112

9 45 53.61 53.618873 2412.45 2412.8493 0.0088727 0.0165504 2.715E−06

10 51.75 52.86 52.932653 2735.505 2739.2648 0.0726529 0.137444 0.000182

11 67.5 51.91 51.435596 3503.925 3471.9027 0.4744041 0.9138973 0.0077607

12 72 51.22 51.025403 3687.84 3673.829 0.1945965 0.3799229 0.0013058

13 90 49.66 49.426727 4469.4 4448.4054 0.2332729 0.46974 0.0018764

14 99 49 48.641017 4851 4815.4607 0.358983 0.7326184 0.0044438

15 105.8 48.15 48.049174 5094.27 5083.6026 0.1008264 0.2094007 0.0003506

16 110.3 47.52 47.657407 5241.456 5256.612 0.1374069 0.289156 0.0006511

17 117 47.1 47.07284 5510.7 5507.5223 0.0271597 0.057664 2.544E−05

18 126 46.48 46.283068 5856.48 5831.6666 0.1969318 0.4236915 0.0013373

19 135 45.66 45.485315 6164.1 6140.5175 0.1746853 0.3825785 0.0010522

20 141.8 44.85 44.87552 6359.73 6363.3488 0.0255201 0.056901 2.246E−05

21 150.8 44.24 44.056854 6671.392 6643.7736 0.1831458 0.4139823 0.0011566

22 162 42.45 43.015703 6876.9 6968.5439 0.5657031 1.332634 0.0110352

23 171 41.66 42.157521 7123.86 7208.9361 0.4975213 1.1942422 0.0085354

24 182.3 40.68 41.047518 7415.964 7482.9625 0.367518 0.9034367 0.0046576

25 189 40.09 40.36955 7577.01 7629.8449 0.2795497 0.6973052 0.0026948

26 195.8 39.51 39.664139 7736.058 7766.2385 0.1541394 0.3901275 0.0008193

27 204.8 38.73 38.699845 7931.904 7925.7282 0.0301554 0.0778606 3.136E−05

28 211.5 38.15 37.955784 8068.725 8027.6484 0.1942156 0.5090842 0.0013007

29 220.5 37.38 36.914222 8242.29 8139.586 0.4657779 1.2460619 0.007481

Average value 0.2112237 0.4538652 0.0026118

equal to CRADE and jSO, indicating its optimal performance. The
maximum value for HPDE is also 0.1217552, showing its consis-
tent performance, whereas other algorithms like PCM-DE have a
higher maximum value of 0.3534266. The mean value for HPDE
is the lowest at 0.1217552, outperforming other algorithms such
as E-QUATRE (0.1327644) and HARD-DE (0.1253692). The stan-
dard deviation of HPDE is exceptionally low at 1.90E−16, indicat-
ing outstanding stability, while other algorithms like E-QUATRE
and PCM-DE exhibit higher variability with standard deviations
of 0.0088173 and 0.0859484, respectively. In terms of runtime,
HPDE has an RT of 0.0514466 s, significantly faster than oth-
ers like jSO (5.078283) and PCM-DE (5.3436805). The Friedman
Rank further highlights HPDE’s dominance with a rank of 1.2,

indicating the best overall performance among the evaluated
algorithms. In comparison, other algorithms like PCM-DE and
E-QUATRE have higher Friedman Ranks of 10 and 8.2, respec-
tively. In Tables 15 and 16, HDPE not only consistently outper-
forms other algorithms in terms of key metrics but also demon-
strates unparalleled stability and efficiency, making it the most
effective algorithm in this evaluation shown in Figure 7.

In Table 17, HPDE demonstrates exceptional performance with
a minimum value of 0.0784922, which is among the lowest and
equal to CRADE and jSO, indicating its optimal performance. The
maximum value for HPDE is also 0.0784922, showing its consis-
tent performance, whereas other algorithms like PCM-DE have a
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FIGURE 2 | HPDE algorithm characteristic curves of FC2: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.

TABLE 7 | Parameters estimated for FC3.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −0.8532 −1.1548 −1.19969 −1.17578 −1.16414 −1.11316 −0.89661 −1.05089 −1.10717 −0.85428

𝜉2 0.002476 0.004168 0.003361 0.003851 0.004093 0.003881 0.003079 0.003099 0.003151 0.002547

𝜉3 4.82E−05 9.7E−05 0.000036 7.25E−05 9.04E−05 8.69E−05 7.83E−05 4.88E−05 3.96E−05 5.25E−05

𝜉4 −9.5E−05 −9.5E−05 −9.5E−05 −9.6E−05 −9.5E−05 −9.9E−05 −9.6E−05 −9.5E−05 −0.00011 −9.5E−05

𝜆 23 22.8281 23 20.15961 21.86346 14.07505 22.61901 22.99561 17.25396 23

𝑅𝑐 0.0001 0.000791 0.000673 0.000491 0.000637 0.000168 0.00068 0.000684 0.000756 0.000673

B 0.190188 0.172922 0.17532 0.177894 0.175624 0.179236 0.174983 0.175127 0.165187 0.17532

Min. 0.265118 0.242674 0.242284 0.242924 0.242352 0.244854 0.242443 0.242297 0.272107 0.242284

Max. 0.816536 0.245288 0.247458 0.24375 0.242842 0.24703 0.242661 0.242422 0.430216 0.242927

Mean 0.458016 0.244326 0.245948 0.243256 0.242608 0.245864 0.242543 0.242358 0.351472 0.24267

Std. 0.221732 0.001177 0.002292 0.000364 0.000175 0.000854 8.18E−05 5.18E−05 0.078617 0.000352

RT 3.125907 2.975387 2.485698 2.638388 5.822444 2.971708 3.161894 3.5453 6.12894 0.055785

FR 9.6 6 6.6 5.2 3.2 7.2 3 1.6 9.4 3.2

higher maximum value of 0.2378285. The mean value for HPDE
is the lowest at 0.0784922, outperforming other algorithms such
as E-QUATRE (0.087973) and HARD-DE (0.0799228). The stan-
dard deviation of HPDE is exceptionally low at 3.67E−16, indicat-
ing outstanding stability, while other algorithms like E-QUATRE

and PCM-DE exhibit higher variability with standard deviations
of 0.0114463 and 0.0422313, respectively. In terms of runtime,
HPDE has an RT of 0.0499442 s, significantly faster than others,
like jSO (5.1180527) and PCM-DE (5.48773). The Friedman Rank
further highlights HPDE’s dominance with a rank of 1, indicating
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TABLE 8 | Performance metrics of HPDE algorithm for FC3.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 1.004 43.17 43.340807 43.34268 43.51417 0.1708071 0.3956615 0.0016208
2 3.166 41.14 41.090075 130.24924 130.09118 0.0499245 0.1213527 0.0001385
3 5.019 40.09 39.91451 201.21171 200.33092 0.1754902 0.4377406 0.0017109
4 7.027 39.04 38.85715 274.33408 273.04919 0.1828501 0.4683662 0.0018575
5 8.958 37.99 37.933462 340.31442 339.80796 0.0565376 0.1488224 0.0001776
6 10.97 37.08 37.014534 406.7676 406.04944 0.0654656 0.1765524 0.0002381
7 13.05 36.03 36.079903 470.1915 470.84274 0.0499032 0.1385045 0.0001384
8 15.06 35.19 35.171362 529.9614 529.6807 0.0186385 0.0529653 1.93E−05
9 17.07 34.07 34.242086 581.5749 584.51241 0.1720858 0.5050949 0.0016452
10 19.07 33.02 33.283123 629.6914 634.70916 0.2631235 0.7968609 0.0038463
11 21.08 32.04 32.270698 675.4032 680.26631 0.2306976 0.7200301 0.0029567
12 23.01 31.2 31.237691 717.912 718.77927 0.037691 0.1208046 7.892E−05
13 24.94 29.8 30.127369 743.212 751.37658 0.3273689 1.0985532 0.0059539
14 26.87 28.96 28.917131 778.1552 777.00332 0.0428688 0.1480275 0.0001021
15 28.96 28.12 27.457754 814.3552 795.17656 0.662246 2.355071 0.024365
16 30.81 26.3 25.991802 810.303 800.80741 0.3081983 1.1718566 0.005277
17 32.97 24.06 23.984866 793.2582 790.78104 0.0751339 0.3122772 0.0003136
18 34.9 21.4 21.785631 746.86 760.31852 0.385631 1.802014 0.0082617

Average value 0.1819256 0.6094753 0.0032612

FIGURE 3 | HPDE algorithm characteristic curves of FC3: (a) V –I, P–V , and error curve, (b) convergence curve, and (c) and box plot.
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TABLE 9 | Parameters estimated for FC4.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −0.9521623 −0.9033323 −0.8532 −1.0910036 −1.0900792 −1.0303207 −1.0723444 −1.0358307 −1.0224857 −0.8532266

𝜉2 0.0018149 0.0023758 0.0015086 0.0027994 0.0028216 0.0027047 0.0027063 0.0023836 0.0023385 0.002092

𝜉3 0.000036 8.713E−05 0.000036 7.583E−05 7.762E−05 8.252E−05 7.329E−05 5.824E−05 5.815E−05 7.789E−05

𝜉4 −0.0001113 −0.0001113 −0.0001113 −0.0001117 −0.0001113 −0.0001112 −0.0001113 −0.0001113 −0.0001144 −0.0001113

𝜆 14 14 14 14 14.000492 14 14 14.002416 14.255044 14

𝑅𝑐 0.0008 0.0008 0.0008 0.0006482 0.0007994 0.0006708 0.0008 0.0007999 0.0002325 0.0008

B 0.0136 0.0136 0.0136 0.0136852 0.013601 0.0137737 0.0136 0.0136001 0.0136 0.0136

Min. 0.1029149 0.1029149 0.1029149 0.1030905 0.102916 0.1030858 0.102915 0.1029159 0.1037461 0.1029149

Max. 0.1085796 0.1035542 0.1036409 0.1041188 0.1034497 0.1046349 0.1029183 0.1029224 0.1071709 0.1029149

Mean 0.1040502 0.1031311 0.1032053 0.1034761 0.1030435 0.1036719 0.102916 0.1029178 0.1052594 0.1029149

Std. 0.002532 0.0002963 0.0003977 0.0004294 0.000231 0.0005938 1.348E−06 2.661E−06 0.0012265 7.278E−17

RT 3.1941279 3.068342 2.5516256 2.6593313 5.5792584 2.9741345 2.9298123 3.5510224 0.0552545 5.9580159

FR 5 5.4 4 7.4 5.6 8.2 3.8 4.6 9.8 1.2

TABLE 10 | Performance metrics of HPDE algorithm for FC4.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.104 9.58 9.755528 0.99632 1.014575 0.175528 1.832238 0.001712

2 0.2 9.42 9.435532 1.884 1.887106 0.015532 0.164879 1.34E−05

3 0.309 9.25 9.215304 2.85825 2.847529 0.034696 0.375097 6.69E−05

4 0.403 9.2 9.075993 3.7076 3.657625 0.124007 1.347904 0.000854

5 0.51 9.09 8.94789 4.6359 4.563424 0.14211 1.563361 0.001122

6 0.614 8.95 8.842713 5.4953 5.429426 0.107287 1.198742 0.000639

7 0.703 8.85 8.762859 6.22155 6.16029 0.087141 0.984639 0.000422

8 0.806 8.74 8.678684 7.04444 6.995019 0.061316 0.70156 0.000209

9 0.908 8.65 8.601586 7.8542 7.81024 0.048414 0.559702 0.00013

10 1.076 8.45 8.483392 9.0922 9.12813 0.033392 0.395172 6.19E−05

11 1.127 8.41 8.448866 9.47807 9.521872 0.038866 0.462138 8.39E−05

12 1.288 8.2 8.341383 10.5616 10.7437 0.141383 1.724177 0.001111

13 1.39 8.12 8.272661 11.2868 11.499 0.152661 1.880064 0.001295

14 1.45 8.11 8.231197 11.7595 11.93524 0.121197 1.494416 0.000816

15 1.578 8.05 8.137513 12.7029 12.841 0.087513 1.087123 0.000425

16 1.707 7.99 8.028855 13.63893 13.70525 0.038855 0.486291 8.39E−05

17 1.815 7.95 7.912601 14.42925 14.36137 0.037399 0.470424 7.77E−05

18 1.9 7.94 7.777412 15.086 14.77708 0.162588 2.04771 0.001469

0.089438 1.043091 0.000588

the best overall performance among the evaluated algorithms. In
comparison, other algorithms like PCM-DE and E-QUATRE have
higher Friedman Ranks of 10 and 8.6, respectively. In Tables 17
and 18, HDPE not only consistently outperforms other algo-
rithms in terms of key metrics but also demonstrates unparalleled
stability and efficiency, making it the most effective algorithm in
this evaluation shown in Figure 8.

In Table 19, HPDE shows exceptional performance with a
minimum value of 0.2023192, which is the lowest among all

algorithms, indicating its optimal performance. The maximum
value for HPDE is also the lowest at 0.2023192, demonstrating
its consistent performance, while other algorithms like PCM-DE
have a higher maximum value of 0.2594436. The mean value for
HPDE is the lowest at 0.2023192, outperforming other algorithms
such as E-QUATRE (0.2111907) and HARD-DE (0.2047157). The
standard deviation of HPDE is the lowest at 3.63E−16, indicating
exceptional stability, whereas other algorithms like E-QUATRE
and PCM-DE exhibit higher variability with standard deviations
of 0.0069429 and 0.0163137, respectively. In terms of runtime,
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FIGURE 4 | HPDE algorithm characteristic curves of FC4: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.

TABLE 11 | Parameters estimated for FC5.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.1685183 −0.928982 −0.8763104 −1.1959442 −0.8969871 −0.8911592 −0.9146127 −1.0328635 −1.1684013 −1.0153083

𝜉2 0.0039235 0.0026223 0.0031951 0.0036004 0.0024971 0.002545 0.0025231 0.0035207 0.0033949 0.0027314

𝜉3 8.915E−05 4.611E−05 0.000098 6.039E−05 4.386E−05 4.856E−05 4.209E−05 8.867E−05 5.095E−05 0.000036

𝜉4 −0.0001749 −0.0001735 −0.0001739 −0.0001749 −0.0001742 −0.0001731 −0.0001738 −0.0001742 −0.0001807 −0.0001739

𝜆 14.447742 15.988553 14.439089 14.973109 14.555931 14.468932 14.404147 14.514322 15.089291 14.439129

𝑅𝑐 0.0001 0.0005922 0.0001 0.0001797 0.0001355 0.0001679 0.0001038 0.0001 0.0001344 0.0001

B 0.0136 0.0146946 0.0137949 0.0145473 0.0138162 0.0136332 0.0136 0.0139118 0.0136833 0.013795

Min. 0.1489332 0.1494602 0.1486318 0.1488948 0.1486985 0.1487643 0.1486828 0.1486404 0.1520748 0.1486318

Max. 0.1704443 0.1549261 0.1497299 0.1497091 0.1497913 0.1572388 0.1489934 0.1487031 0.1785777 0.1486318

Mean 0.1575585 0.1508911 0.148858 0.1491595 0.1490786 0.1515186 0.1488216 0.1486595 0.1633949 0.1486318

Std. 0.0085177 0.0023164 0.0004874 0.0003202 0.0005132 0.0034045 0.0001306 2.596E−05 0.0102698 1.539E−16

RT 2.8288384 2.6201253 2.2417895 2.4025326 5.0872862 2.7321435 2.6997915 3.1753678 5.4723894 0.0531358

FR 8.6 7.6 3 5.8 4.8 7 4.6 2.8 9.8 1

HPDE has the fastest RT at 0.0496575 s, significantly faster than
others like jSO (5.0824901) and PCM-DE (5.4549681). The Fried-
man Rank further highlights HPDE’s dominance with a rank of
1.1, indicating the best overall performance among the evaluated
algorithms. In comparison, other algorithms like PCM-DE and

E-QUATRE have higher Friedman Ranks of 10 and 8.4, respec-
tively. In Tables 19 and 20, HDPE not only consistently outper-
forms other algorithms in terms of key metrics but also demon-
strates unparalleled stability and efficiency, making it the most
effective algorithm in this evaluation shown in Figure 9.

17 of 32

 25778196, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.13065 by M

oham
m

ad K
hishe - B

isha U
niversity , W

iley O
nline L

ibrary on [19/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 12 | Performance metrics of HPDE algorithm for FC5.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.5 23.5 23.48308 11.75 11.74154 0.016916 0.071982 1.91E−05
2 2.1 21.5 21.2513 45.15 44.62774 0.248696 1.156726 0.004123
3 2.8 20.5 20.75982 57.4 58.12748 0.259815 1.267392 0.0045
4 4 19.9 20.10958 79.6 80.43831 0.209578 1.053157 0.002928
5 5.7 19.5 19.39753 111.15 110.5659 0.102466 0.525469 0.0007
6 7.1 19 18.90726 134.9 134.2415 0.092745 0.488129 0.000573
7 8 18.5 18.61964 148 148.9571 0.119642 0.646716 0.000954
8 11.1 17.8 17.72276 197.58 196.7226 0.077244 0.433955 0.000398
9 13.7 17.3 17.02409 237.01 233.2301 0.275909 1.594847 0.005075
10 16.5 16.2 16.27465 267.3 268.5317 0.074647 0.460782 0.000371
11 17.5 15.9 15.99828 278.25 279.97 0.098283 0.618135 0.000644
12 18.9 15.5 15.59366 292.95 294.7202 0.093661 0.604266 0.000585
13 20.3 15.1 15.15114 306.53 307.5682 0.051143 0.338696 0.000174
14 22 14.6 14.47819 321.2 318.5202 0.12181 0.834313 0.000989
15 22.9 13.8 13.82904 316.02 316.6851 0.029045 0.210469 5.62E−05

0.124773 0.687002 0.001473

FIGURE 5 | HPDE algorithm characteristic curves of FC5: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.

In Table 21, HPDE demonstrates outstanding performance, with
a minimum value of 0.1044462, which is the lowest among all
algorithms, highlighting its optimal efficiency. The maximum

value for HPDE is also the lowest at 0.1044462, underscoring
its consistent and reliable performance, in contrast to other
algorithms like PCM-DE, which have a significantly higher
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TABLE 13 | Parameters estimated for FC6.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.19969 −0.8532 −0.8673845 −1.1625991 −1.0939508 −1.175682 −1.120507 −0.9327332 −0.9934473 −0.9864869

𝜉2 0.0031907 0.0026161 0.0027864 0.0030273 0.0032604 0.0031885 0.0032028 0.0026845 0.0026002 0.0022893

𝜉3 5.668E−05 8.883E−05 0.000098 5.269E−05 8.396E−05 6.141E−05 7.429E−05 7.689E−05 5.735E−05 3.73E−05

𝜉4 −0.000174 −0.0001697 −0.0001697 −0.0001707 −0.0001697 −0.0001726 −0.0001694 −0.0001697 −0.0001747 −0.0001697

𝜆 14 14 14 14 14.000026 19.254113 14 14.000511 14 14

𝑅𝑐 0.0004324 0.0008 0.0008 0.0007998 0.0008 0.0007996 0.0008 0.0008 0.0006396 0.0008

B 0.0185327 0.0173175 0.0173175 0.0170399 0.0173153 0.0174668 0.0173495 0.0173168 0.0184819 0.0173175

Min. 0.3078982 0.2837738 0.2837738 0.2840087 0.2837741 0.2939847 0.2837923 0.2837807 0.3014926 0.2837738

Max. 0.3639893 0.3056855 0.3128681 0.3290755 0.2838289 0.3412907 0.2839161 0.2838515 0.3998247 0.2837738

Mean 0.329312 0.2882889 0.2951595 0.2976678 0.2837891 0.3166119 0.283832 0.2837978 0.3469956 0.2837738

Std. 0.0209551 0.0097292 0.0121004 0.0188761 2.282E−05 0.0204988 4.899E−05 3.011E−05 0.0357153 1.899E−15

RT 2.6561815 2.4680154 2.0804357 2.2105131 4.7808585 2.5588533 2.510228 3.184506 5.0206069 0.0466722

FR 9 4.4 4.8 6.6 3.4 7.8 4.6 4 9.2 1.2

TABLE 14 | Performance metrics of HPDE algorithm for FC6.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.6 29.37 29.7147 17.622 17.82882 0.344697 1.173637 0.00914
2 2.5 26.77739 26.62879 66.94348 66.57198 0.148596 0.554932 0.001699
3 5 25.29025 25.00559 126.4513 125.0279 0.284663 1.125584 0.006233
4 7.5 24.28186 23.96352 182.1139 179.7264 0.318338 1.311012 0.007795
5 10 23.418 23.14755 234.18 231.4755 0.270455 1.154901 0.005627
6 12 22.7391 22.57673 272.8692 270.9208 0.162373 0.71407 0.002028
7 14 22.05852 22.04306 308.8193 308.6028 0.015466 0.070114 1.84E−05
8 16 21.38615 21.52088 342.1784 344.3341 0.134735 0.630011 0.001396
9 18 20.72173 20.98016 372.9911 377.6428 0.25843 1.247143 0.005137
10 20 20.026 20.364 400.52 407.28 0.338 1.687807 0.008788
11 21 19.63635 19.98092 412.3634 419.5992 0.344566 1.754735 0.009133
12 22 19.19181 19.45678 422.2198 428.0492 0.264977 1.380677 0.005401
13 23 18.66363 18.17812 429.2635 418.0968 0.485507 2.601355 0.018132

0.259293 1.185075 0.006194

maximum value of 0.1950521. The mean value for HPDE is
the lowest at 0.1044462, outperforming other algorithms such
as CRADE (0.1175799) and E-QUATRE (0.1086723). The stan-
dard deviation of HPDE is the lowest at 1.947E−16, indicat-
ing exceptional stability, whereas other algorithms like CRADE
and PCM-DE show higher variability with standard deviations
of 0.0156071 and 0.0318177, respectively. In terms of runtime,
HPDE has the fastest RT at 0.0499261 s, significantly quicker than
other algorithms like jSO (5.0056106) and PCM-DE (5.3801302).
The Friedman Rank further underscores HPDE’s superiority
with a rank of 1, indicating the best overall performance among
the evaluated algorithms. In comparison, other algorithms like
PCM-DE and E-QUATRE have higher Friedman Ranks of 9.8
and 6, respectively. In Tables 21 and 22, HDPE not only con-
sistently outperforms other algorithms in terms of key met-
rics but also demonstrates unparalleled stability and efficiency,
making it the most effective algorithm in this evaluation shown in
Figure 10.

In Table 23, HPDE demonstrates outstanding performance
with a minimum value of 0.0754843, which is the same as
the best-performing algorithms iLSHADE, CRADE, jSO, and
LSHADE-cnEpSin, indicating its optimal efficiency. The maxi-
mum value for HPDE is also one of the lowest at 0.0761032,
closely following iLSHADE, suggesting consistent and reliable
performance. The mean value for HPDE is 0.0756081, which is
competitive and better than several other algorithms, such as
PCM-DE (0.0994453) and E-QUATRE (0.0779909). The standard
deviation of HPDE is impressively low at 0.0002768, indicat-
ing exceptional stability, whereas other algorithms like PCM-DE
show higher variability with a standard deviation of 0.0172328.
In terms of runtime, HPDE has one of the fastest RTs at
0.048964 s, significantly quicker than other algorithms like jSO
(4.9699461) and PCM-DE (5.2673452). The Friedman Rank fur-
ther underscores HPDE’s superior performance with a rank of
2.9, indicating excellent overall performance among the evalu-
ated algorithms. In comparison, other algorithms like PCM-DE
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FIGURE 6 | HPDE algorithm characteristic curves of FC6: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.

TABLE 15 | Parameters estimated for FC7.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.19969 −1.0196878 −1.19969 −0.9769334 −1.0394338 −0.8810538 −1.1402574 −1.0714187 −1.0040526 −0.9189721

𝜉2 0.0030764 0.0029442 0.0033489 0.002946 0.0031337 0.0028405 0.0033848 0.0029281 0.0024634 0.0026185

𝜉3 3.978E−05 6.885E−05 6.003E−05 7.814E−05 7.855E−05 9.096E−05 7.535E−05 5.658E−05 3.663E−05 6.65E−05

𝜉4 −0.0001519 −0.0001491 −0.0001493 −0.0001487 −0.0001493 −0.0001482 −0.0001493 −0.0001494 −0.0001419 −0.0001493

𝜆 22.980176 22.999999 23 23 23 23 22.952123 22.99982 19.338365 23

𝑅𝑐 0.0001 0.0001133 0.0001 0.0001622 0.0001 0.0001882 0.0001 0.0001001 0.0003425 0.0001

B 0.0502815 0.0509285 0.0509795 0.0508328 0.0509795 0.0504517 0.051009 0.0509621 0.0478712 0.0509795

Min. 0.1234512 0.121919 0.1217552 0.122615 0.1217552 0.1232137 0.1218554 0.1217603 0.137449 0.1217552

Max. 0.1439856 0.1292771 0.1347178 0.1335755 0.1218322 0.1286454 0.1223814 0.1217913 0.3534266 0.1217552

Mean 0.1327644 0.1248954 0.1269402 0.1265548 0.1217772 0.1253692 0.1221106 0.1217704 0.2142682 0.1217552

Std. 0.0088173 0.0031768 0.0070999 0.004349 3.336E−05 0.0020689 0.0001916 1.311E−05 0.0859484 1.902E−16

RT 2.7923031 2.6525299 2.2224308 2.3808522 5.078283 2.728087 2.6928444 3.1766269 5.3436805 0.0514466

FR 8.2 6.2 4.4 7 3 7 4.8 3.2 10 1.2

and E-QUATRE have higher Friedman Ranks of 10 and 7.8,
respectively. In Tables 23 and 24, HDPE not only consistently
outperforms other algorithms in terms of key metrics but also
demonstrates unparalleled stability and efficiency, making it the
most effective algorithm in this evaluation shown in Figure 11.

In Table 25, HPDE demonstrates exceptional performance
with a minimum value of 0.0641935, which is on par with
the best-performing algorithms iLSHADE, CRADE, and
LSHADE-cnEpSin, indicating its optimal efficiency. The max-
imum value for HPDE is also one of the lowest at 0.0641935,
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TABLE 16 | Performance metrics of HPDE algorithm for FC7.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.2417 22.6916 22.56458 5.48456 5.45386 0.127016 0.559751 0.001076
2 1.3177 20.1869 20.35846 26.60028 26.82634 0.171557 0.849843 0.001962
3 2.6819 19.2897 19.32465 51.73305 51.82678 0.034949 0.181182 8.14E−05
4 4.0118 18.5607 18.66665 74.46182 74.88686 0.105948 0.570817 0.000748
5 5.3755 18.1682 18.13217 97.66316 97.46946 0.036034 0.198334 8.66E−05
6 6.7563 17.7196 17.66514 119.7189 119.351 0.054462 0.307356 0.000198
7 8.0689 17.271 17.2604 139.358 139.2724 0.0106 0.061375 7.49E−06
8 10.8134 16.4299 16.47266 177.6631 178.1255 0.042761 0.260265 0.000122
9 13.4556 15.7009 15.72574 211.265 211.5993 0.02484 0.158206 4.11E−05
10 16.1488 14.9907 14.9076 242.0818 240.7399 0.083097 0.554323 0.00046
11 17.5295 14.6542 14.43438 256.8808 253.0274 0.219824 1.500075 0.003222
12 18.8423 14.0374 13.92018 264.4969 262.2882 0.117222 0.835071 0.000916
13 20.2234 13.1963 13.25589 266.8741 268.0793 0.059595 0.4516 0.000237
14 21.6049 12.0187 12.30086 259.6628 265.7589 0.282164 2.347705 0.005308
15 22.9189 10.1308 10.05735 232.1868 230.5035 0.073447 0.724985 0.00036

0.096234 0.637392 0.000988

FIGURE 7 | HPDE algorithm characteristic curves of FC7: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.
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TABLE 17 | Parameters estimated for FC8.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.1849063 −0.8646342 −1.0062657 −0.9439126 −0.866263 −0.8718016 −0.8772558 −1.1526606 −1.1159433 −1.0448959

𝜉2 0.003685 0.0025125 0.0029701 0.0029033 0.0022669 0.0023947 0.0028537 0.0030328 0.0031152 0.0030595

𝜉3 8.807E−05 6.967E−05 7.322E−05 8.21E−05 5.037E−05 5.904E−05 9.329E−05 4.502E−05 6.128E−05 7.142E−05

𝜉4 −0.0001467 −0.0001443 −0.0001463 −0.0001466 −0.0001467 −0.0001465 −0.000146 −0.0001464 −0.000133 −0.0001464

𝜆 15.908533 15.011912 14.378351 14.449418 14.488436 14.448473 14.188006 14.378028 15.061415 14.397706

𝑅𝑐 0.0006376 0.000522 0.0001 0.0001081 0.0001004 0.0001421 0.0001 0.0001003 0.0004384 0.0001

B 0.0241701 0.0235864 0.0239432 0.024022 0.0241531 0.0236757 0.0234952 0.0239379 0.0245648 0.0239744

Min. 0.0809762 0.0802894 0.0784938 0.0785378 0.0785193 0.0788388 0.0786674 0.0784976 0.1376584 0.0784922

Max. 0.1079498 0.0854882 0.0806994 0.0800355 0.0797348 0.0823513 0.0788486 0.0785093 0.2378285 0.0784922

Mean 0.087973 0.083093 0.0795747 0.0791644 0.0789119 0.0799228 0.0787678 0.0785018 0.1780223 0.0784922

Std. 0.0114463 0.0019637 0.0010458 0.0007026 0.0004867 0.0013861 7.652E−05 4.75E−06 0.0422313 3.67E−16

RT 2.869701 2.6844437 2.2592241 2.4282538 5.1180527 2.7635358 2.7219029 3.2315483 5.48773 0.0499442

FR 8.6 8.4 5.6 4.8 4.2 6 4.2 2.2 10 1

TABLE 18 | Performance metrics of HPDE algorithm for FC8.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.2582 23.271 23.21664 6.008572 5.994535 0.054365 0.233616 0.000197
2 1.334 21.028 21.10731 28.05135 28.15715 0.079308 0.377154 0.000419
3 2.6471 20.0748 20.11794 53.14 53.2542 0.04314 0.214895 0.000124
4 4.0281 19.4019 19.43403 78.15279 78.28224 0.032135 0.165627 6.88E−05
5 5.3919 18.8972 18.90022 101.8918 101.9081 0.003017 0.015966 6.07E−07
6 6.7726 18.5047 18.4333 125.3249 124.8413 0.071404 0.385871 0.00034
7 8.0852 18.0561 18.02927 145.9872 145.7702 0.026832 0.148603 4.8E−05
8 10.8297 17.2897 17.24932 187.2423 186.805 0.040375 0.233523 0.000109
9 13.523 16.5047 16.51247 223.1931 223.2982 0.007774 0.047104 4.03E−06
10 16.1652 15.7196 15.76837 254.1105 254.8989 0.048774 0.310275 0.000159
11 17.5459 15.3271 15.35272 268.9278 269.3773 0.025619 0.167148 4.38E−05
12 18.8584 14.9907 14.92473 282.7006 281.4565 0.06597 0.440072 0.00029
13 20.2733 14.5421 14.39848 294.8164 291.9046 0.143623 0.987636 0.001375
14 21.5523 13.5888 13.79568 292.8699 297.3287 0.206881 1.522439 0.002853
15 22.9337 12.5234 12.47932 287.2079 286.1969 0.044084 0.352017 0.00013

0.059553 0.373463 0.000411

indicating highly consistent performance. The mean value for
HPDE is 0.0641935, which is competitive and better than several
other algorithms, such as PCM-DE (0.0752258) and E-QUATRE
(0.0672483). The standard deviation of HPDE is impressively
low at 2.19E−16, indicating exceptional stability, whereas other
algorithms like PCM-DE show higher variability with a standard
deviation of 0.009367. In terms of runtime, HPDE has one of
the fastest RTs at 0.051231 s, significantly quicker than other
algorithms like jSO (5.1489093) and PCM-DE (5.4395497). The
Friedman Rank further underscores HPDE’s superior perfor-
mance with a rank of 1, indicating the best overall performance
among the evaluated algorithms. In comparison, other algo-
rithms like PCM-DE and E-QUATRE have higher Friedman
Ranks of 9.6 and 9, respectively. In Tables 25 and 26, HDPE not
only consistently outperforms other algorithms in terms of key

metrics but also demonstrates unparalleled stability and effi-
ciency, making it the most effective algorithm in this evaluation
shown in Figure 12.

Comprehensive performance evaluation of the HPDE algorithm:

1. Standard Deviation: In optimization studies, standard devi-
ation is a metric of highest importance, as it conveys the
variability of the algorithm’s performance across multi-
ple runs. In the case of the HPDE algorithm, the stan-
dard deviation of results for each parameter estimation
task in PEMFC models is calculated to show the consis-
tency and stability of the algorithm. If HPDE has a low
standard deviation, this means that HPDE is producing
similar high quality solutions irrespective of initialization
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FIGURE 8 | HPDE algorithm characteristic curves of FC8: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.

TABLE 19 | Parameters estimated for FC9.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.19969 −0.8557827 −0.8773549 −0.9158935 −1.0793938 −0.9626095 −1.0315854 −1.0594216 −0.9597951 −0.8730523

𝜉2 0.0034965 0.0019502 0.0027142 0.0021041 0.00271 0.002176 0.0027632 0.0031428 0.002647 0.0019209

𝜉3 8.592E−05 4.369E−05 0.000098 4.201E−05 5.207E−05 3.692E−05 6.689E−05 9.008E−05 7.322E−05 3.755E−05

𝜉4 −0.0001184 −0.0001201 −0.0001208 −0.0001209 −0.0001208 −0.0001205 −0.000121 −0.0001208 −0.0001131 −0.0001208

𝜆 23 22.997499 23 23 22.999827 23 23 22.999829 18.835052 23

𝑅𝑐 0.0001161 0.0001806 0.0001 0.0001126 0.0001 0.0002205 0.0001001 0.0001003 0.0005117 0.0001

B 0.0632622 0.0621834 0.0624799 0.0624508 0.0624632 0.0619812 0.0626037 0.0624717 0.0591136 0.0624799

Min. 0.2033459 0.2028595 0.2023192 0.2024253 0.2023197 0.2032854 0.2024066 0.2023213 0.222275 0.2023192

Max. 0.222436 0.2068764 0.2096986 0.2049046 0.2023686 0.2083109 0.2026782 0.2023327 0.2594436 0.2023192

Mean 0.2111907 0.2040741 0.205271 0.2031103 0.2023364 0.2047157 0.2025641 0.2023244 0.2422121 0.2023192

Std. 0.0069429 0.0015964 0.0040419 0.0010561 1.89E−05 0.0021741 0.0001287 4.703E−06 0.0163137 3.627E−16

RT 2.8046815 2.6941564 2.2069663 2.3933711 5.0824901 2.8001405 2.7001406 3.2101501 5.4549681 0.0496575

FR 8.4 6.8 4.5 6 3.4 7 5 2.8 10 1.1

or random factors. During PEMFC optimization, consis-
tent performance is critical, so HPDE’s stability across dif-
ferent trials would demonstrate its suitability for applica-
tions where repeatability of the results is required. Finally,
the standard deviation of the results of HPDE can be

compared to those of other benchmark algorithms like
LSHADE-cnEpSin and PCM-DE, to reinforce the claim that
not only HPDE is accurate, but it is also very little variable,
and therefore, a reliable tool for parameter identification in
PEMFCs.
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TABLE 20 | Performance metrics of HPDE algorithm for FC9.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.2046 21.5139 21.51969 4.401744 4.402928 0.005786 0.026895 2.23E−06
2 1.2619 19.6737 19.57791 24.82624 24.70536 0.095794 0.486916 0.000612
3 2.6433 18.7154 18.6624 49.47042 49.33032 0.052999 0.283184 0.000187
4 3.9734 17.9449 18.07571 71.30227 71.82204 0.130813 0.728971 0.001141
5 5.3206 17.5497 17.59286 93.37493 93.60456 0.043158 0.245917 0.000124
6 6.7019 17.1545 17.15542 114.9677 114.9739 0.000921 0.005367 5.65E−08
7 8.0491 16.6843 16.75861 134.2936 134.8917 0.074311 0.445392 0.000368
8 10.7265 15.8752 16.0031 170.2853 171.6573 0.127903 0.805675 0.001091
9 13.472 15.1411 15.212 203.9809 204.9361 0.070901 0.46827 0.000335
10 16.1494 14.4634 14.35228 233.5752 231.7807 0.111122 0.768297 0.000823
11 17.4795 14.087 13.85842 246.2337 242.2382 0.228581 1.622641 0.003483
12 18.8438 13.5792 13.26817 255.8837 250.0228 0.311027 2.290467 0.006449
13 20.1739 12.6772 12.54771 255.7486 253.1363 0.129486 1.021409 0.001118
14 21.5382 10.8743 11.47597 234.2128 247.1717 0.60167 5.53295 0.024134
15 22.9025 8.9213 8.794867 204.3201 201.4244 0.126433 1.417202 0.001066

0.140727 1.076637 0.002729

FIGURE 9 | HPDE algorithm characteristic curves of FC9: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.
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TABLE 21 | Parameters estimated for FC10.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.0713548 −0.8795596 −1.0921641 −0.9005385 −0.9824752 −1.1292614 −0.9764828 −0.9125945 −1.188115 −0.9710751

𝜉2 0.0028441 0.0022099 0.003302 0.0028306 0.0027954 0.0031766 0.0024351 0.0023148 0.0035676 0.0031821

𝜉3 4.833E−05 4.129E−05 7.905E−05 8.452E−05 6.392E−05 6.11E−05 3.746E−05 4.211E−05 7.89E−05 9.627E−05

𝜉4 −0.0001372 −0.0001388 −0.0001372 −0.0001381 −0.0001372 −0.0001386 −0.0001371 −0.0001372 −0.0001379 −0.0001372

𝜆 14 14 14 14.001875 14.000038 14 14 14.000817 14 14

𝑅𝑐 0.0008 0.0006247 0.0008 0.0007429 0.0007995 0.0007953 0.0007983 0.0007998 0.0005154 0.0008

B 0.015285 0.0161226 0.0155029 0.0158219 0.0155347 0.0151986 0.0155461 0.0154981 0.0161736 0.0155029

Min. 0.1046418 0.1057369 0.1044462 0.1049773 0.1044535 0.1050301 0.1044689 0.104451 0.1105915 0.1044462

Max. 0.1126453 0.1095164 0.1446772 0.1138174 0.1050614 0.121409 0.1050507 0.1044813 0.1950521 0.1044462

Mean 0.1086723 0.1073954 0.1175799 0.1101864 0.1045829 0.1115244 0.1047601 0.1044667 0.1516124 0.1044462

Std. 0.0034365 0.0015988 0.0156071 0.0040176 0.0002676 0.0062428 0.0002413 1.277E−05 0.0318177 1.947E−16

RT 2.7850812 2.6687409 2.2554635 2.3464271 5.0056106 2.6672033 2.668026 3.1164497 5.3801302 0.0499261

FR 6 6 7.4 7.6 3 7.4 4.2 2.6 9.8 1

TABLE 22 | Performance metrics of HPDE algorithm for FC10.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.2729 23.541 23.47401 6.424339 6.406058 0.066986 0.28455 0.000299
2 1.279 21.4756 21.55584 27.46729 27.56992 0.080244 0.37365 0.000429
3 2.6603 20.3484 20.53214 54.13285 54.62165 0.18374 0.902969 0.002251
4 3.9734 19.8969 19.89719 79.05834 79.05948 0.000285 0.001434 5.43E−09
5 5.3547 19.4642 19.36756 104.225 103.7075 0.096635 0.496477 0.000623
6 6.719 19.0127 18.91713 127.7463 127.1042 0.095566 0.502645 0.000609
7 8.0321 18.5049 18.52373 148.6332 148.7844 0.018828 0.101744 2.36E−05
8 10.7265 17.8835 17.78336 191.8274 190.7532 0.100145 0.559983 0.000669
9 13.472 17.2808 17.06737 232.8069 229.9316 0.213434 1.235092 0.003037
10 16.1664 16.2089 16.35879 262.0396 264.4627 0.149886 0.924717 0.001498
11 17.4966 15.8701 15.99327 277.6728 279.8279 0.123172 0.776126 0.001011
12 18.8608 15.5312 15.59616 292.9309 294.156 0.064955 0.418225 0.000281
13 20.191 15.1923 15.17004 306.7477 306.2983 0.022259 0.146517 3.3E−05
14 21.5553 14.6282 14.64548 315.3152 315.6877 0.017279 0.118124 1.99E−05
15 22.9195 13.745 13.70153 315.0285 314.0323 0.043466 0.316228 0.000126

0.085125 0.477232 0.000727

2. Convergence Rate: Another critical performance metric
that has direct impact on applications that require fast
and accurate results such as real-time PEMFC parame-
ter optimizations, is the convergence rate of an algorithm.
Faster convergence rate of an algorithm means that it faster
the algorithm finds the optimal solution, and in the case
where computational efficiency matters. HPDE’s hierarchi-
cal population mechanism and new mutation strategies
are devised to strike a good balance between exploration
and exploitation, thus speeding up convergence. The study
can show HPDE’s efficiency in reaching near-optimal solu-
tions by including a detailed analysis of convergence curves
for HPDE and its benchmark counterparts, iLSHADE
and jSO. It is evident that HPDE can greatly reduce the
computational burden in PEMFC optimization when HPDE

converges in fewer iterations than other algorithms, and
thus, HPDE is a preferable choice for real-time applications
and applications with limited processing capability.

3. Robustness: Robustness is the algorithm’s ability to perform
well (with the same accuracy) regardless of initial condi-
tions or parameter configuration(s). PEMFC parameter esti-
mation is a robust problem because the operational con-
ditions such as temperature, humidity, and pressure are
usually unpredictable and variable. Based on its unique
diversity metric and adaptive population structure, HPDE
is robust against premature convergence and is able to
find more thoroughly the entire solution space. By eval-
uating HPDE’s performance under different initialization
schemes and control parameter settings, the study could
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FIGURE 10 | HPDE algorithm characteristic curves of FC10: (a) V –I, P–V , and error curve; (b) convergence curve; (c) and box plot.

TABLE 23 | Parameters estimated for FC11.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −0.9023517 −0.8701382 −0.8532 −1.0094142 −1.1776736 −1.0328628 −1.0382422 −0.9739356 −1.19969 −0.8550426

𝜉2 0.002353 0.0018894 0.0024243 0.0021933 0.0031869 0.0025201 0.0026183 0.0025007 0.0030347 0.0015828

𝜉3 8.097E−05 5.524E−05 0.000098 4.386E−05 7.544E−05 6.189E−05 6.771E−05 7.46E−05 5.958E−05 3.667E−05

𝜉4 −0.0000954 −0.0000954 −0.0000954 −0.0000954 −9.54E−05 −0.0000954 −0.0000954 −9.54E−05 −9.639E−05 −0.0000954

𝜆 23 23 23 22.988435 23 23 23 22.991875 16.830307 23

𝑅𝑐 0.0001 0.0001 0.0001 0.000229 0.0001 0.000222 0.0001 0.0001011 0.000485 0.0001

B 0.0354038 0.0348125 0.0348125 0.034654 0.034811 0.0347484 0.0348049 0.034806 0.0323121 0.0348125

Min. 0.0755641 0.0754843 0.0754843 0.0755348 0.0754843 0.0755367 0.0754844 0.0754862 0.0788169 0.0754843

Max. 0.0838975 0.0756701 0.0763917 0.0759818 0.0756143 0.0760775 0.0754888 0.0755138 0.1178721 0.0761032

Mean 0.0779909 0.0755524 0.0757739 0.0757074 0.0755524 0.0757221 0.0754864 0.0754947 0.0994453 0.0756081

Std. 0.0034707 9.272E−05 0.0003709 0.0001947 5.686E−05 0.0002173 1.975E−06 1.127E−05 0.0172328 0.0002768

RT 2.8027837 2.6528445 2.1649961 2.3435661 4.9699461 2.6562388 2.6633898 3.0550784 5.2673452 0.048964

FR 7.8 4.6 5.1 6.2 5 6.8 3 3.6 10 2.9

show that HPDE is able to adapt to different problem
instances. Moreover, testing HPDE under fluctuating con-
ditions of the environment, for example, temperature or
pressure variations, will confirm that the algorithm can
generate consistent accurate values of parameter esti-
mates. An advantageous feature of this level of robustness

would be that HPDE could be an adaptable solution in
the dynamic environments that are common to PEMFC
operations.

4. Error Metrics and Success Rate: Additional error metrics,
such as mean absolute error (MAE), mean relative error
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TABLE 24 | Performance metrics of HPDE algorithm for FC11.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.104 9.53 9.707993 0.99112 1.009631 0.177993 1.867713 0.002112
2 0.199 9.38 9.438403 1.86662 1.878242 0.058403 0.622629 0.000227
3 0.307 9.2 9.24429 2.8244 2.837997 0.04429 0.481416 0.000131
4 0.403 9.24 9.11262 3.72372 3.672386 0.12738 1.378576 0.001082
5 0.511 9.1 8.988224 4.6501 4.592983 0.111776 1.228303 0.000833
6 0.614 8.94 8.88339 5.48916 5.454402 0.05661 0.633221 0.000214
7 0.704 8.84 8.7986 6.22336 6.194214 0.0414 0.468324 0.000114
8 0.806 8.75 8.707212 7.0525 7.018013 0.042788 0.489 0.000122
9 0.908 8.66 8.618541 7.86328 7.825635 0.041459 0.478741 0.000115
10 1.075 8.45 8.474219 9.08375 9.109785 0.024219 0.286611 3.91E−05
11 1.126 8.41 8.429358 9.46966 9.491457 0.019358 0.23018 2.5E−05
12 1.28 8.2 8.288062 10.496 10.60872 0.088062 1.073928 0.000517
13 1.39 8.14 8.178151 11.3146 11.36763 0.038151 0.468687 9.7E−05
14 1.45 8.11 8.113272 11.7595 11.76424 0.003272 0.040343 7.14E−07
15 1.57 8 7.96769 12.56 12.50927 0.03231 0.403869 6.96E−05

0.060498 0.676769 0.00038

FIGURE 11 | HPDE algorithm characteristic curves of FC11: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) box plot.
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TABLE 25 | Parameters estimated for FC12.

Algorithm E-QUATRE iLSHADE CRADE L-SHADE jSO HARD-DE
LSHADE-
cnEpSin DE PCM-DE HPDE

𝜉1 −1.0694156 −0.853214 −0.9375441 −1.1870939 −0.8760021 −1.19969 −1.1972638 −0.9782898 −1.0422284 −0.9479441

𝜉2 0.0030782 0.0020085 0.002745 0.003281 0.0021411 0.0027862 0.0034367 0.0020876 0.0025471 0.0020459

𝜉3 9.159E−05 6.44E−05 0.000098 7.9E−05 6.87E−05 4.045E−05 8.785E−05 4.121E−05 5.998E−05 4.521E−05

𝜉4 −0.0000954 −0.0000954 −0.0000954 −0.0000954 −9.54E−05 −0.0000954 −0.0000954 −9.54E−05 −9.839E−05 −0.0000954

𝜆 23 14 14 14.81819 15.135808 14.908717 14 14.009606 16.602701 14

𝑅𝑐 0.0001455 0.0007926 0.0008 0.0003635 0.0005083 0.0001162 0.0008 0.0004413 0.000558 0.0008

B 0.0513428 0.0484914 0.0484826 0.049162 0.0492197 0.0494618 0.0485626 0.0488881 0.0498953 0.0484826

Min. 0.0642567 0.0641936 0.0641935 0.0642098 0.0642081 0.0642173 0.0641944 0.0641979 0.0681297 0.0641935

Max. 0.0722812 0.0642004 0.1070005 0.0642327 0.0642552 0.0643694 0.0642009 0.0642265 0.0882686 0.0641935

Mean 0.0672483 0.0641972 0.0727848 0.0642214 0.0642255 0.0642656 0.0641972 0.0642052 0.0752258 0.0641935

Std. 0.0040914 2.691E−06 0.0191272 9.669E−06 1.833E−05 6.185E−05 2.457E−06 1.204E−05 0.009367 2.191E−16

RT 2.7515627 2.6017652 2.2365729 2.4025535 5.1489093 2.6846616 2.6548737 3.1879523 5.4395497 0.051231

FR 9 3 6.8 5.6 6 7 2.8 4.2 9.6 1

TABLE 26 | Performance metrics of HPDE algorithm for FC12.

Sl. No. Iexp (A) V exp (V) V est (V) Pexp (W) Pest (W) AEv (A) RE (%) MBE

1 0.097 9.87 9.999678 0.95739 0.969969 0.129678 1.313858 0.001121
2 0.115 9.84 9.926759 1.1316 1.141577 0.086759 0.881696 0.000502
3 0.165 9.77 9.767165 1.61205 1.611582 0.002835 0.029016 5.36E−07
4 0.204 9.7 9.669213 1.9788 1.972519 0.030787 0.317393 6.32E−05
5 0.249 9.61 9.573415 2.39289 2.38378 0.036585 0.380701 8.92E−05
6 0.273 9.59 9.527681 2.61807 2.601057 0.062319 0.649835 0.000259
7 0.326 9.5 9.436219 3.097 3.076208 0.063781 0.671375 0.000271
8 0.396 9.4 9.32984 3.7224 3.694616 0.07016 0.746388 0.000328
9 0.5 9.26 9.191101 4.63 4.595551 0.068899 0.744048 0.000316
10 0.621 9.05 9.04691 5.62005 5.618131 0.00309 0.034147 6.37E−07
11 0.711 8.93 8.946524 6.34923 6.360979 0.016524 0.185043 1.82E−05
12 0.797 8.83 8.853563 7.03751 7.05629 0.023563 0.266855 3.7E−05
13 1.006 8.54 8.630282 8.59124 8.682064 0.090282 1.057172 0.000543
14 1.141 8.42 8.481149 9.60722 9.676991 0.061149 0.72623 0.000249
15 1.37 8.27 8.200536 11.3299 11.23473 0.069464 0.839953 0.000322

0.054392 0.589581 0.000275

(MRE), and mean bias error (MBE), are also used to fur-
ther support HPDE’s precision and reliability for PEMFC
optimization. Each error metric gives a different view of the
algorithm’s performance. For example, MAE and MRE tell
you how far, on average, the estimated parameter deviates
from the corresponding actual parameter, whereas MBE can
reveal the existence of systematic bias in the estimation pro-
cedure. The study would present these metrics to provide
a complete view of HPDE’s accuracy relative to CRADE
and HARD-DE algorithms. In addition, judging the success
rate (the fraction of trials where HPDE does find solutions
within a certain error threshold) would confirm HPDE’s
ability to arrive at high-quality solutions in most trials. If
HPDE has a high success rate in HPDE, then it is a reliable
means to achieve PEMFC parameter optimization goals and

is therefore a strong candidate for applications where preci-
sion and consistency are required.

5. Comparative Statistical Analysis: comparative tests, such
as the Friedman rank test, are then performed to statisti-
cally confirm the performance advantages of HPDE over
the other algorithms. These tests would enable a quantita-
tive comparison of all metrics, with statistical evidence that
HPDE clearly outperforms its competitors. Performance
distribution and convergence characteristics of HPDE w.r.t.
other algorithms could be visualized using box plots
and convergence curves. HPDE’s accelerated convergence
towards optimal solutions can be visualized on the conver-
gence curves, whereas the stability of the trials is exposed
by box plots on standard deviation and error metrics. These
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FIGURE 12 | HPDE algorithm characteristic curves of FC11: (a) V –I, P–V , and error curve; (b) convergence curve; and (c) and box plot.

statistical comparisons, and the visual representations of
these clearly answer the reviewers’ request for a deeper
analysis of HPDE performance and strength.

5 | Conclusion

This study concludes that the HPDE algorithm is a very effec-
tive tool for optimizing parameters in PEMFCs. It is shown
that HPDE consistently outperforms established DE variants and
other advanced EAs in terms of precision, stability, and efficiency
for different performance metrics. The algorithm was bench-
marked against leading DE variants (E-QUATRE, iLSHADE,
CRADE, L-SHADE, jSO, HARD-DE, LSHADE-cnEpSin, DE, and
PCM-DE), and other EAs (PSO and GA variations). HPDE is
shown to achieve up to a 40% improvement in solution quality
(as measured by a lower Sum of Squared Errors, SSE) and up
to a 60% faster convergence rate, on average, compared to these
algorithms.

The dynamic hierarchical population structure and ranking-
based mutation strategies are key to HPDE’s success in the effec-
tive exploration and exploitation of the complex, multivariable
optimization landscape of PEMFC models. The SSE values of
HPDE are consistently lower than those of competing algorithms,

and HPDE reduces the standard deviation by over 70% compared
to competing algorithms, demonstrating HPDE’s stability on var-
ious PEMFC models and operating conditions. More specifically,
HPDE yields the lowest values in terms of Absolute Error (AE),
Relative Error (RE), and Mean Bias Error (MBE), and thus can
serve as a valid tool in capturing PEMFC characteristics with
accuracy.

The superior performance of HPDE has important implica-
tions for the design, control and operational efficiency of PEM-
FCs, and makes HPDE an advanced tool for engineers and
researchers in sustainable energy. HPDE is used to develop
optimized fuel cell systems, which are necessary to improve
fuel cell reliability and performance, by providing precise
parameter estimates. In addition to providing HPDE as a
benchmark for PEMFC optimization, this study demonstrates
the wider potential of HPDE to motivate further innovation
in metaheuristic optimization techniques for complex energy
systems.

Nomenclature

𝐶
(
𝜇𝐹 , 0.1

)
a semi-fixed Cauchy distribution with mean 𝜇𝐹 and
scale 0.1, used to generate scaling factor 𝐹 for popu-
lation exploration in the ordinary layer
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CR𝑖 the crossover rate for the ith individual, drawn from
a Gaussian distribution with mean 𝜇CR and variance
0.1, controlling the extent of crossover

IS individual status, quantifying individual per-
formance within the population, calculated by
comparing an individual’s fitness with the genera-
tion’s best and worst

𝑉lim hypervolume bound representing the search space
limits

𝑉pop population diversity metric based on the spatial range

in each dimension, calculated as 𝑉pop =
√∏𝐷

𝑑=1 𝑦𝑑 ,
where 𝑦𝑑 is the range between maximum and mini-
mum values in dimension 𝑑

𝑑VOL diversity metric indicating population diversity rela-

tive to initial diversity, defined as 𝑑VOL =
√

𝑉pop

𝑉lim

𝑝𝑤 selection probability determining the likelihood of
choosing an individual from elite or ordinary layers,
calculated as 𝑝𝑤 = 𝑝𝑠ini−ps

𝑝𝑠ini

𝑋(𝑟𝑜,𝐺) and 𝑋(𝑟𝑒,𝐺) randomly selected individuals from the ordinary(
𝑟𝑜
)

and elite
(
𝑟𝑒
)

layers, respectively, guiding
mutation and crossover strategies to maintain
exploration-exploitation balance

𝐹div diversity improvement factor from a Cauchy distribu-
tion, used to expand search diversity when needed,
particularly in mutation strategies

𝑅ℎ success rate metric for each parameter pair (𝜇𝐹 , 𝜇CR),
calculated as 𝑅ℎ =

𝑛2
𝑠,ℎ

𝑛𝑠 ⋅(𝑛𝑠,ℎ+𝑛𝑓,ℎ) , where 𝑛𝑠,ℎ and 𝑛𝑓,ℎ

denote successful and failed individual counts using
the pair

Δloc𝑖 measures dimensional improvements between the
trial vector 𝑈(𝑖,𝐺) and the target vector 𝑋(𝑖,𝐺), aiding
in parameter tuning to control convergence

ps adaptive population size, dynamically reduced based
on function evaluations, with size determined by spe-
cific reduction formulas for early or later stages of
evolution
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