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In this study, the AlFe2O4@n-Pr@Et-SO3H heterogeneous catalyst was successfully synthesized and 
utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To 
examine the physicochemical characteristics of the AlFe2O4@n-Pr@Et-SO3H nanomaterial, a variety 
of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), 
Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), 
Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), 
Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFe2O4@n-Pr@Et-SO3H materials 
demonstrated excellent performance in both the esterification of oleic acid and the oxidation of 
sulfides. Moreover, the catalyst can be easily recovered and reused multiple times without a significant 
reduction in its effectiveness.
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One of the important challenges in the synthesis of modern organic compounds is the development of efficient 
and new nanocatalysts1,2. In recent times, there has been a growing interest in magnetic nanoparticles within the 
nanomaterial supports category3. This is because of their remarkable properties, including simple preparation 
and functionalization, a large surface area ratio, low toxicity, and cost-effectiveness4. The primary benefit of 
magnetic nanoparticles is the effortless separation of magnetic nanoparticles (MNPs) supported catalysts 
from a reaction product or mixture using an external magnet5–7. Based on these intriguing benefits, magnetic 
nanoparticles present a promising alternative to other catalyst supports, such as porous or mesoporous ones8. 
Recently, nanoscale compounds have garnered significant attention from researchers due to their unique chemical 
properties and catalytic applications9. These nanomaterials can serve as valuable supports for immobilizing 
homogeneous catalysts, effectively combining the benefits of both homogeneous and heterogeneous catalysis. 
Facilitating easy and rapid separation of catalysts from the reaction mixture is crucial in catalytic processes10. 
Traditionally, heterogeneous catalysts are recycled through tedious filtration processes, often resulting in the 
unavoidable loss of solid material. To address this, magnetic nanoparticles have been developed as suitable 
alternatives for catalytic reactions11. In recent years, these nanoparticles have been extensively studied, as 
using an external magnet to separate the catalyst makes recovering catalysts from the reaction mixture much 
more convenient compared to traditional methods12. AlFe2O4 nanoparticles have been extensively researched 
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for their scientific significance and practical applications as a core magnetic support among various magnetic 
nanoparticles13,14. The catalysis of chemical reactions by acids represents a consistently essential and captivating 
focus of research in organic synthesis15,16. The development and application of robust solid acids as catalysts 
in synthetic reactions are promising for the future of organic synthesis, especially within the context of green 
chemistry17–19. Immobilizing acidic functional groups on magnetic nanoparticles and utilizing them as catalysts 
in organic reactions is an ideal and fascinating solution to overcome this drawback20–22. This is because the 
catalyst can be easily separated from the reaction media using an external magnet23,24. Due to the rising energy 
consumption and the impending depletion of non-renewable fossil fuels, biodiesel has emerged as a promising 
alternative in the industrial sector25,26. Biodiesel is a renewable, stable, sulfur-free fuel composed of monoalkyl 
esters of fatty acids, produced mainly by esterification of fatty acids with short-chain primary alcohols using 
acid–base catalysts26,27. It is important to first esterify free fatty acids like oleic acid, linoleic acid, and others in 
incompatible feedstocks before using base catalysts for the transesterification reaction, as this helps prevent soap 
formation28. Therefore, acid catalysis is more suitable for biodiesel production29. In this case, the esterification 
reaction with a highly effective acid catalyst, without the need for any substrate pretreatment, can result in the 
production of eco-friendly biodiesel from oleic acid30,31.

Organic sulfoxides serve as valuable synthetic intermediates in laboratories, industries, pharmaceuticals, 
and agrochemicals. The common method for synthesizing these materials involves the oxidation of sulfides32. 
Additionally, disulfides are crucial in various biological and chemical processes, including their use in sensor 
development, oil-sweetening procedures, vulcanizing agents, and more33.

This work describes the synthesis and structural analysis of an innovative green catalyst. We also examine its 
effectiveness as an efficient and environmentally friendly option for Biodiesel Production. This solid acid catalyst 
showed effective catalytic performance in comparison to other solid acid catalysts previously reported (Fig. 1).

Experimental
Materials and Instrumentation The chemicals employed in this study were procured from Fisher and Merck. All 
reagents and solvents utilized throughout the research were acquired from Sigma-Aldrich, Fluka, or Merck and 
were used as received without any additional purification.

Preparation of AlFe2O4@n-Pr@Et-SO3H
Magnetic nanoparticles (FeAl2O4) were prepared by the coprecipitation method. In a mixture of 80 mL ethanol 
and water (ratio 1:1) under a N2 atmosphere at 80 °C, FeCl2·4H2O (10 mmol) and AlCl3·9H2O (20 mmol) were 
added. Then sodium hydroxide was added under stirring to obtain uniform black FeAl2O4 MNP nanoparticles. 
Once cooled, the samples were gathered using a permanent magnet and then meticulously washed several times 
with deionized water and EtOH. Subsequently, they were dried in a vacuum oven at 50 °C for 15 h.

To functionalize, 3-chloropropyltrimethoxysilane (n-Pr) (2.5 mL) was carefully added to a mixture of 1 g 
FeAl2O4 in 50 mL toluene. The resulting solution was stirred under nitrogen at 60 °C for 15 h to complete the 

Fig. 1. Graphic abstract.
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process. After silanization, the solid material was separated using a magnet and thoroughly dried before being 
utilized in the subsequent process.

To prepare AlFe2O4@n-Pr@Et, 1  g of AlFe2O4@n-Pr samples was dispersed in 20  mL of toluene. Then, 
2.5 mmol of Triethylenetetramine (Et) was added to the reaction mixture, which was refluxed for 24 h. The 
AlFe2O4@n-Pr@Et were then isolated using a magnet, washed with EtOH, and dried.

Finally, to prepare the AlFe2O4@n-Pr@Et-SO3H catalyst, a mixture of AlFe2O4@n-Pr@-Et (1.0  g) was 
dispersed in 80 ml of hexane in a round-bottomed flask. Next, 0.4 g of chlorosulfonic acid were carefully added 
drop by drop into the reaction vessel, and then the mixture was stirred at 25 °C for 24 h. Following the reaction, 
the resulting catalyst (AlFe2O4@n-Pr@Et-SO3H) was subsequently isolated, purified with water and ethanol, and 
ultimately dried under vacuum at 55 °C (Scheme 1).

Biodiesel production
Initially, 3 mmol of oil, 12 mmol of methanol, and 0.04 g of catalyst were combined in a round bottom flask. 
After that, the blend was warmed to 60 °C and left for 2 h. Once the reaction was complete, the catalyst was 
filtered using a centrifuge, followed by the removal of excess methanol from the upper liquid phase using rotary 
evaporation. The organic phase that was extracted underwent an additional wash with distilled water to eliminate 
any remaining impurities and was then dried with anhydrous sodium sulfate (Scheme 2)34,35.

A general procedure for the oxidation of sulfides
A combination of sulfide (1 mmol) and H2O2 33% (0.4 mL) was poured into the round-bottomed flask containing 
AlFe2O4@@n-Pr@Et-SO3H (0.02 g). The resulting mixture was stirred at 25 °C without the use of any solvent. 
After the reaction was completed, the AlFe2O4@@n-Pr@Et-SO3H compound was isolated using a magnet, and 
the resulting products were then extracted with a mixture of water and ethyl acetate. Subsequently, the organic 

Scheme 2. esterification of oleic acid.

 

Scheme 1. Synthesis of AlFe2O4@n-Pr@Et-SO3H.
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substance mixture was dried using 1.5 g of anhydrous sodium sulfate. The solvent was then evaporated to obtain 
a high yield of pure sulfoxides (Scheme 3).

Selected NMR data
Methyl oleate: 1H NMR (DMSO, 400 MHz) δ = 0.86 (s, 3H), 1.25 (s, 20H), 1.52 (m, 2H), 1.99 (s, 4H), 2.26(s, 2H), 
3.58(s, 3H), 5.34 (d, 2H) ppm.

(Sulfinylbis(methylene))dibenzene: 1H NMR (400 MHz, DMSO): δH = 7.4–7.5 (m, 10H), 4.36 (s, 4H) ppm.
(Ethylsulfinyl)ethane: 1H NMR (400 MHz, DMSO): δH = 2.1 (q, 4H), 1.0 (t, 6H) ppm.
(Methylsulfinyl)benzene: 1H NMR (400 MHz, DMSO): δH = 2.1 (q, 5H), 1.2(t, 3H) ppm.

Results and discussion
After the AlFe2O4@n-Pr@Et-SO3H synthesis, EDX, TEM, VSM, FTIR, SEM, TGA, and XRD were employed to 
identify its nanostructure and nature accurately.

Catalyst characterizations
FT-IR spectra of AlFe2O4 (a), AlFe2O4@n-Pr (b), and AlFe2O4@n-Pr@Et (c) catalyst is shown in Fig. 2. The 
FT-IR spectrum of the AlFe2O4 NPs shows a stretching vibration at 3440 cm−1, indicating the presence of both 
symmetrical and asymmetrical modes of the O–H bonds attached to the surface iron atoms (Fig. 2a). The FT-
IR spectrum of AlFe2O4 nanoparticles exhibits two bands at 483 and 671 cm-1, attributed to the stretching 
vibrations of the aluminum-oxygen and iron-oxygen bonds, respectively. In Fig.  2b, The appearance of new 
peaks at 2877 and 2948 cm−1, which correspond to CH2 bending vibration, respectively, provide evidence for 
modifying the surface of AlFe2O4 nanoparticles with 3-chloromethoxypropylsilane (AlFe2O4@n-Pr, Fig. 2c). In 
Fig. 2c, the existence of peaks at 1103, 1127, and 1602 cm−1 in Fig. 2c, which are allocated to C-N and N–H 
stretching absorptions of triethylenetetramine (Et), are indicative peaks for confirmation of AlFe2O4@n-Pr@Et 
nanoparticles. The FT-IR spectrum in Fig. 2d confirmed the functionalization of –SO3H groups on AlFe2O4@n-
Pr through the absorption of OH stretching bands of the –SO3H moiety at 2500–3500 cm-1.

Figure  3 illustrates the normal angle powder X-ray diffraction (XRD) patterns for AlFe2O4 (a) and 
AlFe2O4@n-Pr@Et-SO3H (b). The XRD pattern of AlFe2O4@n-Pr@Et-SO3H closely resembles that of MFe2O4, 
indicating the presence of octahedral structures. These patterns display a crystallized structure corresponding 
to the (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) crystallographic faces of magnetite. The XRD 
results for AlFe2O4 confirm a crystalline cubic spinel structure characteristic of AlFe2O4, aligning with standard 
reference data (JCPDS file, PDF no. 96–901-2447). After the attachment of sulfuric acid, a noticeable reduction 

Fig. 2. FTIR spectra of (a) AlFe2O4, (b) AlFe2O4@n-Pr, (c) AlFe2O4@n-Pr@Et, (d) AlFe2O4@n-Pr@Et-SO3H.

 

Scheme 3. Oxidation of sulfides catalyzed by AlFe2O4@n-Pr@Et-SO3H.
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in peak intensity was observed for AlFe2O4@n-Pr@Et-SO3H, along with increased background noise. These 
observations suggest that the textural characteristics of AlFe2O4 were maintained during the preparation of the 
SO3H-supported catalyst, with its crystalline phase and structural properties remaining intact36–38.

An investigation using TGA was conducted to quantitatively assess the presence of the ligand (Et-SO3H) 
on the surface of AlFe2O4 magnetic nanoparticles. Weight loss below 250 °C is linked to the removal of organic 
solvents (Fig. 4a). Specifically, 15% of the weight loss in this temperature range is due to organic solvents (Fig. 4b). 
In Fig. 4b, it is noted that AlFe2O4@n-Pr@Et-SO3H shows a 35% weight reduction between 250 and 600 °C, 
indicating the decomposition of its constituents. The TGA analysis thus confirmed the successful anchoring of 
-SO3H groups on the surface of AlFe2O4 MNPs.

To gain insight into the chemical composition of the nanocomposite, an energy-dispersive X-ray (EDX) 
analysis was conducted. Figure 5 illustrates the profile, depicting Fe and Al as the metallic components. The 
successful formation of a sulfuric acid shell on the surface of AlFe2O4 has been confirmed by the presence of 
sulfur and oxygen. Furthermore, the absence of any other elements indicates the high purity of the sample. The 
sulfur presence was indeed detected, but no amount of Cl was observed, indicating that the covalent adsorption 
of SO3H groups had successfully taken place on the catalyst surface.

Fig. 5. EDX images of AlFe2O4@n-Pr@Et-SO3H.

 

Fig. 4. TGA curve of (a) AlFe2O4, (b) AlFe2O4@n-Pr@Et-SO3H.

 

Fig. 3. XRD spectrum of (a) AlFe2O4 and (b) AlFe2O4@n-Pr@Et-SO3H.
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Figure 6 presents the SEM analysis of AlFe2O4@n-Pr@Et-SO3H, illustrating its morphology and dimensions. 
This analysis clearly reveals the uniform spherical shape of the nanocomposite, featuring a rough surface texture. 
Importantly, no significant aggregation was observed in the sample, suggesting a successful distribution and 
stability of the nanocomposite.

Transmission electron microscopy (TEM) was used to evaluate the shape, size, and morphology of 
AlFe2O4@n-Pr@Et-SO3H magnetic nanoparticles (MNPs). Figure  7 depicts TEM images showing spherical 
ferrite materials with smooth surfaces at various magnifications. The image distinguishes between the darker 
layer, which represents the AlFe2O4 substrate, and the lighter layer, identifying the Et-SO3H attached to the 
substrate. These materials exhibit a uniform, amorphous phase of Et-SO3H that is evenly distributed on the 
surface of a typical AlFe2O4 spinel core. The presence of a light shell over the core further supports the hypothesis 
that SO3H functionalities, along with Et moieties, are immobilized on its surface (Fig. 7).

The magnetic properties and values of the nanocomposites AlFe2O4, AlFe2O4@n-Pr, and AlFe2O4@n-Pr@
Et-SO3H were additionally assessed through VSM measurements at room temperature (Fig. 8). The saturation 
magnetization (Ms) values for (a) AlFe2O4, (b) AlFe2O4@n-Pr, and (c) AlFe2O4@n-Pr@Et-SO3H are 68, 49, and 
27 emu g−1, respectively. The values make it clear that the magnetization value of the samples was significantly 
reduced through surface modification and catalytic functional group immobilization on the AlFe2O4 support. 
However, the MNPs targeted displayed outstanding superparamagnetic properties and can be easily separated.

Fig. 7. TEM images of AlFe2O4@n-Pr@Et-SO3H.

 

Fig. 6. SEM images of AlFe2O4@n-Pr@Et-SO3H.
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NH3-TPD results
To examine the acidity of the AlFe2O4@n-Pr@Et-SO3H catalysts, NH3-TPD analysis was conducted, and the 
findings are presented in Fig. 9. Typically, ammonia desorption from alumina-based catalysts occurs within the 
100–900 °C temperature range. The TPD profile for the AlFe2O4@n-Pr@Et-SO3H catalyst revealed two distinct 
ammonia desorption peaks. The first peak at 350 °C indicates desorption from sites with moderate acidity, while 
the high-temperature peak at 630  °C reflects desorption from strong acidic sites. Figure  9 shows clearly the 
AlFe2O4@n-Pr@Et-SO3H sample possess both weak and strong acid sites.

Catalytic studies
Esterification reactions
The catalytic activity of AlFe2O4@n-Pr@Et-SO3H was evaluated during the esterification of oleic acid with 
methanol, as detailed in Table 1. To determine the optimal conditions for biodiesel production using this catalyst, 
the study explored various parameters, including temperature, the molar ratio of methanol to oleic acid, and the 
amount of catalyst used. Repeated reactions with varying amounts of AlFe2O4@n-Pr@Et-SO3H under consistent 
conditions showed a significant yield increase, up to 98%, when employing 0.04 g of the catalyst (see Table 1, 
entries 2–5). The influence of different temperatures on the reaction was also assessed (Table 1, entries 6 and 7), 
identifying 60 °C as the most effective for product formation. These observations led to the conclusion that the 
highest biodiesel yield was achieved with 0.04 g of the nanocatalyst at 60 °C, achieving a conversion rate of 98% 
from oleic acid to ester. The study highlighted a 3:12 molar ratio between oleic acid and methanol as being vital 
for successful esterification (see Table 1, entries 8–11). Typically, an excess of alcohol helps to disperse the solid 
acid catalyst in oily media and enhances the interaction between reactants, thereby boosting biodiesel yield. 
Furthermore, as is common in esterification processes, an excess of alcohol can prevent the reverse reaction, 
contributing to a gradual increase in ester production over time.

The mechanism of the AlFe2O4@n-Pr@Et-SO3H catalytic esterification is illustrated in Scheme 4 and can be 
broken down into three stages. Initially, AlFe2O4@n-Pr@Et-SO3H acts as a catalyst by activating the carbonyl 
group of oleic acid, leading to the formation of positive carbon ions. Subsequently, methanol molecules interact 
with these positive carbon ions to create intermediate products. This is followed by the transfer of hydrogen ions 
from intermediate product II, resulting in the formation of a protonated hydroxyl group. During this process, 
water molecules are eliminated from the main chain of product II. Ultimately, methyl oleate is formed as product 
III, and the heterogeneous catalyst AlFe2O4@n-Pr@Et-SO3H is then separated from the final mixture3,39.

To improve the reaction conditions, we studied the oxidation process of methyl phenyl sulfide as a model 
compound using H2O2 under various reaction parameters, such as time and product yield (refer to Table 2). 

Fig. 9. The NH3-TPD of AlFe2O4@n-Pr@Et-SO3H.

 

Fig. 8. VSM curves of (a) AlFe2O4, (b) AlFe2O4@n-Pr (c) AlFe2O4@n-Pr@Et-SO3H.
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Scheme 4. Proposed Mechanism for biodiesel in this presence of AlFe2O4@@n-Pr@Et-SO3H.

 

Entry a
Catalyst amount 
(g) Temperature (°C)

Methanol/oleic acid molar ratio 
(mmol/mmol) Time (h)

Biodiesel 
produced 
(mg)

Unreacted 
material 
(mg)

Biodiesel 
yield 
(%)

1 – 60 12:3 12 – – N. R

2 0.02 60 12:2 2 0.093 0.42 40

3 0.03 60 12:3 2 0.139 0.63 60

4 0.04 60 12:3 2 0.227 0.01 98

5 0.05 60 12:3 2 0.183 0.82 79

6 0.04 25 12:3 2 0.111 0.50 48

7 0.04 50 12:3 2 0.139 0.63 60

8 0.04 60 9:3 2 0.153 0.69 66

9 0.04 60 8:3 2 0.116 0.52 50

10 0.04 60 11:3 2 0.146 0.66 63

11 0.04 60 15:3 2 0.167 0.75 72

Table 1. Material balance calculations for the optimized yield of biodiesel in the presence of AlFe2O4@n-Pr@
Et-SO3H.
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According to the table, the reaction remained incomplete without AlFe2O4@@n-Pr@Et-SO3H even after 5 h. 
When a catalytic amount of AlFe2O4@@n-Pr@Et-SO3H (0.02 g) was used under solvent-free conditions at room 
temperature, H2O2 was identified as the most effective reagent for achieving complete conversion of methyl 
phenyl sulfide to methyl phenyl sulfoxide.

The versatility of this method has been proven by the easy conversion of aryl, cyclic, benzylic, and linear 
sulfides, as depicted in Table 3. The sulfoxides were rapidly obtained with excellent yields. To showcase the 
chemical selectivity of the process, sulfides containing oxidation-prone and acid-sensitive functional groups 
such as CHO, OH, and CO2CH3 were employed in the sulfoxidation reaction. Importantly, these functional 
groups remained unaltered during the conversion from sulfide to sulfoxide, as illustrated in Table 3.

Scheme 5 outlines a potential pathway for the oxidation of sulfides. One approach involves the in-situ 
formation of peroxy acid when AlFe2O4@n-Pr@Et-SO3H reacts with H2O2, subsequently transferring oxygen to 
the organic substrate (illustrated in Scheme 5a). Alternatively, another approach suggests that AlFe2O4@n-Pr@
Et-SO3H acts as a protic acid, polarizing the O–O bond in hydrogen peroxide to produce the reactive oxygen 
transfer agent (depicted in Scheme 5b).

Hot filtration
To demonstrate heterogeneity, two parallel reactions were conducted under identical conditions using oleic acid 
and methanol for esterification in the presence of a catalyst at 65 °C in ethanol. After 60 min, one reaction was 
halted, achieving a yield of 47%. Simultaneously, the catalyst was removed from the second reaction, allowing 
it to proceed without the catalyst for an additional 60 min, resulting in a 51% yield. The minor 4% increase in 
conversion underscores the role and heterogeneity of the catalyst.

Catalyst recyclability
To further investigate the recyclability of the magnetic nanocatalyst, we conducted a reaction between oleic 
acid and methanol using 0.04 g of AlFe2O4@n-Pr@Et-SO3H as our model. The nanocatalyst was separated from 
the reaction mixture with a magnet and washed several times with water and ethanol. It was reused for over 
five cycles without any significant loss of activity, as shown in Fig. 10. Thanks to its excellent recovery from the 
reaction mixture, together with its stability and resistance to decomposition, the catalyst can be retrieved and 
reused multiple times. It maintained its activity over five consecutive cycles, highlighting its robustness.

In Table 4, the catalytic activities of previously documented solid acid catalysts are contrasted with those of 
our prepared AlFe2O4@n-Pr@Et-SO3H in the esterification of oleic acid with methanol. Solid acid catalysts show 
better catalytic efficiency in less time compared to AlFe2O4@n-Pr@Et-SO3H catalyst under the given reaction 
conditions. This shows that the AlFe2O4@n-Pr@Et-SO3H catalyst is more effective in esterification reactions 
than previous ones (refer to Table 4).

Conclusion
This study outlines the development of an efficient method for producing AlFe2O4@n-Pr@Et-SO3H, an 
innovative and eco-friendly magnetic nanocatalyst that is easy to recover. The catalyst was characterized using 
techniques like EDS, SEM, VSM, XRD, TGA, TEM, and FT-IR. It was applied in esterification reactions and 
the oxidation of sulfides. The synthesis of this nanocatalyst involves readily available materials and features a 
simplified work-up procedure. Advantages of this method include the use of a non-toxic solvent, high yield, 
short reaction time, compatibility with various functional groups, and the ability to recycle and reuse the catalyst 
with an external magnet for up to four cycles with minimal reduction in product yields.

Entry Catalyst (g) Solvent H2O2 (mg) Time (min) Yield

1 – Solvent-free 0.4 5 h Trace

2 0.005 Solvent-free 0.4 30 45

3 0.01 Solvent-free 0.4 30 81

4 0.02 Solvent-free 0.4 30 99

5 0.03 Solvent-free 0.4 30 99

6 0.02 PEG 0.4 30 57

7 0.02 H2O: EtOH 0.4 30 46

8 0.02 DMSO 0.4 30 49

9 0.02 EtOH 0.4 30 78

10 0.02 Solvent-free 0.3 30 90

11 0.02 Solvent-free 0.5 30 97

Table 2. Optimizing reaction conditions for oxidation of methyl phenyl sulfide in the presence of 
AlFe2O4@@n-Pr@Et-SO3H.
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Entry Substrate Product Time(min) Yield (%)

1 30 99

2 45 90

3 20 94

4 60 93

5 15 95

6 60 95

7 60 86

8 20 91

9 20 92

Table 3. Oxidation of sulfides into sulfoxides in the presence of AlFe2O4@@n-Pr@Et-SO3H.
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Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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Fig. 10. Recyclability of AlFe2O4@n-Pr@Et-SO3H.

 

Scheme 5. The suggested mechanism for the oxidation of sulfide.
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