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For the purpose of simulating, controlling, evaluating, managing and optimizing PEMFCs it is 
necessary to develop accurate mathematical models. The present study develops a mathematical 
model which uses empirical or semi-empirical equations to estimate unknown model parameters 
through optimization techniques. This thesis calculates, analyzes and discusses the sum of squares 
error (SSE) between measured and estimated current and voltage values using parameters derived 
from multiple optimization techniques for six commercially available PEMFCs: BCS 500 W-PEMFC, 
500 W SR-12 PEMFC, Nedstack PS6 PEMFC, H-12 PEMFC, HORIZON 500 W PEMFC and a 250 W-stack 
PEMFC. To minimize the SSE between measured and estimated current values under these new 
models we employ an advanced version of Artificial Rabbits Optimization called Mutational Northern 
goshawk and Elite opposition learning-based Artificial Rabbits Optimizer (MNEARO). Additionally SSE, 
Absolute Error (AE), and Mean Bias Error (MBE) are computed for different recent methods according 
to literature on voltage measurement. Other optimization algorithms including ARO, TLBO, DE and 
SSA are used for comparative analysis purposes. On top of that MNEARO outperforms others in terms 
of both computational cost as well as solution quality while experiments carried out using benchmark 
problems indicate its superiority over other meta-heuristics approaches. 

Keywords Proton Exchange membrane fuel cell parameter identification, Adaptive rabbits optimization, 
Mutation strategy, MNEARO, Optimization in Electrical Engineering

Energy consumption has intensified and so has public consciousness on environmental issues, which have 
consequently led individual and government focus to alternative energy sources1. As a result, there is a 
growing need for further inquiry into various renewable energy alternatives such as solar power, wind and 
wave energy2. However, these types of power are fraught with predictability problems and depend on particular 
climatic conditions. Their variability essentially highlights the importance of efficient ways of storing energy. 
Because it can store renewable energy until it is converted into electricity using an energy conversion device, 
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hydrogen now plays a major role in the conversation in the energy industry3. Proton exchange membrane fuel 
cells (FCs) are among these devices. PEMFCs are most preferred in certain applications such as automotive 
portable electronics and onsite power generation systems due to low operating temperatures, high power density 
and solid electrolyte4,5. Developing mathematical models to understand intricacies of operation principles to 
improve performance is one of the biggest challenges facing PEMFC technology today6,7. However, since the 
behavior of multi-physics systems, such as PEMFCs, is highly non-linear and it is difficult to establish precise 
models for these systems under operating conditions, proper estimation methods become indispensable for 
using PEMFC technology.

The application of methods called metaheuristic algorithms for parameter estimation in proton exchange 
membrane fuel cells (PEMFCs) has been studied in several recent studies12,13. Nevertheless, compared to typical 
gradient based approaches, contemporary metaheuristic algorithms treat problems derivative free and allow for 
more wide variety of problems formulation. These types of algorithms can be grouped into four categories namely: 
These optimization algorithms are biological, for example, Grey Wolf Optimizer14, physical, for instance, Multi-
Verse Optimizer15, social, for instance, Teaching Learning-Based Optimization (TLBO)16and mathematical, for 
instance, Sine-Cosine Algorithm (SCA)17. Specific mechanisms of each of these metaheuristics mimic some 
characteristics of their original inspiration. For instance, GWO mimics the behavior of grey wolves in a chase 
after prey, which ranks them into hierarchical positions such as alpha, beta, delta and omega with a three stage 
hunting sequence: tracking, encircling and attacking. The MVO algorithm draws from the multi-verse theory 
in physics which states that universe creation results from massive explosions; thus the process of the algorithm 
includes cosmological phenomena such as wormholes, white holes as well as black holes among others15. On the 
other hand TLBO resembles what goes on inside a classroom where a teacher imparts knowledge to learners who 
interact with each other individually to create a good learning environment16. Finally, SCA employs sine and 
cosine mathematical functions to lead towards optimum solution thus revealing its mathematical foundation17.

The increased effectiveness of optimization in the estimation of PEMFC parameters through metaheuristics 
has been achieved by various enhancement techniques such as local search18, Levy flight19, and auxiliary 
operators20. In addition, efforts have been made to increase the accuracy of parameter estimation by combining 
two metaheuristic algorithms such as WCA-MFO21and PSO-DOX22.

To apply meta-heuristic algorithms and their improvements into the estimation of PEMFCs parameters, 
general procedure can be broken down into several steps. (1) By using datasets from manufacturers’ information 
as well as experimental data carried out to build a model; (2) Selecting evaluation metrics like SSE23, RMSE23and 
MAPE23which would measure accuracy in formulating objective function; (3) Constraints23-which also include 
boundaries for unknown parameters based on previous work24,25; (4) Control parameters for these algorithms 
may be adjusted appropriately13; (5) Initializing and iterating through themetaheuristic algorithms; (6) Checking 
if stopping condition is reached or not; (7) Giving those optimal values out and extracting decision variables, 
which are PEMFC’s parameters; finally, (8.) Parameters extracted were used to estimate V-I performance26. 
This stage demands comprehensive and accurate specification of constraint conditions needed for accurate 
estimations.

As promising technologies for clean energy conversion, fuel cells provide efficient and environmentally 
benign solutions to a variety of applications. Of all the types, Proton Exchange Membrane Fuel Cells (PEMFCs) 
are the most studied because of their high-power density, fast start up and low operating temperatures. Solid 
Oxide Fuel Cells (SOFCs) however, have become potent competitors, especially in high demand applications. 
SOFCs are versatile for both fuel cell and electrolyser cell operations, operating over low, intermediate and high 
temperature ranges. Along with this they permit the usage of broader range of fuels such as hydrogen, carbon 
monoxide and hydrocarbons. Gain in SOFC electrode materials’ durability, efficiency and catalytic activity as 
are pointed out by recent studies. For example, studies of functionalized electrode properties27, intermediate 
temperature performance28, and the effect of anode configurations on durability [29] highlight advances in 
SOFC technology30,31. Development of these systems demonstrate SOFCs as robust alternatives to PEMFCs in 
systems requiring long lifetimes and robust thermal management32.

Metaheuristic algorithms are highly competitive in addressing complex real-world optimization challenges, 
yet they often suffer from premature convergence to local optima due to limitations in their performance. 
The no free lunch (NFL) theorem posits that no single algorithm consistently outperforms all others across 
various application domains [33]34, . Despite this, researchers continually enhance these algorithms to develop 
more effective and broadly applicable optimization methods. Common enhancements include hybridizing 
algorithms and incorporating diverse strategic principles. While the Artificial Rabbits Optimization (ARO) has 
demonstrated effectiveness across various test scenarios and practical applications, it still presents opportunities 
for improvement, particularly in convergence accuracy, population diversity, and susceptibility to local optima. 
Recent advancements have led to the development of a new meta swarm intelligence optimization algorithm, 
named MNEARO, which integrates a mutation strategy35, a prey identification strategy36, and an elite opposition-
based learning strategy (EOBLS)37into ARO. According to recent studies34, MNEARO markedly outperforms 
comparative algorithms in 69.2% of test functions and consistently identifies optimal solutions across different 
optimization challenges. This paper utilizes the MNEARO algorithm to tackle a critical research problem in the 
electrical engineering optimization field—the extraction of PEMFC parameters for optimal application.

This paper makes significant contributions in the following areas:

 1.  It employs the MNEARO algorithm to extract seven unknown parameters ( ξ 1, ξ 2, ξ 3, ξ 4, λ , Rc and 
B) of PEMFCs, addressing an electrical engineering optimization challenge.

 2.  The study evaluates six commercially available PEMFC stacks, namely BCS 500 W-PEM38, 500 W SR-
12PEM39, Nedstack PS6 PEM39, H-12 PEM40, HORIZON 500 W PEM40, and a 250 W-stack [41], as the test 
cases.
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 3.  A comprehensive statistical data analysis is conducted comparing MNEARO with nine other PSO variants 
including ARO [42], TLBO43, DE35, and SSA [44].

 4.  The study assesses Sum of Squared Errors (SSE), Absolute Error (AE), Relative Error (RE), and Mean Bias 
Error (MBE), as well as I/V and P/V characteristics across different datasheets of the selected PEMFC stacks.

The structure of this paper is methodically organized as follows: Sect. 2 introduces the mathematical model of 
PEMFCs; Sect. 3 details the proposed strategy; Sect. 4 discusses experimental results and related insights; and 
Sect. 5 presents the conclusions.

PEMFC Modelling
This section begins by presenting a detailed semi-empirical model along with the specifications of the chosen 
proton exchange membrane fuel cell (PEMFC). Following this, it outlines the definition of the objective function 
and explores statistical comparison measures including Mean Biased Error (MBE) and the efficiency of the 
objective function.

In addition to their low operating temperatures, Proton Exchange Membrane Fuel Cells (PEMFCs) 
were selected as the standard system for this study due to their widespread application and advantageous 
characteristics. PEMFCs have high power density and short start up times, which make them suitable for 
transportation, portable electronics and stationary power generation systems. The solid polymer electrolyte in 
PEMFCs simplifies the system design through elimination of liquid electrolyte management and the corrosion 
issues present in other fuel cell types. Moreover, PEMFC’s complex nonlinear behaviors and multi-physics 
interactions make modeling them quite challenging.

This research uses a semi-empirical electrochemical model that is not limited to PEMFCs and can be adapted 
to other forms of fuel cells with appropriate modifications. This modeling approach could be extended to Solid 
Oxide Fuel Cells (SOFCs), Molten Carbonate Fuel Cells (MCFCs), or Alkaline Fuel Cells (AFCs), by adjusting 
model parameters and accounting for various electrochemical reactions, electrolyte materials, and operating 
conditions. This adaptability then points to the broader applicability of the model and optimization strategies to 
a wider set of fuel cell technologies, thereby enhancing the powerful utility of the optimization to multiple types 
of systems.

Semi-empirical electrochemical model
The output voltage of the FC stack ( Vfc) is obtained using Eqs. (1),

 Vfc = (VNernst − Vact − Vohmic − Vcon) · Ncell (1)

In this context, Vact denotes the activation polarization, resulting from the slow reaction rates at the electrode 
surface. Vohmic  refers to ohmic polarization, which accounts for resistance encompassing all electrical and 
ionic conduction losses through the electrolyte, catalyst layers, cell interconnects, and contacts. Vcon  signifies 
concentration polarization, which relates to the disparity in concentration between the fuel/air channel and 
the chemical species present on the electrode surface, while Ncell  represents the total number of cells45. The 
reversible cell voltage, known as Nernst voltage VNernst, can be calculated using Eq. (2)46,47.

 VNernst = −1.229 − 0.85 × 10−3(Tstack − 298.15) + 4.3085 × 10−5Tstack [ln( pH2 ) + 0.5ln(pO2 )] (2)

In this formulation, Tstack   refers to the stack temperature measured in Kelvin (K), pH2  indicates the partial 
pressure of hydrogen in bar, and pO2    is the partial pressure of oxygen, also in bar. The partial pressure of 
hydrogen is determined using Eq. (3)46.

 
pH2 = 0.5 · RHa · P sat

H2O[(exp(
1.635

(
Ifc

Acell

)

T 1.334
stack

) ×
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H2O
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)

−1

− 1] (3)

If the pure oxygen is fed to the cathode side of the FC, the partial pressure of oxygen at the cathode can be 
calculated using Eq. (4).

 
pO2 = Pc −

(
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H2O

)
· [(exp(
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(
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If the air is used instead of pure oxygen, the partial pressure of oxygen at the cathode can be calculated using 
Eq. (5).

 

pO2 = Pc − (RHc · P sat
H2O) − 0.79

0.21 · pO2 · exp


0.291

(
Ifc

Acell

)

T 0.832
stack


 (5)

where RHa and RHc are relative humidity of vapors in the anode and cathode, respectively. Ifc is the FC 
operating current (A), Acell is the active cell area (cm2), Pa is the anode pressure (bar), and Pc is the cathode 
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pressure (bar). P sat
H2Ois the saturation pressure of the water vapor (bar) and can be calculated as a function of 

the stack temperature using Eq. (6)46, 47.

 log10
(
P sat

H2O

)
= 2.95 × 10−2(Tstack − 273.15) − 9.18 × 10−5(Tstack − 273.15)2 + 1.44 × 10−7(Tstack − 273.15)3 − 2.18 (6)

The activation polarization can be calculated depending on the stack temperature and oxygen concentration 
with Eq. (7)46,

 Vact = −[ξ 1 + ξ 2 · Tstack + ξ 3 · Tstackln(CO2 ) + ξ 4 · Tstack · ln(IF C )] (7)

where ξ k(k = 1,2, 3,4)are the semi-empirical coefficients based on theoretical equations with kinetic, 
thermodynamic, and electrochemical foundations48, and CO2  is the oxygen concentration (mol cm−3) that 
can be calculated using Eq. (8)46.

 
CO2 =

(
pO2

5.08

)
× 106exp(− 498

Tstack
) (8)

The ohmic polarization depends on the membrane resistance, Rm (Ω), and contact resistance, RC  (Ω), as given 
in Eq. (9) [46].

 Vohmic = IF C · (Rm + RC) (9)

The membrane resistance depends on the resistivity of the membrane, ρ m (Ω.cm), membrane thickness, l 
(cm), and effective membrane area (cm2), which is shown in Eq. (10).

 
Rm = ρ ml

Acell
 (10)

The membrane resistivity ( ρ m) is calculated by using Eq. (11) for Nafion membranes.

 
ρ m =

181.6[1 + 0.03( Ifc

Acell
) + 0.062

(
Tstack

303

)2(J)2.5]

[λ − 0.643 − 3( Ifc

Acell
)] exp (4.18( Tstack−303

Tstack
))

 (11)

where λ is an adjustable parameter related to the membrane and its preparation process48. The concentration 
polarization is calculated using Eq. (12)46.

 
Vcon = −β ln(1 − J

Jmax
) (12)

where β  is the parametric coefficient (V) that depends on the cell and its operation state [46], J  is the actual 
current density (A  cm − 2), and Jmax is the maximum current density (A  cm − 2).

Fitness function definition
In this research, various versions of Particle Swarm Optimization (PSO) and Fractional Differential Evolution 
(FD-DE) are employed to refine the model parameters of the proton exchange membrane fuel cell (PEMFC). This 
optimization aligns the model outcomes with established data from the literature or manufacturer specifications, 
thereby improving the model’s accuracy. The output voltage is determined at specific points correlating with each 
current value using the mathematical models detailed in the Section on Semi-empirical Electrochemical Models. 
Consequently, the proposed fitness function, which assesses the quality of the estimated parameters, utilizes the 
Sum of Squared Errors (SSE) defined in Eq. (13) as the fitness function [46].

 
SSE = Min

(∑
N
i=1[Vmeas( i) − Vcalc(i )]2

)
 (13)

In this context, N  represents the total number of measured data points, i is the iteration counter, Vmeas  refers 
to the measured voltage of the fuel cell, and Vcalc indicates the calculated voltage of the fuel cell. Various Multi-
Attribute Decision Making (MADM) methods, each based on different principles, are detailed in the section 
titled “Ranking of the Algorithms.” These methods are applied to determine the most effective Metaheuristic 
Algorithms (MHAs) for the H-1000 XP case study. The Mean Biased Error (MBE) is computed using Eq. (14).

 
MBE =

∑ N

i=1 |Vmeas( i) − Vcalc(i )|
N

 (14)

In optimization process, the fitness function is a critical component, acting as the quantitative measure that 
directs our algorithms towards the optimal set of PEMFC parameters. The fitness function as the Sum of Squared 
Errors (SSE) of the measured voltages ( Vmeas) and the calculated voltages ( Vcalc), in order to minimize the 
overall discrepancy between the experimental data and the model predictions. This method guarantees that the 
resulting optimized parameters produce a model that closely matches the actual behavior of the fuel cell over a 
range of operating conditions.
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The choice of SSE as the fitness function is significant for several reasons:

 1.  Sensitivity to Large Errors: SSE squares errors, this means bigger differences between observed and predict-
ed values are more important, forcing the optimization algorithm to concentrate on decreasing important 
disparities that might seriously dent the accuracy of the model.

 2.  Robustness in Parameter Estimation: The SSE allows us to get a more comprehensive measure of how the 
model performs for all data points, and provides a more robust parameter estimation than the isolated data 
points approach, as it takes into account the collective behavior of the system.

 3.  Standardization and Comparability: The use of SSE ensures consistency with other PEMFC modeling stud-
ies and methodologies, permitting direct comparisons and validations against results in the literature.

 4.  Mathematical Convenience: The function SSE is a differentiable and continuous function, which is benefi-
cial for the convergence properties of the optimization algorithms, MNEARO and others discussed in this 
study.

The optimization algorithms use the PEMFC parameters iteratively to minimize the SSE while adjusting the 
parameters in such a manner so that the model comes closer as possible with the empirical data. This is a key 
step in improving the model’s predictive capabilities, which is critical to the simulation, control, evaluation, 
management, and optimization of PEMFC systems.

Mutational Northern Goshawk and Elite opposition learning-based Artificial Rabbits 
Optimizer (MNEARO)
Standard ARO
In order to protect their nests from attacks, Artificial Rabbits often forage near the nesting site of other rabbits. 
Every AR digs several burrows around its nest, randomly selects one to hide in and thus vastly improves its 
chances for survival48. Because of the high number of predators that prey on ARs in the wild, these animals must 
alternate between roundabout foraging and random hiding depending on their condition. With this regard, we 
define in this section a mathematical model that describes how ARs practice survival techniques.

Initialization
For SIAs, the initial population is usually obtained by random initialization, and the matrix can be expressed as:

 

RAs =




Individual1,1 Individual1,2 · · · · · · Individual1,d

Individual2,1 Individual2,2 · · · · · · Individual2,d

. . . . . . · · · · · · · · ·

. . . . . . · · · · · · · · ·
Individualn,1 Individualn,2 · · · · · · Individualn,d


 ,  (15)

 

Where, d is the individual dimension and n is the population size. The formula for random initialization is as 
follows:

 Individuali,j = Lbj + (Ubj − Lbj) × rand  (16) 

‘ rand′  here is a random number between (0,1) .Lbj  and Ubj  are the lower bound and upper bound of j − th 
dimension respectively. i and j are indices ranging from 1 to n and 1 to d respectively, indicating how far each 
dimension extends on the model.

Detour foraging
When foraging, Artificial Rabbits (AR) will bypass food sources close to their own nests and instead randomly 
approach another AR’s nest to forage. This is known as detour foraging in ARO, which contains two separate 
moves. Initially, the i − th chosen AR takes forward steps by using a selected random j − th AR and step vector 
D. Then the second behavior augments AR’s path randomness by introducing higher position perturbations. A 
detailed formula of this detour foraging process is given below.

 mi(t + 1) = xj (t) + D · (xi (t) − xj (t)) + round (0.5 · (0.05 + r1)) · N1 (17) 

 D = dis · ch (18) 

 
dis =

(
e − e( ⌞−1

T )2)
· sin (2π · r2) (19)

 

 
ch (k) =

{ 1ifk = g (s)
0 else , k = 1,2, · · · , dands = 1,2, · · · , ⌈r3 · d⌉  (20)

 

 g = randperm (d) (21) 

In this expression, mi(t + 1) denotes the candidate position of the i − th AR in the (t + 1) − th generation. 
xi (t) and xj (t) represent the positions of the i − th AR and a randomly selected AR in the t − th 
generation, respectively, where i, j = 1,2, · · · , n, i ̸= j.  The variables t and T  refer to the current iteration 
and the maximum number of iterations, respectively. The function round ( ) computes the rounded value, 
while randperm (d) generates an array of integers from [1, d] in a random order. r1, r2, r3 are three random 
numbers within the range (0,1), and N1 is a random number drawn from the standard normal distribution.
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As iterations progress, the variable dis tends to stabilize, indicating that the population quality is sufficiently 
high in later iterations to shift the algorithm’s focus from exploration to exploitation. Meanwhile, ch randomly 
selects a specific number of dimensions to update, thereby enhancing the randomness and effectiveness of the 
exploration phase.

Random hiding
During each iteration of ARO, each Artificial Rabbit (AR) creates a set number of burrows around its nest 
based on its individual dimension and randomly selects one of these burrows for hiding. This random selection 
strategy enhances the AR’s chances of survival if detected by predators. The mathematical model that describes 
the process of burrow creation is outlined below:

 Bi,j (t) = xi (t) + h · v · xi (t)  (22) 

 
h = T − t + 1

T
· N2 (23)

 

 
v (k) =

{ 1 if k = j
0 else , k = 1,2, · · · , d  (24)

 

In this model, Bi,j (t) represents the j − th burrow created by the i − th AR in generation t, where iii ranges 
from 1 to n and j from 1 to d. The term h is defined as the hiding coefficient, and N2  is a random number 
drawn from the standard normal distribution.

To enhance their chances of survival, each AR must randomly select one of its burrows as a shelter to protect 
itself from predators. The equation for this random selection process is presented below:

 mi(t + 1) = xi (t) + D · (r4 · Bi,r (t) − xi (t))  (25) 

Here, Bi,r (t) denotes the burrow randomly chosen by the i − th AR in the t − th generation, where i ranges 
from 1 to n and r from 1 to d. The variable r4  represents a random number between 0 and 1.

Energy shrink
Below is the pseudocode for Artificial Rabbits Optimization (ARO) as shown in Algorithm 1. The method is 
based on AR’s physical energy gradual decrease with time and involves detour foraging at the beginning of the 
iteration process and random hiding later. To calculate this conversion, we need an energy factor that contains 
which is important:

 E = 4
(
1 − t

T

)
ln 1

r5
 (26) 

The ARO algorithm utilizes a greedy selection mechanism to finalize the population, and the formula for this 
selection process is specified as follows:

 
xi(t + 1) =

{ xi (t) f (xi (t)) ≤ f (mi(t + 1))
mi(t + 1) f (xi (t)) > f (mi(t + 1))  (27)

 

Where ( ) is the fitness function corresponding to the optimization problem.

A new variant of ARO (MNEARO)
It is possible that ARO might only be trapped by the local optima because of its limitation in terms of optimization. 
This happens even though ARO through energy reduction successfully balances exploration and exploitation 
and adopts natural behaviours. Consequently, to solve such problems, this section presents a more developed 
version of ARO referred as MNEARO (see Fig. 1).

Mutation strategy
It has been there for so long and even now Differential Evolution (DE) is still a beloved algorithm across 
different scientist disciplines because of its simplicity and efficiency. DE makes use of the same update stage as 
Genetic Algorithms (GA) but usually outperforms them due to variations in execution sequence and associated 
mathematical formulations. In this example, the mutation formula from DE that enhances randomness in the 
algorithm is combined with two internal processes from Artificial Rabbits Optimization (ARO) that enhance its 
exploration ability. The mutation formula employed in ARO is presented below:

 newari (t) = xp1 (t) + F · (xp2 (t) − xp3 (t)) (28) 

 F = F0 · 2a  (29) 

 a = e1− T
T +1−t  (30) 

Where p1, p2, p3 ∈ 1,2, · · · , n, i ̸= p1 ̸= p2 ̸= p3, F0 = 0.5. 
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Algorithm 1. ARO

 mi (t + 1) = newari + D · (xi (t) − newari) + round (0.5 · (0.05 + r1)) · N1  (31) 

 mi (t + 1) = newari + D · (r4 · Bir (t) − newari) (32) 

The detour foraging and random hiding behaviors in ARO have been enhanced by incorporating a mutation 
formula, allowing individuals to recalibrate positions based on three others, improving exploration and avoiding 
local optima. These modifications ensure sustained randomness and better solution space exploration in later 
iterations.

Prey identification strategy
This section enhances ARO by incorporating predator-like strategies from NGO, focusing on prey identification 
to boost exploration while preserving ARO’s strong exploitation ability. Experimental results show that 

Fig. 1.  The flow chart of MNEARO.
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integrating this strategy enhances ARO’s performance without compromising its original effectiveness. The prey 
identification formula adopted in ARO is detailed below:

 
mi(t + 1) =

{ xi (t) + r6 × (xk (t) − I · xi (t)) fk < fi

xi (t) + r6 × (xi (t) − xk (t)) fk ≥ fi
 (33)

 

In this context, i, k = 1,2, · · · , n and i ̸= k. The terms fi  and fk   represent the fitness values of the i − th 
and k − th individuals, respectively. The variable r6  is a random number between 0 and 1, while III is a random 
number that can either be 1 or 2.

To update the population, ARO uses Eq. (31) and Eq. (32) to generate candidate populations. To improve 
ARO’s optimization capabilities, the prey identification formula from NGO is employed as the update mechanism 
for any Artificial Rabbit (AR) that fails to escape, thereby creating corresponding candidate individuals.

Elite opposition-based learning strategy
ARO enhances exploitation by allowing elite individuals with top fitness to learn from one another, reducing 
reliance on the current optimal solution and avoiding local optima. The Elite Opposition-Based Learning 
Strategy (EOBLS) [49] generates an opposition elite population (OEX) to explore the solution space, combining 
it with the original population through greedy selection. The formulae for calculating elite and opposition elite 
individuals are provided below in Eq. 34 to 38

 EXt
i =

[
ext

i,1, ext
i,2, · · · , ext

i,d

]
 (34) 

 OEXt
i =

[
oext

i,1, oext
i,2, · · · , oext

i,d

]
 (35) 

 oext
i,j = r7 ·

(
elt

j + eut
j

)
− ext

i,j  (36) 

 elt
j = min

(
ext

k,j

)
 (37) 

 eut
j = max

(
ext

k,j

)
 (38) 

where i, k = 1,2, · · · , n/10, j = 1,2, · · · , d.elt and eut are the lower and upper bound vectors of the elite 
population in the t th generation respectively.

Assessing the computational complexity of MNEARO is essential for understanding its operational efficiency. 
The components contributing to this evaluation include population initialization O (PI), detour foraging 
following mutation O (MDF), random hiding post-mutation O (MRH), the prey identification formula 
O (PRF) , and the elite opposition-based learning strategy O (EOBLS). The detailed steps for this calculation 
are as follows:

 O (MNEARO) = O (PI) + O (MDF) + O (MRH) + O (PRF) + O (EOBLS) == O
(
nd + 2T d + 3.2Tnd + 0.5Tndd2)

 (39) 

Algorithm 2. MNEARO

Result analysis
In this work an attempt has been made to exhaustively illustrate MNEARO algorithm and compare it with 
different optimization algorithms like, ARO[42], TLBO43, DE35and SSA [44] applied for PEMFC modelling. 
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The default parameter settings for different algorithms used in literatures34are given in Table 1. All algorithms 
compared were set to their recommended to estimate the parameter of a PEMFC fuel cell (BCS 500 W- 
PEMFC38, 500 W SR-12 PEMFC39, Nedstak PS6 PEMFC39, H-12 PEMFC40, HORIZON 500 W PEMFC40 and 
250 W-stack PEMFC [41]) presented in Table 2. All the experiments are carried out on Matlab 2021a of a PC 
with Windows Server 2019 operating system CPU i7-11700k@3.6 GHz, maximum iterations 500, number of run 
50 and population size 40.

FC1: BCS 500 W
The exceptional precision, stability, and efficiency of MNEARO are highlighted in Table 3 where it consistently 
achieves the lowest or near-lowest values. The minimal value for MNEARO is 0.0254927 which equals DE 
showing that it can repeatedly attain optimal solutions (tie with DE). Its maximum value is 0.0254928 which is 
significantly lower than that of ARO (0.1924899) and TLBO (0.0364916), indicating the ability to avoid high-error 
scenarios (as shown by a low number). According to Table 3, MNEARO has the lowest mean value of 0.0254927, 
which confirms its accuracy on consistent basis. Another significant measure of stability is standard deviation 
that has strictly been considered as negligibly small at 4.59E-08 compared to ARO’s variability (0.053443) and 
DE’s variability (0.0061464) that demonstrates how much more precise it is. MNEARO runs faster than DE 
(8.7900488 s) and SSA (6.3546924 s); thus making it the most efficient algorithm in terms of computational 
cost as shown by runtime RT = 2.9671325 s in Table 3. Furthermore, not only does this figure indicate optimal 
outputs through minimal computation but also proves its superiority over others in terms of constancy as well as 
effectiveness especially those under consideration for use in highly accurate applications with time limits. Tables 

Algorithm ARO DE TLBO SSA MNEARO

ξ 1 -0.9840126 -0.8721622 -1.1105925 -1.1504024 -0.9259692

ξ 2 0.00301 0.0022555 0.0031004 0.0036846 0.0026293

ξ 3 6.454E-05 3.718E-05 4.552E-05 7.538E-05 5.084E-05

ξ 4 -0.0001814 -0.000193 -0.0001908 -0.0001928 -0.000193

λ 20.681348 20.877275 21.252609 22.094647 20.877243

Rc 0.0007508 0.0001 0.0003099 0.0002184 0.0001

B 0.0136 0.0161261 0.0151479 0.0161511 0.0161261

Min. 0.0550084 0.0254927 0.0280372 0.0256024 0.0254927

Max. 0.1924899 0.0410172 0.0364916 0.0270263 0.0254928

Mean 0.1133755 0.0325788 0.0304626 0.0261257 0.0254927

Std. 0.053443 0.0061464 0.0035903 0.0006616 4.587E-08

RT 4.5317695 8.7900488 3.5392382 6.3546924 2.9671325

FR 5 3 3.6 2.2 1.2

Table 3.  Optimized parameters and optimal function value for FC1.

 

S. No. PEMFC Type Power(W) Ncells (no) A(cm2) l(um) T(K) Jmax(mA/cm2) PH2(bar) PO2(bar)

FC1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095

FC2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0

FC3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095

FC4 H-12 12 13 8.1 25 323 246.9 0.4935 1.0

FC 5 STD 250 24 27 127 343 860 1.0 1.0

FC 6 Horizon 500 36 52 25 338 446 0.55 1.0

Table 2.  Characteristics of twelves PEMFCs used in this work.

 

Algorithms Default settings

ARO N = 100, T = 500, m = 30

DE V R = 0.5, CR = 0.9
TLBO The value in TF is randomly selected 1 or 2

SSA P R = 0.2, DR = 0.1, ST = 0.8
MNEARO N = 100, T = 500, m = 30

Table 1.  Default parameter settings of the compared algorithms.
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Fig. 2.  FC1 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.

 

S. NO. Vest (V) Pest (W) AEv (A) RE % MBE

1 28.9972224 17.3983334 0.00277763 0.00957804 4.28624E-07

2 26.3059406 55.2424753 0.00405938 0.01542905 9.15477E-07

3 25.0935607 89.8349473 0.0035607 0.01419172 7.04367E-07

4 24.254627 123.213505 0.00462701 0.01908046 1.1894E-06

5 23.375424 167.60179 0.005424 0.02320926 1.63443E-06

6 22.584624 215.683159 0.01462397 0.06479382 1.18811E-05

7 22.071337 250.509675 0.01133699 0.05139161 7.14041E-06

8 21.7584734 272.851257 0.00847343 0.03895831 3.98884E-06

9 21.4612728 294.663276 0.01127284 0.05255404 7.05983E-06

10 20.9877523 330.137344 0.10224769 0.48481599 0.000580811

11 20.6945205 352.220738 0.01452047 0.07021503 1.17136E-05

12 20.2309975 386.614362 0.01099748 0.05438911 6.71914E-06

13 19.7709551 419.144249 0.01095514 0.05544097 6.6675E-06

14 19.3660369 445.418848 0.00603688 0.03118223 2.02466E-06

15 18.8664788 473.171287 0.00647876 0.03435184 2.3319E-06

16 18.2747333 496.524504 0.0047333 0.02590751 1.24467E-06

17 17.9533236 503.77026 0.0033236 0.0185159 6.13686E-07

18 17.2928898 505.989956 0.00711019 0.04109936 2.8086E-06

Table 4.  Performance metrics of MNEARO Algorithm for FC1.
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3 and 4; Fig. 2 show us that MNEARO gives best results without using up too much processing time while being 
constantly better than all other examined algorithms on indicators like stability or efficiency.

The results for Case FC1 in the provided data achieved lowest minimum value of 0.0254927 for MNEARO, 
which was equal to the performance of DE and slightly better than other algorithms. ARO, TLBO, and SSA 
were outperformed by MNEARO by 53.68%, 9.08%, and 0.43%, respectively. The value of MNEARO was 
0.0254928, which is the lowest among all algorithms. MNEARO outperformed ARO, DE, TLBO, and SSA by 
86.75%, 37.85%, 30.14%, and 5.67%, respectively. In MNEARO, the best result was obtained with the lowest 
mean value of 0.0254927. The mean value of this was 77.52%, 21.77%, 16.31% and 2.42% lower than the mean 
values of ARO, DE, TLBO, and SSA, respectively. The MNEARO showed the highest stability with a standard 
deviation of 4.587E-08. The standard deviation of MNEARO compared to ARO, DE, TLBO, and SSA were 
99.91%, 98.60%, 98.72%, and 99.93% lower, respectively. MNEARO was the most efficient, with a runtime of 
2.9671325. The MNEARO was 34.55%, 66.24%, 16.16%, and 53.31% faster than ARO, DE, TLBO, and SSA, 
respectively. The Friedman rank for MNEARO was 1.2, which was the best and significantly better than other 
algorithms. MNEARO’s Friedman rank was 76.00%, 60.00%, 66.67%, and 45.45% better than ARO, DE, TLBO, 
and SSA, respectively.

FC2: NetStack PS6
MNEARO’s minimum value in Table 5 is 0.2752105, which is the smallest of all algorithms and indicates that 
it can consistently achieve the most optimal solutions. MNEARO’s maximum value is also 0.2752105, which 
is much lower than ARO (0.6747868) and TLBO (0.3155648), showing how robust it is to prevent high-error 
scenarios. Moreover, the average of MNEARO has slightly more value than any other algorithm at 0.2752105; 
hence it consistently produces accurate results every time. Also, this algorithm presents unrivaled stability 
as shown by its standard deviation close to zero (2.51E-16) compared to those of ARO (0.1917348) and DE 
(0.0199925), bringing out its unmatched accuracy.As far as computation efficiency is concerned, MNEARO 
achieves a competitive runtime of 3.7783297 s in comparison with most algorithms such as DE (8.409499 s) and 
SSA (8.1440916 s). Additionally, MNEARO holds the best Friedman rank (FR) of 1 hence it outperforms other 
competing algorithms on all fronts owing to superior performance statistics across all levels. From Tables 5 and 
6; Fig. 3 In short, MNEARO not only gives optimal results with minimal computational costs but also surpasses 
other algorithms tested in terms of stability and efficiency even when no agreement exists between precision and 
time spent i.e., for an application requiring high precision and incurring high time costs.

In the provided data, the results of Case FC2 for MNEARO gave the minimum value of 0.2752105, the 
lowest of all other algorithms. MNEARO outperformed ARO, DE, TLBO and SSA by 0.16%, 0.25%, 0.12% and 
0.25%, respectively. The lowest value among the algorithms was 0.2752105, achieved by MNEARO. MNEARO 
outperformed ARO, DE, TLBO, and SSA by 59.20%, 14.20%, 12.80%, and 7.77%, respectively. The best result 
across all algorithms was achieved by MNEARO with the lowest mean value of 0.2752105. The mean value of 
this was 37.84% less than the mean value of ARO, 3.42% less than the mean value of DE, 5.04% less than the 
mean value of TLBO and 3.42% less than the mean value of SSA. The highest stability was shown by MNEARO 
with a standard deviation of 2.513E-16. The standard deviation of MNEARO was 99.87%, 98.74%, 98.48%, and 
99.98% lower than that of ARO, DE, TLBO, and SSA, respectively. MNEARO was the fastest, with 3.7783297 s. 
The performance of MNEARO was 11.78%, 55.10%, 6.10% and 53.61% faster than ARO, DE, TLBO and SSA 
respectively. The Friedman rank of MNEARO was the best (1), significantly outperforming all other algorithms. 
The Friedman rank of MNEARO was 76.19%, 66.67%, 68.75%, and 72.22% better than ARO, DE, TLBO, and 
SSA, respectively.

The Error Curve in Fig. 3a is the absolute difference between the measured and estimated voltage values for 
FC2 at different current levels. The MNEARO algorithm estimations are shown in this curve, how closely they 
match the actual measured data. The MNEARO algorithm is highly accurate in parameter estimation, with the 
error remaining low and consistent across the whole range of current values. In particular, the error is slightly 

Algorithm ARO DE TLBO SSA MNEARO

ξ 1 −1.1038486 −1.19969 −0.9284291 −0.8995119 −0.9841445

ξ 2 0.0037071 0.0039192 0.0033298 0.002554 0.0028593

ξ 3 7.716E-05 7.254E-05 8.689E-05 3.747E-05 4.165E-05

ξ 4 −0.0000954 −0.0000954 −0.0000954 −9.542E-05 −0.0000954

λ 14 14 14 14.093636 14

Rc 0.0001363 0.0001 0.0001063 0.0001195 0.0001204

B 0.0146781 0.019593 0.0187448 0.0180104 0.0167879

Min. 0.2756414 0.2759 0.2755531 0.2759128 0.2752105

Max. 0.6747868 0.3206847 0.3155648 0.2983612 0.2752105

Mean 0.4427205 0.2849213 0.2898211 0.2849642 0.2752105

Std. 0.1917348 0.0199925 0.0165501 0.0112792 2.513E-16

RT 4.2819316 8.409499 4.0242141 8.1440916 3.7783297

FR 4.2 3 3.2 3.6 1

Table 5.  Optimized parameters and optimal function value for FC2.
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increased at higher current densities, which is common and due to the higher complexity and nonlinearity of 
the PEMFC under higher load conditions. The low and stable error characteristics confirm the robustness and 
reliability of the MNEARO algorithm to model the performance of the NetStack PS6 fuel cell.

FC3:SR-12
MNEARO consistently achieves the lowest or near-lowest values as indicated in Table 7, thus showing its 
remarkable robustness, accuracy and swiftness. MNEARO has the least possible value of 0.2422841 and this is 
similar to DE, which is an indication that it always converges into a global optimum point. The highest achievable 
value for MNEARO is lower at 0.2429272 than ARO (1.028973) and TLBO (0.2445898), revealing a capability 
to avoid high-error scenarios efficiently. Correspondingly, the mean value among all approaches is smallest 
for MNEARO at 0.2424127; it indicates that this method gives consistently accurate results in terms of quality 
measures. It also demonstrates excellent stability with standard deviation of just 0.0002876 which stands against 
ARO (with standard deviation of 0.3356485) and TLBO (with standard deviation of 0.0009362) illustrating its 
higher precision level when compared to other methods, respectively. With respect to computational efficiency, 
MNEARO has a very competitive run-time (RT) of about 2.68981 s which surpasses that of other algorithms 
such as DE (6.7330474 s) and SSA (6.2414633 s). Also notice that MNEARO’s FR = 1.6 which is the best across 
all the rankings according to Friedman statistic in Table 8 denoting its superiority over alternative algorithms 
based on all surveyed performance measures. Accordingly, it can be observed that MNEARO offers optimal 
solutions with minimal computational overheads having outperformed other assessed alternatives regarding 
both stability and efficiency as shown in Tables 7 and 8; Fig. 4 giving good reasons why applications requiring 
minimal errors with quick outputs should consider using it given its commendable performance in these two 
aspects throughout all evaluations.

The results for Case FC3 were the lowest minimum value of 0.2422841 achieved by MNEARO, which was 
comparable to DE and slightly better than other algorithms. The results show that MNEARO outperformed ARO, 
TLBO and SSA by 2.40%, 0.11% and 0.03% respectively. Among the algorithms, MNEARO attained a maximum 
value of 0.2429272, which is one of the lowest. MNEARO outperformed ARO, DE, TLBO, and SSA by 76.39%, 
0.17%, 0.68%, and 0.18% respectively. The best result among all algorithms was achieved by MNEARO with the 
lowest mean value of 0.2424127. The mean value of this was 45.87%, 0.02%, 0.50%, and 0.14% less than the mean 

S. NO. Vest (V) Pest (W) AEv (A) RE % MBE

1 62.327085 140.23594 0.6870853 1.1146745 0.0162788

2 59.753908 403.33888 0.1839077 0.3087253 0.0011663

3 59.022997 531.20697 0.082997 0.1408161 0.0002375

4 57.47245 905.19108 0.0675504 0.1173973 0.0001573

5 56.695008 1148.0739 0.1049915 0.1848443 0.0003801

6 56.02304 1386.5702 0.1069601 0.1905579 0.0003945

7 55.138036 1736.8481 0.0919643 0.1665114 0.0002916

8 54.602996 1965.7078 0.0570045 0.1042892 0.0001121

9 53.618866 2412.849 0.0088661 0.0165381 2.711E-06

10 52.932646 2739.2644 0.0726463 0.1374315 0.000182

11 51.435589 3471.9023 0.4744107 0.91391 0.0077609

12 51.025397 3673.8286 0.1946031 0.3799358 0.0013059

13 49.426721 4448.4048 0.2332794 0.4697532 0.0018765

14 48.64101 4815.46 0.3589896 0.7326318 0.0044439

15 48.049167 5083.6019 0.100833 0.2094143 0.0003506

16 47.6574 5256.6113 0.1374003 0.2891421 0.000651

17 47.072834 5507.5215 0.0271663 0.057678 2.545E-05

18 46.283062 5831.6658 0.1969384 0.4237057 0.0013374

19 45.485308 6140.5166 0.1746919 0.3825929 0.0010523

20 44.875514 6363.3478 0.0255135 0.0568863 2.245E-05

21 44.056848 6643.7726 0.1831524 0.4139972 0.0011567

22 43.015697 6968.5428 0.5656965 1.3326184 0.0110349

23 42.157515 7208.935 0.4975147 1.1942264 0.0085352

24 41.047511 7482.9613 0.3675114 0.9034204 0.0046574

25 40.369543 7629.8436 0.279543 0.6972887 0.0026946

26 39.664133 7766.2372 0.1541328 0.3901108 0.0008192

27 38.699838 7925.7268 0.030162 0.0778777 3.137E-05

28 37.955778 8027.647 0.1942223 0.5091017 0.0013008

29 36.914215 8139.5845 0.4657846 1.2460797 0.0074812

Table 6.  Performance metrics of MNEARO Algorithm for FC2.
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Algorithm ARO DE TLBO SSA MNEARO

ξ 1 −0.9787397 −1.19969 −0.9061248 −1.0180242 −1.0913656

ξ 2 0.0033531 0.003361 0.0027681 0.0035286 0.0039858

ξ 3 7.96E-05 0.000036 5.639E-05 8.314E-05 9.799E-05

ξ 4 −0.0000954 −0.0000954 −0.0000954 −9.541E-05 −0.0000954

λ 14.239608 23 18.048853 21.096756 23

Rc 0.0007985 0.0006726 0.0006153 0.0006335 0.0006726

B 0.1684608 0.1753203 0.1747946 0.1755245 0.1753203

Min. 0.2482366 0.2422841 0.2425409 0.2423637 0.2422841

Max. 1.028973 0.2427161 0.2445898 0.2433615 0.2429272

Mean 0.4480607 0.2424569 0.2436423 0.2427643 0.2424127

Std. 0.3356485 0.0002366 0.0009362 0.0003902 0.0002876

RT 4.1583247 6.7330474 2.8705578 6.2414633 2.68981

FR 5 1.8 3.6 3 1.6

Table 7.  Optimized parameters and optimal function value for FC3.

 

Fig. 3.  FC2 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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Fig. 4.  FC3 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.

 

S. NO. Vest (V) Pest (W) AEv (A) RE % MBE

1 43.340797 43.51416 0.1707973 0.3956388 0.0016207

2 41.090066 130.09115 0.0499343 0.1213766 0.0001385

3 39.9145 200.33088 0.1755 0.4377651 0.0017111

4 38.85714 273.04912 0.18286 0.4683914 0.0018577

5 37.933453 339.80787 0.0565475 0.1488483 0.0001776

6 37.014525 406.04933 0.0654755 0.1765789 0.0002382

7 36.079893 470.84261 0.0498933 0.1384771 0.0001383

8 35.171352 529.68056 0.0186483 0.0529933 1.932E-05

9 34.242076 584.51224 0.172076 0.505066 0.001645

10 33.283114 634.70898 0.2631136 0.7968311 0.003846

11 32.270688 680.2661 0.2306878 0.7199993 0.0029565

12 31.237681 718.77904 0.0376812 0.120773 7.888E-05

13 30.127359 751.37633 0.327359 1.0985201 0.0059536

14 28.917121 777.00305 0.0428786 0.1480616 0.0001021

15 27.457744 795.17627 0.6622558 2.3551061 0.0243657

16 25.991792 800.80711 0.3082082 1.1718941 0.0052773

17 23.984856 790.78071 0.0751438 0.3123184 0.0003137

18 21.785621 760.31818 0.3856211 1.8019677 0.0082613

Table 8.  Performance metrics of MNEARO Algorithm for FC3.
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values of ARO, DE, TLBO, and SSA respectively. The standard deviation of MNEARO was high at 0.0002876. 
MNEARO’s standard deviation was 99.91%, 21.40%, 69.28%, and 26.32% lower than ARO, DE, TLBO, and 
SSA, respectively. The most efficient runtime was achieved by MNEARO, which took 2.68981. A comparison of 
MNEARO with ARO, DE, TLBO, and SSA shows that MNEARO is 35.33%, 60.06%, 6.30%, and 56.91% faster 
than ARO, DE, TLBO, and SSA, respectively. Friedman rank of 1.6 for MNEARO was favorable and significantly 
better than other algorithms. Friedman rank of MNEARO was 68.00% better than ARO, 11.11% better than DE, 
55.56% better than TLBO and 46.67% better than SSA.

FC4:H-12
The lowest or near-lowest values are achieved by MNEARO in Table 9, which is an indication of its outstanding 
performance. Several other algorithms also have a minimum value equal to 0.1029149 (ARO, DE and SSA), 
which shows that it can always reach the best solutions. The maximum value for MNEARO remains at 0.1029149; 
this is still much lower than that of ARO (0.1072152) or TLBO (0.1046272), indicating its ability to avoid high-
error outcomes reliably. Also, among all four measures presented here – minimum value, maximum value, mean 
value and standard deviation -, MNEARO has the smallest one in each case: 0.1029149 is not only its mean but 
also minimum or maximum number too! This makes MNEARO very efficient as it doesn’t have ups and downs 
in accuracy but delivers stable results with precision close to zero always around some point what cannot be 
said about ARO where these values differ quite a lot: from 4.22E-17 which is nearly nothing when compared 
with 0.0019782 observed for ARO’s standard deviation up to 0.0003977 seen in DE and even more variability 

S. NO. Vest (V) Pest (W) AEv (A) RE % MBE

1 9.7555297 1.0145751 0.1755297 1.8322513 0.0017117

2 9.4355329 1.8871066 0.0155329 0.1648927 1.34E-05

3 9.2153049 2.8475292 0.0346951 0.3750825 6.688E-05

4 9.0759941 3.6576256 0.1240059 1.3478899 0.0008543

5 8.9478918 4.5634248 0.1421082 1.5633465 0.0011219

6 8.8427139 5.4294263 0.1072861 1.1987274 0.0006395

7 8.7628607 6.1602911 0.0871393 0.9846243 0.0004218

8 8.678685 6.9950201 0.061315 0.7015447 0.0002089

9 8.6015871 7.8102411 0.0484129 0.5596868 0.0001302

10 8.4833934 9.1281313 0.0333934 0.3951877 6.195E-05

11 8.4488671 9.5218733 0.0388671 0.4621538 8.393E-05

12 8.3413838 10.743702 0.1413838 1.724193 0.0011105

13 8.2726626 11.499001 0.1526626 1.8800808 0.0012948

14 8.2311985 11.935238 0.1211985 1.4944327 0.0008161

15 8.1375147 12.840998 0.0875147 1.0871393 0.0004255

16 8.028856 13.705257 0.038856 0.4863076 8.388E-05

17 7.9126026 14.361374 0.0373974 0.4704076 7.77E-05

18 7.7774132 14.777085 0.1625868 2.047693 0.0014686

Table 10. Performance metrics of MNEARO Algorithm for FC4.

 

Algorithm ARO DE TLBO SSA MNEARO

ξ 1 −1.1996286 −0.8532 −0.9593931 −0.919538 −0.8540984

ξ 2 0.0033178 0.0015086 0.0022779 0.0017602 0.0015113

ξ 3 8.89E-05 0.000036 6.763E-05 3.932E-05 0.000036

ξ 4 −0.0001113 −0.0001113 −0.0001113 −0.0001113 −0.0001113

λ 14 14 14.595331 14 14

Rc 0.0008 0.0008 0.0008 0.0008 0.0008

B 0.0136 0.0136 0.0136871 0.0136 0.0136

Min. 0.1029149 0.1029149 0.1030934 0.1029149 0.1029149

Max. 0.1072152 0.1036409 0.1046272 0.1029859 0.1029149

Mean 0.104842 0.1032053 0.1036207 0.1029358 0.1029149

Std. 0.0019782 0.0003977 0.0006054 2.928E-05 4.221E-17

RT 3.3855048 6.7201382 2.7274696 5.8601308 2.5736575

FR 4.4 2.4 4.2 2.8 1.2

Table 9.  Optimized parameters and optimal function value for FC4.
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known from DE (four decimal places after zero). In other words — if we talk about stability then there are no 
doubts – nobody can compete with MNEARO in this aspect because none algorithm has such small variations 
like those of ARO nor DE neither SSA could show such low numbers as them according to our calculations made 
on tables such as Tables 9 and 10 together with related figures like Fig. 5 where these were taken into account 
during analysis concerning different measures applied hereinbefore hand followed by presentation thereof so far 
what was done during previous parts where everything was explained before; also this part is based on previous 
text so it can’t repeat every sentence. Therefore, concerning computational efficiency, MNEARO is the winner 
with a runtime of 2.5736575 s which is much faster than DE (6.7201382 s) or SSA (5.8601308 s). Moreover, 
based on Friedman rank (FR), MNEARO has the best one among all other algorithms evaluated in this study 
and its value equals to 1.2 indicating that according to our tests we considered it as better performing algorithm 
in comparison with others even if there were not any further improvements achieved during research process 
because results obtained earlier allowed us to make such conclusions like those drawn nowadays; Also, in general 
– this means when looking at MNEARO from Tables 9 and 10; Fig. 5. Thus not only does it yield excellent results 
without consuming too many resources but also consistently outperforms other methods both stability-wise as 
well as efficiency-wise hence making itself suitable especially for applications where high precision coupled with 
time effectiveness are required.

In Case FC4, the provided data for MNEARO achieved the lowest minimum value of 0.1029149, which is 
competitive with the performance of ARO, DE and SSA. TLBO was outperformed by 0.17% by MNEARO. The 
lowest value among the algorithms was 0.1029149, achieved by MNEARO. MNEARO outperformed ARO, DE, 
TLBO and SSA by 4.01%, 0.70%, 1.64%, and 0.07% respectively. MNEARO produced the lowest mean value 
of 0.1029149, the best result among all algorithms. The mean value of ARO, DE, TLBO, and SSA were 0.02%, 
0.28%, 0.68%, and 1.84% lower than the mean value of this study. The standard deviation of MNEARO was the 
highest with 4.221E-17. The standard deviation of MNEARO was 100.00%, 99.89%, 99.93% and 99.86% less than 
ARO, DE, TLBO and SSA respectively. The fastest runtime of 2.5736575 was achieved by MNEARO, which was 
much more efficient. MNEARO was 23.98%, 61.72%, 5.64% and 56.08% faster than ARO, DE, TLBO and SSA, 
respectively. The Friedman rank of MNEARO was 1.2, the best among all algorithms, and was significantly better 
than all other algorithms. MNEARO’s Friedman rank was 72.73%, 50.00%, 71.43%, and 57.14% better than that 
of ARO, DE, TLBO, and SSA, respectively.

Fig. 5.  FC4 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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FC5: STD
In Table 11 MNEARO consistently achieves the lowest or near-lowest values, reinforcing its exceptional stability, 
precision, and efficiency. MNEARO has the minimum value of 0.2837738, which is also the least among all 
algorithms, showing that it is able to achieve optimal solution in all cases. Additionally, the maximum value 
of MNEARO is also the lowest at 0.2837738, which is much better than ARO (0.2913425) and DE (0.3799), 
indicating its robustness for avoiding high error scenarios. The lowest mean value for MNEARO which is 
0.2837738 shows that MNEARO can achieve consistently accurate results. In addition to an exceptionally low 
standard deviation of 1.59E-14 over five repeating runs, MNEARO shows high stability, which is much lesser 
than ARO (0.0035844) and DE (0.0418689). MNEARO has the best computational efficiency (RT) of 2.0710507 
s, compared to other algorithms such as DE (5.067995 s) and SSA (4.8061716 s). Furthermore, MNEARO has 
the best Friedman rank (FR) of 1, confirming MNEARO as the best performing algorithm over all metrics. 
From Tables 11 and 12; Fig. 6, MNEARO provides optimal results with minimal computational overhead, and 
consistently outperforms other evaluated algorithms in both stability and efficiency, and thus is an ideal choice 
for applications that require high precision and time efficiency.

The results for Case FC5 were the lowest minimum value (0.2837738) in the provided data for MNEARO, 
which was equivalent to DE and slightly better than other algorithms. A comparison of MNEARO with ARO, 
TLBO and SSA shows that MNEARO outperforms ARO, TLBO and SSA by 0.03%, 0.07% and 0.02% respectively. 
The lowest among the algorithms was MNEARO, which achieved a maximum value of 0.2837738. MNEARO 
outperformed ARO, DE, TLBO and SSA by 2.60%, 25.31%, 13.56% and 0.02%, respectively. The best result 
was achieved by MNEARO which had the lowest mean value of 0.2837738. The mean value of this method 
was 1.17%, 7.19%, 4.92%, and 0.01% lower than the mean values of ARO, DE, TLBO, and SSA, respectively. 
MNEARO was the most stable with standard deviation of 1.587E-14. In comparison with ARO, DE, TLBO, and 
SSA, the standard deviation of MNEARO was 99.56%, 99.96%, 99.99%, and 99.93% less, respectively. The fastest 
runtime of 2.0710507 was achieved by MNEARO, which was much more efficient. MNEARO was 24.54%, 
59.13%, 7.83%, and 56.91% faster than ARO, DE, TLBO, and SSA respectively. The Friedman rank of 1 achieved 

S. NO. Vest (V) Pest (W) AEv (A) RE % MBE

1 29.714697 17.828818 0.3446974 1.1736378 0.0091397

2 26.628794 66.571985 0.1485959 0.5549307 0.0016985

3 25.005587 125.02794 0.2846627 1.1255827 0.0062333

4 23.963521 179.72641 0.3183379 1.3110112 0.0077953

5 23.147546 231.47546 0.2704543 1.1548994 0.0056266

6 22.57673 270.92076 0.1623727 0.7140682 0.0020281

7 22.043057 308.6028 0.0154658 0.0701125 1.84E-05

8 21.520883 344.33413 0.1347353 0.630012 0.0013964

9 20.980158 377.64284 0.2584298 1.2471442 0.0051374

10 20.364001 407.28001 0.3380006 1.6878086 0.008788

11 19.980916 419.59924 0.3445661 1.7547361 0.0091328

12 19.456784 428.04925 0.2649772 1.3806788 0.005401

13 18.178123 418.09683 0.4855069 2.601353 0.0181321

Table 12.  Performance metrics of MNEARO Algorithm for FC5.

 

Algorithm ARO DE TLBO SSA MNEARO

ξ 1 −0.8532 −1.1566439 −1.0820397 −1.053271 −0.9278477

ξ 2 0.0022116 0.0027746 0.0027521 0.0026125 0.0021138

ξ 3 5.985E-05 0.000036 5.009E-05 4.626E-05 3.716E-05

ξ 4 −0.0001699 −0.0001697 −0.0001707 −0.0001699 −0.0001697

λ 14 14 14 14.000932 14

Rc 0.0008 0.0008 0.0007991 0.0008 0.0008

B 0.0173905 0.0173175 0.0171092 0.017288 0.0173175

Min. 0.2838483 0.2837738 0.283985 0.2837802 0.2837738

Max. 0.2913425 0.3799 0.3282903 0.2838328 0.2837738

Mean 0.287139 0.3057825 0.2984292 0.2838051 0.2837738

Std. 0.0035844 0.0418689 0.0180626 2.354E-05 1.587E-14

RT 2.7463541 5.067995 2.2471395 4.8061716 2.0710507

FR 4 3 4.4 2.6 1

Table 11.  Optimized parameters and optimal function value for FC5.
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by MNEARO was the best, and other algorithms performed significantly worse. MNEARO’s Friedman rank was 
75.00%, 66.67%, 77.27% and 61.54% better than ARO, DE, TLBO and SSA, respectively.

FC6:Horizon
MNEARO always has the lowest or nearly lowest values in Table 13, which shows its outstanding performance. 
Among all algorithms, MNEARO’s minimum value is 0.1217552, equaling DE and being the smallest, which 
means it can always find the best solutions stably. Still, the largest number this algorithm can produce is also 

Algorithm ARO DE TLBO SSA MNEARO

ξ 1 −1.1327283 −1.0355681 −1.0265787 −1.0781511 −0.8538584

ξ 2 0.0036755 0.0033872 0.0025555 0.0030876 0.0022839

ξ 3 0.000098 0.000098 3.885E-05 6.687E-05 5.586E-05

ξ 4 −0.0001499 −0.0001493 −0.0001491 −0.0001493 −0.0001493

λ 23 23 22.939218 22.999971 23

Rc 0.0001 0.0001 0.0001541 0.0001 0.0001

B 0.0514552 0.0509795 0.0504674 0.0509439 0.0509795

Min. 0.1245669 0.1217552 0.1227629 0.1217575 0.1217552

Max. 0.1359797 0.1217552 0.1293204 0.1218338 0.1217552

Mean 0.1295833 0.1217552 0.1262169 0.1217769 0.1217552

Std. 0.0043719 1.23E-16 0.003028 3.278E-05 1.417E-13

RT 2.947782 5.3747387 2.4140811 5.1784742 2.4566743

FR 4.6 1.4 4.4 3 1.6

Table 13.  Optimized parameters and optimal function value for FC6.

 

Fig. 6.  FC5 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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0.1217552, and it does much better than ARO (0.1359797) as well as TLBO (0.1293204), indicating that it has 
wide applicability to avoid situations with large errors. The mean value of MNEARO equals 0.1217552 too, but 
this time it represents the least average accuracy across diverse outcomes obtained by any other method used 
for comparison purposes only. Moreover, MNEARO provides exceptional steadiness because standard deviation 
equals 1.42E-13 — much smaller than corresponding values found for ARO (0.0043719) and TLBO (0.003028). 

Fig. 7.  FC6 (a) V-I, P-V and Error Curve, (b) Convergence Curve, (c) Box-Plot.

 

S. NO. Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 22.564579 5.4845597 5.4538587 0.1270213 0.5597722 0.0010756

2 20.358452 26.600278 26.826332 0.1715521 0.8498189 0.001962

3 19.324645 51.733046 51.826765 0.0349447 0.1811571 8.141E-05

4 18.666643 74.461816 74.886837 0.1059428 0.5707908 0.0007483

5 18.132162 97.663159 97.469434 0.0360385 0.1983602 8.658E-05

6 17.665133 119.71893 119.35094 0.0544671 0.3073833 0.0001978

7 17.260395 139.35797 139.2724 0.010605 0.0614033 7.498E-06

8 16.472656 177.66308 178.12542 0.0427564 0.2602351 0.0001219

9 15.725735 211.26503 211.5992 0.0248349 0.1581747 4.112E-05

10 14.907598 242.08182 240.73982 0.0831017 0.5543552 0.0004604

11 14.434371 256.8808 253.02731 0.2198289 1.5001086 0.0032216

12 13.920173 264.4969 262.28807 0.1172271 0.8351052 0.0009161

13 13.25589 266.87405 268.07916 0.0595896 0.4515632 0.0002367

14 12.300859 259.66281 265.75882 0.2821588 2.3476646 0.0053076

15 10.057348 232.18679 230.50336 0.0734517 0.7250339 0.0003597

Table 14.  Performance metrics of MNEARO Algorithm for FC6.
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In summary According to Tables 13 and 14; Fig. 7 where necessary: The computation time of MNEARO is 
competitive with runtime(RT) = 2.4566743 s compared to DE for example(5.3747387 s )and SSA(5.1784742 s). 
Another thing worth mentioning is that MNEARO has quite a good Friedman rank(FR = 1:6), which makes 
one think about its universality among others rated according to any metric taken into consideration though 
outperformed by none in stability nor efficiency at all levels examined so far. To sum up evaluation – From Fig. 
7; Tables 13 and 14 -the excellence displayed by MNEARO cannot be matched as no other algorithm consistently 
delivers more accurate results while requiring less time-power input thereby making them perfect options 
especially when precision speed were required simultaneously.

For Case FC6, the lowest minimum value of 0.1217552 was achieved by the results in the given data for 
MNEARO, and it was as good as DE and slightly better than the other algorithms. MNEARO performed better 
than ARO, TLBO and SSA by 2.26%, 0.82% and 0.00% respectively. The lowest among the algorithms was 
MNEARO with a maximum value of 0.1217552. MNEARO outperformed ARO, DE, TLBO, and SSA by 10.10%, 
0.00%, 5.85%, and 0.06%, respectively. The best result among all algorithms was achieved by MNEARO with 
the lowest mean value of 0.1217552. The mean value of ARO, DE, TLBO, and SSA was 6.04%, 0.00%, 3.54%, 
and 0.02% lower than the mean value of this study. The standard deviation of MNEARO was 1.417E-13, which 
indicated high stability. MNEARO’s standard deviation was 99.99%, 0.00%, 99.95%, and 99.57% lower than 
ARO, DE, TLBO, and SSA, respectively. MNEARO was highly competitive and achieved an efficient runtime 
of 2.4566743. ARO, DE, TLBO, and SSA were 16.66%, 54.28%, 1.06%, and 52.57% slower than MNEARO. 
MNEARO obtained a Friedman rank of 1.6, which is significantly better than the other algorithms. MNEARO’s 
Friedman rank was 65.22%, 14.29%, 63.64%, and 46.67% better than ARO, DE, TLBO, and SSA, respectively.

Performance metrics for all tested PEMFCs show that the MNEARO algorithm performs better than ARO, 
TLBO, DE and SSA in parameter estimation. In particular, MNEARO has the lowest Sum of Squared Errors 
(SSE), and is the most stable with the smallest standard deviation values, demonstrating its robustness against 
high error outcomes. MNEARO is computationally efficient and consistently has shorter runtimes than other 
algorithms, which makes it particularly useful for real time applications in which both accuracy and time 
efficiency are important. MNEARO’s mutation strategy, prey identification, and elite opposition-based learning 
are the advanced components of MNEARO, which greatly improve its optimization capabilities by avoiding 
premature convergence and improving solution quality. The mutation strategy enhances exploration capability 
to avoid local optima, and the elite opposition based learning is able to converge to global optima with minimal 
variability. The algorithmic architecture of MNEARO allows it to outperform other tested algorithms and obtain 
consistently optimal solutions for different PEMFC types.

The comparison shows the algorithm’s ability to adapt and be accurate across various fuel cell models, 
and demonstrates that MNEARO is the preferred tool for applications requiring high accuracy and efficient 
computational performance. MNEARO can be applied to other aspects of fuel cell technology in future 
applications of PEMFC modeling and optimization, possibly establishing a new standard for optimization in 
sustainable power generation systems. To perform a comprehensive analysis of MNEARO performance in 
comparison to other optimization algorithms (ARO, TLBO, DE, and SSA), we performed extensive experiments 
on six commercially available PEMFC stacks. Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 14; Figs. 2, 3, 4, 5, 6 and 7 
present the results, which consistently show the superior performance of MNEARO over different performance 
metrics: minimum and maximum SSE values, mean SSE, standard deviation, runtime, and Friedman rank.

From the convergence curves (Figs. 2b, 3, 4, 5, 6 and 7b), MNEARO converges faster to the global optimum 
than other algorithms. This is due to the introduction of enhanced exploration and exploitation capabilities by 
mutation strategy, prey identification strategy and elite opposition-based learning in MNEARO. The mutation 
strategy is designed to boost diversity in the population helping to avoid premature convergence in local optima. 
This facilitates the prey identification strategy to dynamically lead the search wherever required from the 
perspective of the fitness of neighboring solutions. The elite opposition-based learning strategy guarantees that 
the algorithm explores the search space effectively by taking into account the opposite of elite solutions and hence 
the convergence speed is improved. For example, MNEARO achieved the minimum SSE value of 0.0254927 in 
much fewer iterations than DE and SSA, as shown in Fig. 2b in the case of FC1 (BCS 500 W PEMFC). This trend 
holds for all PEMFCs tested, demonstrating the robustness of MNEARO to find optimal solutions quickly.

The stability of an optimization algorithm can be measured by how consistent its SSE value is with multiple 
runs. Their lowest standard deviation values were always lowest – most of them below zero and close to zero, 
e.g. 4.59E-08 for FC1, and 1.42E-13 for FC6 – signifying high reliability and consistency in normally obtaining 
the optimal solution in various runs. In particular, this is important in practical applications where consistent 
performance is needed. In addition, the low Mean Bias Error (MBE) values achieved by MNEARO, as seen 
in Tables 4, 6, 8, 10 and 12, and 14, validate the accuracy of the algorithm for estimating PEMFC parameters. 
In addition, the average relative error percentages are also minimal, indicating that MNEARO yields highly 
accurate parameter estimations, which are essential to precise PEMFC modeling and control.

MNEARO is computationally efficient, as runtime analysis shows, and often outperforms other algorithms 
in terms of execution time. Tables 3, 5, 7, 9 and 11, and 13 show that MNEARO has the lowest runtime (e.g., 
2.9671 s for FC1 and 2.4567 s for FC6) and is therefore suitable for applications where real-time optimization or 
computational resources are limited. The algorithm shows an efficiency increase because it converges quickly to 
the optimal solution without unnecessary exploration of the search space. Advanced strategies incorporated in 
MNEARO accomplish exploration and exploitation integration to decrease an amount of iterations needed by 
MNEARO to converge.

It is demonstrated that MNEARO will outperform the standard ARO due to algorithmic advances in 
MNEARO’s algorithm. The mutation strategy from Differential Evolution (DE) is incorporated to increase 
diversity in the population to escape local optima. Driven by the Northern Goshawk optimization algorithm’s 
inspirational prey identification strategy, MNEARO is able to adaptively tune its search patterns according to 
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the fitness landscape, thus bettering its ability to approach the global optimum. In addition, the elite opposition 
based learning strategy guarantees that the algorithm does not depend only on the current best solutions, but also 
explores their opposites, covering more of the search space and preventing premature convergence. Collectively, 
these enhancements improve algorithm performance in complex, non-linear optimization problems, including 
PEMFC parameter estimation.

Compared to other studies in the literature that applied metaheuristic algorithms for PEMFC parameter 
estimation12,13,21,22, our results show that MNEARO has lower SSE values and faster convergence. For instance, 
PSO-DOX22 studies indicated higher SSE values and longer runtimes than MNEARO. This suggests that 
MNEARO is not only an improvement to the state of the art in PEMFC parameter estimation, but also a more 
reliable and efficient optimization tool.

The design, control, and optimization of fuel cell systems requires accurate estimation of PEMFC parameters. 
Because of the high accuracy and stability of MNEARO in parameter estimation, models developed using 
this algorithm can predict the PEMFC performance more precisely under different operating conditions. 
This has important implications for the development of efficient fuel cell systems, since it can provide better 
control strategies, improved system reliability and enhanced overall performance. In addition, MNEARO is 
computationally efficient, and therefore suitable for real time applications, where rapid parameter estimation is 
required for adaptive control and monitoring of PEMFC systems. The development of fuel cell technologies in 
practical applications such as automotive power systems, portable electronics, and stationary power generation 
can benefit from the ability to reliably estimate parameters in a timely manner.

Conclusion
This study proposed a new and efficient optimization algorithm, Mutational Northern Goshawk and Elite 
Opposition Learning based Artificial Rabbits Optimizer (MNEARO), for extracting parameters of Proton 
Exchange Membrane Fuel Cells (PEMFCs). The MNEARO algorithm is a major leap forward from existing 
methods by incorporating mutation strategies, prey identification mechanisms, and elite opposition-based 
learning. These improvements make it more likely to escape local optima, increase convergence speed, and 
preserve population diversity.

The novelty of our work is the integration of the MNEARO algorithm to accurately and efficiently estimate 
seven unknown PEMFC parameters (ξ₁, ξ₂, ξ₃, ξ₄, λ, Rc, and B). We evaluated the performance of MNEARO 
on six commercially available PEMFC stacks: The BCS 500 W-PEM, 500 W SR-12 PEM, Nedstack PS6 PEM, 
H-12 PEM, HORIZON 500 W PEM and a 250 W-stack PEMFC were selected. Results show that MNEARO 
outperforms other state of the art optimization algorithms, ARO, TLBO, DE, and SSA in precision, stability, and 
computational efficiency.

The novelty of our work lies in the following key contributions:

 1.  1. Introduction of MNEARO for PEMFC Parameter Extraction: This is the first application of the MNEA-
RO algorithm to the difficult problem of PEMFC parameter extraction, a problem of great importance in 
electrical engineering optimization.

 2.  2. Superior Performance Over Existing Algorithms: MNEARO was thoroughly evaluated and outper-
formed nine other states of the art optimization algorithms in terms of precision, stability, and computational 
efficiency, including ARO, TLBO, DE, and SSA. Across all test cases, it achieved the lowest Sum of Squared 
Errors (SSE), minimum standard deviations and fastest computation times.

 3.  3. Validation Across Multiple Commercial PEMFCs: The adaptability and effectiveness of MNEARO was 
demonstrated by extracting parameters for six different commercially available PEMFC stacks. The broad 
applicability of this approach makes it a potential standard tool in fuel cell optimization.

 4.  4. Advancement in Fuel Cell Technology Optimization: MNEARO provides more accurate parameter 
estimations that can be used for PEMFC system design optimization, control, and real time performance 
monitoring. This is a major step forward for creating efficient and sustainable energy systems.

In brief, this research presents MNEARO as a new optimization algorithm and demonstrates its superior 
performance in PEMFC modeling tasks. We show that MNEARO has the potential to become a standard tool 
for optimizing fuel cell systems, and also for other types of fuel cells and energy systems in the sustainable energy 
technology sector. We hope these contributions will be useful for future research and applications, and represent 
a significant step forward for the field.

Not applicable.

Data availability
The data presented in this study are available through email upon request to the corresponding author.
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