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A B S T R A C T

This paper investigates the analytical fuzzy findings of a two-dimensional fuzzy fractional-ordered heat problem
including some source of terms under certain conditions. The Sumudu residual power series scheme (SRPSS) is
an innovative novel to deal with the combine form of the Sumudu transform (ST) and the residual power series
scheme (RPSS) which efficiently generate analytical results in rapidly converging series forms. The Caputo
derivative is applied to model the physical problem. The most notable aspect of this algorithm is its ability
to generate results quickly and without difficulty as compared to the conventional RPSS. We present three
numerical cases of 2D heat problem with fuzzy fractional order to express the performance and validity of
suggested scheme. Graphical analysis from the derived solutions reveals that SRPSS is straightforward, accurate,
and suitable to analyze the findings of fuzzy fractional problems.
1. Introduction

Numerous researchers investigated fractional evaluation equations
in recent decades because of their several applications in modern
scientific and technological disciplines. It has been shown that time-
fractional models explain specific physical phenomena and that their
application discusses multiple challenges. In this context, it is necessary
to provide more unique representations of fractional calculus [1–3].
Moreover, fractional operators offer a greater degree of freedom com-
pared to integer differential operators in various disciplines of physical
sciences and mathematical physics. Numerous researchers have used
the features of operators in the context of fractional derivatives and
investigated the fractional models in various fields such as; infections,
bifurcates, disarray theory of control, computing images, quantum
properties, fluid circulation, and a variety of relevant areas [4].

Fuzzy integral problems are useful in many real-world applications,
including artificial neural networks, mathematical science, manufac-
turing technology, and the realm of physical sciences. Recently, It has
been investigated that most of the fractional problems are transformed
into unpredictable processing issues [5–7]. Fuzzy integral equations
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are also important in fuzzy analytic theory and their applications
in fuzzy control models, machine learning, optical science, measure
concepts, and environmental science [8,9]. Consequently, numerous
scholars directed their attention toward these frameworks to system-
atically analyze or quantify their solutions. Ali et al. [10] established
the idea of Laplace transformation for the computational results of the
fractional diffusion problem. Arfan et al. [11] applied an analytical
technique to compute the series solution of a 2D fuzzy wave problem
with some affecting component of force and presented the results in
the form of a convergence series. Osman et al. [12] proposed two
distinct methodologies for determining the approximate and analytical
solutions of fuzzy fractional challenges. Hamoud and Ghadle [13]
utilized the homotopy analysis technique to obtain the appropriate
outcomes of fuzzy Volterra–Fredholm equations. The Haar wavelet
approach was utilized by Ali and Hadhoud [14] to get a series of results
for nonlinear fuzzy integro-differential applications. Liu et al. (2021)
presented the concept of differential inclusions as a method for solving
fuzzy equations. The uniqueness and various characteristics of fuzzy
problems can be studied in [15–17].
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Let us examine a 2D heat problem of fuzzy fractional order such
as [18]:

𝐷𝛼
∅ 𝜗̃(ℜ,ℑ, ∅) = 𝐷2

ℜ𝜗̃(ℜ,ℑ, ∅) +𝐷2
ℑ𝜗̃(ℜ,ℑ, ∅) + 𝑔(ℜ,ℑ, ∅), (1)

with initial condition

𝜗̃(ℜ,ℑ, 0) = 𝑓 (ℜ,ℑ), (2)

wherein 𝛼 refers to the Caputo fractional derivative. and 𝑔 ∈ ([0,∞)×
[0,∞) × [0,∞), [0,∞)), 𝑓 ∈ ([0,∞) × [0,∞), [0,∞)). The source term
indicates the presence of excessive heat production or consumption
inside the system, which might result from multiple physical instances.
The existence of a source term has a significant impact on the solution
behaviors in the fuzzy fractional heat problem. The primary benefit
of utilizing the Caputo derivative is its capacity to present the sys-
tem more precisely with memory effects and long-range interactions
when compared to conventional integer-order derivatives. The two-
dimensional heat problem is a representation of thermal conversion
that occurs in a thin sheet of infinite. The component ‘‘𝜗̃’’ in Eq. (1)
reveals the climate of the body at any point in a thin sheet. The
mechanism of climate transfer has the potential to be explored in a
wide range of scientific and engineering problems. Consequently, there
are numerous domains in which the analysis of Eq. (1) is applicable,
including thermal dispersion in natural environments, thermodynamic
study of intricate structures with uncertain factors, and analysis of
thermal conversion in substances with unknown components.

In this research, we find a fuzzy solution to a fuzzy fractional heat
problem in two dimensions by combining the Sumudu transform with
the residual power series approach. The present scheme demonstrates
the significant results without using any restriction on variables and
assuming parameters. The clear advantage of this approach is that
the resulting components of the power series lead to the exact results
very swiftly. We display many visualization layouts for every case
with multiple values of fractional order 𝛼. The contour patterns for
the lower-bound solution have a smaller quantity that represents the
minimum temperature of the fuzzy heat system. In the same way, the
contour patterns for the upper-bound solution have a greater quantity
that represents the maximum temperature of the fuzzy heat system. In
addition, we exempt the requirement of He’s polynomials which may
complicate the actual problems. This study starts as follows: Section
2 includes the concept of fuzzy integrals and Sumudu transformation.
We construct the scheme of SRPSS and illustrate three applications
to provide the performance SRPSS in Sections 3 and 4 respectively.
Finally, we provide the conclusion in Section 5.

2. Preliminary concept of fuzzy integral and Sumudu transform

In this part, the fundamental features and principles of the Sumudu
transform are introduced, which are necessary for the construction of
the SRPSS.

Definition 2.1. Let 𝜗̃ be a continuous fuzzy component existing on the
spectrum [0, 𝑏] and a subset of region 𝑅. The fuzzy fractional integral
associated with ℘ can be expressed using Riemann–Liouville theory
as [18]

𝐈𝜁 𝜗̃(℘) = ∫

℘

0

(℘ − 𝜙)𝜁−1𝜗̃(𝜙)
𝛤 (𝜁 )

𝑑𝜁, 𝜙 ∈ (0,∞).

oreover, let 𝜗̃ ∈ 𝐶𝐹 [0, 𝑏] ∩𝐿𝐹 [0, 𝑏], so 𝐶𝐹 [0, 𝑏] and 𝐿𝐹 [0, 𝑏] represents
the continuity of fuzzy and its Lebesgue integrable functions. Hence,
the fuzzy fractional integral is
[

𝐈𝜁 𝜗̃(℘)
]

𝜇
=
[

𝐈𝜁𝜗𝜇(℘), 𝐈𝜁 𝜗̄𝜇(℘)
]

, 0 ≤ 𝜇 ≤ 1,

hence

𝐈𝜁𝜗𝜇(℘) = ∫

℘

0

(℘ − 𝜙)𝜁−1𝜗𝜇(𝜙)

𝛤 (𝜁 )
𝑑𝜙, 𝜁, 𝜙 ∈ (0,∞),

𝐈𝜁 𝜗̄𝜇(℘) =
℘ (℘ − 𝜙)𝜁−1𝜗̄𝜇(𝜙)𝑑𝜙, 𝜁, 𝜙 ∈ (0,∞).
159

∫0 𝛤 (𝜁 ) ℜ
Definition 2.2. Assume 𝜗̃ ∈ 𝐶𝐹 [0, 𝑏] ∩ 𝐿𝐹 [0, 𝑏], thus
[

𝜗𝜇(℘), 𝜗̄𝜇(℘)
]

here 𝜇 ∈ [0, 1] and ℘0 ∈ (0, 𝑏). Therefore, the fractional derivative in
aputo sense is stated as [18]

𝜁 𝜗̃
(

℘0
)]

𝜇 =
[

𝐷𝜁𝜗𝜇
(

℘0
)

,𝜁 𝜗̄𝜇
(

℘0
)

]

, 0 < 𝜁 ≤ 1,

in which

𝜁𝜗𝜇
(

℘0
)

=
⎡

⎢

⎢

⎣

∫

℘

0

(℘ − 𝜙)𝑚−𝜁−1 𝑑𝑚𝑚

𝑑𝜙𝑚 𝜗𝜇(𝜙)

𝛤 (𝑚 − 𝜁 )
𝑑𝜙

⎤

⎥

⎥

⎦℘=℘0

,

𝜁 𝜗̄𝜇
(

℘0
)

=
⎡

⎢

⎢

⎣

∫

℘

0

(℘ − 𝜙)𝑚−𝜁−1 𝑑𝑚

𝑑𝜙𝑚 𝜗̄𝜇(𝜙)

𝛤 (𝑚 − 𝜁 )
𝑑𝜙

⎤

⎥

⎥

⎦℘=℘0

.

The integration term on right side can converge whereas 𝑚 is rounded
up to a whole number. Given that 𝜁 is in the range of (0, 1], we may
ssume that 𝑚 is equal to 1.

roperties 1. All fuzzy numbers containing lower and upper bounds, must
et the following constraints [19]

• (i) 𝜔(𝜇) be a left-continuous function with bounded and nondecreasing
across the spectrum [0, 1].

• (ii) 𝜔̄(𝜇) be a right-continuous function with bounded and nonincreas-
ing across the spectrum [0, 1].

• (iii) 𝜔(𝜇) ≤ 𝜔̄(𝜇), 0 ≤ 𝜇 ≤ 1.

Let 𝜔(𝜇) = 𝜔̄(𝜇) = 𝜇, then 𝜇 is the crisp number.

efinition 2.3. The definition of the Riemann–Liouville operator for
> 1 is as follows [20,21]:

𝛼𝜗(∅) = 1
𝛤 (𝛼) ∫

∅

0
(∅ − 𝜏)𝛼−1𝜗(𝜏)𝑑𝜏, (𝛼 > 0),

𝐽 0𝜗(∅) = 𝜗(∅).

lso, we have

𝛼∅ℑ =
𝛤 (ℑ + 1)

𝛤 (ℑ + 𝛼 + 1)
∅𝛼+ℑ.

Definition 2.4. The Caputo fractional derivative is expressed as [22]:

𝐷𝛼
∅𝜗(∅) = 𝐽𝜑−𝛼𝐷𝑛𝑓 (∅) = 1

𝛤 (𝑛 − 𝛼) ∫

1

0
(∅ − 𝜏)𝜑−𝛼−1𝜗𝜑(𝜏)𝑑𝜏,

or 𝜑 − 1 < 𝛼 ≤ 𝜑, 𝜑 ∈ N, ∅ > 0.

efinition 2.5. The ST is defined as [23]

=
{

𝜗(∅) |
|

∃𝑀, 𝜏1, 𝜏2 > 0, |
|

𝑓 (∅) ∣< 𝑀𝑒|∅|∕𝜏𝑗 , if ∅ ∈ (−1)𝑗 × [0,∞)
}

,

hus

[𝜗(∅)] = 1
𝜃 ∫

∞

0
𝜗(∅)𝑒

−
∅
𝜃 𝑑∅, 0 < 𝜏1 ≤ 𝜃 ≤ 𝜏2.

Definition 2.6. The Caputo fractional derivative of ST is explained
as [24]:

S
[

𝐷𝛼
∅𝜗(∅)

]

= 𝜃−𝛼S[𝜗(∅)] −
𝑚
∑

𝑖=0
𝜃−𝛼+𝑖𝜗(𝑖)(0), 𝑖 < 𝛼 ≤ 𝑖 + 1, 𝑖 ∈ N.

efinition 2.7. Let the series [25]
∞
∑

𝑛=0
𝜗𝑛(∅ − ∅0)𝑛𝛼 = 𝜗0(ℜ) + 𝜗1(ℜ)(∅ − ∅0)𝛼 + 𝜗2(ℜ)(∅ − ∅0)2𝛼 +⋯ ,

< 𝑛 − 1 < 𝛼 ≤ 𝑛, ∅ ≥ ∅0.

e expressed as the power series about ∅ = ∅0 with ∅ as a variable and
as the coefficients of the series.
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3. Development of SRPSS

The RPSS is a powerful approach and offers convergence series solu-
tions to linear and nonlinear differential equations. In 2013, Arqub [26]
developed the concept of RPSS by combining Taylor’s series and the
residual error function for the solution of fuzzy differential equations.
Later, Arqub et al. [27] studied multiple and unique procedures for
RPSS to obtain quick power series solutions for nonlinear boundary
value problems of time-fractional order. Many researchers showed the
excellence of RPSS to various fractional PDEs such as fractional foam
drainage equation [28], fractional relaxation oscillation equation [29],
fractional cancer tumor models [30] and many others [31,32]

Here, we build the concept of the Sumudu residual power series
scheme directly, without taking any assumptions into account. Let us
assume a general 2D fuzzy fractional problem

𝐷𝛼
∅ 𝜗̃(ℜ,ℑ, ∅) = 𝐿𝜗̃(ℜ,ℑ, ∅) +𝑁𝜗̃(ℜ,ℑ, ∅) + 𝑔̃(ℜ,ℑ, ∅), (3)

with initial fuzzy condition

𝜗̃(ℜ,ℑ, 0) = 𝜔̃(ℜ,ℑ), (4)

Step 1: Applying ST on Eq. (3), it yields

S
[

𝐷𝛼
∅ 𝜗̃(ℜ,ℑ, ∅)

]

= S
[

𝐿𝜗̃(ℜ,ℑ, ∅) +𝑁𝜗̃(ℜ,ℑ, ∅) + 𝑔̃(ℜ,ℑ, ∅)
]

.

Using the concept of ST together its fuzzy condition, we get

S[𝜗̃(ℜ,ℑ, ∅)] = 𝜔̃(ℜ,ℑ) + 𝜃𝛼
[

𝐿𝜗̃(ℜ,ℑ, ∅) +𝑁𝜗̃(ℜ,ℑ, ∅) + 𝑔̃(ℜ,ℑ, ∅)
]

. (5)

Step 2: Taking the inverse ST on Eq. (5), we get

𝜗̃(ℜ,ℑ, ∅) = 𝐺̃(ℜ,ℑ, ∅) + S−1
[

𝜃𝛼
{

𝐿𝜗̃(ℜ,ℑ, ∅) +𝑁𝜗̃(ℜ,ℑ, ∅)
}

]

, (6)

where

𝐺̃(ℜ, ∅) = 𝜔̃(ℜ,ℑ) + S−1
[

𝜃𝛼 𝑔̃(ℜ,ℑ, ∅)
]

.

Step 3: Let us consider that Eq. (3) has the following general solution

𝜗̃(ℜ,ℑ, ∅) =
∞
∑

𝑛=0
𝑓𝑛(ℜ,ℑ) ∅𝑛𝛼

𝛤 (𝑛𝛼 + 1)
. (7)

Then, its truncated series is

𝜗̃𝑘(ℜ,ℑ, ∅) =
𝑘
∑

𝑛=0
𝑓𝑛(ℜ,ℑ) ∅𝑛𝛼

𝛤 (𝑛𝛼 + 1)
. (8)

Step 4: The concept of the residual function 𝑅𝑒𝑠𝜗̃ for Eq. (8) is

𝑅𝑒𝑠𝜗̃ = 𝜗̃(ℜ,ℑ, ∅)−

[

𝐺̃(ℜ,ℑ, ∅)+S−1
{

𝜃𝛼
(

𝐿𝜗̃(ℜ,ℑ, ∅)+𝑁𝜗̃(ℜ,ℑ, ∅)
)

}]

. (9)

Thus, its expression for the truncated residual function is

𝑅𝑒𝑠𝜗̃𝑘 = 𝜗̃𝑘(ℜ,ℑ, ∅)−

[

𝐺̃(ℜ,ℑ, ∅)+S−1
{

𝜃𝛼
(

𝐿𝜗̃𝑘(ℜ,ℑ, ∅)+𝑁𝜗̃𝑘(ℜ,ℑ, ∅)
)

}]

.

(10)

Now, some important pinpoints of RPSS are as follows:

• lim𝑘→∞ Res 𝜗̃𝑘(ℜ,ℑ, ∅) = Res 𝜗̃(ℜ, ∅) = 0,
• 𝐷𝑛𝛼

∅ Res 𝜗̃𝑘(ℜ,ℑ, 0) = 0, 𝑛 = 0, 1, 2,…

we can obtain the subsequent outcomes:

𝜗̃𝑛(ℜ,ℑ, ∅) = 𝜗̃0(ℜ,ℑ, ∅) + 𝜗̃1(ℜ,ℑ, ∅) + 𝜗̃2(ℜ,ℑ, ∅) + 𝜗̃3(ℜ,ℑ, ∅) +⋯ ,

such that

𝜗̃(ℜ,ℑ, ∅) = lim
𝑁→0

𝑁
∑

𝑛=0
𝜗̃𝑛(ℜ,ℑ, ∅),

where

𝜗̃ (ℜ,ℑ, ∅) = 𝜗̃(ℜ,ℑ, 0),
160

0

𝜗̃1(ℜ,ℑ, ∅) = 𝑓1(ℜ,ℑ) ∅𝛼
𝛤 (1 + 𝛼)

,

̃2(ℜ,ℑ, ∅) = 𝑓2(ℜ,ℑ) ∅2𝛼
𝛤 (1 + 2𝛼)

,

⋮

𝜗̃𝑛(ℜ,ℑ, ∅) = 𝑓𝑛(ℜ,ℑ) ∅𝑛𝛼
𝛤 (1 + 𝑛𝛼)

.

Therefore, the estimated outcomes obtained from SRPSS are as follows:

𝜗̃(ℜ,ℑ, ∅) = 𝜗̃0(ℜ,ℑ, ∅) + 𝜗̃1(ℜ,ℑ, ∅) + 𝜗̃2(ℜ,ℑ, ∅) + 𝜗̃3(ℜ,ℑ, ∅) +⋯ .

4. Numerical applications

This section showcases the effectiveness of SRPSS in acquiring the
fuzzy outcomes of a 2D heat problem of fuzzy fractional order 𝛼. In
this analysis, we examine three specific examples and calculate the
solutions for both the lower and upper bounds at various fractional
orders. The upper-bound and lower-bound results are derived by con-
sidering the maximum and minimum range of uncertain parameters in
this model. The findings are displayed as a fractional series of power
that converge to the precise outcomes. These outcomes are computed
using the Mathematica programming.

4.1. Example 1

Let us examine the two-dimensional time-fractional fuzzy heat prob-
lem

𝐷𝛼
∅ 𝜗̃(ℜ,ℑ, ∅) = 𝜗̃ℜℜ(ℜ,ℑ, ∅) + 𝜗̃ℑℑ(ℜ,ℑ, ∅) +ℜ +ℑ + ∅, (11)

subject to

𝜗̃(ℜ,ℑ, 0) = 𝜔̃𝑒−(ℜ+ℑ). (12)

here 𝜔̃ = [𝜔, 𝜔̄] = [𝜇 − 1, 1 − 𝜇].

4.1.1. Lower bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (11), we can write the lower bound fuzzy problem as

follows
𝜕𝛼𝜗
𝜕∅𝛼

=
𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ +ℑ + ∅, (13)

with the initial condition

𝜗(ℜ,ℑ, 0) = (𝜇 − 1)𝑒−(ℜ+ℑ). (14)

Taking ST, we get

S
[ 𝜕𝛼𝜗
𝜕∅𝛼

]

= S
[ 𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ +ℑ + ∅
]

.

mploying the definition of ST under the Caputo fractional operator, it
ives

[𝜗(ℜ,ℑ, ∅)] = (𝜇 − 1)𝑒−(ℜ+ℑ) + 𝜃𝛼S
[ 𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ +ℑ + ∅
]

.

Applying inverse ST, we obtain

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1)𝑒−(ℜ+ℑ) + S−1
[

𝜃𝛼
{

𝑆
( 𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ+ℑ+ ∅
)

}]

.

Using the aforementioned approach, we receive the iterations as fol-
lows:

𝜗1(𝜍, 𝜇, 𝜏) = 2(𝜇 − 1)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

,

𝜗2(ℜ,ℑ, ∅) = 4(𝜇 − 1)𝑒−(ℜ+ℑ) ∅2𝛼
𝛤 (2𝛼 + 1)

,

𝜗3(ℜ,ℑ, ∅) = 8(𝜇 − 1)𝑒−(ℜ+ℑ) ∅3𝛼
𝛤 (3𝛼 + 1)

,

⋮ .
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Consequently, these results can be written as follows:

𝜗(ℜ,ℑ, ∅) = 𝜗0(ℜ,ℑ, ∅) + 𝜗1(ℜ,ℑ, ∅) + 𝜗2(ℜ,ℑ, ∅) + 𝜗3(ℜ,ℑ, ∅) +⋯ ,

= (𝜇 − 1)𝑒−(ℜ+ℑ) +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ ∅𝛼+1
𝛤 (𝛼 + 2)

+ 2(𝜇 − 1)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)𝑒−(ℜ+ℑ) ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(𝜇 − 1)𝑒−(ℜ+ℑ) ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(15)

Remark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1)𝑒−(ℜ+ℑ) + 2(𝜇 − 1)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)𝑒−(ℜ+ℑ) ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(𝜇 − 1)𝑒−(ℜ+ℑ) ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ ,

= (𝜇 − 1)𝑒−(ℜ+ℑ)
[

1 + 2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯
]

.

(16)

t can be in closed form

(ℜ,ℑ, ∅) = (𝜇 − 1)𝑒−(ℜ+ℑ)
∞
∑

𝑛=0

(2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (17)

4.1.2. Upper bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (11), we can write the upper bound fuzzy problem as

follows
𝜕𝛼 𝜗̄
𝜕∅𝛼

= 𝜕2𝜗̄
𝜕ℜ2

+ 𝜕2𝜗̄
𝜕ℑ2

+ℜ +ℑ + ∅, (18)

ith the initial condition

̄(ℜ,ℑ, 0) = (1 − 𝜇)𝑒−(ℜ+ℑ). (19)

sing the aforementioned approach, we receive the subsequent out-
omes:

0̄(ℜ,ℑ, ∅) = (1 − 𝜇)𝑒−(ℜ+ℑ) +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ ∅𝛼+1
𝛤 (𝛼 + 2)

,

1̄(ℜ,ℑ, ∅) = 2(1 − 𝜇)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

,

𝜗2(ℜ,ℑ, ∅) = 4(1 − 𝜇)𝑒−(ℜ+ℑ) ∅2𝛼
𝛤 (2𝛼 + 1)

,

𝜗3(ℜ,ℑ, ∅) = 8(1 − 𝜇)𝑒−(ℜ+ℑ) ∅3𝛼
𝛤 (3𝛼 + 1)

,

⋮ .

Consequently, these results can be written as follows:

𝜗̄(ℜ,ℑ, ∅) = 𝜗0(ℜ,ℑ, ∅) + 𝜗1(ℜ,ℑ, ∅) + 𝜗2(ℜ,ℑ, ∅) + 𝜗3(ℜ,ℑ, ∅) +⋯ ,

= (1 − 𝜇)𝑒−(ℜ+ℑ) +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ ∅𝛼+1
𝛤 (𝛼 + 2)

+ 2(1 − 𝜇)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)𝑒−(ℜ+ℑ) ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(1 − 𝜇)𝑒−(ℜ+ℑ) ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(20)

Remark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

𝜗̄(ℜ,ℑ, ∅) = (1 − 𝜇)𝑒−(ℜ+ℑ) + 2(1 − 𝜇)𝑒−(ℜ+ℑ) ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)𝑒−(ℜ+ℑ) ∅2𝛼 + 8(1 − 𝜇)𝑒−(ℜ+ℑ) ∅3𝛼 +⋯ ,
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𝛤 (2𝛼 + 1) 𝛤 (3𝛼 + 1)
= (1 − 𝜇)𝑒−(ℜ+ℑ)
[

1 + 2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯
]

.
(21)

It can be in closed form

𝜗̄(ℜ,ℑ, ∅) = (1 − 𝜇)𝑒−(ℜ+ℑ)
∞
∑

𝑛=0

(2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (22)

Fig. 1 is divided into four parts, showcasing the lower bound fuzzy
findings for various fractional orders of 𝛼. Figs. 1(a) and 1(c) present
the lower bound surfaces results with space components 𝜇 = 0.4,
0 ≤ ℜ ≤ 5, 0 ≤ ℑ ≤ 5 upon 𝛼 = 0.5 and 𝛼 = 1 respectively. Similarly,
igs. 1(b) and 1(d) reveal the lower bound contour results with space
omponents 𝜇 = 0.4, −1 ≤ ℜ ≤ 1, −1 ≤ ℑ ≤ 1 upon 𝛼 = 0.5 and 𝛼 = 1

respectively. Fig. 2 is divided into four parts, showcasing the upper
bound fuzzy findings for various fractional orders of 𝛼. Figs. 2(a) and
2(c) present the upper bound surfaces results with space components
𝜇 = 0.4, 0 ≤ ℜ ≤ 1, 0 ≤ ℑ ≤ 1 upon 𝛼 = 0.5 and 𝛼 = 1 respectively.
Similarly, Figs. 2(b) and 2(d) reveal the upper bound contour results
with space components 𝜇 = 0.4, −1 ≤ ℜ ≤ 1, −1 ≤ ℑ ≤ 1 upon 𝛼 = 0.5
and 𝛼 = 1 respectively. We consider the amount of ∅ = 0.1 for lower
and upper bound surface and contour fuzzy results respectively, On
observing, the fractional order on both values gives excellent results
to show that our proposed approach is legitimate and robust for the
fuzzy fractional problems. Fig. 3 states the 2D fuzzy plot for lower and
upper bound results when 𝜇 = 0.4 and 𝜇 = 0.8.

.2. Example 2

Let us examine another two-dimensional time-fractional fuzzy heat
roblem

𝛼
∅ 𝜗̃(ℜ,ℑ, ∅) = 𝜗̃ℜℜ(ℜ,ℑ, ∅) + 𝜗̃ℑℑ(ℜ,ℑ, ∅) +ℜ +ℑ + ∅2, (23)

ith the initial condition

̃(ℜ,ℑ, 0) = 𝜔̃ sin[𝜋(ℜ +ℑ)]. (24)

ere 𝜔̃ = [𝜔, 𝜔̄] = [𝜇 − 1, 1 − 𝜇].

4.2.1. Lower bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (23), we can write the lower bound fuzzy problem as

follows
𝜕𝛼𝜗
𝜕∅𝛼

=
𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ +ℑ + ∅2, (25)

with the initial condition

𝜗(ℜ,ℑ, 0) = (𝜇 − 1) sin[𝜋(ℜ +ℑ)]. (26)

Using the aforementioned approach, we receive the subsequent out-
comes:

𝜗0(ℜ,ℑ, ∅) = (𝜇 − 1) sin[𝜋(ℜ +ℑ)] +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 2 ∅𝛼+2
𝛤 (𝛼 + 2)

,

1(ℜ,ℑ, ∅) = −2(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

,

𝜗2(ℜ,ℑ, ∅) = 4(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

,

𝜗3(ℜ,ℑ, ∅) = −8(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼
𝛤 (3𝛼 + 1)

,

⋮ .
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Fig. 1. 3D surface and contour plots of 𝜗(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.1).

Fig. 2. 3D surface and contour plots of 𝜗̄(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.1).
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Fig. 3. 2D fuzzy 𝜗̃(ℜ,ℑ) solutions on different fractional order for Example (4.1).
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I

𝜗

onsequently, these results can be written as follows:

(ℜ,ℑ, ∅) = 𝜗0(ℜ,ℑ, ∅) + 𝜗1(ℜ,ℑ, ∅) + 𝜗2(ℜ,ℑ, ∅) + 𝜗3(ℜ,ℑ, ∅) +⋯ ,

= (𝜇 − 1) sin[𝜋(ℜ +ℑ)] +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 2 ∅𝛼+2
𝛤 (𝛼 + 2)

− 2(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

− 8(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(27)

Remark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1) sin[𝜋(ℜ +ℑ)] − 2(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

− 8(𝜇 − 1)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(28)

It can be in closed form

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1) sin[𝜋(ℜ +ℑ)]
∞
∑

𝑛=0

(−1)𝑛(2𝜋2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (29)

4.2.2. Upper bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (23), we can write the lower bound fuzzy problem as

follows
𝜕𝛼 𝜗̄
𝜕∅𝛼

= 𝜕2𝜗̄
𝜕ℜ2

+ 𝜕2𝜗̄
𝜕ℑ2

+ℜ +ℑ + ∅2, (30)

ith the initial condition

̄(ℜ,ℑ, 0) = (1 − 𝜇) sin[𝜋(ℜ +ℑ)]. (31)

sing the aforementioned approach, we receive the subsequent out-
omes:

0̄(ℜ,ℑ, ∅) = (1 − 𝜇) sin[𝜋(ℜ +ℑ)] +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 2 ∅𝛼+2
𝛤 (𝛼 + 2)

,

1̄(ℜ,ℑ, ∅) = −2(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

,

𝜗2(ℜ,ℑ, ∅) = 4(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

,

3̄(ℜ,ℑ, ∅) = −8(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼 ,
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𝛤 (3𝛼 + 1)
⋮ .

Consequently, these results can be written as follows:

𝜗̄(ℜ,ℑ, ∅) = 𝜗0(ℜ,ℑ, ∅) + 𝜗1(ℜ,ℑ, ∅) + 𝜗2(ℜ,ℑ, ∅) + 𝜗3(ℜ,ℑ, ∅) +⋯ ,

= (1 − 𝜇) sin[𝜋(ℜ +ℑ)] +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 2 ∅𝛼+2
𝛤 (𝛼 + 2)

− 2(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

− 8(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(32)

emark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

̄(ℜ,ℑ, ∅) = (1 − 𝜇) sin[𝜋(ℜ +ℑ)] − 2(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅2𝛼
𝛤 (2𝛼 + 1)

− 8(1 − 𝜇)𝜋2 sin[𝜋(ℜ +ℑ)] ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(33)

t can be in closed form

̄(ℜ,ℑ, ∅) = (1 − 𝜇) sin[𝜋(ℜ +ℑ)]
∞
∑

𝑛=0

(−1)𝑛(2𝜋2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (34)

Fig. 4 is divided into four parts, showcasing the lower bound fuzzy
findings for various fractional orders of 𝛼.. Figs. 4(a) and 4(c) present
the lower bound surfaces results with space coordinates 𝜇 = 0.4, 0 ≤
ℜ ≤ 3, 0 ≤ ℑ ≤ 3 upon 𝛼 = 0.5 and 𝛼 = 1 respectively. Similarly,
Figs. 4(b) and 4(d) reveal the lower bound contour results with space
components 𝜇 = 0.4, −1 ≤ ℜ ≤ 1, −1 ≤ ℑ ≤ 1 upon 𝛼 = 0.5 and 𝛼 = 1
respectively. Fig. 5 is divided into four parts, showcasing the upper
bound fuzzy findings for various fractional orders of 𝛼. Figs. 5(a) and
5(c) present the upper bound surfaces results with space components
𝜇 = 0.4, 0 ≤ ℜ ≤ 1, 0 ≤ ℑ ≤ 1 upon 𝛼 = 0.5 and 𝛼 = 1 respectively.
Similarly, Figs. 5(b) and 5(d) reveal the upper bound contour results
with space components 𝜇 = 0.4, 0 ≤ ℜ ≤ 1, 0 ≤ ℑ ≤ 1 upon 𝛼 = 0.5
and 𝛼 = 1 respectively. We consider the amount of ∅ = 0.1 for lower
and upper bound surface and contour fuzzy results respectively. On
observing, the fractional order on both values gives excellent results
to show that our proposed approach is legitimate and robust for the
fuzzy fractional problems. Fig. 6 states the 2D fuzzy plot for lower and
upper bound results when 𝜇 = 0.4 and 𝜇 = 0.8.
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Fig. 4. 3D surface and contour plots of 𝜗(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.2).

Fig. 5. 3D surface and contour plots of 𝜗̄(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.2).
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.3. Example 3

Let us examine another two-dimensional time-fractional fuzzy heat
roblem

𝛼
∅ 𝜗̃(ℜ,ℑ, ∅) = 1

2
(ℜ+ℑ)2

[

𝜗̃ℜℜ(ℜ,ℑ, ∅)+𝜗̃ℑℑ(ℜ,ℑ, ∅)
]

+ℜ+ℑ+∅4, (35)

with the initial condition

𝜗̃(ℜ,ℑ, 0) = 𝜔̃(ℜ +ℑ)2. (36)

here 𝜔̃ = [𝜔, 𝜔̄] = [𝜇 − 1, 1 − 𝜇].

4.3.1. Lower bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (35), we can write the lower bound fuzzy problem as

follows

𝜕𝛼𝜗
𝜕∅𝛼

= 1
2
(ℜ +ℑ)2

𝜕2𝜗
𝜕ℜ2

+
𝜕2𝜗
𝜕ℑ2

+ℜ +ℑ + ∅4, (37)

ith the initial condition

(ℜ,ℑ, 0) = (𝜇 − 1)(ℜ +ℑ)2. (38)

Using the aforementioned approach, we receive the subsequent out-
comes:

𝜗0(ℜ,ℑ, ∅) = (𝜇 − 1)(ℜ +ℑ)2 +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 24 ∅𝛼+4
𝛤 (𝛼 + 5)

,

1(ℜ,ℑ, ∅) = 2(𝜇 − 1)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

,

𝜗2(ℜ,ℑ, ∅) = 4(𝜇 − 1)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

,

𝜗3(ℜ,ℑ, ∅) = 8(𝜇 − 1)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

,

⋮ .

Consequently, these results can be written as follows:

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1)(ℜ +ℑ)2 +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 24 ∅𝛼+4
𝛤 (𝛼 + 5)

+ 2(𝜇 − 1)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(𝜇 − 1)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(39)
165
emark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1)(ℜ +ℑ)2 + 2(𝜇 − 1)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4(𝜇 − 1)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(𝜇 − 1)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(40)

It can be in closed form

𝜗(ℜ,ℑ, ∅) = (𝜇 − 1)(ℜ +ℑ)2
∞
∑

𝑛=0

(2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (41)

4.3.2. Upper bound findings for 𝜗̃(ℜ,ℑ, ∅)
From Eq. (35), we can write the upper bound fuzzy problem as

follows

𝜕𝛼 𝜗̄
𝜕∅𝛼

= 1
2
(ℜ +ℑ)2 𝜕2𝜗̄

𝜕ℜ2
+ 𝜕2𝜗̄

𝜕ℑ2
+ℜ +ℑ + ∅4, (42)

ith the initial condition

̄(ℜ,ℑ, 0) = (1 − 𝜇)(ℜ +ℑ)2. (43)

sing the aforementioned approach, we receive the subsequent out-
omes:

0̄(ℜ,ℑ, ∅) = (1 − 𝜇)(ℜ +ℑ)2 +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 24 ∅𝛼+4
𝛤 (𝛼 + 5)

,

1̄(ℜ,ℑ, ∅) = 2(1 − 𝜇)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

,

2̄(ℜ,ℑ, ∅) = 4(1 − 𝜇)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

,

𝜗3(ℜ,ℑ, ∅) = 8(1 − 𝜇)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

,

⋮ .

Consequently, these results can be written as follows:

𝜗̄(ℜ,ℑ, ∅) = (1 − 𝜇)(ℜ +ℑ)2 +ℜ ∅𝛼
𝛤 (𝛼 + 1)

+ℑ ∅𝛼
𝛤 (𝛼 + 1)

+ 24 ∅𝛼+4
𝛤 (𝛼 + 5)

+ 2(1 − 𝜇)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(1 − 𝜇)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(44)
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Fig. 7. 3D surface and contour plots of 𝜗(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.3).

Fig. 8. 3D surface and contour plots of 𝜗̄(ℜ,ℑ, ∅) solutions with 𝛼 = 0.5, 1 for Example (4.3).
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emark. If 𝑔(ℜ,ℑ, ∅) = 0, then above equation becomes as

̄(ℜ,ℑ, ∅) = (1 − 𝜇)(ℜ +ℑ)2 + 2(1 − 𝜇)(ℜ +ℑ)2 ∅𝛼
𝛤 (𝛼 + 1)

+ 4(1 − 𝜇)(ℜ +ℑ)2 ∅2𝛼
𝛤 (2𝛼 + 1)

+ 8(1 − 𝜇)(ℜ +ℑ)2 ∅3𝛼
𝛤 (3𝛼 + 1)

+⋯ .

(45)

t can be in closed form

̄(ℜ,ℑ, ∅) = (1 − 𝜇)(ℜ +ℑ)2
∞
∑

𝑛=0

(2∅𝛼)𝑛

𝛤 (𝑛𝛼 + 1)
. (46)

Fig. 7 is divided into four parts, showcasing the lower bound fuzzy
findings for various fractional orders of 𝛼. Figs. 7(a) and 7(c) present
the lower bound surfaces results with space coordinates 𝜇 = 0.4, 0 ≤
ℜ ≤ 5, 0 ≤ ℑ ≤ 5 upon 𝛼 = 0.5 and 𝛼 = 1 respectively. Similarly,
Figs. 7(b) and 7(d) reveal the lower bound contour results with space
components 𝜇 = 0.4, −3 ≤ ℜ ≤ 3, −3 ≤ ℑ ≤ 3 upon 𝛼 = 0.5 and 𝛼 = 1
espectively. Fig. 8 is divided into four parts, showcasing the upper
ound fuzzy findings for various fractional orders of 𝛼. Figs. 8(a) and
(c) present the upper surfaces results with space components 𝜇 = 0.4,
3 ≤ ℜ ≤ 3, −3 ≤ ℑ ≤ 3 upon 𝛼 = 0.5 and 𝛼 = 1 respectively. Similarly,
igs. 8(b) and 8(d) reveal the upper bound contour results with space
omponents 𝜇 = 0.4, −3 ≤ ℜ ≤ 3, −3 ≤ ℑ ≤ 3 upon 𝛼 = 0.5 and 𝛼 = 1
espectively. We consider the amount of ∅ = 0.1 for lower and upper
ound surface and contour fuzzy results respectively. On observing,
he fractional order on both values gives excellent results to show that
ur proposed approach is legitimate and robust for the fuzzy fractional
roblems. Fig. 9 states the 2D fuzzy plot for lower and upper bound
esults when 𝜇 = 0.4 and 𝜇 = 0.8.

. Conclusion

In this work, we have successfully derived the outcomes of a 2D
eat problem with fuzzy fractional order in the presence of some source
erms. We examine the fractional derivatives in the Caputo sense. The
rimary benefit of utilizing the Caputo derivative is its capacity to
resent the system more precisely with memory effects and long-range
nteractions when compared to conventional integer-order derivatives.
ur proposed approach is more efficient and time-saving compared to

he classical RPSS. The ST is capable of linear problems only, so we
ntroduce RPSS to handle the nonlinear terms where the results can
e obtained in the form of a series solution. We have plotted vari-
us graphs in different fractional order and captured the significance
esults. The lower and upper-bound solutions are illustrated through
ontour and surface depictions at various parameters of fractional order
. The accuracy and capability of the suggested approach are demon-
trated through the use of surface and contour plots. The physical
odel that exhibits characteristics such as uncertainty, non-linearity,
167
nd ambiguity in the fractional problems of science and engineering
ay be handled using fuzzy logic, and as a result, our approach can be

onveniently utilized for these models in the future.
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