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This article investigates the stochastic Davey–Stewartson equations influenced by multiplicative noise 
within the framework of the Itô calculus. These equations are of significant importance because they 
extend the nonlinear Schrödinger equation into higher dimensions, serving as fundamental models for 
nonlinear phenomena in plasma physics, nonlinear optics, and hydrodynamics. This paper is motivated 
by the need to understand how random fluctuations affect soliton behavior in nonlinear systems. This 
is particularly relevant in applications such as turbulent plasma waves and optical fibers, where noise 
can significantly impact wave propagation. We employ the modified extended direct algebraic method 
for finding exact stochastic soliton solutions to the stochastic Davey–Stewartson equations. The study 
derives a class of exact stochastic soliton solutions, including dark, singular, rational, and periodic 
waves. MATLAB is used to provide visual representations of these stochastic soliton solutions through 
3D surface plots, contour plots, and line plots. These solutions offer essential insights into how random 
disturbances influence nonlinear wave systems, particularly in turbulent plasma waves and optical 
fibers. To the best of our knowledge, the application of the modified extended direct algebraic method 
to the stochastic Davey–Stewartson equations with multiplicative noise, along with the subsequent 
analysis of the stabilizing effects on dark, singular, rational, and periodic stochastic soliton solutions is 
novel. The study demonstrates how multiplicative Brownian motion regulates these wave structures, 
providing new information on the impact of noise on higher-dimensional nonlinear systems.
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The Davey–Stewartson equations are higher-dimensional generalizations of the nonlinear Schrödinger equation 
that are crucial models for a variety of non-linear phenomena in plasma physics, including nonlinear optics and 
hydrodynamics1. The impact of multiplicative noise on exact stochastic soliton solutions, especially using the 
modified extended direct algebraic method, has not been thoroughly investigated, although the deterministic 
Davey–Stewartson equations have been the topic of much research, and stochastic versions have been studied 
using a variety of numerical and analytical techniques. Researchers have not fully investigated how multiplicative 
Brownian motion affects stabilizing processes in dark, bright, rational, and periodic wave solutions of these 
equations. This paper fills the existing research gap through the application of a modified extended direct algebraic 
method to obtain exact stochastic soliton solutions for the Davey–Stewartson equations with multiplicative noise. 
The paper examines how multiplicative Brownian motion stabilizes dark, singular, rational, and periodic wave 
solutions. The research adds new analytical solutions along with insights into the complex noise-wave dynamics 
in higher-dimensional systems where multiplicative noise proves essential for stabilizing wave structures. The 
investigation under Itô calculus explores the stochastic DS equation which includes multiplicative noise2–10. In 
1974, Davey and Stewartson developed the Davey–Stewartson equation (DSE). The DSE equation illustrates 
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the time-varying evolution of a three-dimensional wave packet in shallow water. Hydrodynamics, non-linear 
optics, plasma physics, and other disciplines have used the deterministic Davey–Stewartson equations (1) and 
(2), or σ = 0. For example, the interaction between microwaves and a properly matched spatio-temporal optical 
pattern may be explained by the DDSE solutions11,12. We consider the following Davey–Stewartson equations 
that are affected by multiplicative noise in the stochastic sense:13

 
iΨt + 1

2α2(Ψxx + α2Ψyy) + λ|Ψ|2Ψ − ΦΨ + iσΨΞt = 0,  (1.1)

 Φxx − α2Φyy − 2λ(|Ψ|2)xx = 0,  (1.2)

In Eqs. (1.1) and (1.2), Ψ(x, y, t) represents the complex wave amplitude, while Φ(x, y, t) is a real-valued 
potential. The parameter α determines the type of Davey–Stewartson equation: α = 1 corresponds to the DS-I 
equation, whereas α = i yields the DS-II equation14–17. The cubic non-linearity is governed by the constant λ, 
where λ = +1 and λ = −1 represent the focusing and defocusing cases, respectively. The noise intensity is 
denoted by σ, which scales the influence of the multiplicative noise term Ξt in the Itô sense, and it is the time 

derivative of Brownian motion Ξ(t), that is, Ξt = d Ξ
dt

 and Ξ(t) is also called the standard Wiener process. It 

depends only on t18. Physically, the terms involving Ψxx and Ψyy  represent dispersion in the x and y directions, 
respectively. The term involving Φ accounts for a self-induced potential, and the noise term iσΨΞt represents 
the influence of random fluctuations on wave dynamics.

The stochastic DS-equations maintain integrability based on the characteristics of introduced stochastic noise 
and system nonlinearity. The deterministic DS-I and DS-II equations possess integrable solutions when specific 
conditions apply, whereas inverse scattering methods together with soliton and rational solutions become 
available. When Brownian motion serves as the multiplicative noise input the equations lose their integrability 
properties which hinders the application of inverse scattering transform methods. Most noise perturbations 
eliminate strict integrability but some specific noise structures or weak stochastic disturbances enable partial 
integrability and exact solutions. The noise characteristics determine whether integrable properties can be 
preserved because additive noise preserves integrability better than multiplicative noise. The MEDA method 
and other analytical approaches enable researchers to obtain exact or semi-analytical solutions even after full 
integrability is lost. Numerical methods including Monte Carlo simulations deliver important statistical data 
about solution behavior when studying stochastic systems. The analytical and numerical tractability of stochastic 
DS equations with multiplicative noise remains intact despite their lack of integrability properties.

The introduction of the Wiener process within our model is unique as it breaks away from deterministic 
definitions. It is possible to model structures changing over time using mathematical tools such as random 
processes, and the Wiener process in particular. This continuous-time stochastic process, which is utilised 
in stochastic calculus and has many applications in the social sciences, physical sciences, and quantitative 
finance, can be thought of as a continuous deformation of the fundamental random walk. This continuous-time 
stochastic process, which can be viewed as a continuous variation of the basic random walk, plays a crucial role 
in stochastic calculus and has found applications in diverse fields, from quantitative finance to physical sciences 
and social sciences. It makes possible to obtain the stochastic solutions in the sense of Itô calculus which is useful 
to study various processes like the formation of the ocean waves, the processes related to optical communication, 
the phenomena connected with the wave collapses in the astrophysics. We investigate the interplay between 
stochastic and random noise components and their link to physical properties to gain a better understanding of 
how these two types of factors affect wave behaviour.

Consider a Wiener process Ξ(t) that is non-differentiable and has the following characteristics:19,20

 
lim

∆t→0
∆Ξ(t) = 0;  (1.3)

 
lim

∆t→0

(∆Ξ(t))N

∆t
=

{ 1, N = 2
0, N = 3, 4, . . .

 (1.4)

A stochastic process (Ξt)t≤0 is said to be Brownian motion if the following criteria are met:

• Ξt is a continuous function for t ≤ 0.
• Ξ0 = 0.
• For t1 < t2, Ξt2 − Ξt1  is independent.
• Ξt2 − Ξt1  has a normal distribution κ(0, t2 − t1).

The fundamental nature of expectation lies at the core of probability theory as well as stochastic analysis 
when solving stochastic differential equations. Expectation enables analysis of average results obtained from 
multiple iterations of the random process. Stochastic wave equations require expectation to understand the 
statistical attributes of wave solutions which occur when noise act on them.25–28 There have been several 
effective techniques suggested, including the new extended direct algebraic method29, ϕ6-expansion method30, 
Hirota bilinear method31–33, fractional modified Sardar subequation method and fractional enhanced modified 
extended tanh-expansion method34, generalized exponential rational function method35, generalized tanh-coth 
method36, generalized Kudryashov method37, improved tan( ϕ

2 -expansion method38, new modified exponential 
Jacobi technique39 and so on. Here, we apply a powerful technique known as the modified extended direct 
algebraic method40–43 to build a variety of exact soliton solutions for the nonlinear partial differential equation.
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The modified extended direct algebraic method represents an effective method to solve nonlinear partial 
differential equations including stochastic Davey–Stewartson equations. This method delivers three main 
benefits which include exact solution-finding capabilities and efficient nonlinearity management and stochastic 
system compatibility that makes it ideal for practical usage. The method shows flexibility for use in plasma 
physics nonlinear optics and hydrodynamics because of its ability to analyze wave phenomena and soliton 
dynamics. The modified extended direct algebraic method delivers an improved understanding of random 
wave stabilization effects through its use of multiplicative noise, thus becoming an essential tool for studying 
stochastic wave systems

Algorithm for modified extended direct algebraic method
We provide the modified extended direct algebraic method44–47 in this section. It is also referred to as the 
modified extended tanh-function method48–54. The following steps outline the main steps in this technique, 
which we summarize here:

Suppose the following nonlinear partial differential equation

 E(u, ut, ux, utt, uxx, uxt, · · · ) = 0, (2.1)

E is a polynomial in u = u(x, t) and its numerous partial derivatives, which involve nonlinear terms and the 
highest order derivatives, whereas u = u(x, t) is a wave function.

Step 1. For wave solutions, apply the following wave transformation.

 u = U(ζ), ζ = x − v t. (2.2)

where v is the wave speed.
Step 2. A nonlinear ordinary differential equation is obtained by plugging Eq. (2.2) into Eq. (2.1).

 O(U, U ′, U ′′, U ′′′, · · · ) = 0. (2.3)

Step 3. Let U(ζ) be the next variable that can be expressed as a polynomial in η(ζ)

 
U(ζ) = B0 +

M∑
i=1

Biη
i + Ciη

−i, (2.4)

where η′ satisfies the nonlinear ODE, whereas there B0, Bi, Ci, are unknown constants to be found later.

 η′ = ρ + η2, (2.5)

where ρ is an arbitrary constant, and η′ = dη
dζ .

Step 4. Considering the homogeneous balance between the non-linear terms and the highest-order derivatives 
present in Eq. (2.3), one can deduce the value of the natural number M. To obtain a system of algebraic equations 
with respect to Bi, Ci, and ρ where i = 1, 2, 3, · · · M , plug Eq. (2.4) into Eq. (2.2) and Eq. (2.5). At this stage, 
we shall determine B0, Bi, Ci, ρ, and v since all the coefficients of ηi must vanish. The general solutions to Eq. 
(2.5) are as follows:

Family 1. If ρ < 0, we have

 η (ζ) = −
√

−ρ tanh
(√

−ρζ
)

or η(ζ) = −
√

−ρ coth
(√

−ρζ
)

. (2.6)

Family 2. If ρ > 0, we have

 η(ζ) = √
ρ tan (√ρζ) or η(ζ) = −√

ρ cot (√ρζ) , (2.7)

Family 3. If ρ = 0, we have

 
η (ζ) = −1

ζ
. (2.8)

Application of the Davey–Stewartson equations affected by multiplicative noise in 
the Itô calculus sense
Making stochastic wave transformation for Eqs. (1.1) and  (1.2)

 Ψ(x, y, t) = U(ζ)e(iΩ−σΞ(t)−σ2t), Φ(x, y, t) = V (ζ)e−2σΞ(t)−2σ2t, (3.1)

with

 ζ = ζ1x + ζ2y − ζ3t, and Ω = kx + wy + θt,
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where ζ , Ω are deterministic functions and {ζ1, ζ2, ζ3}, {k, w, θ} are nonzero constants. Putting Eq. (3.1) into 
Eq. (1.1) and Eq. (1.2) respectively, then we obtain for the real part

 

(1
2ζ2

1 α2 + 1
2ζ2

2 α4
)

U ′′ −
(

θ + 1
2α2k2 + 1

2α4w2
)

U +
(
kU3 − UV

)
e(−2σΞ(t)−2σ2t) = 0,  (3.2)

 
(
ζ2

1 − α2ζ2
2
)

V ′′ − 2ζ1k(U2)′′ = 0,  (3.3)

and, imaginary part,

 (−ζ3 + 2ζ1k + 2ζ2w) U ′ = 0.  (3.4)

From Eq. (3.4), we obtain

 ζ3 = 2ζ1k + 2ζ2w.  (3.5)

Now, integrating Eq. (3.3) once, we attain

 
V = 2ζ2

1 k

(ζ2
1 − α2ζ2

2 )U2. (3.6)

Substituting Eq. (3.6) into Eq. (3.2) , we obtain

 U ′′ − µ2U + µ1U3e−2σΞ(t)−2σ2t = 0, (3.7)

where

 
µ1 = 2λ

α2(ζ2
1 − α2ζ2

2 ) , µ2 = 2θ + α2k2 + α4w2

ζ2
1 α2 + ζ2

2 α4 , µ3 = 2ζ2
1 k

(ζ2
1 − α2ζ2

2 ) . (3.8)

We take the expectation on both sides

 U ′′ − µ2U − µ1U3e−2σ2tE
(
e−2σΞ(t)) = 0. (3.9)

Since Ξ(t) is normally distributed, so E
(
e−2σΞ(t)) = e2σ2t. Hence, Eq. (3.9) becomes

 U ′′ − µ1U3 − µ2U = 0. (3.10)

Balancing the highest degree derivative U ′′ along with the nonlinear term U3 in Eq. (3.10), we obtain M = 1. 
Hence the formal solution of Eq. (3.10) is

 
U(ζ) = β0 + β1η(ζ) + β2

η(ζ)  (3.11)

Plugging Eq. (3.11) along with Eq. (2.5) into Eq. (3.10) will provide these constants, as well as collecting all terms 
with the same power of ηi, i = 0, 1, · · · , M  and setting every coefficient equal to zero, hence the following 
collection of algebraic equations is obtained

 




−µ1β3
1 + 2β1 = 0,

−3µ1β2
1 + β2 − µ2β1 + 2β1ρ − 3µ1β2

0β1 = 0,
−µ2β0 − µ1β3

0 − 6µ1β0β1β2 = 0,
−3µ1β2

0β2 + 2β2ρ − µ2β2 − 3µ1β1β2
2 = 0,

2β2ρ2 − µ1β3
2 = 0.

 (3.12)

The following set of solutions are possible for solving the (3.12) using Maple.
Case I. If β2 = 0 then (3.12) gives: β0 =

√
−µ1µ2

µ1
,   β1 = ±

√
2√

µ1
.

Case II. If β0 = 0 then (3.12) gives: β1 = ±
√

2√
µ1

,    β2 = 2 ρ−α2
3√

µ1
.

Case III. If β1 = 0 then (3.12) gives: β2 = ±
√

2 ρ√
µ1

,     β0 = ± 1√
3

√
µ1(2ρ−µ2)

µ1
.

Using cases I, II, and III, we can obtain the following stochastic soliton solutions.

Case (I)
Family (I) provides the following dark (Ψ1,Φ1) and singular (Ψ2,Φ2) stochastic soliton solitons for ρ < 0,

 
Ψ1 =

[
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(
−

√
−ρ tanh

(√
−ρζ

)) ]
e(i(kx+wy+θt)−σΞ(t)−σ2t),
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or

 
Ψ2 =

[
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(
−

√
−ρ coth

(√
−ρζ

)) ]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

and

 
Φ1 = µ3

([
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(
−

√
−ρ tanh

(√
−ρζ

)) ])2

e−2σΞ(t)−2σ2t,

or

 
Φ2 = µ3

([
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(
−

√
−ρ coth

(√
−ρζ

)) ])2

e−2σΞ(t)−2σ2t.

Family (II) provides the following (Ψ3,Φ3, Ψ4,Φ4) periodic stochastic soliton solitons for ρ > 0,

 
Ψ3 =

[
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(√ρ tan (√ρζ))
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

or

 
Ψ4 =

[
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(−√
ρ cot (√ρζ))

]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

and

 
Φ3 = µ3

([
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(√ρ tan (√ρζ))
])2

e−2σΞ(t)−2σ2t,

or

 
Φ4 = µ3

([
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(−√
ρ cot (√ρζ))

])2

e−2σΞ(t)−2σ2t.

Family (III) provides the following (Ψ5,Φ5) rational stochastic soliton solitons for ρ = 0,

 

Ψ5 =
[

±
√

−µ1µ2

µ1
±

√
2

√
µ1

(
−1

ζ

) ]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

Φ5 = µ3

([
±

√
−µ1µ2

µ1
±

√
2

√
µ1

(
−1

ζ

) ])2

e−2σΞ(t)−2σ2t,

Case (II)
Family (I) provides the following dark (Ψ6,Φ6) and singular (Ψ7,Φ7) stochastic soliton solitons for ρ < 0,

 
Ψ6 =

[
±

√
2

√
µ1

(
−

√
−ρ tanh

(√
−ρz

))
± 2 c − µ2

3√
µ1

(√
−ρ tanh

(√
−ρζ

))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

or

 
Ψ7 =

[
±

√
2

√
µ1

(
−

√
−ρ coth

(√
−ρz

))
± 2 c − µ2

3√
µ1

(
−

√
−ρ coth

(√
−ρζ

))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

and

 
Φ6 = µ3

([
±

√
2

√
µ1

(
−

√
−ρ tanh

(√
−ρz

))
± 2 c − µ2

3√
µ1

(√
−ρ tanh

(√
−ρζ

))−1
])2

e−2σΞ(t)−2σ2t,

or

 
Φ7 = µ3

([
±

√
2

√
µ1

(
−

√
−ρ coth

(√
−ρz

))
± 2 c − µ2

3√
µ1

(
−

√
−ρ coth

(√
−ρζ

))−1
])2

e−2σΞ(t)−2σ2t.
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Family (II) provides the following (Ψ8,Φ8, Ψ9,Φ9) periodic stochastic soliton solitons for ρ > 0,

 
Ψ8 =

[
±

√
2

√
µ1

(√ρ tan (√ρζ)) ± 2 c − µ2

3√
µ1

(√ρ tan (√ρζ))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

or

 
Ψ9 =

[
±

√
2

√
µ1

(−√
ρ cot (√ρζ)) ± 2 c − µ2

3√
µ1

(−√
ρ cot (√ρζ))−1

]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

and

 
Φ8 = µ3

([
±

√
2

√
µ1

(√ρ tan (√ρζ)) ± 2 c − µ2

3√
µ1

(√ρ tan (√ρζ))−1
])2

,

or

 
Φ9 = µ3

([
±

√
2

√
µ1

(−√
ρ cot (√ρζ)) ± 2 c − µ2

3√
µ1

(−√
ρ cot (√ρζ))−1

]
e−2σΞ(t)−2σ2t

)2

,

Family (III) provides the following (Ψ10,Φ10) rational stochastic soliton solitons for ρ = 0,

 

Ψ10 =
[

±
√

2
√

µ1

(
−1

ζ

)
± 2 c − µ2

3√
µ1

(
−1

ζ

)−1 ]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

Φ10 = µ3

([
±

√
2

√
µ1

(
−1

ζ

)
± 2 c − µ2

3√
µ1

(
−1

ζ

)−1 ])2

e−2σΞ(t)−2σ2t.

Case (III)
Family (I) provides the following dark (Ψ11,Φ11) and singular (Ψ12,Φ12) stochastic soliton solitons for ρ < 0,

 
Ψ11 =

[
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−

√
−ρ tanh

(√
−ρζ

))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

or

 

Ψ12 =
[

1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−

√
−ρ coth

(√
−ρζ

))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

Φ11 = µ3

([
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−

√
−ρ tanh

(√
−ρζ

))−1
])2

e−2σΞ(t)−2σ2t,

or

 
Φ12 = µ3

([
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−

√
−ρ coth

(√
−ρζ

))−1
])2

e−2σΞ(t)−2σ2t.

Family (II) provides the following (Ψ13,Φ13, Ψ14,Φ14) periodic stochastic soliton solitons for ρ > 0,

 
Ψ13 =

[
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(√ρ tan (√ρζ))−1
]

e(i(kx+wy+θt)−σΞ(t)−σ2t),

or

 

Ψ14 =
[

1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(−√
ρ cot (√ρζ))−1

]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

Φ13 = µ3

([
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(√ρ tan (√ρζ))−1
])2

e−2σΞ(t)−2σ2t,

or
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Φ14 = µ3

([
1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(−√
ρ cot (√ρζ))−1

])2

e−2σΞ(t)−2σ2t.

Family (III) provides the following (Ψ15,Φ15) rational stochastic soliton solitons for ρ = 0,

 

Ψ15 =
[

± 1√
3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−1

ζ

)−1 ]
e(i(kx+wy+θt)−σΞ(t)−σ2t),

Φ15 = µ3

([
± 1√

3

√
µ1(2ρ − µ2)

µ1
± −

√
2 c

√
µ1

(
−1

ζ

)−1 ])2

e−2σΞ(t)−2σ2t.

The graphical representation
To visualize and analyze the impact of noise, MATLAB tool has been employed to plot the three-dimensional, 
two-dimensional as well as contour plots of the obtained solutions. These plots give a better picture of how 
solitons respond to under the various noise intensities. The waveforms are plotted in 3 dimensions in order to 
reveal the temporal and spatial changes and how they converge to be stable around the zero. Two-dimensional 
cross-sections bring out the amplitude variations clearly; contour maps provide a better view of structure of the 
wave and variation of intensity.

Results and discussion
This section of our work consists of the results and a literary comparison. The classical Davey–Stewartson 
(DS) equation which Davey and Stewartson developed in 1974 underwent extensive research in recent years. 
Through their work Yan et al.55 discovered high-order lump solutions of the DS model while Behera and Virdi56 
deployed the G′

G  -model expansion method to obtain soliton solutions. Ding et al.57 studied dark and anti-
dark solitons whereas Coppini et al.58 developed N-breather anomalous wave solutions. The analysis of Lie 
point symmetries together with similarity reductions and conservation laws for the DS equation appears in 
Guo et al.59. Liu and Li60 analyzed the DS equation as it interacted with time-noise effects at the multiplicative 
level. The research examines the stochastic Davey–Stewartson (SDS) equation through the application of the 
MEDA method to discover diverse exact stochastic soliton solutions. Using this approach we obtained diverse 
solution types such as dark ones as well as trigonometric ones, rational solutions, and periodic wave solutions. 
We investigate multiple physical consequences of noise on these solutions. We use MATLAB software to draw 
graphical representations of soliton solutions which show how they act with varying noise strength. Our findings 
yield traditional stochastic soliton solutions of the DS equation as the noise parameter reaches zero value. These 
findings serve to advance dynamical systems research in noisy conditions by offering important observations 
regarding future investigation.

Physical interpretation
A dark stochastic soliton is a soliton that moves in a nonlinear dispersive medium that contains fluctuations 
or random noise. Even if random influences vary the position, depth, phase, etc. of these solitons, they do not 
significantly change their general form of localized dip on a continuous wave background. On a continuous wave 
background, they occur in localized dips, although random variables might cause variations in their characteristics 
(position, depth, or phase). With a focus on how these solitons behave to stochastic perturbations, they are 
studied in systems where a random character is inherent, such as optical fibers, Bose-Einstein Condensates etc. 
Multiplicative noise introduces random disturbances to amplitudes, depths, phases, and positions, which can 
disrupt the soliton’s localised dip and deform dark stochastic solitons. Soliton broadening, energy exchange with 
the background, or a transition to chaotic dynamics under high noise intensities. These effects are important 
for investigations of soliton stability in stochastically nonlinear media. A periodic stochastic soliton undergoes 
random perturbations that periodically alter its amplitude, phase, or velocity, among other properties. They 
are studied in fields like optical communications, quantum fluids, and plasma physics; often, stochastic effects 
necessitate the use of analytical solutions. They are typically represented by stochastic nonlinear partial differential 
equations as the nonlinear Schrödinger equation with noise. A stochastic soliton solution of rational type is one 
in which the soliton is represented by rational functions, with a profile consisting of a ratio of functions. It differs 
from conventional exponential or trigonometric soliton solutions in that it uses stochastic variables for building 
algebraic patterns. Figures 1, 6, 10, 15, 20, and 25 display dark stochastic soliton solutions while Figs. 2, 7, 11, 
16, 21 and 26 display singular stochastic soliton solutions. Similarly Figs. 3, 4, 8, 12, 13, 17, 18, 22, 23, 27, and 
28 display periodic stochastic soliton solutions. Furthermore the Figs. 5, 9, 14, 19, 24, and 29 display rational 
stochastic soliton solutions.

In conclusion, all figures pertaining to dark, singular, periodic, and rational solitons in different kinds of 
plots are essential tools to investigate nonlinear systems. They are employed to illustrate underlying patterns 
in situations where it is difficult to recognise new connections; practically, they support research goals in 
domains ranging from plasma physics to quantum mechanics and optics by providing reasoning, prediction, 
and validation for new ideas. The observations show that multiplicative noise creates various impacts on dark, 
periodic and rational solitons across multiple ways. The soliton starts to disperse due to the introduced dispersive 
effects which lead to its reduced localization. The bright peak along with the dark dip becomes increasingly 
wider due to this effect. The combination of noise with other factors reduces the amplitude levels of bright as 
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well as dark components thus weakening the soliton structure fundamentally. The transmission of noise causes 
structural definition loss which makes bright-dark area boundaries fade into each other in the optical field. The 
delicate nonlinear balance needed for sustaining the soliton’s shape becomes disturbed by random fluctuations 
that arise from noise-induced perturbations. Noise drives unnecessary distribution of energy that pulls away 
from the localized soliton structure which then results in its deterioration. The effects demonstrate why noise 
plays such an important part in controlling the stability and movement patterns of soliton solutions.

Conclusion
We studied the stochastic Davey–Stewartson equations which serve as a fundamental tool for studying 
complex wave phenomena in environments affected by noise. The MEDA method provided exact stochastic 
soliton solutions which included bright, dark, singular, rational and periodic waveforms. The mathematical 
simulations showed that Brownian motion which models multiplicative noise causes major modifications 
to the solutions that lead toward zero-stabilization as their primary outcome. MATLAB-generated graphical 

Fig. 3. (Matlab R2017a (9.2.0.538062))The 3 dim, contour and line plots of |Ψ3 (x, y, t) | for 
σ = 0.08, ζ1 = 0.15, ζ2 = 1.7, w = 5.7, k = 1.63, λ = 10.25, θ = 0.2, ρ = 125.5, y = 1, z = 0, and Ξ(t)
randn.

 

Fig. 2. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ2 (x, y, t) | for 
σ = 0.08, ζ1 = 0.5, ζ2 = 0.7, w = 8.7, k = 3, λ = 0.25, θ = 0.2, ρ = −0.5, y = 1, z = 0, and Ξ(t)randn.

 

Fig. 1. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ1 (x, y, t) | for 
σ = 0.08, ζ1 = 0.5, ζ2 = 0.7, w = 8.7, k = 3, λ = 0.25, θ = 0.2, ρ = −0.5, y = 1, z = 0, and Ξ(t) =
randn.
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analysis demonstrates the detailed relationship of noise with nonlinear wave patterns effectively. Such findings 
generate ramifications that enhance our knowledge about noisily driven wave phenomena across the fields of 
plasma physics and nonlinear optics alongside fluid dynamics of complex systems. The field benefits from this 
research which offers an essential fundamental view of randomness effects on soliton motion by surpassing 
the current perturbative and numerical methods. Multiplicative noise produces observed wave stabilization 
effects indicating a potential process for noise-driven order which might lead to practical wave structure control 
within stochastic systems. The construction of exact stochastic solutions in this work provides an essential basis 
which supports future investigations of wave propagation under random disturbances. Related works studied 
stochastic NLS and DS equations yet they withheld the approach for developing exact stochastic soliton solutions 
of Davey–Stewartson equations with multiplicative noise through MEDA methodology. Future investigations 
should analyze more progressive noise models beyond white noise using fractional Brownian motion together 
with colored noise since they better reproduce diverse stochastic processes. The investigation of control methods 
which strengthen soliton stability under random external disturbances shows potential for practical realization. 
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Fig. 6. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ6 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 4.7, k = 2, λ = 0.25, θ = 0.02, ρ = −98825.5, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 5. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ5 (x, y, t) | for 
σ = 0.08, ζ1 = 0.15, ζ2 = 1.7, w4.7, k = 2.63, λ = 10.25, θ = 1.02, ρ = 0, y = 1, z = 0, and Ξ(t) =
randn.

 

Fig. 4. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ4 (x, y, t) | for 
σ = 0.09, ζ1 = 0.15, ζ2 = 1.7, w5.7, k = 2.63, λ = 20.25, θ = 0.02, ρ = 2.06, y = 1, z = 0, and Ξ(t)
randn.
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Exact stochastic solutions derived in this work function as reference points for verifying numerical methods 
while helping in developing stable control strategies for noisy nonlinear systems. Future investigations should 
apply the discovered stochastic soliton solutions to actual situations involving optical fiber communication and 
wave propagation through turbulent plasmas.
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Fig. 9. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ10 (x, y, t) |
σ = 0.16, ζ1 = 2.4, ζ2 = 2.8, w = 5.7, k = 2.8, λ = 5.25, θ = 20.02, ρ = 0y = 1, z = 0, and Ξ(t) =randn.

 

Fig. 8. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ8 (x, y, t) |
σ = 0.09, ζ1 = 10.15, ζ2 = 3.7, w = 15.7, k = 5.63, λ = 0.025, θ = 0.02, ρ = 98800, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 7. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ7 (x, y, t) |
σ = 0.05, ζ1 = 10.4, ζ2 = 10.8, w = 10.7, k = 5, λ = 2.25, θ = 0.02, ρ = −10.5, y = 1, z = 0, and 
Ξ(t) =randn.
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Fig. 12. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ13 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 6.7, k = 3.5, λ = 5.25, θ = 0.02, ρ = 2.5, y = 1, z = 0, and Ξ(t) =
randn.

 

Fig. 11. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ12 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 6.7, k = 3.5, λ = 5.25, θ = 0.02, ρ = −0.5, y = 1, z = 0, and Ξ(t) =
randn.

 

Fig. 10. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ11 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 5.7, k = 2, λ = 5.25, θ = 0.02, ρ = −0.5, y = 1, z = 0, and Ξ(t) =
randn.
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Fig. 15. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ1 (x, y, t) | for 
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 8.7, k = 0.5, λ = 0.85, θ = 0.02, ρ = −190.6, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 14. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ15 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 8.7, k = 0.5, λ = 0.85, θ = 0.02, ρ = 0, y = 1, z = 0, and Ξ(t) = 
randn.

 

Fig. 13. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Ψ14 (x, y, t) |
σ = 0.09, ζ1 = 10.5, ζ2 = 10.7, w = 8.7, k = 4.5, λ = 5.85, θ = 0.02, ρ = 2.5, y = 1, z = 0, and Ξ(t) =
randn.
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Fig. 18. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ4 (x, y, t) | for 
σ = 0.09, ζ1 = 0.150, ζ2 = 1.7, w = 5.7, k = 2.63, λ = 10.25, θ = 0.02, ρ = 2.06, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 17. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ3 (x, y, t) | for 
σ = 0.08, ζ1 = 0.150, ζ2 = 1.70, w = 6.7, k = 2.63, λ = 2.25, θ = 3.02, ρ = 125.6, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 16. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ2 (x, y, t) | for 
σ = 0.06, ζ1 = 0.150, ζ2 = 1.7, w = 10.7, k = 5, λ = 0.125, θ = 3.02, ρ = −190.6, y = 1, z = 0, and 
Ξ(t) =randn.
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Fig. 21. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ7 (x, y, t) | for 
σ = 0.05, ζ1 = −10.150, ζ2 = 10.70, w = 10.7, k = 5, λ = 2.25, θ = 0.02, ρ = −10.5, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 20. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ6 (x, y, t) | for 
σ = 0.09, ζ1 = 10.50, ζ2 = 10.70, w = 4.7, k = 2, λ = 2.25, θ = 0.02, ρ = −98825.5, y = 1, z = 0, and 
Ξ(t) =randn.
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Fig. 19. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ5 (x, y, t) | for 
σ = 0.08, ζ1 = 0.150, ζ2 = 1.7, w = 4.7, k = 2.63, λ = 10.25, θ = 1.02, ρ = 0, y = 1, z = 0, and Ξ(t) =
randn.
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Fig. 24. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ10 (x, y, t) | for 
σ = 0.16, ζ1 = 2.40, ζ2 = 2.80, w = 10.7, k = 5.7, λ = 0.85, θ = 20.02, ρ = 0, y = 1, z = 0, and Ξ(t) =
randn.

 

-1 -0.5 0 0.5 1
x

0

0.5

1

1.5

2

t

-1 -0.5 0 0.5 1
x

-3

-2

-1

0

1

2

3

|
9(
x,
y,
t)|

107

Fig. 23. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ9 (x, y, t) | for 
σ = 0.16, ζ1 = 1.40, ζ2 = 1.80, w = 6.7, k = 2.35, λ = 1.025, θ = 30.02, ρ = 0.0005, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 22. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ8 (x, y, t) | for 
σ = 0.09, ζ1 = 10.150, ζ2 = 3.7, w = 15.7, k = 5.63, λ = 0.025, θ = 0.02, ρ = 98800, y = 1, z = 0, and 
Ξ(t) =randn.
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Fig. 27. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ13 (x, y, t) | for 
σ = 0.06, ζ1 = 10.150, ζ2 = 10.70, w = 10.70, k = 3.5, λ = 5.25, θ = 0.02, ρ = 2.5, y = 1, z = 0, and 
Ξ(t) =randn.
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Fig. 26. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ12 (x, y, t) | for 
σ = 0.09, ζ1 = 10.150, ζ2 = 10.70, w = 6.7, k = 3.5, λ = 5.25, θ = 0.02, ρ − 0.5, y = 1, z = 0, and 
Ξ(t) =randn.

 

Fig. 25. (Matlab R2017a (9.2.0.538062)) The 3 dim, contour and line plots of |Φ11 (x, y, t) | for 
σ = 0.09, ζ1 = 10.150, ζ2 = 10.70, w = 5.7, k = 2.0, λ = 2.25, θ = 0.02, ρ = 0.02, y = 1, z = 0, and 
Ξ(t) =randn.
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