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Abstract: In this article, the (p,q)-analogs of the α-th fractional Fourier transform are provided, along
with a discussion of their characteristics in specific classes of (p,q)-generalized functions. Two spaces
of infinitely (p,q)-differentiable functions are defined by introducing two (p,q)-differential symmetric
operators. The (p,q)-analogs of the α-th fractional Fourier transform are demonstrated to be continuous
and linear between the spaces under discussion. Next, theorems pertaining to specific convolutions
are established. This leads to the establishment of multiple symmetric identities, which in turn
requires the construction of (p,q)-generalized spaces known as (p,q)-Boehmians. Finally, in addition to
deriving the inversion formulas, the generalized (p,q)- analogs of the α-th fractional Fourier transform
are introduced, and their general properties are discussed.

Keywords: (p,q)-differentiable; α-th fractional Fourier transform; (p,q)-derivative operator; (p,q)-
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1. Introduction

The core of q-calculus theory is the idea of deriving q-derivatives and q-integrals [1].
The q-calculus theory solves a wide range of symmetric problems, including sets of non-
differentiable functions, integral transforms, Bessel functions, hypergeometric functions,
beta functions, gamma functions, and many more (see, for more details, [2–6] and the
references cited therein). It is a fundamental idea in many fields of physical science, such
as mathematics, physics, high-energy nuclear physics, cosmic strings, and conformal
quantum mechanics. It also addresses topics in number theory, combinatorics, quantum
theory, physics, theory of relativity, orthogonal polynomials, and basic hypergeometric
functions (see, e.g., [7,8]; see also [9,10]).

The q-calculus is the simplified form of the (p,q)-calculus when p = 1. Sadjang [11–13]
carried out further research on the fundamental theorem of (p,q)-calculus as well as the (p,q)-
integration, (p,q)-derivative, and (p,q)-Taylor formulae. Many researchers and developers of
the (p,q)-Mathieu-type series, (p,q)-Hermite–Hadamard inequalities and (p,q)-Beta functions
have produced more detailed work in [14–16]. Several scholars have also conducted more
research on (p,q)-integral transformations. The characteristics of the (p,q)-analogs of the Laplace
transform and their applications in the resolution of specific (p,q)-difference equations were
investigated by Sadjang [12]. Later on, Jirakulchaiwong et al. [17] studied the (p,q)-analogs of
Laplace-type integral transforms and gave characteristics that led to further applications.

The continuous linear forms known as generalized functions (distributions) are de-
fined over sets of indefinitely smooth functions and have been widely used in applied
physics and engineering problems [18]. Distributions are useful for characterizing physical
phenomena as point charges and for smoothing out discontinuous functions. The recent
generalized functions space, often called the space of Boehmians, has an algebraic structure
analogous to the field of quotients [19]. When applied to function spaces, different spaces
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of Boehmians are produced from the structure, and multiplications are interpreted as
convolutions [19–25]. Delta sequences with decreasing support in the origin are required
while constructing Boehmian spaces. The uniqueness theorems, which are regarded as an
uncertainty principle for Boehmian dynamics [26,27], were in reality the result of this idea.
However, Boehmians allow different interpretations of such extended operators to form
isomorphisms among the different Boehmian spaces because their definition is based on
abstract algebraic notions [28].

In Section 2, we give a brief introduction to the (p,q)-theory of Boehmians and the
(p,q)-calculus theory in this article. We prove a theory regarding (p,q)-convolutions and
extract certain properties of the (p,q)-analogs of the α-th fractional Fourier transforms
in Section 3. In Sections 4 and 5, we discuss two spaces of (p,q)-Boehmians. Section 6
examines a number of aspects of the generalized fractional integral operator, as well as its
generalized inversion.

2. (p,q)-Calculus and (p,q)-Generalized Functions

The common ideas and symbols found in the (p,q)-calculus are summarized here-
after [11–13,15,17]. We consider q to be a fixed real number and 0 < q < p ≤ 1. The
(p,q)-derivative is defined as the (p,q)-analog of the ψ derivative [29]

(
Dp,qψ

)
(ζ) :=


ψ(pζ)− ψ(qζ)

pζ − qζ
, if ζ ̸= 0,

ψ
′
(0) , if ζ = 0

. (1)

If ψ is differentiable, then limp,q→1 Dp,qψ(ζ) = ψ
′
(ζ). [ζ]p,q and

(
[ζ]p,q

)
! must repre-

sent the (p,q)-numbers and (p,q)-factorials introduced by [30]

[ζ]p,q =
pζ − qζ

p − q
and

(
[ζ]p,q

)
! = ∏ζ

i=1[i]p,q, [0]p,q = 1, (2)

respectively.
The product and division of two continuous functions, ψ1 and ψ2, meet the following

respective (p,q)-analogs when taken as a (p,q)-derivative [29]

Dp,q(ψ1ψ2)(ζ) = ψ1(pζ)Dp,qψ2(ζ) + ψ2(qζ)Dp,qψ1(ζ) (3)

and

Dp,q

(
ψ1

ψ2

)
(ζ) =

ψ2(pζ)Dp,qψ1(ζ)− ψ1(pζ)Dp,qψ2(ζ)

ψ2(pζ)ψ2(qζ)
. (4)

Alternatively, they could be described as

Dp,q(ψ1ψ2)(ζ) = ψ1(qζ)Dp,qψ1(ζ) + ψ2(pζ)Dp,qψ1(ζ) (5)

and

Dp,q

(
ψ1

ψ2

)
(ζ) =

ψ2(qζ)Dp,qψ1(ζ)− ψ1(qζ)Dp,qψ2(ζ)

ψ2(pζ)ψ2(qζ)
. (6)

The (p,q)-integrals of a function ψ are defined by [29]

∫ x

0
ψ(ζ)dp,qζ = (p − q)ζ

∞

∑
0

qi

pi+1 ψ

(
ζ

qi

pi+1

)
,
∣∣∣∣ p

q

∣∣∣∣ > 1, (7)

∫ ∞

0
ψ(ζ)dp,qζ = (p − q)

∞

∑
−∞

qi

pi+1 ψ

(
qi

pi+1

)
,
∣∣∣∣ p

q

∣∣∣∣ > 1, (8)
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when the sums are finite for real number ζ. The (p, q)-integration by parts is defined for
functions ψ1 and ψ2 by [11]∫ ∞

0
ψ1(ζ)Dp,qψ2(ζ)dp,qζ = ψ1(ζ)ψ2(ζ)|∞0 −

∫ ∞

0
ψ2(qζ)Dp,qψ1(ζ)dp,qζ. (9)

The two types of (p,q)-exponential functions are defined by [12]

Ep,q(ζ) =
∞

∑
j=0

q
j(j−1)

2 ζ j(
[j]p,q

)
!
(ζ ∈ C), (10)

and

ep,q(ζ) =
∞

∑
j=0

p
j(j−1)

2 ζ j(
[j]p,q

)
!
(|ζ| < 1). (11)

In Equations (11) and (12), the q-exponential functions Ep and ep, respectively, are
obtained by substituting p = 1. Additionally, Ref. [11] provides (p,q)-derivatives of the
(p,q)-analogs of the exponential function as

Dp,qep,q(kζ) = kep,q(kpζ) and Dp,qEp,q(kζ) = kEp,q(kqζ), k ∈ R. (12)

Consequently,
Dp,qep,q(ζ) = ep,q(pζ) and Dp,qEp,q(ζ) = Ep,q(qζ). (13)

Further, from [12] (13), we recall that

Dn
p,qep,q(kζ) = kn p(

n
2)ep,q(kpnζ) and Dn

p,qEp,q(kζ) = knq(
n
2)Ep,q(kqnζ), n ∈ N, k ∈ R.

The (p,q)-gamma function of the first and second kinds are, respectively, defined by [11]

Γp,q(i) = p
i(i−1)

2

∫ ∞

0
ζ i−1Ep,q(−qζ)dp,qζ. (14)

Boehmians, driven by regular operators and introduced by Boehme [31], are among the
newest generalizations of generalized functions. Numerous articles exist that link the
expansion of Boehmians into several classes of tempered Boehmians, ultra Boehmians,
integral transformations and other applications. Assume that Y is a subspace of a linear
space X. Then, for any pair of elements ψ ∈ (X, ∗̆) and ω1 ∈ (Y, ∗̆), there are allocated the
products ∗̆ and ∗̆ such that:

(i) For ω1, ω2 ∈ Y, we have ω1∗̆ω2 ∈ Y, ω1∗̆ω2 = ω2∗̆ω1.
(ii) For ψ ∈ X, ω1, ω2 ∈ Y, we have (ψ ∗ ∗̆ω1)∗̆ω2 = ψ∗̆(ω1∗̆ω2).
(iii) ψ1, ψ2 ∈ X, ω1 ∈ Y, r ∈ R ⇒

(ψ1 + ψ2)∗̆ω1 = ψ1∗̆ω1 + ψ2∗̆ω1, r(ψ1∗̆ω1) = (rψ1)∗̆ω1. (15)

Let ∆ represent a family of sequences that are part of Y. After that, ∆ is regarded as a
family of delta sequences if it satisfies both ∆1 and ∆2,

P1 : For ψ1, ψ2 ∈ X, (xn) ∈ ∆ and ψ1∗̆xn = ψ2∗̆xn, we have ψ1 = ψ2, ∀n ∈ N.

P2 : (yn), (xn) ∈ ∆ ⇒ (yn∗̆xn) ∈ ∆.

If S = {((ψn), (xn)), (ψn) ∈ X, (xn) ∈ ∆, ∀n ∈ N}, then ((ψn), (xn)) is a pair of quotients
of sequences in S iff

ψn∗̆xm = ψm∗̆xn, (16)
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for all natural numbers n and m. The pairs ((ψn), (yn)) and ((κn), (xn)) are equivalent
pairs of quotients according to the notation ∼ iff

ψn∗̆xm = κm∗̆yn, (17)

for all natural numbers n and m. In this regard, ∼ forms an equivalent relation on the set S,

and therefore,
ψn

yn
constitutes an equivalence class named a Boehmian that we denote as B.

3. The α-th (p,q)-Fractional Fourier Transform and Its Convolution

A generalization of the classical Fourier integral operator into the fractional domains
is the fractional Fourier integral operator [32]. Although it has been defined in several ways
in the literature, the notion of rotations over an angle π/2 in the classical Fourier integral
operator has been enlarged to give the most logical explanation of the fractional Fourier
integral operator [33,34]. A rotation over an angle α is correlated with the fractional Fourier
integral operator, whereas the typical Fourier integral operator corresponds with a rotation
on the time–frequency plane and q-difference equations [23,35,36].

Let S be the Schwartz space of rapidly decreasing functions on R, and V(R) denotes
the space [37]

V(R) =
{

v ∈ S : v(k)(0) = 0, k = 0, 1, 2, . . .
}

.

Then, the Lizorkin space Θ(R) is defined as

Θ(R) = {ψ ∈ S : Fψ ∈ V(R)}

where F(ψ) is the Fourier transform of ψ. If ψ ∈ S(R) and ω > 0, then we have the
following definition.

Definition 1 ([33]). The α-th Fourier transform for a function ψ is defined for 0 < α ≤ 1 by

Fα(ψ)(w) =
∫ ∞

−∞
ψ(ζ)eiζw

1
α dζ. (18)

The inverse transform of the α-th fractional Fourier transform Fα is given by [33]

ψ(ζ) =
1√
2πi

∫ ∞

−∞
Fα(ψ)(w)w

1−α
α e−iζw

1
α dw.

Following [37], we introduce the following definition.

Definition 2. An infinitely (p,q)-differentiable complex-valued function ψ over R is in Sv,r
p,q if and

only if
γr,p,q(ψ) = sup

ζ∈R

∣∣∣ζrDv
p,qψ(ζ)

∣∣∣ < ∞, (19)

for every choice of constants r and v.
The dense subspace of Sv,r

p,q denoted by Dv
r,p,q(R) consists of those (p, q)-differentiable functions

of compact supports over R such that

supζ∈R

∣∣∣Dv
p,qψ(ζ)

∣∣∣ < ∞. (20)

Definition 3. The (p,q)-analog of the α-th Fourier transform of a function ψ of the first type is
defined for 0 < α ≤ 1 by

Fα,p
q (w) =

∫ ∞

−∞
ψ(ζ)Ep,q

(
iζw

1
α

)
dp,qζ, (21)
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whereas the α-th (p,q)-analog of the Fourier transform of a function ψ of the second type is defined
for 0 < α ≤ 1 by

F̆α,p
q (ψ)(w) =

∫ ∞

−∞
ψ(ζ)ep,q

(
iζw

1
α

)
dp,qζ. (22)

Theorem 1. Let ψ, ψ1 and ψ2 be functions of certain exponential growth conditions. Then, the
following statements hold true.

(i) (Linearity) For real numbers α1, α1 we have

Fα,p
q (α1ψ1 + α2ψ2)(w) = α1Fα,p

q (ψ1)(w) + α2Fα,p
q (ψ2)(w).

F̆α,p
q (α1ψ1 + α2ψ2)(w) = α1 F̆α,p

q (ψ1)(w) + α2 F̆α,p
q (ψ2)(w).

(ii) (Scaling) For a real number β, we have

Fα,p
q (ψ(βζ))(w) =

1
β

Fα,p
q (ψ(ζ))

(
w
βα

)
. F̆α,p

q (ψ(βζ))(w) =
1
β

F̆α,p
q (ψ(ζ))

(
w
βα

)
.

Proof. The proof of (i) follows from the definition of the (p,q)-integral. To prove (ii),

let z = βζ ⇒ dp,qζ =
1
β

dp,qz. Then, inserting the given substitution under the integral

sign yields

Fα,p
q (ψ(β))(w) =

∫ ∞

0
ψ(βζ)Ep,q

(
iζw

1
α

)
dp,qζ

=
∫ ∞

0
ψ(z)Ep,q

(
i
z
β

w
1
α

)
dp,qz

β

=
1
β

∫ ∞

0
ψ(z)Ep,q

(
iz
(

w
βα

) 1
α

)
dp,qz

=
1
β

Fα,p
q (ψ(ζ))

(
w
βα

)
.

The method used for the proof of the first part is also applicable to the second part.
This concludes the proof of the theorem.

Theorem 2. Let 0 < α ≤ 1. Then, the (p, q)-analog of the α-th fractional Fourier transform of a
function ψ of the first type, assuming the following properties:

(i) Fα,p
q (ψ(ζ − x))(w) = Ep,q

(
ixw

1
α

)
Fα,p

q (ψ)(w).

(ii) Fα,p
q
(

Dp,qψ(ζ)
)
(w) = −iw

1
α q−1Fα,p

q (ψ)(q−αw).

(iii) Fα,p
q

(
Dn

p,qψ(ζ)
)
(w) = −iq−1w

1
α Fα,p

q

(
Dn−1

p,q f
)
(w).

(iv) Fα,p
q

(
Dn

p,qψ(ζ)
)
(w) =

(
−iq−1w

1
α

)n
Fα,p

q (ψ)(w).

(v) Dp,q

(
Fα,p

q (ψ(ζ))
)
(w) = i 1

α Fα,p
q (ζψ)(qαw).

Proof. (i) From Definition 3, we have

Fα,p
q (ψ)(w) =

∫ ∞

−∞
ψ(ζ − x)Ep,q

(
iζw

1
α

)
dp,qζ. (23)
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Using the change of variable v = ζ − x gives dp,qv = dp,qζ. Hence, we derive

Fα,p
q (ψ)(w) =

∫ ∞

−∞
ψ(v)Ep,q

(
i(v + x)w

1
α

)
dp,qv

=
∫ ∞

−∞
ψ(v)Ep,q

(
i(v + x)w

1
α

)
dp,qv

= Ep,q

(
ixw

1
α

) ∫ ∞

−∞
ψ(v)Ep,q

(
ivw

1
α

)
dp,qv

= Ep,q

(
ixw

1
α

)
Fα,p

q (ψ)(w).

(ii) With the aid of Equations (1) and (21), we obtain

Fα,p
q
(

Dp,qψ(ζ)
)
(w) =

∫ ∞

−∞
Dp,qψ(ζ)Ep,q

(
iζw

1
α

)
dp,qζ. (24)

Hence, the (p,q)-integration by parts (3) and the fact that ψ ∈ Sv
r.p,q(R), which gives

ψ(ζ)Ep,q

(
iζ pw

1
α

)∣∣∣∞
−∞

= 0, yield

Fα,p
q
(

Dp,qψ(ζ)
)
(w) = ψ(ζ)Ep,q

(
iζ pw

1
α

)∣∣∣∞
−∞

−
∫ ∞

−∞
ψ(qζ)Dp,qEp,q

(
iζw

1
α

)
dp,qζ

= −iw
1
α

∫ ∞

−∞
ψ(qζ)Ep,q

(
iζqw

1
α

)
dp,qζ.

Using Equation (21) and altering the variables so that qζ = z reveal

Fα,p
q
(

Dp,qψ
)
(w) = −iw

1
α q−1

∫ ∞

−∞
ψ(t)Ep,q

(
iζqq−1w

1
α

)
dp,qζ

= −iw
1
α q−1

∫ ∞

−∞
ψ(ζ)Ep,q

(
iζw

1
α

)
dp,qζ

= −iw
1
α q−1

∫ ∞

−∞
ψ(ζ)Ep,q

(
iζw

1
α

)
dp,qζ

= −iw
1
α q−1Fα,p

q (ψ)(w).

(iii) Utilizing the definition of Fα,p
q in conjunction with the (p,q)-integration by parts sug-

gests that

Fα,p
q

(
Dn

p,qψ(ζ)
)
(w) =

∫ ∞

−∞
Dn

p,qψ(ζ)Ep,q

(
iζw

1
α

)
dp,qζ

= Dn−1
p,q ψ(ζ)Ep,q

(
iζ pw

1
α

)∣∣∣∞
−∞

−
∫ ∞

−∞
Dn−1

p,q ψ(qζ)Dp,qEp,q

(
iζw

1
α

)
dp,qζ

= Dn−1
p,q ψ(ζ)Ep,q

(
iζ pw

1
α

)∣∣∣∞
−∞

− iw
1
α

∫ ∞

−∞
Dn−1

p,q ψ(qζ)Ep,q

(
itw

1
α

)
dp,qζ

= −iq−1w
1
α

∫ ∞

−∞
Dn−1

p,q ψ(qζ)Ep,q

(
iζw

1
α

)
dp,qζ

= −iq−1w
1
α Fα,p

q

(
Dn−1

p,q ψ(ζ)
)
(w).

(iv) This part follows by proceeding n-times using the (p, q)-integration by parts for
Part (iii).
(v) Using the definitions of the integral Fα,p

q and the (p,q)-derivative, we derive
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Dp,q

(
Fα,p

q (ψ(ζ))
)
(w) =

∫ ∞

−∞
ψ(ζ)Dw

p,qEp,q

(
iζw

1
α

)
dp,qζ

= i
1
α

∫ ∞

−∞
ζψ(ζ)Ep,q

(
iζqw

1
α

)
dp,qζ

= i
1
α

∫ ∞

−∞
ζψ(ζ)Ep,q

(
iζ(qαw)

1
α

)
dp,qζ

= i
1
α

Fα,p
q (ζψ)(qαw).

The proof is ended.

The theorem that follows has a proof that is quite similar to the previous theorem.

Theorem 3. Let 0 < α ≤ 1. Then, the (p, q)-analog of the α-th fractional Fourier transform of a
function ψ of the second type assumes the following properties:

(i) F̆α,p
q (ψ(ζ − x))(w) = Ep,q

(
ixw

1
α

)
F̆α,p

q (ψ)(w).

(ii) F̆α,p
q
(

Dp,qψ
)
(w) = −iw

1
α q−1 F̆α,p

q (ψ)(q−αw).

(iii) F̆α,p
q

(
Dn

p,qψ
)
(w) = −iqw

1
α F̆α,p

q

(
Dn−1

p,q ψ
)
(w).

(iv) F̆α,p
q

(
Dn

p,qψ
)
(w) =

(
−iq−1w

1
α

)n
F̆α,p

q

(
Dn−1

p,q ψ
)
(w).

(v) Dp,q

(
F̆α,p

q (ψ(ζ))
)
(w) = i 1

α F̆α,p
q (ζψ(ζ))(qαw).

Theorem 4. (Convolution Theorems) Let ψ1 and ψ2 be functions belonging to Sv,r
p,q. Then, the

convolution theorems for Fα,p
q and F̆α,p

q are given by

(i) Fα,p
q (ψ1∗̆ψ2)(w) =

(
Fα,p

q ψ1

)
(w)

(
Fα,p

q ψ2

)
(w),

(ii) F̆α,p
q (ψ1∗̆ψ2)(w) =

(
F̆α,p

q ψ1

)
(w)

(
F̆α,p

q ψ2

)
(w),

where the convolution product ψ1∗̆ψ2 is given by

(ψ1∗̆ψ2)(ζ) =
∫ ∞

−∞
ψ1(z)ψ2(ζ − z)dp,qz, ζ > 0. (25)

Proof. To prove the first part, from definitions of the (p,q)-analog of the α-th fractional
Fourier transform and the convolution product, we have

Fα,p
q (ψ1∗̆ψ2)(w) =

∫ ∞

−∞
(ψ1∗̆ψ2)(ζ)Ep,q

(
iζw

1
α

)
dp,qζ

=
∫ ∞

−∞
Ep,q

(
iζw

1
α

) ∫ ∞

−∞
ψ1(z)ψ2(ζ − z)dqzdp,qζ.

Therefore, by allowing ζ − z = y, we obtain dp,qζ = dp,qy. Hence, computations yield

Fα,p
q (ψ1∗̆ψ2)(w) =

∫ ∞

−∞
Ep,q

(
i(z + y)w

1
α

) ∫ ∞

−∞
ψ1(z)ψ2(y)dqzdp,qy

=
∫ ∞

−∞
Ep,q

(
i(z + y)w

1
α

) ∫ ∞

−∞
ψ1(z)ψ2(y)dqzdp,qy

=
∫ ∞

−∞
g(y)Ep,q

(
iyw

1
α

)
dp,qy

(∫ ∞

−∞
ψ1(z)Ep,q

(
izw

1
α

)
dqz
)

= Fα,p
q ψ1(w)Fα,p

q ψ2(w).

Similar evidence supports the second part. This ends the proof.
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Theorem 5. (Convolution Theorems) Let ψ1 and ψ2 be functions belonging to Sv
r.p,q(R). Then, the

convolution theorems for Fα,p
q and F̆α,p

q are given by

(i)Fα,p
q

(
ψ1 ×α

q ψ2

)
(w) =

(
Fα,p

q ψ1

)
(w)

(
Fα,p

q ψ2

)
(w),

(ii)F̆α,p
q

(
ψ1 ×α

q ψ2

)
(w) =

(
F̆α,p

q ψ1

)
(w)

(
F̆α,p

q ψ2

)
(w),

where (
ψ1 ×α

q ψ2

)
(ζ) =

∫ ∞

0
ψ1(z)ψ2(z − ζ)dp,qz, ζ ≥ 0. (26)

Proof. This theorem’s proof is comparable to that of the preceding theorem. However,
we have

Fα,p
q

(
ψ1 ×α

q ψ2

)
(w) =

∫ ∞

−∞

(
ψ1 ×α

q ψ2

)
(ζ)Ep,q

(
iζw

1
α

)
dp,qζ

=
∫ ∞

−∞

∫ ∞

0
ψ1(z)ψ2(z − ζ)dqzEp,q

(
iζw

1
α

)
dp,qζ

=
∫ ∞

−∞

∫ ∞

0
ψ1(z)ψ2(z − ζ)dqzEp,q

(
iζw

1
α

)
dp,qζ

Altering the variable as u = z − ζ gives

Fα,p
q

(
ψ1 ×α

q ψ2

)
(w) =

∫ ∞

−∞

∫ ∞

0
ψ1(z)ψ2(u)dqzEp,q

(
i(z − u)w

1
α

)
dp,qu

=
∫ ∞

−∞
ψ2(u)Ep,q

(
−iuw

1
α

)
dp,qu

∫ ∞

0
ψ1(z)Ep,q

(
izw

1
α

)
dqz

= Fα,p
q (ψ2)(−w)

∫ ∞

0
ψ1(z)Ep,q

(
izw

1
α

)
dqz.

This ends the proof.

Definition 4. Let u be a locally integrable function on (a, ∞). Then, the (p,q)-Riemann–Liouville
integral of order α, 0 < α ≤ 1, of the function u is given by

a Iα
x u(x) =

1
Γp,q(α)

∫ ∞

a
(x − ζ)α−1

p,q u(ζ)dp,qζ, (27)

and for a locally integrable function u on (−∞, b), we have

a Iα
x u(x) =

1
Γp,q(α)

∫ b

−∞
(x − ζ)α−1

p,q u(ζ)dp,qζ. (28)

Inserting a = −∞ in (27) and b = ∞ in (28), we obtain the (p,q)-analogs for the Weyl fractional
integrals of order α. However, we insert a proof for the simple result.

Theorem 6. Let u be a function belonging to Sv,r
p,q, the Lizorkin space. For 0 < α ≤ 1, 0 < β ≤

1, ζ > 0 and w ̸= 0, we have

(i) Fα,p
q

(
a Iβ

∞u
)
(w) = Fα,p

q

(
ζβ−1

Γp,q(β)

)
(w)

(
Fα,p

q u
)
(w).

(ii) F̆α,p
q

(
a Iβ

∞u
)
(w) = F̆α,p

q

(
ζβ−1

Γp,q(β)

)
(w)

(
F̆α,p

q u
)
(w).

Proof. To prove the first part, we, by the definition of the (p, q)-Riemann–Liouville integral
of order β, 0 < β ≤ 1, ζ > 0, have
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Fα,p
q

(
a Iβ

∞u
)
(w) = Fα,p

q

(
ζβ−1

Γp,q(β)
∗̆u(ζ)

)
(w).

Applying Theorem 4 gives

Fα,p
q

(
a Iβ

∞u
)
(w) = Fα,p

q

(
ζβ−1

Γp,q(β)

)
(w)

(
Fα,p

q u
)
(w).

The proof of the second part is omitted as it is similar. This ends the proof of our result.

4. The (p,q)-Space βv
p,q

(
Sv,r

p,q, Dv,r
p,q, ∗̆, Λ

α,q
p

)
In the present section, we aim to establish the (p,q)-analog of a recent space of general-

ized function (namely, the (p, q)-Boehmian space) with the sets Sv,r
p,q, Dv,r

p,q, ∗̆, Λα,q
p . Therefore,

we introduce a class of (p, q)-delta sequences as follows:

Definition 5. Let ∆α,q
p denote the set of subsequences (xn)

∞
1 of the (p, q)-space Dv,r

p,q such that the
following hold: ∫ ∞

−∞
xn(ζ)dp,qζ = 1, (∀n ∈ N), (29)

∥xn∥p,q =
∫ ∞

−∞
|xn(ζ)|dp,qζ < M, (M ∈ R, n ∈ N), (30)

supp(xn(ζ)) → 0 as n → ∞, A > 0. (31)

We prove the subsequent theorem.

Theorem 7. The class
(

Λα,q
p , ∗̆

)
forms a class of (p,q)-delta identities.

Proof. Here, we show that (xn∗̆yn) ∈ Λα,q
p for all (xn), (yn) ∈ Λα,q

p . As the proofs of
Equations (30) and (31) are straightforward, it suffices to show that Equation (29) holds. By
applying the (p,q)-convolution theorem for w = 0, we have

Fα,p
q (xn∗̆yn)(0) =

(
Fα,p

q xn

)
(0)
(

Fα,p
q yn

)
(0). (32)

Therefore, by applying Equation (21) for both sides of Equation (32), we derive∫ ∞

−∞
(xn∗̆yn)(ζ)dp,qζ =

(∫ ∞

−∞
xn(ζ)dp,qζ

)(∫ ∞

−∞
yn(ζ)dp,qζ

)
.

Since (xn) and (yn) are (p, q)-delta sequences in Λα,q
p it follows that∫ ∞

−∞
(xn∗̆yn)(ζ)dp,qζ = 1.

The proof is ended.

Theorem 8. The product ∗̆ is commutative in Sv,r
p,q, i.e., κ∗̆ψ = ψ∗̆κ.

Proof. We by the (p,q)-convolution theorem, (Theorem 4(ii)) have that

Fα,p
q (κ∗̆ψ)(w) =

(
Fα,p

q κ
)
(w)

(
Fα,p

q ψ
)
(w). (33)
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The right-hand side of Equation (33) can be interchanged to yield

Fα,p
q (κ∗̆ψ)(w) =

(
Fα,p

q ψ
)
(w)

(
Fα,p

q κ
)
(w)

Hence, once again by the (p,q)-convolution theorem (Theorem 4(ii)), we obtain

Fα,p
q (κ∗̆ψ)(w) = Fα,p

q (ψ∗̆κ)(w).

Thus, applying the inverse Fα,p
q transform to both sides ends the proof of our result.

Theorem 9. Let κ, ψ, φ ∈ Sv,r
p,q; then, the associative law holds: κ∗̆(ψ∗̆φ) = (κ∗̆ψ)∗̆φ.

Proof. By applying the Fα,p
q transform to κ∗̆(ψ∗̆φ) and using (Theorem 4(ii)) four times,

we obtain

Fα,p
q (κ∗̆(ψ∗̆φ))(w) =

(
Fα,p

q κ
)
(w)

(
Fα,p

q (ψ∗̆φ)
)
(w)

=
(

Fα,p
q κ

)
(w)

(
Fα,p

q ψ
)
(w)

(
Fα,p

q φ
)
(w)

=
(

Fα,p
q κ∗̆ψ

)
(w)

(
Fα,p

q φ
)
(w)

= Fα,p
q ((κ∗̆ψ)∗̆φ)(w).

Hence, by applying the inverse Fα,p
q transform to both sides, we reach the given result.

Theorem 10. If ψ ∈ Dv,r
p,q and κ, κn, φ ∈ Sv,r

p,q, κn → κ, as n → ∞, then we have

(i) (κ + φ)∗̆ψ = κ∗̆ψ + φ∗̆ψ.
(ii) κn∗̆ψ → κ∗̆ψ as n → ∞.
(iii) λ(κ∗̆ψ) = (λκ∗̆ψ), for some λ ∈ C.

Simple computations provide proof for this theorem. We removed the information as a result.

Theorem 11. If κ ∈ Sv,r
p,q and ψ ∈ Dv,r

p,q, then κ∗̆ψ ∈ Sv,r
p,q.

The definitions of Sv,r
p,q and Dv,r

p,q provide the proof for this theorem. We therefore removed the
details.

Theorem 12. Let (xn) ∈ Λα,q
p and κ ∈ Sv,r

p,q; then κ∗̆xn → κ as n → ∞.

Proof. With reference to Equation (19), we arrive at∣∣∣ζrDv
p,q(κ∗̆xn − κ)(ζ)

∣∣∣ =

∣∣∣∣ζrDv
p,q

(∫ ∞

−∞
κz(ζ)− κ(ζ)

)
xn(z)dp,qz

∣∣∣∣
≤ M

∫
K

∣∣∣ζrDv
p,q(Φz(ζ)κz(ζ)− κ(ζ))

∣∣∣dp,qz → 0

as n → ∞ where Φz(ζ) = κz(ζ)− κ(ζ), κz(t) = κ(t − z), M is positive constant such that
|xn| ≤ M and K is bounded subset in R such that supp(xn) ⊆ K for all n ∈ N.

The proof is finished.

The space βv
p,q ≡ βv

p,q

(
Sv,r

p,q, Dv,r
p,q, ∗̆, Λα,q

p

)
of (p,q)-Boehmians is thereby defined. The

sequences (κn, xn) and (θn, yn) are equivalent, (κn, xn) ∼ (θm, ym), in βv
p,q if

κn∗̆ym = θm∗̆xn(∀m, n ∈ N). (34)
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Indeed, ∼ defines an equivalence relation on βv
p,q and the class containing (κn, xn) is an

equivalence in βv
p,q denoted as

κn

xn
(35)

which we call (p,q)-Boehmian. Some (p,q)-embedding between Sv,r
p,q and βv

p,q is expressed as

κ → κ∗̆xn

xn
,

for all m, n ∈ N. If
κn

xn
∈ βv

r,p,q and ε ∈ Sv,r
p,q, then

(
κn

xn

)
∗̆ε =

κn∗̆ε

xn
.

In the following section, we aim to construct a space of ranges for the α-th fractional
(p,q)-Fourier transforms.

5. The (p,q)-Space βα
f

(
Sα,q

p, f , Dα,q
p, f ,⊙, Λ

α,q
p, f

)
of Ultra-Boehmians

To define the class of (p,q)-ultra-Boehmians, we let Sα,q
p, f and Dα,q

p, f be the fraction spaces

of Fα,p
q of all members of Sv,r

p,q and Dv,r
p,q, over R, respectively. In that manner, we let Λα,q

p, f be

the fractional set of all Fα,p
q transforms of all sequences in Λα

p,q. Then, we present a product
on Sα,q

p, f as follows: (
U f ⊙ Vf

)
(w) = U f (w)Vf (w), (36)

for U f ∈ Sα,q
p, f and Vf ∈ Dα,q

p, f . Then, we are in a position to establish the following theorem.

Theorem 13. Let U f ,
(

U f ,n

)∞

n=1
, H f , Vf ∈ Sα,q

p, f , U f ,n → U f as n → ∞ and Yf ∈ Dα,q
p, f . Then,

the following identities hold.

(i)
(

U f + Vf

)
⊙q

p Yf = U f ⊙ Yf + Vf ⊙ Yf ,

(ii) U f ,n ⊙ Yf → U f ⊙ Yf as U f ,n → U f as n → ∞,
(iii) U f ⊙ Vf = Vf ⊙ U f ,

(iv) U f ⊙
(

Vf ⊙ H f

)
=
(

U f ⊙ Vf

)
⊙ H f ,

(v) η
(

U f ⊙ Vf

)
=
(

ηU f ⊙ Vf

)
, η ∈ C.

Proof. The proofs for (i) and (ii) are simple since they resemble the proofs provided to the
space βv

p,q

(
Sv,r

p,q, Dv,r
p,q, ∗̆, Λα

p,q

)
.

Proof. (iii) Let κ, ψ ∈ Sv,r
p,q be such that U f = Fα,p

q κ and Vf = Fα,p
q ψ; then, by Equation (36),

we have (
U f ⊙ Vf

)
(w) = U f (w)Vf (w) =

(
Fα,p

q κ
)
(w)

(
Fα,p

q ψ
)
(w).

Hence, using Theorem 4(ii) gives(
U f ⊙ Vf

)
(w) = Fα,p

q (κ∗̆ψ)(w) ∈ Sα,q
p, f .

Since κ∗̆ψ = ψ∗̆κ in βv
p,q, it follows again from Equation (36) that(

U f ⊙ Vf

)
(w) = Fα,p

q (ψ∗̆κ)(w) =
(

Vf ⊙ U f

)
(w) ∈ Sα,q

p, f . (37)
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Proof. The proof of (iv) is similar to that of (iii), whereas the proof of (v) is straightforward.
The proof is therefore ended.

Theorem 14. Let (φ̃n), (φn) ∈ Λα,q
p, f and U f ∈ Sα,q

p, f , then (φ̃n ⊙ φn) ∈ Λα,q
p, f and limn→∞ U f ⊙

φ̃n = U f .

Proof. Let (xn), (yn) ∈ Λα
p,q be such that Fα,p

q xn = φ̃n and Fα,p
q yn = φn, ∀n ∈ N. Then, by

Equation (36), we have

(φ̃n ⊙ φn)(w) = φ̃n(w)φn(w) = Fα,p
q (xn∗̆yn)(w) .

Hence, (φ̃n∗̆φn) belongs to Λα,q
p, f since (xn∗̆yn) belongs to Λα

p,q. It is also possible to
develop a comparable proof for the second part of the theorem. The proof of limn→∞ U f ⊙
φ̃n = U f is straightforward.

This ends the proof.

The space βα
f ≡ βα

f

(
Sα,q

p, f , Dα,q
p, f ,⊙, Λα,q

p, f

)
of ultra-Boehmians is obtained.

It is clear from the context that the set of all (p, q)-delta sequences extends the set of
all delta sequences given in [38] as p and q tend to 1. Moreover, as q tends to 1 the spaces
βα

f ≡ βα
f

(
Sα,q

p, f , Dα,q
p, f ,⊙, Λα,q

p, f

)
and βv

p,q ≡ βv
p,q

(
Sv,r

p,q, Dv,r
p,q, ∗̆, Λα,q

p

)
of (p,q) give new spaces of

Boehmians.
Two sequences

(
U f ,n, X f ,n

)
and

(
Φ f ,n, Yf ,n

)
from βα

f are equivalent,
(

U f ,n, X f ,n

)
∼p,q(

Φ f ,n, Yf ,n

)
, iff

U f ,n ⊙ Yf ,m = Φ f ,m ⊙ X f ,n(∀m, n ∈ N).

Indeed, ∼p,q defines an equivalence relation on βα
f . An ultra-Boehmian in βα

f is written as

U f ,n

X f ,n
(38)

where U f ,n = Fα,p
q κn ∈ Sα,q

p, f and X f ,n = Fα,p
q xn ∈ Λα,q

p, f . An embedding between Sα,q
p, f and βα

f
is expressed as

y →
y ⊙ X f ,n

X f ,n
, (∀m, n ∈ N).

If
U f ,n

X f ,n
∈ βα

f and X ∈ Sα,q
p, f , then it follows that

(
U f ,n

X f ,n

)
⊙ X =

U f ,n ⊙ X
X f ,n

. (39)

The notions of addition, convergence, and scalar multiplication in βα
f are comparable

to those of the first space.

Definition 6. Let (xn) ∈ Λα
p,q and (κn) ∈ Sv,r

p,q; then, the generalized α-th (p,q)-fractional Fourier

operator Xα,p
q of a (p,q)-Boehmian

κn

xn
in βv

p,q can be drawn as

Xα,p
q

(
κn

xn

)
=

Fα,p
q κn

Fα,p
q xn

, (40)

where Fα,p
q κn ∈ Sα,q

p, f and Fα,p
q xn ∈ Λα,q

p, f , which is indeed a member of βα
f .
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6. Inversion and Characteristics

This section discusses some properties of the generalized α-th (p, q)-fractional Fourier
operator Xα,p

q . In order to demonstrate the well-definedness of Fα,p
q , we have the follow-

ing theorem.

Theorem 15. The generalized α-th (p, q)-fractional Fourier operator Xα,p
q : βv

p,q → βα
f is well-

defined.

Proof. Let us assume that
κn

xn
=

θn

yn
∈ βv

r,p,q. Then, the notion of quotients of sequences

in βv
p,q implies that κn∗̆ym = θm∗̆xn, (m, n ∈ N). Hence, applying Fα,p

q to both sides of the
previous equation gives

Fα,p
q (κn∗̆ym) = Fα,p

q (θm∗̆xn), (m, n ∈ N). (41)

Consequently, the (p,q)-convolution theorem (Theorem 4) says(
Fα,p

q κn

)(
Fα,p

q ym

)
=
(

Fα,p
q θm

)(
Fα,p

q xn

)
.

As an alternative, this might be written by using the operation ⊙ as

(
Fα,p

q κn

)
⊙
(

Fα,p
q ym

)
=
(

Fα,p
q θm

)
⊙
(

Fα,p
q xn

)
.

Also as a result of Equation (56) and the concept of quotients in βα
f , we arrive at

Fα,p
q κn

Fα,p
q xn

=
Fα,p

q θn

Fα,p
q yn

, (m, n ∈ N). (42)

Thus, using Equation (40), we reached to the conclusion that

Xα,p
q

(
κn

xn

)
= Xα,p

q

(
θn

yn

)
, (m, n ∈ N).

This ends the proof.

Theorem 16. The generalized α-th (p, q)-fractional Fourier operator Xα,p
q : βv

p,q → βα
f is linear.

Proof of this theorem follows from the concept of addition of the (p, q)-Boehmians spaces. Hence, it
has been deleted.

Theorem 17. Let
κn

xn
∈ βv

p,q,
κn

xn
= 0, then Xα,p

q

(
κn

xn

)
= 0.

Proof of this theorem is straightforward. Details are, therefore, omitted.

Theorem 18. Let
κn

xn
,

θn

yn
∈ βv

p,q; then, we have

Xα,p
q

(
κn

xn
∗̆ θn

yn

)
(w) = Xα,p

q

(
κn

xn

)
Xα,p

q

(
θn

yn

)
.

Proof. Let
κn

xn
,

θn

yn
∈ βv

p,q be given . Then, by employing ∗̆, we obtain

Xα,p
q

(
κn

xn
∗̆ θn

yn

)
= Xα,p

q

(
κn∗̆θn

xn∗̆yn

)
.
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Hence, the (p,q)-convolution Theorem, Theorem 4, reveals

Xα,p
q

(
κn

xn
∗̆ θn

yn

)
(w) = Xα,p

q

(
κn

xn

)
Xα,p

q

(
θn

yn

)
.

The proof is complete.

Definition 7. If
U f ,n

X f ,n
∈ βα

f ,
U f ,n

X f ,n
=

Fα,p
q κn

Fα,p
q xn

, then we introduce the inverse operator of

Xα,p
q ,

(
Xα,p

q

)−1
: βα

f → βv
p,q, as

(
Xα,p

q

)−1
(

U f ,n

X f ,n

)
=

κn

xn
, (43)

for each (xn) ∈ Λα
p,q.

Theorem 19. The inverse generalized α-th (p, q)-fractional Fourier operator
(

Xα,p
q

)−1
: βα

f →
βv

p,q is well-defined and linear.

Proof. Let
U f ,n

X f ,n
=

Vf ,n

Yf ,n
in βα

f , where
U f ,n

X f ,n
=

Fα,p
q κn

Fα,p
q xn

and
Vf ,n

Yf ,n
=

Fα,p
q θn

Fα,p
q yn

. Then,

Fα,p
q κn ⊙ Fα,p

q ym = Fα,p
q θm ⊙ Fα,p

q xn (44)

for some (θn), (κn) in Sv,r
p,q. By using Theorem 4, we derive

Xα,p
q (κn∗̆ym) = Xα,p

q (θm∗̆xn)(m, n ∈ N).

Therefore, Applying the inversion formula in Equation (43), we get κn∗̆ym = θm∗̆xn(m, n ∈ N).
Hence, we have

κn

xn
=

θn

yn
.

To show that
(

Xα,p
q

)−1
is linear, let

U f ,n

X f ,n
=

Fα,p
q κn

Fα,p
q xn

,
Vf ,n

Yf ,n
=

Fα,p
q θn

Fα,p
q yn

be members in βα
f ; then,

by the addition of βα
f and the (p,q)-convolution theorem, we write

(
Xα,p

q

)−1
(

U f ,n

X f ,n
+

Vf ,n

Yf ,n

)
=
(

Xα,p
q

)−1
(

Fα,p
q (κn∗̆yn + θn∗̆xn)

Fα,p
q (xn∗̆yn)

)
.

Therefore, considering the inversion formula in Equation (43), we assert that

(
Xα,p

q

)−1
(

U f ,n

X f ,n
+

Vf ,n

Yf ,n

)
=

κn∗̆yn + θn∗̆xn

xn∗̆yn
.

Hence, addition in βv
p,q finishes the proof of the theorem.

7. Conclusions

Two (p,q)-analogs of the α-th fractional Fourier transform in the post-quantum calculus
have been demonstrated and expanded into a class of (p,q)-generalized functions known as
(p,q)-Boehmians. The generalized results are identified as a generalization of the traditional
results of Romero et al. [33]. Additionally, the paper has looked into different sets of (p,q)-
delta sequences, (p,q)-convolution products, and (p,q)-classes of Boehmians. As a result,
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the created sets of (p,q)-Boehmians were thoroughly examined using the generalized α-th
(p,q)-Fourier transform and its inversion formula. Numerous findings about the generalized
integral and its inverse formula were discovered.
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