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High efficiency and eco friendliness, proton exchange membrane fuel cells (PEMFCs) have become a 
good solution to cleaner energy solutions. However, due to the electrochemical complexity of PEMFCs 
and the limitations of existing optimization methods, accurately estimating PEMFC parameters 
to achieve optimal performance is still challenging. In this work, we propose a hybrid optimization 
algorithm, SCPSO, combining Particle Swarm Optimization with Mixed Mutant Slime Mold to improve 
precision, consistency, and computational efficiency in PEMFC parameter optimization. Six PEMFC 
types, BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W Stack 
were applied to SCPSO and compared with seven state-of-the-art algorithms, FLA, HFPSO, PSOLC, 
ESMA, LSMA, DETDO, and EGJO. In all cases, SCPSO consistently outperformed all competitors with 
the lowest mean sum of squared error (SSE) and minimal standard deviation (e.g., [10−16, 10−18]), thus 
confirming its robustness and reliability. Additionally, it demonstrated the lowest number of iterations 
to reach the optimal solution (less than 200 iterations) and best Friedman Rank (FR = 1), signifying the 
best optimization to the customer. For instance, in PEMFC1, SCPSO achieved minimal SSE of 0.02549 
with negligible variability (Std. = 1.05958E−15) as compared to HFPSO (Std. = 0.001998568) and 
DETDO (FR = 4). SCPSO’s rapid convergence curves, narrow box plot spreads, and precise polarization 
curves were further validated across all fuel cells. SCPSO was experimentally validated and proved to 
be reliable with minimal deviations between predicted and experimental voltage and power outputs 
(e.g., RE = 0.052587% for PEMFC1 and RE = 0.016537% for PEMFC2). The average runtime of SCPSO 
was 3.05 s, which is faster than alternatives, and still maintains its unparalleled precision. The results 
of the analyses, fitting the datasets and the convergence curves confirm that the adaptive parameter 
tuning of SCPSO has significantly improved its performance, resulting in the highest consistency 
and accuracy with the fastest convergence speed. For PEMFC parameter optimization, results from 
SCPSO have established it as the algorithm with the strongest precision and stability and fastest 
computational efficiency. The extension to other energy systems and dynamic real time scenarios will 
be investigated in future research to enable wider adoption in sustainable energy management.
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Fossil fuels and traditional energy sources use have drastically increased with such pace in their reliance that 
has increased greenhouse emissions and further deteriorated the environmental issues. However, these effects 
do more than just threaten ecosystems, human health, and societal sustainability. Therefore, renewable energy 
sources (RESs) are considered as important alternatives for dealing with these challenges. Fuel cells (FCs) are 
among the promising RESs for the generation of heat and electricity with minimal environmental impact. In 
particular, Proton Exchange Membrane Fuel Cells (PEMFCs) are of interest because of their simple structure, 
high energy density, and adaptability to applications such as residential power, transportation, and energy 
storage.

Although promising, accurately modeling and optimizing PEMFCs is a difficult task. Due to the nonlinear 
and complex operational nature of PEMFCs, accurate mathematical models are required to predict their 
performance under different conditions. Empirical and quasi empirical models have successfully simulated 
PEMFC behaviors, but their reliability is constrained to the accuracy of parameter identification. These 
parameters are often unknown, and non-linear, and determining them is critical for building effective equivalent 
circuit models that accurately replicate real world PEMFC performance.

Previous research work
A great deal of research effort has been expended in the attempt to develop robust PEMFC parameter identification 
methodologies. Notable contributions include: To extract optimal parameters for PEMFC systems, Abd Elaziz et 
al. proposed the Gorilla Troops Optimizer (GTO), which demonstrated faster convergence rates and accuracy, 
but the method required specific parameter settings to be effective1. Fuzzy logic based reasoning techniques for 
PEMFC control were explored by Agila et al.2 that provide adaptability, but no detailed comparison with other 
advanced optimization methods is presented. Grasshopper Optimization Algorithms for PEMFC parameter 
optimization were introduced by Ai et al.3, but computational efficiency was highlighted while scalability was 
not tested. Finite element analysis was combined with neural networks to optimize PEMFC performance, 
achieving significant efficiency improvements, but the approach was complex4. To reduce computational 
burdens in PEMFC modeling, Ali et al. proposed an adaptive estimation method that provides accurate results, 
but with limited validation against real world data5. Altun et al. combined evolutionary strategies with a hybrid 
approach for PEMFC loss minimization and demonstrated promising results, but did not test robustness under 
different conditions6. Optimization strategies for Solid Oxide Fuel Cells (SOFCs) were reviewed by Anuar et 
al.7, comparing their high temperature application advantages with PEMFC limitations, but without focusing on 
PEMFC specific optimization. Awad and El-Desouky used hybrid algorithms to improve PEMFC performance 
by focusing on convergence speed and with limited application to various case studies8. The study lacked focus 
on optimization techniques, but Barbir noted technological advances in PEMFC systems in the area of energy 
density and durability9. In10, Chen et al. extracted PEMFC parameters using Differential Evolution algorithms 
with high precision, but without comparison with other algorithms.

Chen et al. highlighted challenges in computational modeling for PEMFCs, and proposed solutions to balance 
accuracy and efficiency, but without practical validation11. Hybrid algorithms for fuel cell optimization were 
introduced by Cheng et al., which achieved robust parameter tuning at the cost of high computational cost12. 
Adaptive learning techniques for PEMFC modeling were proposed by Ding et al.13 to reduce prediction errors, 
but the operational adaptability is limited. Metaheuristic global optimization methods for PEMFC design were 
reviewed by El-Bashir et al.14 and their potential was recognized, however, detailed implementation examples 
were not given. Deep reinforcement learning was applied by Fan et al. to PEMFC operational parameter 
optimization, which resulted in increased efficiency but limited by computational resources15. Multi objective 
evolutionary algorithms were used by Feng et al. to optimize PEMFC operating conditions to balance efficiency 
and durability, but without scalability tests16. Intelligent algorithms were used by Gao et al. to improve PEMFC 
stack performance, with gains in energy efficiency, but without experimental validation17. Analytical models 
for hybrid applications with PEMFCs were developed by Ghaffar et al., to address integration challenges, but 
with limited modeling of complex scenarios18. A comparative study of metaheuristics for PEMFC optimization 
was performed by Guo et al., who pointed out the strengths of the algorithms, but did not include real world 
case studies19. In20, Hafez et al. used nature inspired algorithms to enhance PEMFC performance, but without 
consideration of computational efficiency.

Hybrid models for PEMFC design were evaluated by Hamid et al.21 using deterministic and stochastic 
methods combined effectively, but the study was limited by the availability of limited datasets. Deep learning 
methods for multi-variable optimization of PEMFCs were introduced by He et al.22 with high accuracy but 
unexplored scalability. In23, Hu et al. used genetic algorithms for PEMFC parameter optimization, with nonlinear 
constraints but without thorough comparative analysis. Machine learning was combined with hybrid strategies 
to tackle PEMFC trade-offs, however, operational tests were not performed24. Adaptive neuro fuzzy systems 
were used by Jang et al. for PEMFC optimization25 and showed adaptability but did not include cost analysis. 
However, the validation of hybrid swarm algorithms across different system scales was missing, which Jiang et 
al. applied to balance efficiency and computational time in PEMFCs26. Multi objective optimization strategies 
for PEMFC stacks, including robustness metrics but not scalability issues, were proposed by Jin et al.27. Hybrid 
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machine learning models for PEMFC efficiency were used by Karim et al.28 to improve accuracy but only offer 
minimal sensitivity analysis. Various optimization algorithms for PEMFC systems were compared by Khan et 
al.29, who focused on algorithm refinements for better scalability. Reinforcement learning was applied to PEMFC 
operational parameters by Kim et al.30, achieving adaptability with high computational costs.

Deep learning approaches for PEMFC diagnostics were developed by Kumar et al.31, reducing errors, but 
they lack robustness in real time applications. Machine learning frameworks to optimize PEMFC performance 
were introduced by Lei et al.32 but without practical validation, which showed gains in accuracy. Algorithmic 
improvements for PEMFC optimization were proposed by Li et al.33, which converge better without exploring 
multiobjective optimization. AI enhanced methodologies for PEMFC optimization were used by Liang et al.34 
to enhance efficiency without practical validation. Liu et al. integrated neural networks into PEMFC modeling, 
obtaining predictive accuracy but without adaptability to dynamic conditions35. Hybrid swarm algorithms were 
applied to PEMFC design by Liu et al.36, but efficiency was improved without testing scalability. Loss reduction 
in PEMFCs using optimization techniques was focused on by Ma et al.37, but results were positive and without 
comparative analysis. Evolutionary algorithms for enhancing PEMFC efficiency were proposed by Malik et al.38, 
which have high computational cost but stability. Deep learning models developed by Mao et al.39 were applied 
to optimize PEMFCs with high accuracy, but at a high complexity. Hybrid optimization strategies for PEMFCs 
were introduced by Meng et al.40, which attempt to balance efficiency and durability, but the validation was 
limited.

AI models were applied to PEMFC design by Nair et al. to improve energy management, but the work was 
based on many theoretical assumptions41. Advanced optimization algorithms for PEMFC performance are 
analyzed by Nawaz et al.42, which yielded robustness but no experimental case studies. Heuristic approaches for 
multi-objective optimization were introduced by Nguyen et al.43 that increased cost effectiveness but with only 
limited scalability tests. Reinforcement learning was used by Pan et al. to improve PEMFC efficiency, which is 
flexible but computationally intensive44. Neuro fuzzy systems were used by Park et al. for PEMFC modeling, 
which are adaptable but are not validated in the real world45. Genetic algorithms are applied by Qi et al. for 
PEMFC optimization with improved performance but without comparison with other methods46. In47, Qian 
et al. developed AI driven models for PEMFC efficiency, which showed robust predictions but low scalability. 
Hybrid optimization techniques were used by Riaz et al. for PEMFCs, reducing computational time but with 
a small dataset48. Bayesian models for PEMFC optimization were explored by Rui et al.49, which improved 
accuracy but restricted their applicability. Multi-objective optimization strategies for fuel cells were introduced 
by Singh et al.50 which were robust but not validated under dynamic conditions.

Evolutionary algorithms were applied by Tang et al. for PEMFC stack design that yielded improvements in 
energy efficiency and operational stability. The work showed the promise of evolutionary algorithms to optimize 
stack performance, but was restricted in its applicability to more general operational conditions and large scale 
systems51. Wang et al. used hybrid machine learning techniques to optimize PEMFC efficiency, which they point 
out can provide a balance of accuracy and robustness. The study, though, was not able to provide insights into 
the computational overhead of these machine learning models52. Wang et al. also studied the application of deep 
learning algorithms for PEMFC optimization, demonstrating their capability of improving system efficiency 
and parameter estimation precision. However, it was noted as a limitation that these algorithms have a high 
computational cost53.

AI driven optimization frameworks for PEMFC systems were introduced by Wu et al. to enhance energy 
efficiency and operational adaptability. The study revealed the versatility of AI models, but did not have 
experimental validation to prove their real world effectiveness54. To improve performance and reliability, Xie 
et al. proposed the integration of advanced AI techniques into PEMFC design. However, they did not address 
how their model would adapt to dynamic environmental conditions, thereby limiting broader applicability55 
and they were able to achieve improved parameter estimation accuracy. Hybrid algorithms for multi objective 
optimization in PEMFC systems were presented by Xu et al. that effectively trade off efficiency and durability. 
However, these algorithms are computationally demanding and it became a challenge to scale them56.

A comparison of the AI models used was made by Yang et al. for their contribution to PEMFC optimization, 
and they demonstrated great improvements to the energy efficiency and robustness. The study provided valuable 
insights, but testing in dynamic and real world conditions was not performed, which limited its practical 
applicability57. To estimate PEMFC parameters, Zhang et al. used advanced deep learning models for PEMFC 
design optimization with high accuracy. However, the study did not provide a detailed comparison with other 
optimization frameworks58 and showed the potential of AI to enhance the PEMFC performance. Zhang et al. 
also investigated hybrid models for PEMFC systems to optimize the PEMFC system, and showed improvements 
in both operational stability and energy efficiency. The study, however, was limited in scalability to diverse 
conditions59. Lastly, Zhou et al. proposed novel multi objective optimization approaches for PEMFC systems 
with the aim of improving their operational flexibility and efficiency. The approach was promising but its overall 
impact was reduced because of the absence of a thorough comparison with state of the art methods60.

Research gap
Literature of recent work of last half decade shows a consistent focus on improving PEMFC efficiency through 
optimization algorithms but gaps exist in scalability, adaptability to dynamic conditions, computational 
efficiency and real world validation. However, most existing studies focus on single objective or limited multi 
objective optimization, without addressing the complex tradeoffs between cost, durability and performance 
in a comprehensive way. The importance of this is that a novel, hybrid algorithm that combines the best of 
advanced AI and metaheuristic strategies is needed to provide scalable, efficient, and robust solutions to PEMFC 
optimization problems. The main challenge in PEMFC modeling is to determine the optimal values of critical 
parameters so that the estimated performance becomes consistent with experimental data. However, current 
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optimization methods are often computationally expensive and variable, rendering them unsuitable for real time 
applications or large scale systems. As a result, there is a strong need to develop a robust optimization algorithm 
that guarantees accuracy and consistency while minimizing computational overhead.

The main difficulty in PEMFC modeling is finding the optimal values of critical parameters to make the 
estimated performance converge with the experimental data. However, current optimization methods are 
computationally expensive and variable, and are thus not suitable for real time applications or large scale 
systems. Therefore, there is a compelling need to develop a robust optimization algorithm that is both accurate 
and consistent, and that minimizes computational overhead.

Contributions of this work
To address these challenges, this paper presents a novel hybrid optimization algorithm, a particle swarm 
optimization for mixed mutant slime mold (SCPSO)61, specifically designed for PEMFC parameter optimization. 
The paper introduces SCPSO as a hybrid optimization method that combines PSO with Mixed Mutant Slime 
Mold to optimize PEMFC parameters while improving precision and computational speed and reliability. The 
paper demonstrates SCPSO’s importance through an evaluation of different optimization algorithms from the 
introduction section that shows their strengths and weaknesses. Gorilla Troops Optimizer (GTO) demonstrates 
quick parameter extraction accuracy for PEMFC systems yet requires fixed parameter configurations which 
reduces its flexibility for different system configurations. The adaptability of fuzzy logic methods in dynamic 
control systems exists without any state-of-the-art optimization method performance comparisons. The 
computational efficiency of the Grasshopper Optimization Algorithm exists alongside unproven testing 
of its scalability potential for bigger PEMFC systems. Real-time application feasibility may suffer from the 
combined approach of Finite Element Analysis together with Neural Networks because the method introduces 
complex operational requirements. The Adaptive Estimation Method delivers accurate PEMFC models at low 
computational expense yet its implementation depends heavily on real-world testing because real-world testing 
affects practical operation and safety. Hybrid approaches that utilize evolutionary strategies present effective loss 
reduction performance but need further assessment of their operational condition adaptability. The precision 
of Differential Evolution parameter extraction remains high but its validation becomes challenging because of 
lacking comparative studies with alternative methods. The computation-intensive nature of hybrid algorithms 
as parameter optimizers restricts their capacity for real-time PEMFC system operation even when they 
enhance the robustness of parameter settings. The implementation of adaptive learning strategies in PEMFC 
modeling leads to major reduction of prediction errors but they demonstrate limited capability for dynamic 
operating conditions. The potential of metaheuristic methods for PEMFC design remains unclear because their 
detailed implementation remains unclear which prevents their practical use. The enhanced efficiency from 
deep reinforcement learning requires huge computational resources making its scalable application restricted. 
The implementation of multi-objective evolutionary algorithms for PEMFC operation finds balance between 
efficiency and durability but needs extensive scaling tests before application in larger systems. The contribution of 
intelligent algorithms to stack performance improvement and energy efficiency remains unproven experimentally 
which reduces their reliability when used in real-world applications. The analytical models that address hybrid 
application integration issues show restricted application in complex scenarios because of their basic modeling 
capabilities. The comparison of metaheuristic algorithms demonstrates distinct features between optimization 
techniques although it does not contain actual industry applications for practical use. The implementation of 
PEMFC technology through nature-inspired algorithms utilizing biologically based methodologies requires 
more thorough evaluation of computational speed to ensure practical implementation success. The combination 
of deterministic and stochastic approaches in modeling helps improve PEMFC design only through constrained 
access to datasets. The application scope of deep learning optimizations for PEMFCs may be limited in large-
scale systems because high-accuracy multi-variable optimization is achieved while scalability tests have not 
been conducted. The nonlinear constraints which genetic algorithms optimize in PEMFC parameter settings 
need further evaluation against other optimization algorithms. Machine learning models working with hybrid 
optimization strategies succeed at solving trade-off difficulties but need operational assessments for real-world 
validation. The adaptive neuro-fuzzy systems provide PEMFC optimization with adaptable features yet they 
lack cost evaluation which reduces their practical implementation potential. Hybrid swarm algorithms both 
maximize system speed and performance yet have not been tested for various-scale system implementations. The 
addition of robustness metrics through stack optimization under multi-objective optimization techniques does 
not resolve scalability issues when working with larger systems. The accuracy of PEMFC efficiency optimization 
with mixed machine learning models is boosted but these methods need improvement in sensitivity analysis for 
reliability enhancement. The operational parameter optimization benefits from reinforcement learning although 
its high computational expenses limit its practical use. The use of deep learning for PEMFC diagnostics decreases 
diagnostic errors but the solutions prove inadequate for real-time usage. Means to enhance PEMFC performance 
through machine learning frameworks need extra practical testing before final acceptance. Better PEMFC 
optimization results from algorithmic advancements in convergence capabilities although these changes do 
not develop or explore multi-objective optimization potential. The effectiveness of AI-enhanced methodologies 
grows through efficiency improvements yet their experimental verification is nonexistent which holds negative 
impacts on reliability. The predictive power of PEMFC modeling improves through neural networks despite the 
need to investigate their capacity to adjust when dynamic conditions occur. The use of hybrid swarm algorithms 
enhances PEMFC design efficiency but developers need to verify system scalability aspects. The positive results 
from loss reduction optimization methods exist without established comparisons to alternative solutions. The 
computational stability and efficiency of evolutionary algorithms might be limited by high computational needs 
that affect their practicality potential. The implementation of deep learning models improves both system 
operating efficiency and parameter estimation accuracy at the cost of increased computational complexity. Hybrid 
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optimization strategies bring together an optimal balance between operational life and performance efficiency 
while their limited validation requirements reduce reliability measures. The AI-based energy management 
techniques improve power usage through theoretical framework assumptions which restrict their effectiveness 
in actual practice. The effectiveness of advanced optimization algorithms in performance optimization remains 
unknown because experimental case studies have not validated their results. The heuristic optimization methods 
reduce PEMFC optimization costs while needing further scalability testing. The operational adaptability of AI-
driven optimization frameworks improves through their frameworks yet does not have tested validation in 
real-world applications. AI applications deliver superior parameter estimation results yet they do not solve the 
issue of PEMFC performance change during environmental system fluctuations. Hybrid systems made from 
deterministic and stochastic methods work effectively for PEMFC designs despite existing limitations in their 
usable datasets. The extensive review of these optimization methods reveals both their positive and negative 
aspects for PEMFC optimization. The SCPSO algorithm uses PSO and Mixed Mutant Slime Mold benefits to 
overcome optimization challenges while improving accuracy and efficiency and achieving consistent results. 
The computational and adaptability challenges of existing methods find improvement through SCPSO which 
demonstrates potential as a solution for PEMFC parameter optimization.

The SCPSO algorithm reaches exceptional performance because it combines Particle Swarm Optimization 
(PSO) and Mixed Mutant Slime Mold Algorithm (SMA) features into a single hybrid structure. The combined 
structure produces superior exploration and exploitation capabilities that create a balanced optimization process. 
The combination of PSO global capability with SMA efficient localized search in SCPSO allows the method to 
avoid premature convergence and find the global optimum efficiently. The algorithm combines two mechanisms 
which allow it to search multiple areas of the optimization space while building a robust path toward finding 
optimal solutions. The improved population initialization strategy serves as a main efficiency factor for SCPSO. 
The algorithm uses Good Point Set methodology to achieve uniform distribution of its initial solutions. The 
strategy creates more diverse search space conditions that enable complete exploration of available solutions. 
The risk of suboptimal initial distributions becomes minimized through SCPSO which leads to better chances 
of discovering superior parameter values. The system implements adaptive parameter adjustments through 
which both control weights and learning constants automatically modify their values according to optimization 
status. By being adaptable the algorithm preserves a balanced relationship between exploration and exploitation 
from start to end of the search procedure resulting in rapid and precise convergence. The SCPSO algorithm 
includes a mutation mechanism which draws its concept from SMA. The structured randomness function adds 
unpredictable variability to the search operations which helps the system escape current local optima while 
exploring new search areas which normal optimization methods would overlook. SCPSO implements a sigmoid 
function for nonlinear scaling that expands the search area and enhances its ability to solve complex optimization 
problems with multiple optimal solutions. The optimization process becomes more efficient through dynamic 
adjustments of step size and search direction in SCPSO. The combination of reliability and stable performance 
of SCPSO sets it apart from competing algorithms. The hybrid framework within this method produces 
consistent outcomes across multiple runs because standard deviation measurements for SSE values remain low. 
This makes SCPSO an excellent choice for practical usage because it delivers dependable solutions in critical 
scenarios requiring precise results. The receipt of specialized features enables the algorithm to surpass current 
optimization techniques both in terms of precision accuracy and fast convergence speed and overall stability. 
The SCPSO approach proves itself as an optimal and efficient method for PEMFC parameter optimization by 
addressing the issues found in traditional metaheuristic techniques.

The key contributions of this research are:

•	 Proposed Algorithm: SCPSO integrates the exploration capabilities of Particle Swarm Optimization (PSO) 
with the exploitation features of Mixed Mutant Slime Mold to enhance convergence speed and solution ac-
curacy.

•	 Extensive Comparisons: The algorithm is benchmarked against seven state-of-the-art algorithms, including 
Fick’s Law Algorithm (FLA)62, Hybrid Firefly and PSO (HFPSO)63, Particle Swarm Optimization with Learn-
ing Strategy (PSOLC)64, Equilibrium Slime Mold Algorithm (ESMA)65, and LSMA66, DETDO67, and EGJO68.

•	 Comprehensive Evaluation: The proposed approach is applied to six commercial PEMFCs (BCS 500 W69,70, 
SR-12 500 W69,70, STD 250 W69,70, Nedstack 600 W PS671, Horizon H-1272, and Ballard Mark V72) to validate 
its effectiveness in minimizing SSE, with comparisons based on statistical metrics such as Mean SSE, Standard 
Deviation (STD), and computational runtime.

•	 Real-World Validation: Experimental datasets are used to evaluate the algorithm’s ability to predict polariza-
tion curves, voltage outputs, and power generation with high precision.

•	 Statistical Robustness: Multiple statistical tests, including Friedman Ranking and Wilcoxon Signed-Rank 
tests, are conducted to confirm the superiority and consistency of SCPSO over competing methods.

The novelty of this work is to hybridize PSO and Slime Mold principles to construct a balanced framework for 
robust PEMFC parameter optimization. The SCPSO algorithm offers a dual advantage: There was an enhanced 
computational efficiency and superior accuracy. It is a reliable tool for real world applications due to its ability 
to maintain low SSE with minimal variability across multiple runs. PEMFCs represent an advanced technology 
for clean energy conversion because they deliver high efficiency with minimal environmental consequences. 
PEMFC models rely on accurate parameter estimation because it determines their operational performance and 
reliability characteristics. Modern meta-heuristic algorithms together with statistical procedures have greatly 
optimized the processes which extract parameters. The authors Kanouni and Laib73 developed an enhanced 
Differential Evolution algorithm which successfully optimized PEMFC performance by accurately extracting 
model parameters. Saad et al.74 developed a parameter estimation technique that employs the Huber loss 
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statistical function for enhancing estimation accuracy during noise disturbances. Jangir and his co-authors 
created a PEMFC parameter estimation technique based on Differential Evolution with depth information 
enhancement to reach high precision results75. Computational methods play a vital role in advancing PEMFC 
technology because various studies show their critical value for innovation in this field.

The remainder of this paper is structured as follows: In Section "PEMFC mathematical modelling", PEMFC 
mathematical modeling and the optimization problem formulation are presented. In Section "Particle swarm 
optimization algorithm for hybrid mutant slime mold", the design and operational principles of the SCPSO 
algorithm are detailed. The experimental setup, simulation results, and comparative analyses are presented in 
Section "Result analysis and discussion". Section "Conclusions" concludes with a key findings and potential 
future directions.

PEMFC mathematical modelling
Basic concept of PEMFC
The Proton Exchange Membrane Fuel Cell (PEMFC) structure includes two electrodes, specifically the anode 
and the cathode, and a proton-conducting membrane positioned between these electrodes as the polymer 
electrolyte. The schematic diagram of fuel cell is given in Fig. 1.

This arrangement permits the passage of protons while restricting electron flow76. Additionally, catalyst 
layers are placed between the electrolyte membrane and both electrodes to expedite the chemical reaction. 
Hydrogen gas is supplied to the anode electrode, where, upon reaching the catalytic layer, it dissociates into 
electrons and protons. The protons then migrate through the electrolyte membrane to the catalytic layer at the 
cathode electrode, while the electrons are conducted through an external load. Oxygen or air is supplied to the 
cathode, and upon arrival at the catalytic layer of the cathode electrode, it combines with the protons from the 
membrane and the electrons from the external circuit to produce water. The electrochemical reactions at the 
PEMFC electrodes are expressed as follows76:

Anode reaction

Fig. 1.  Schematic of fuell cell.
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	 H2 → 2H+ + 2e− � (1)

Cathode reaction

	 2H+ + 1
2 O2 → H2O � (2)

Overall reaction:

	 H2 + 1
2 O2 → H2O + Energy + Heat � (3)

In Eq. (3), the term “Energy” represents the electrical energy generated as a result of electron flow from hydrogen 
gas traveling from the anode to the cathode through an external load. The equivalent electrical circuit for PEMFC 
stack is shown in Fig. 2.

Mathematical model of PEMFC stacks
The output voltage Vcell of each individual fuel cell can be computed using the following expression77,78:

	 Vcell = Enerst − ∆Vact − ∆Vohm − ∆Vcon � (4)

In this equation, Enerst denotes the open-circuit voltage of the cell, ∆Vact represents the activation overpotential 
per cell, ∆Vohm describes the voltage drop caused by ohmic resistance due to electron conduction through 
the external load and the proton movement resistance in the electrolyte membrane, and ∆Vcon indicates the 
concentration overpotential per cell. Amphlett et al.79 proposed a model of a fuel cell’s electrochemical properties. 
When a series connection of Ncells identical fuel cells is configured for increased voltage output, the total stack 
voltage can be determined as:

	 Vstack = Ncells · Vcell � (5)

Here, Ncells refers to the number of cells connected in series, and Vcell is the output voltage for each individual 
fuel cell, as derived from Eq. (4).

The reversible potential, Enerst, is calculated as follows80,81:

	 Enerst = 1.229 − 8.5 × 10−4(Tfc − 298.15) + 4.3085 × 10−5Tfc ·
[
ln(PH2 ) + ln

(√
PO2

)]
� (6)

Fig. 2.  Equivalent electrical circuit for PEMFC.
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where Tfc is the cell’s absolute operating temperature in Kelvin, while PH2  and PO2  denote the partial pressures 
of hydrogen and oxygen in the fuel cell stack’s input channels (atm). When hydrogen and air serve as the inputs, 
the partial oxygen pressure, PO2 , is determined as follows82,83:

	 PO2 = Pc − RHcP sat
H2O − 0.79

0.21 PO2 · exp
(
0.291 Ifc

A
/T 0.832

fc

)
� (7)

where Pc represents the inlet channel pressure at the cathode (atm), RHc is the cathode electrode’s relative 
humidity, Ifc is the operating current (A), A is the membrane surface area (cm2), and P sat

H2O  is the water vapor 
pressure at saturation, defined by84:

	
log10(P sat

H2O) = 2.95 × 10−2(Tfc − 273.15) − 9.18 × 10−5(Tfc − 273.15)2

+1.44 × 10−7(Tfc − 273.15)3 − 2.18 � (8)

In cases where hydrogen and pure oxygen are used, the partial oxygen pressure PO2  is calculated as follows84:

	
PO2 = RHcP sat

H2O

[(
exp

(
4.192 1

Ifc
/T 1.334

fc

)
·

RHcP sat
H2O

Pa

)−1

− 1

]
� (9)

Equation (7) describes the reaction process at the cathode when air supply is used because it includes nitrogen 
which makes up most of air composition. The operating conditions of PEMFC systems that use air as their 
oxidant find accurate representation through Eq. (7). Equation (9) becomes applicable for PEMFC operations 
when pure oxygen is fed to the cathode. Specialized applications require pure oxygen as an oxidant because 
they need either enhanced performance or unique experimental settings. PEMFC applications require a specific 
equation based on the choice of oxidant between air or pure oxygen. The use of air as an oxidant requires 
the implementation of Eq.  (7) because nitrogen affects the partial oxygen pressure significantly. The use of 
pure oxygen requires Eq. (9) as the preferred calculation method because nitrogen is absent from pure oxygen 
environments. The PEMFC models studied in this work mainly use Eq.  (7) because they operate with air as 
their oxidant. The equation successfully represents nitrogen effects to model partial oxygen pressure accurately 
for standard PEMFC operational simulations. The application of Eq. (9) requires pure oxygen systems but the 
present research models do not use pure oxygen.

In both cases, the partial hydrogen pressure PH2  is given by:

	
PH2 = 0.5RHaP sat

H2O

[(
exp

(
1.635 1

Ifc
/T 1.334

fc

)
·

RHaP sat
H2O

Pa

)−1

− 1

]
� (10)

where Pa is the anode electrode’s inlet channel pressure (atm), and RHa indicates the relative humidity on the 
anode side.

The activation voltage drop ∆Vact for the electrodes is calculated by:

	 ∆Vact = − [ξ1 + ξ2Tfc + ξ3Tfcln(CO2 ) + ξ4Tfcln(Ifc)] � (11)

where ξ1, ξ2, ξ3, and ξ4 are empirical coefficients, and CO2  denotes the oxygen concentration at the cathode 
(mol/cm3) as follows:

	 CO2 = PO2
5.08×106·exp(−498/ffc) � (12)

The ohmic resistive voltage drop ∆Vohm is determined by:

	 ∆Vohm = Ifc(RM + RC) � (13)

where RM  is the membrane resistance (Ω) and RC  is the resistance due to proton movement through the 
membrane. Membrane resistance is calculated as:

	 RM = ρM ·l
A

� (14)

with ρM  being specific membrane resistance (Ω·cm),  representing membrane thickness (cm), and the empirical 
formula for ρM  given as:

	

ρM =
181.6

[
1 + 0.03

(
Ifc

A

)
+ 0.062

(
Tfc

303

)2(
Ifc

A

)2.5
]

[
λ − 0.634 − 3

(
Ifc

A

)]
× exp

[
4.18

(
Tfc−303

Tfc

)] � (15)

where λ is an adjustable parameter connected to membrane preparation.
The concentration voltage drop, ∆Vcon, is determined by:
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	 ∆Vcon = −bln
(
1 − J

Jmax

)
� (16)

where b is a parametric coefficient (V); J  and Jmax are the current density and maximum current density (A/
cm2), respectively.

To ensure accurate modeling under simulation and control conditions, precise estimation of these parameters 
is essential. Seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, RC , and b) are optimized using the proposed 
optimization technique.

Objective function
To closely align the model output with experimental PEMFC data, the optimization problem is solved by 
employing the proposed technique, minimizing the sum of squared errors (SSE) between experimentally 
measured and calculated stack voltages85,86:

	 OF = min SSE(x) = min
∑N

i=1[vmeas(i) − vcal(i)]2 � (17)

where x represents the unknown parameter vector, N  is the number of data points, i is the iteration index, vmeas is 
the measured PEMFC voltage, and vcal is the estimated voltage.  x is the vector of parameters to be optimized, and the 
constraints ensure the parameters remain within feasible lower and upper bound ranges ξ1[−1.1997, −0.8532]
, ξ2[1.0 × 10−3, 5.0 × 10−3], ξ3[3.6 × 10−5, 9.8 × 10−5], ξ4[−2.600 × 10−4, −0.954 × 10−4], λ[14,23], 
Rc(Ω)[1.0 × 10−4, 8.0 × 10−4], and β[1.36 × 10−2, 50.00 × 10−2].

The optimization is subject to the following constraints:

	

ξi,min ≤ ξi ≤ ξi,max, i = 1 : 4
RCmin ≤ RC ≤ RCmax

λmin ≤ λ ≤ λmax
bmin ≤ b ≤ bmax

� (18)

where ξi,min and ξi,max are the limits for empirical coefficients, RC,min and RC,max are resistance bounds, and 
λmin, λmax, bmin, and bmax define the limits for water content and parametric coefficients. The mean bias error 
for voltage is calculated as per below equation:

	
MBE =

∑N

i=1|Vmeas(i) − Vcalc(i)|
N

� (19)

Particle swarm optimization algorithm for hybrid mutant slime mold
Basic particle swarm optimization
Particle Swarm Optimization (PSO) simulates the cooperative foraging behavior observed in bird flocks, wherein 
information is shared among members to collectively identify food sources via optimal routes87. A particle’s 
current position Xi, flight velocity Vi, and personal best position Pi are expressed mathematically in Eq. (20):

	

{
Xi = (xi1, xi2, . . . , xin)
Vi = (vi1, vi2, . . . , vin)
Pi = (pi1, pi2, . . . , pin)

� (20)

The velocity and position of each particle are updated using Eqs. (21) and (22):

	 Vi(t + 1) = Vi(t) · w + C1r1(Pi(t) − Xi(t)) + C2r2(Pg(t) − Xi(t)) � (21)

	 Xi(t + 1) = Xi(t) + Vi(t + 1) � (22)

where t represents the current iteration number, w is the inertia coefficient, C1 and C2 are the self-perception 
and social learning coefficients, respectively, and r1, r2 are random values88,89.

Proposed particle swarm optimization algorithm for hybrid mutant slime mold
Despite PSO’s widespread application and its established effectiveness, it often struggles with exploration in 
complex scenarios, leading to premature convergence at local optima. To address these shortcomings, a novel 
PSO variant, named SCPSO, was developed with the following enhancements:

	1.	� Improved Good Point Set Strategy: This ensures a more evenly distributed initial population, enhancing 
diversity.

	2.	� Identification Attack Strategy: Incorporates dynamic inertia weight and the recognition attack mechanism 
from the Coati Optimization Algorithm (COA) to swiftly identify optimal prey locations and improve veloc-
ity updates.

	3.	� Fusion of Mutated SMA: Combines PSO with a mutated Slime Mold Algorithm (SMA) to expand the search 
space and avoid local optima.

	4.	� Sigmoid Function: A nonlinear function is integrated to broaden the exploration range.
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Good point set
Improving the initialization diversity significantly enhances the algorithm’s capability to identify global optima. 
Traditional PSO generates populations randomly, often resulting in uneven distribution. To address this, the 
good point set method is utilized for creating a more uniform population, as described in Eqs. (23) and (24):

	 r = (r1, r2, . . . , rn) � (23)

	 ri = mod(2 cos(2πj/7), 1), (1 ≤ i ≤ N, 1 ≤ j ≤ M) � (24)

where N  represents the number of individuals and M  the number of variables.
An enhanced version of ri, providing a more uniformly distributed population, is represented in Eq. (25):

	 ri = mod(1.8 cos(2πj/7), 1) � (25)

A set of m good points is constructed as shown in Eq. (26):

	 Pn(i) = {(r1, r2, . . . , rn)}, 1 ≤ i ≤ N � (26)

Mapping Pn onto the feasible domain generates the initial population as detailed in Eq. (27):

	 x(i,j) = Lbj + Pn(i)(Ubj − Lbj) � (27)

where Ub and Lb are the upper and lower bounds, and x(i,j) represents the initialized individual.

Identification attack strategy
The identification attack strategy employs a dynamic inertia weight and the recognition mechanism from the 
Coati Optimization Algorithm (COA) to enhance the particle’s ability to identify prey quickly. This strategy 
uses the first phase of COA, where particles update their velocity and position based on prey recognition, as 
represented in Eq. (28):

	
xnew,P1

(i,j) =
{

x(i,j) + r · (p − I · x(i,j)), if Fpi < Fi

x(i,j) + r · (I · x(i,j) − p), else � (28)

Subsequent updates are performed as shown in Eq. (29):

	
x(i,j+1) =

{
x(i,j) + rand(1, Dim) · (p − x(i,j)), if Fpi < Fi

x(i,j) + rand(1, Dim) · (x(i,j) − p), else � (29)

Velocity updates, incorporating position adjustments, are detailed in Eq. (30):

	 Vi(t + 1) = Vi(t) · Wt + C1 · r1(Pi(t) − Xi(t)) + C2 · LF · r2(Pg(t) − Xi(t)) � (30)

where Wt and LF  are defined in Eqs. (31) and (32):

	 Wt = Wmax − t · Wmax−Wmin
MaxT � (31)

	
LF = 0.05 × θ×σ

|ρ|
1
β

� (32)

with σ defined in Eq. (33):

	
σ =

(
Γ(1+β)×sin(πβ/2)

Γ((1+β)/2)×β×2(β−1)/2

)1/β

� (33)

In these equations, θ and ρ are normally distributed random numbers.

Mutant slime mold algorithm
The Mutant Slime Mold Algorithm (SMA) simulates the behavior of slime molds during foraging, where decisions 
to move towards food are influenced by the intensity of the food scent in the surrounding environment90,91. The 
position update rule is formulated as shown in Eq. (34):

	
Snew =

{
Sb(t) + vb · (W · SA(t) − SB(t)), r < f
vc · S(t), r ≥ p � (34)

where f = tanh|D(i) − DF |, vb = unifrnd(−a, a, 1, N), and vc = unifrnd(−b, b, 1, N). Sb denotes the 
location with the highest food scent concentration, SA and SB  represent two randomly selected slime mold 
positions, D(i) is the fitness value of S, and DF  is the best fitness value. The parameters a and b are computed 
using Eqs. (35) and (36):

	 a = arctanh(−t/MaxT + 1) � (35)
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	 b = 1 − t/MaxT � (36)

The weighting factor W , which reflects the fitness influence, is calculated using Eq. (37):

	

W (D.SmellIndex(i)) =




1 + r · log
(

bfin−D(i)
bfin−wfin

+ 1
)

, condition

1 − r · log
(

bfin−D(i)
bfin−wfin

+ 1
)

, otherwise
� (37)

where “condition” pertains to the top half of the population before sorting D(i), r is a random number in [0,1], 
bfin and wfin represent the best and worst fitness values, respectively, and D.SmellIndex denotes the fitness 
rank, as in Eq. (38):

	 D.SmellIndex = sort(D) � (38)

The encircling mechanism utilizes feedback between mucus vein width and food concentration. For rand < z, 
positions are updated as per Eq. (39):

	 Xnew = rand · (UB − LB) + LB, if rand < z � (39)

where UB and LB are the upper and lower bounds. If rand ≥ z and the random value r of venous contraction 
is less than p, the update follows Eq. (40):

	 Xnew = X(t) + vb · (W · XA(t) − XB(t)), r < p � (40)

For seamless integration with PSO, the weighting factor W  is eliminated, yielding the updated formula in 
Eq. (41):

	 Xnew = X(t) + vb · (XA(t) − XB(t)), r < p � (41)

and for r ≥ p, the update is given by Eq. (42):

	 Xnew = vc · X(t), r ≥ p � (42)

Mutation processes refine particle positions systematically. This involves randomly selecting two 
individuals, scaling their vector difference, and combining them with a target to create a mutant individual 
v(i,l+1) = {v1

(i,l+1), v2
(i,l+1), . . . , vd

(i,l+1)}, as shown in Eq. (43):

	 v(i,l+1) = x(r1,l) + F1 × (x(r2,l) − x(r3,l)) � (43)

where x(r1,l), x(r2,l), x(r3,l) are three distinct individuals, and F1 is the adaptive variance operator defined as 
F1 = F0 · 2λ, with λ = e1−L/(L+1−l). The superior individual is determined using greedy selection, expressed 
in Eq. (44):

	
x(i,l+1) =

{
v(i,l+1), if f(v(i,l+1)) ≤ f(x(i,l))
x(i,l), otherwise � (44)

The incorporation of differential mutation strategy broadens the search scope dynamically. This hybrid approach 
effectively combines SMA with PSO, enhancing exploration and exploitation capabilities while reducing the risk 
of premature convergence.

Sigmoid function
The Sigmoid function, widely used in logistic regression, epidemic modeling, and growth analysis, facilitates 
nonlinear scaling to expand the algorithm’s search space. Its basic expression is given in Eq. (45):

	 S = 1
1+e−t � (45)

where e is the base of the natural logarithm. Without this function, the particle’s input follows a linear path. To 
enhance search capabilities, a nonlinear adjustment is introduced in Eq. (46):

	 Xi(t + 1) = S · Xi(t) + Vi(t + 1) � (46)

The pseudo-code for SCPSO outlines these enhancements systematically in Algorithm 1.
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Algorithm 1.  Proposed SCPSO Algorithm
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SCPSO complexity analysis
The time complexity of SCPSO is derived from the three main stages of the algorithm: initialization, updating of 
speed and position information, and the integration of the mutant slime mold algorithm. The time complexity 
of SCPSO is computed as follows:

	

O (SCPSO) = O (initialization) + O (MaxT · O (position and velocity update))
+ O (mutated SMA) = O (NM) + O (MaxT · NM)
+ O (MaxT · NM) = O (NM + (MaxT + 1))

� (47)

Result analysis and discussion
A novel hybrid optimization algorithm, SCPSO (a particle swarm optimization for mixed mutant slime mold), 
was rigorously evaluated and compared with advanced state-of-the-art algorithms for parameter estimation in 
PEMFC modeling in this study. The competing algorithms were Fick’s Law Algorithm (FLA), Hybrid Firefly 
and Particle Swarm Optimization (HFPSO), Particle Swarm Optimization with an Enhanced Learning Strategy 
and Crossover Operator (PSOLC), Equilibrium Slime Mold Algorithm (ESMA), Leader Slime Mold Algorithm 
(LSMA), Adaptive Hybrid Dandelion Optimizer (DETDO), and Golden Jackal Optimization Applying Cross 
Evolutionary Strategies (EGJO). Table 1 shows the default parameter setting used in this analysis. These 
algorithms were applied to six PEMFC models: Table 2 lists the BCS 500 W, SR-12 500 W, STD 250 W, Nedstack 
PS6 600 W, Horizon H-12, and Ballard Mark V.

Evaluate the performance of the SCPSO algorithm, three key statistical metrics were employed Standard 
Deviation (STD), Runtime (RT), and Friedman Ranking (FR). The mathematical formulations for these metrics 
are provided below. The Standard Deviation (STD) measures the dispersion of the Sum of Squared Errors (SSE) 
across multiple runs of the algorithm. A lower STD indicates higher stability and consistency in the algorithm’s 

performance. The STD is calculated as: STD =
√

1
N−1

∑N

i=1(SSEi − SSE)2 . Where N  is the number of runs, 

SSEi is the Sum of Squared Errors for the i-th run, and SSE is the mean SSE across all runs. The Runtime (RT) 
measures the computational time required by the algorithm to converge to the optimal solution. It is expressed 
in seconds and is calculated as: RT = tend − tstart. Where tstart is the time at which the algorithm begins 
execution, and tend is the time at which the algorithm completes execution. The Friedman Ranking (FR) is a 
non-parametric statistical test used to compare the performance of multiple algorithms across different datasets. 
The FR assigns ranks to each algorithm based on its performance, with the best-performing algorithm receiving 
the lowest rank. The FR is calculated as for each dataset, rank the algorithms based on their performance (e.g., 
SSE values), with the best performance receiving rank 1. Compute the average rank for each algorithm across 

all datasets. The Friedman statistic (χ2
F ) is calculated as: χ2

F = 12N
k(k+1)

[∑k

j=1 R2
j − k(k+1)2

4

]
 Where N  is the 

number of datasets, k is the number of algorithms, and Rj  is the average rank of the j-th algorithm.The critical 
value for the Friedman test is determined based on the degrees of freedom (k − 1) and the desired significance 

S.No. PEMFCtype Power(W) Ncells(no) A l(um) T(K) Jmax(mA/cm2) PH2(bar) PO2(bar)

FC1 BCS 500 W 500W 32 64(cm2) 178 333K 469 1.0 0.2095

FC2 NetStack PS6 6000 W 65 240(cm2) 178 343K 1125 1.0 1.0

FC3 SR − 12 500W 48 62.5(cm2) 25 323K 672 1.47628 0.2095

FC4 Horizon H − 12 12 W 13 8.1(cm2) 25 328.15K 246.9 0.4935 1.0

FC5 Ballard Mark V 5000W 35 232(cm2) 178 343K 1500 1.0 1.0

FC6 STD 250 W 250W 24 27(cm2) 127 343K 860 1.0 1.0

Table 2.  Properties of the six PEMFCs used in this research.

 

Algorithms Parameter setting

FLA62 C1 = 0.5;C2 = 2; C3 = 0.1, C4 = 0.2;C5 = 2

HFPSO63 c1 = 1.49445, c2 = 1.49445; v−c = 0.1

PSOLC64 w1 = 1, w2 = 1, w3 = 1; wp1 = 0.99, wp2 = 0.994, wp3 = 0.995

ESMA65
z = 0.03

LSMA66
z = 0.03

DETDO67 α decreases from 1 to 0, k increases from 0 to 1;F = 0.9
EGJO68 c1 = 1.5; A = 0.03
SCPSO61 wMax = 0.9, wMin = 0.1; c1 = 0.5, c2 = 0.5

Table 1.  Standard parameter settings for the algorithms under comparison.
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level. If the calculated χ2
F  exceeds the critical value, the null hypothesis (that all algorithms perform equally) is 

rejected.
The BCS 500 W PEMFC model uses data obtained through experimental research and validated literature 

datasets which stem from references69,70,75. The references contain essential electrochemical and operational data 
needed for both modeling and optimization purposes. The Nedstack PS6 600 W PEMFC model operates using 
experimental data and performance curves obtained from Nedstack Fuel Cell Technology. The dataset contains 
essential parameters including I-V and P–V characteristics which are cited in71,75. The SR-12 500 W PEMFC 
model draws its data from experimental studies and validated datasets which are found in references69,70. The 
references deliver extensive details about electrochemical performance together with operational specifications 
of SR-12 PEMFC. The Horizon H-12 PEMFC model derives its foundation from experimental data and 
performance curves which Horizon Fuel Cell Technologies has provided. The dataset contains complete I-V 
and P–V characteristic information which is documented in reference72. The Ballard Mark V PEMFC model 
originates from experimental data and performance curves Ballard Power Systems has published. The dataset 
contains essential parameters of I-V and P–V characteristics which are documented in72,75. The STD 250 W 
Stack PEMFC model uses experimental data and validated datasets found in references69,70 for its development. 
The references contain complete operational and electrochemical information needed for optimization and 
modeling purposes. The data sources guarantee both accuracy and reliability of PEMFC models throughout 
this study which allows for accurate parameter optimization and validation of the proposed SCPSO algorithm.

The experiments were performed using MATLAB 2021a on a PC with Windows Server 2019 and i7-11700 k 
CPU @ 3.6 GHz. For each algorithm, we set a maximum of 500 iterations, 30 independent runs, and a population 
size of 40. The results show that SCPSO consistently outperformed the other algorithms in terms of faster 
convergence rates and better stability for all PEMFC models. With fewer iterations, it achieved the lowest sum 
of squared errors (SSE) than its competitors. SCPSO generated current voltage (I/V) and voltage power (V/P) 
characteristics that were in close alignment with experimental data, indicating its highly accurate and reliable 
PEMFC parameter modeling. The adaptability of SCPSO suggests its potential for real world optimization 
of PEMFC systems. Improvements in minimizing SSE across all tested models were statistically significant. 
SCPSO’s stability was further highlighted by comparative plots with error bars, showing a narrow distribution 
of SSE values that was consistently better than the variability in other algorithms. The results demonstrate that 
SCPSO is a powerful and reliable tool for parameter estimation and optimization in PEMFC applications, and 
outperforms advanced competitors such as LSMA, DETDO, and EGJO.

FC1: BCS 500 W
Table 3 summarizes the results of SSE minimization during parameter optimization for PEMFC1, where SCPSO 
shows outstanding performance. SCPSO has the lowest Mean SSE (0.02549) and is consistent across its Min. SSE 
(0.02549) and Max. SSE (0.02549) values are highly precise and stable. SCPSO’s negligible standard deviation 
(1.05958E-15) supports this performance as this implies that the optimization output is almost uniform across 
multiple runs. Other algorithms, like HFPSO (Std. = 0.001998568) and LSMA (Std. = 0.005520218), are much 
more variable, and hence less reliable. Moreover, SCPSO has the best Friedman Rank (FR = 1) confirming 
that it is the best overall performer among all the algorithms and is better than DETDO (FR = 4) and HFPSO 
(FR = 4.8). Moreover, SCPSO has computational efficiency, which results in the shortest runtime (RT = 3.02859) 
among all algorithms, which is essential for practical applications. Although DETDO (RT = 3.43297) and LSMA 
(RT = 3.61579) are close in runtime, SCPSO is the best choice for parameter tuning in PEMFC applications due 
to its simultaneous optimization accuracy and efficiency.

The results in Case 1 show that the minimum value of 0.02549 was achieved by SCPSO, which was slightly 
better than other algorithms and comparable to ESMA. FLA, HFPSO, PSOLC, LSMA, DETDO and EGJO 
were outperformed by SCPSO by 56.27%, 0.78%, 2.93%, 13.99%, 0.55% and 0.08%, respectively. The maximum 
value of 0.02549 was obtained by SCPSO, which outperformed all other algorithms. SCPSO outperformed 

Algorithm FLA HFPSO PSOLC ESMA LSMA DETDO EGJO SCPSO

ξ1  − 1.19969  − 1.06130  − 1.00279  − 1.13308  − 1.19227  − 1.00155  − 1.14214  − 1.19182

ξ2 0.00322 0.00312 0.00286 0.00360 0.00328 0.00340 0.00340 0.00324

ξ3 0.000036 5.62722E-05 5.10507E-05 7.32465E-05 4.1243E-05 8.59391E-05 5.87592E-05 3.85435E-05

ξ4  − 0.00018668  − 0.00019253  − 0.0001937  − 0.00019308  − 0.00019117  − 0.00019325  − 0.00019302  − 0.00019302

λ 18.3984068 22.99987828 22.65058057 20.93552549 23 21.21213374 20.94971935 20.87724332

Rc 0.000283 0.000301 0.000180 0.000104 0.000296 0.000100 0.000102 0.000100

B 0.01510 0.01620 0.01672 0.01611 0.01683 0.01632 0.01618 0.01613

Min 0.05829 0.02569 0.02626 0.02551 0.02964 0.02563 0.02551 0.02549

Max 0.18502 0.03076 0.03491 0.02613 0.04282 0.02640 0.02560 0.02549

Mean 0.10411 0.02751 0.02884 0.02570 0.03315 0.02612 0.02554 0.02549

Std 0.047943129 0.001998568 0.003624278 0.000250931 0.005520218 0.000297011 4.49093E-05 1.05958E-15

RT 3.97473 4.73482 6.39634 6.39499 3.61579 3.43297 4.04090 3.02859

FR 8 4.8 6 3 6.8 4 2.4 1

Table 3.  The optimized parameters and the optimal function value for FC1.
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FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO by 86.22%, 17.12%, 27.01%, 2.45%, 40.46%, 3.44%, 
and 0.43%, respectively. The overall best performance was achieved by SCPSO with the lowest mean value of 
0.02549. Compared to the mean values of FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO and EGJO, SCPSO was 
75.50%, 7.34%, 11.61%, 0.81%, 22.99%, 2.42% and 0.20% lower. Moreover, SCPSO had the highest stability with 
standard deviation of 1.05958E-15, which was the lowest across all algorithms. Standard deviation of SCPSO was 
99.99%, 99.95%, 99.98%, 99.97%, 99.99%, 99.99%, and 99.99% lower than FLA, HFPSO, PSOLC, ESMA, LSMA, 
DETDO, and EGJO, respectively. The most efficient algorithm was SCPSO with the fastest runtime of 3.02859. 
FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 23.82%, 36.05%, 52.64%, 52.64%, 16.23%, 
11.74%, and 25.06% slower than SCPSO. Finally, the Friedman rank of 1.0 was obtained by SCPSO, which 
outperformed all other algorithms significantly. SCPSO’s Friedman rank was 87.50%, 79.17%, 83.33%, 66.67%, 
85.42%, 75.00%, and 58.33% better than FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. 
Across all metrics, SCPSO was the most robust and efficient algorithm in this case.

In Fig. 3a, SCPSO is in excellent agreement with experimental data, outperforming algorithms such as HFPSO 
and PSOLC, which deviate significantly at higher current densities. As shown in Fig. 3b, SCPSO converges to 
the minimum SSE faster than ESMA and HFPSO in fewer iterations. Finally, the box plot in Fig. 3c shows that 
SCPSO is the best in minimizing SSE, with the narrowest spread among all algorithms. On the contrary, the 
variance in the output of optimization using FLA and HFPSO is high, and there is high variability and, therefore, 
uncertainty.

Finally, SCPSO is proved to be the best algorithm for PEMFC1 optimization in terms of minimizing SSE, 
computational efficiency and experiment alignment. With its best Friedman Rank (FR = 1), its low runtime 
and small variability, it outperforms all other tested algorithms. Although the alternatives DETDO and LSMA 
provide competitive performance, SCPSO is the most reliable, precise and stable PEMFC parameter optimization 
method.

FC2: NetStack PS6
Table 4 shows that SCPSO performs very well in parameter optimization with the objective of minimizing 
SSE for PEMFC2 (NetStack PS6). SCPSO is the algorithm with the lowest Mean SSE (0.27521) which is also 
consistent with its Min. SSE (0.27521) and Max. Values of SSE (0.27521) show that the model is more stable and 
precise across all iterations. The reliability of this consistency is enhanced by its very small standard deviation 
(6.75322E-16). On the other hand, FLA (Std. = 0.31795) and HFPSO (Std. = 0.01012) are less consistent, as seen 
by their greater variability. In addition, SCPSO also obtains the best Friedman Rank (FR = 1) which further 
confirms its overall better performance than DETDO (FR = 3.4) and HFPSO (FR = 6.4).

In terms of computational efficiency, SCPSO outperforms all tested algorithms in the shortest runtime 
(RT = 4.16770). Although algorithms such as DETDO (RT = 5.08664) and LSMA (RT = 5.22783) are competitive, 
SCPSO offers the best combination of minimal runtime and superior SSE optimization for real time parameter 
tuning in PEMFC applications.

The results of Case 12 from the given table show that the minimum value of 0.27521 was achieved by SCPSO, 
which is better than all other algorithms. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 
outperformed by SCPSO by 17.55%, 2.12%, 0.08%, 0.38%, 0.22%, 0.09%, and 0.16%, respectively. In addition, 
SCPSO achieved the lowest maximum value of 0.27521, which was much lower than other algorithms. The 
results show that, compared to FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, SCPSO outperformed 
them by 77.43%, 10.51%, 10.94%, 5.71%, 8.00%, 0.53%, and 4.37%, respectively. The best result was achieved by 
SCPSO with the lowest mean value of 0.27521. The mean value of this was 62.16%, 7.56%, 2.68%, 2.87%, 3.52%, 
0.35%, and 1.61% lower than the mean values of FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, 
respectively. The standard deviation of SCPSO was the highest, which was 6.75322E-16, the least among all of the 
algorithms. The standard deviation of SCPSO was 99.99%, 99.99%, 99.99%, 99.99%, 99.99%, 99.85%, and 99.99% 
lower than FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. The most efficient algorithm 
was SCPSO with a runtime of 4.16770. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 18.39%, 
6.54%, 50.46%, 56.63%, 20.23%, 18.08%, and 22.91% slower than SCPSO, respectively. Finally, SCPSO had the 
best Friedman rank of 1.0, which is significantly better than all other algorithms. SCPSO’s Friedman rank was 
87.50%, 84.38%, 73.68%, 78.26%, 80.00%, 70.59%, and 73.68% better than FLA, HFPSO, PSOLC, ESMA, LSMA, 
DETDO, and EGJO, respectively. Across all metrics, SCPSO showed better performance and is the most robust 
and efficient algorithm in this analysis.

As shown in Fig. 4a, SCPSO tracks experimental data well over the entire range of current densities and 
outperforms algorithms such as HFPSO and PSOLC, which deviate markedly from experiment, especially at 
higher densities. As shown in Fig. 4b, the convergence curve of SCPSO is a rapid reduction of SSE, and it needs 
fewer iterations to reach the optimal solutions than other algorithms. In Fig. 4c, the box plot clearly shows the 
variability of SSE and SCPSO has the narrowest distribution, which means that it is stable and consistent. On the 
other hand, the SSE distributions of FLA and HFPSO are broader, indicating greater uncertainty in their results. 
Finally, SCPSO is the most suitable algorithm for PEMFC2 optimization, because it offers the best compromise 
between low SSE, high stability and computational efficiency. It is dominant in the Friedman Rank (FR = 1) 
and is in exact agreement with experimental results. Although DETDO and LSMA are competitive algorithms, 
SCPSO is a consistent and fast algorithm with robust performance that makes it the best algorithm for PEMFC 
parameter optimization.

FC3:SR-12
As shown in Table A1 (Supplementary Data), the SCPSO algorithm performs very well in minimizing SSE and 
accurate parameter optimization for PEMFC3. SCPSO has the lowest Mean SSE (0.24228) which is consistent 
with its Min. SSE (0.24228) and Max. SSE (0.24228) values. The negligible standard deviation (5.84682E-16) of 
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Fig. 3.  FC1: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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this consistency is further validated by the uniform optimization outcomes across multiple iterations. On the 
other hand, FLA (Std. = 0.16092) and HFPSO (Std. = 0.000757482) are more variable, and hence less reliable. 
The Friedman Rank (FR = 1) for SCPSO is the first, outperforming DETDO (FR = 3.4) and EGJO (FR = 2.8) in 
all metrics.

The computational efficiency of SCPSO is illustrated by its runtime (RT = 3.10589), which is among the lowest 
of all algorithms. For example, PSOLC has a shorter runtime (RT = 2.70507), but its performance is marred by 
higher SSE values (Mean SSE = 0.24323) and higher variability (Std. = 0.000708732). The combination of precise 
optimization and competitive runtime of SCPSO makes it an ideal candidate for real world PEMFC applications.

The results in Case 3, as shown in the table, indicate that SCPSO had the lowest minimum value of 0.24228, 
which was superior to all other algorithms. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO and EGJO were 
outperformed by SCPSO by 20.74%, 0.01%, 0.08%, 0.03%, 0.70%, 0.01% and 0.00%, respectively. The lowest 
maximum value of 0.24228 was obtained by SCPSO, which was better than all other algorithms. SCPSO 
outperformed FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO by 65.39%, 0.74%, 0.73%, 0.25%, 1.37%, 
0.21%, and 0.10%, respectively. The best algorithm overall was SCPSO with the lowest mean value of 0.24228. 
The mean value was 49.05%, 0.20%, 0.39%, 0.08%, 1.11%, 0.07%, and 0.03% lower than the mean values of FLA, 
HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. The lowest standard deviation of 5.84682E-
16 was observed in SCPSO, which is the highest stable algorithm. SCPSO’s standard deviation was 99.99%, 
99.92%, 99.92%, 99.74%, 99.90%, 99.70%, and 99.42% less than FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, 
and EGJO, respectively. Among the fastest, SCPSO had an efficient runtime of 3.10589. FLA, HFPSO, PSOLC, 
ESMA, LSMA, DETDO, and EGJO were 15.53%, 48.20%, 14.79%, 45.82%, 2.17%, 0.14%, and 23.77% slower 
than SCPSO. Finally, SCPSO obtained the best Friedman rank of 1.0, which was significantly better than all other 
algorithms. SCPSO’s Friedman rank was 87.50%, 77.27%, 81.48%, 75.00%, 85.71%, 70.59%, and 64.29% better 
than FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. In all metrics, SCPSO achieved the 
best performance and was the most robust and efficient algorithm in this case.

Additional clarity is provided by insights from the associated figures. In Fig.  5a, SCPSO closely follows 
experimental data at different current densities. Unlike algorithms such as FLA and LSMA, which show 
deviations, especially at low voltages, SCPSO has consistent accuracy. Figure 5b shows the convergence curve of 
SCPSO, which shows that SCPSO reduces SSE quickly and reaches the optimal solution in fewer iterations than 
ESMA and HFPSO algorithms. Finally, the box plot in Fig. 5c confirms SCPSO’s stability with the narrowest 
spread in SSE values among all algorithms. The robustness and precision for parameters optimization of SCPSO 
are shown by this visual distinction.

FC4:Horizon H-12 PEMFC
As presented in Table A2 (Supplementary Data), SCPSO performs very well for parameter optimization of 
PEMFC4, in terms of minimizing SSE. The algorithm has the lowest Mean SSE (0.10291) and is consistent 
across its Min. SSE (0.10291) and Max. SSE (0.10291) values are exceptionally stable and precise. SCPSO 
results are reliable and consistent across all iterations, as the standard deviation (9.66476E-17) is negligible. 
In contrast, LSMA (Std. = 0.000515681) and PSOLC (Std. = 0.000225514) are more variable, and therefore less 
reliable. The best Friedman Rank (FR = 1) is also obtained by SCPSO, thus confirming its superior optimization 
performance with respect to algorithms such as DETDO (FR = 3.6) and HFPSO (FR = 4.2). In addition to 
the computational efficiency, SCPSO also has the shortest runtime (RT = 2.84414) among all algorithms and 
outperforms alternatives such as DETDO (RT = 3.17436) and FLA (RT = 3.41105). Although HFPSO produces a 
similar runtime (RT = 2.89399), its increased SSE variability and lower precision make SCPSO more suitable for 
real world applications where stability and accuracy are required.

The results from the given table in Case 4 indicate that SCPSO gave the minimum value of 0.10291, which 
was similar to that of FLA, HFPSO, and ESMA, and better than that of PSOLC, LSMA, DETDO, and EGJO by 
0.13%, 0.20%, 0.01%, and 0.01%, respectively. In addition, SCPSO had the lowest maximum value of 0.10291, 

Algorithm FLA HFPSO PSOLC ESMA LSMA DETDO EGJO SCPSO

ξ1  − 1.05238  − 0.88920  − 1.14275  − 1.09396  − 0.87990  − 1.19922  − 0.91231  − 0.85367

ξ2 0.00341 0.00250 0.00328 0.00336 0.00247 0.00361 0.00318 0.00253

ξ3 6.68518E-05 3.60275E-05 3.84765E-05 5.4724E-05 0.000036 5.04902E-05 7.96128E-05 4.55667E-05

ξ4  − 0.0000954  − 0.0000954  − 0.0000954  − 9.5415E-05  − 0.0000954  − 0.0000954  − 9.5436E-05  − 0.0000954

λ 23 14.66619614 14 14.12979063 14 14 14.00010578 14

Rc 0.000147 0.000100 0.000129 0.000130 0.000104 0.000119 0.000109 0.000120

B 0.06753 0.02654 0.01591 0.01714 0.01903 0.01734 0.01840 0.01679

Min 0.33385 0.28121 0.27544 0.27626 0.27583 0.27545 0.27564 0.27521

Max 1.21922 0.30748 0.30901 0.29190 0.29899 0.27668 0.28777 0.27521

Mean 0.72719 0.29773 0.28279 0.28333 0.28526 0.27617 0.27971 0.27521

Std 0.317949903 0.010116174 0.014701721 0.006701342 0.009673681 0.000451156 0.005125062 6.75322E-16

RT 5.10769 4.45901 8.41022 9.60888 5.22783 5.08664 5.40679 4.16770

FR 8 6.4 3.8 4.6 5 3.4 3.8 1

Table 4.  The optimized parameters and the optimal function value for FC2.
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Fig. 4.  FC2: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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Fig. 5.  FC3: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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which showed that it performed better than all other algorithms. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, 
and EGJO were outperformed by SCPSO by 3.10%, 0.23%, 0.67%, 0.48%, 1.47%, 0.01%, and 0.01%, respectively. 
The best overall performance was achieved by SCPSO with the lowest mean value of 0.10291. The mean value 
of this was 0.78%, 0.07%, 0.39%, 0.12%, 0.65%, 0.01%, and 0.01% lower than the mean values of FLA, HFPSO, 
PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. The highest stability was also demonstrated by SCPSO, 
with a standard deviation of 9.66476E-17, which is the lowest among all algorithms. The standard deviation of 
SCPSO was 99.99%, 99.91%, 99.95%, 99.95%, 99.98%, 99.93%, and 99.95% lower than FLA, HFPSO, PSOLC, 
ESMA, LSMA, DETDO, and EGJO, respectively. The most efficient algorithm was SCPSO with the fastest 
runtime of 2.84414. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO and EGJO were 16.62%, 1.73%, 52.07%, 
51.18%, 10.18%, 10.40%, and 19.21% slower than SCPSO. Finally, SCPSO had the best Friedman rank of 1.0, and 
significantly outperformed all other algorithms. SCPSO outperformed FLA, HFPSO, PSOLC, ESMA, LSMA, 
DETDO, and EGJO in terms of Friedman rank, with 77.27%, 76.19%, 85.71%, 77.27%, 85.71%, 72.22%, and 
77.27% better, respectively. Across all metrics, SCPSO performed better, and was the most robust and efficient 
algorithm in this case.

The associated figures provide further insights. Figure 6a shows that SCPSO closely follows experimental data 
and outperforms alternatives, such as PSOLC and LSMA, which deviate at different current densities. Figure 6b 
shows the convergence curve of SCPSO which converges faster than ESMA and HFPSO in terms of reducing the 
SSE, and reaches optimal solutions with fewer iterations. Finally, the narrowest SSE distribution among all tested 
algorithms is visually confirmed by the box plot shown in Fig. 6c, which proves SCPSO’s stability. However, 
SCPSO stands out as the most reliable choice for minimizing SSE compared to broader spreads observed for 
algorithms such as LSMA and PSOLC.

FC5: Ballard Mark V PEMFC
Parameter optimization in PEMFC5 (Ballard Mark V PEMFC), SCPSO is evaluated, and the results are reported 
in Table A3 (Supplementary Data). The lowest Mean SSE (0.14863) is achieved by SCPSO, which also perfectly 
matches its Min. SSE (0.14863) and Max. The SSE (0.14863) values are unparalleled in stability and precision. 
Having a practically zero standard deviation (6.07143E–16) means that the performance is consistent among 
iterations. In contrast to FLA (Std. = 0.02034) and HFPSO (Std. = 0.002603561) which are more variable. The 
Friedman Rank (FR = 1) also shows, that SCPSO performs better compared to algorithms even as EGJO (FR = 2) 
and DETDO (FR = 3.6).

The computational efficiency of SCPSO is analyzed for this PEMFC and it shows competitive runtime 
(RT = 2.77338). HFPSO has slightly faster runtime (RT = 2.87990) but higher SSE variability and lower precision, 
thus SCPSO is preferred. While both PSOLC and ESMA have competitive precision (RT = 7.13371 and 
RT = 5.38939, respectively), they are significantly slower than SCPSO.

The results in Case 5 from the table provided indicate that SCPSO has the lowest minimum value of 0.14863, 
which is the same as EGJO and better than FLA, HFPSO, PSOLC, ESMA, LSMA and DETDO by 0.81%, 0.48%, 
0.21%, 0.01%, 0.34% and 0.05%, respectively. SCPSO also attained the lowest maximum value of 0.14863, which 
is much better than all other algorithms. SCPSO achieved better performance than FLA, HFPSO, PSOLC, 
ESMA, LSMA, DETDO, and EGJO by 25.98%, 4.64%, 1.33%, 0.47%, 2.24%, 0.19%, and 0.03%, respectively. 
The results show that the mean value of SCPSO was the lowest (0.14863), which proves its better performance. 
The mean value of this was 10.58%, 2.57%, 0.49%, 0.15%, 1.10%, 0.10%, and 0.01% lower than the mean values 
of FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. Among all algorithms, SCPSO also 
showed the highest stability with a standard deviation of 6.07143E-16. The standard deviation of SCPSO was 
99.99%, 99.98%, 99.92%, 99.78%, 99.95%, 99.33%, and 99.64% lower than those of FLA, HFPSO, PSOLC, ESMA, 
LSMA, DETDO, and EGJO, respectively. The most efficient algorithm was SCPSO with the fastest runtime of 
2.77338. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 23.06%, 3.70%, 61.12%, 48.52%, 4.69%, 
7.99%, and 24.34% slower than SCPSO, respectively. Finally, SCPSO had the best Friedman rank of 1.0, and it 
significantly outperformed all other algorithms. The Friedman rank of SCPSO was 87.18%, 84.85%, 81.48%, 
72.22%, 83.33%, 72.22%, and 50.00% better than those of FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and 
EGJO, respectively. In this case, SCPSO showed excellent performance on all metrics, and was the most robust 
and efficient algorithm.

The figures in this case show SCPSO’s ability to align with experimental data. As shown in Fig. 7a, SCPSO 
is in excellent agreement with experimental data at all current densities and outperforms algorithms such as 
PSOLC and LSMA, which deviate from experiment at higher currents. The convergence curve in Fig. 7b shows 
that SCPSO can reduce SSE rapidly and requires less iteration to reach the optimal solution than competitors 
such as DETDO and ESMA. Finally, the box plot in Fig. 7c indicates that SCPSO is stable with the narrowest 
spread of SSE values compared to other algorithms such as FLA and HFPSO. The stability of SCPSO also further 
confirms the reliability of SCPSO in parameter optimization for PEMFC5.

FC6: STD 250 W Stack
Table A4 (Supplementary Data) shows that SCPSO performs very well in parameter optimization to minimize 
SSE for PEMFC6 (STD 250 W Stack). The lowest Mean SSE (0.28377) is achieved by SCPSO, and it is also the 
Min. SSE (0.28377) and Max. SSE (0.28377) values are without a doubt the most consistent across all iterations. 
The standard deviation of the algorithm (1.46869E16) is effectively zero, indicating its stability and reliability. In 
contrast, algorithms like FLA (Std. = 0.044418229) and LSMA (Std. = 0.021099587) show much higher variability. 
The superiority of SCPSO over alternatives such as PSOLC (FR = 5.2) and HFPSO (FR = 3.8) is further confirmed 
by its top ranking Friedman Rank (FR = 1).

In this case, SCPSO also shows its computational efficiency with low runtime (RT = 3.05012). However, 
SCPSO has a slightly slower runtime (RT = 3.25967) but a lower SSE variability and higher precision. Although 
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Fig. 6.  FC4: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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Fig. 7.  FC5: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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FLA and ESMA are competitive in terms of precision, they are much slower (RT = 10.6803 and RT = 6.48715, 
respectively), which makes SCPSO’s performance in terms of computational time even more evident.

The results from the table provided in Case 6 show that SCPSO had the lowest minimum value of 0.28377, 
which is equal to that of HFPSO and ESMA and better than FLA, PSOLC, LSMA, DETDO and EGJO by 9.14%, 
0.02%, 1.21%, 0.01%, 0.00% respectively. The lowest maximum value of 0.28377 was also achieved by SCPSO, 
which proved its better performance. SCPSO achieved better results compared to FLA, HFPSO, PSOLC, ESMA, 
LSMA, DETDO and EGJO and outperformed them by 32.77%, 10.70%, 14.41%, 0.13%, 15.27%, 0.21%, and 
0.02%, respectively. The performance of SCPSO over all metrics was confirmed by achieving the lowest mean 
value of 0.28377. The mean value of FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 20.43%, 
2.34%, 3.94%, 0.05%, 8.93%, 0.09%, and 0.01% less than the mean value of this proposed method. The lowest 
standard deviation of 1.46869E-16 was also shown by SCPSO, which was the most stable algorithm among 
all. Standard deviation of SCPSO was 99.99%, 99.99%, 99.99%, 99.99%, 99.99%, 99.99%, and 98.94% lower 
than FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO, respectively. The most efficient algorithm was 
SCPSO, with a runtime of 3.05012. FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO were 71.44%, 
41.49%, 6.43%, 52.98%, 50.98%, 17.20%, and 58.69% slower than SCPSO, respectively. Finally, SCPSO obtained 
the best Friedman rank of 1.0, which was significantly better than all other algorithms. SCPSO’s Friedman rank 
was 86.49%, 73.68%, 80.77%, 73.68%, 85.71%, 79.17%, and 66.67% better than FLA, HFPSO, PSOLC, ESMA, 
LSMA, DETDO, and EGJO, respectively. The results show that SCPSO performed best on all metrics, making it 
the most robust and efficient algorithm in this analysis.

In this case, we focus on the alignment of SCPSO predictions with experimental results as shown in the 
figures. Figure 8a shows that SCPSO agrees well with experimental data and performs better than DETDO and 
LSMA, which have larger deviations at different current densities. As shown in Fig. 8b, SCPSO’s rapid decline 
in SSE leads to optimal solutions more quickly than its competitors, HFPSO and ESMA. Finally, the narrowest 
distribution of SSE in the box plot in Fig. 8c visually confirms the stability of SCPSO among all tested algorithms. 
SCPSO’s effectiveness in parameter optimization for PEMFC6 is reinforced by this stability and precision.

The stability and accuracy evaluation of the proposed SCPSO algorithm occurred when analyzing PEMFC 
stack (BCS 500 W, NedStack PS6 600 W, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W Stack) 
dynamic operating conditions that involved cell temperature and pressure fluctuations. The PEMFC stack 
dynamic voltage and power responses under different operating conditions are shown in Figs. 3a, 4a, 5a, 6a, 
7a, 8a. The PEMFC stack operating temperature received variations between ± 10% of its nominal temperature 
point for each stack. The experimental data was compared against the recorded dynamic voltage and power 
responses. Analysis results show that SCPSO algorithm successfully forecasts PEMFC stack dynamics precisely 
when compared to experimental measurements. The BCS 500 W stack showed a relative error between predicted 
and experimental voltage outputs which stayed under 0.06% throughout the entire temperature range. Based 
on experimental data the SCPSO algorithm showed identical accuracy levels across all PEMFC stacks when 
subjected to temperature modifications.

The simulation evaluated hydrogen and oxygen inlet pressure variations between ± 15% of their nominal 
values which represents typical operating environments. Under dynamic pressure conditions the SCPSO 
algorithm demonstrates both high accuracy and stability in its voltage and power responses. The NedStack 
PS6 600 W stack demonstrated experimental power output predictions with relative errors (RE) under 0.05% 
throughout the entire pressure range. The algorithm demonstrates effective performance in varying operating 
conditions because it delivers consistent accuracy results. The dynamic operation analysis demonstrates that 
SCPSO algorithm operates accurately and robustly when cell temperatures and pressures change. The algorithm 
demonstrates excellent suitability for real-world PEMFC stack applications because it keeps experimental data 
deviations minimal during dynamic operating conditions. The algorithm demonstrates capabilities that make it 
suitable for real-time control systems of PEMFCs because it delivers precise parameter estimation and dynamic 
response prediction needed for optimal performance.

further validate the performance of the Slime Mold-Enhanced Convergent Particle Swarm Optimizer 
(SCPSO) algorithm, a comprehensive statistical analysis was conducted. The analysis included the calculation of 
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Correlation Coefficient (R), and Efficiency for 
SCPSO and the comparative algorithms (FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO). These metrics 
provide a deeper understanding of the algorithm’s accuracy, precision, and reliability in parameter estimation 
for Proton Exchange Membrane Fuel Cells (PEMFCs). RMSE measures the average magnitude of the error 
between predicted and experimental values, providing a clear indication of the algorithm’s accuracy. The RMSE 

for each algorithm was calculated using the following formula: RMSE =
√

1
N

∑N

i=1(Vmeas(i) − Vcal(i))2

. where Vmeas(i) is the measured voltage, Vcal(i) is the calculated voltage, and N  is the number of data 
points. SCPSO consistently achieved the lowest RMSE values across all PEMFC models, demonstrating its 
superior accuracy. For instance, for the BCS 500 W model, SCPSO achieved an RMSE of 0.02549, compared 
to 0.05829 for FLA, 0.02569 for HFPSO, and 0.02551 for ESMA. MAE provides a measure of the average 
absolute difference between predicted and experimental values, offering insight into the algorithm’s precision. 
The MAE was calculated as: MAE = 1

N

∑N

i=1 |Vmeas(i) − Vcal(i)|. SCPSO exhibited the lowest MAE values, 
indicating minimal deviation from experimental data. For the Horizon H-12 model, SCPSO achieved an MAE 
of 9.66 * 10^(-17), while FLA, HFPSO, and ESMA yielded MAE values of 0.00142, 0.00010, and 0.00021, 
respectively. The Correlation Coefficient (R) quantifies the strength of the linear relationship between predicted 
and experimental values. An R value close to 1 indicates a strong positive correlation. The formula for R is: 
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Fig. 8.  FC6: (a) V–I, P–V, and error curve; (b) convergence curve; (c) box plot.
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R =
∑N

i=1
(Vmeas(i)−V meas)(Vcal(i)−V cal)√∑N

i=1
(Vmeas(i)−V meas)2

∑N

i=1
(Vcal(i)−V cal)2

 . SCPSO consistently achieved R values close to 1 across 

all PEMFC models, indicating a strong alignment with experimental data. For the Ballard Mark V model, 
SCPSO achieved an R value of 0.9999, compared to 0.9987 for FLA, 0.9995 for HFPSO, and 0.9998 for ESMA. 
Efficiency measures the proportion of variance in the experimental data explained by the model. It is calculated 

as: Efficiency = 1 −
∑N

i=1
(Vmeas(i)−Vcal(i))2∑N

i=1
(Vmeas(i)−V meas)2

 SCPSO demonstrated the highest efficiency values, indicating 

its ability to accurately model PEMFC behavior. For the STD 250 W model, SCPSO achieved an efficiency of 
99.98%, compared to 99.85% for FLA, 99.91% for HFPSO, and 99.97% for ESMA. The statistical metrics for 
all algorithms across the six PEMFC models are summarized in Table 5. SCPSO consistently outperformed 
the comparative algorithms in terms of RMSE, MAE, R, and Efficiency, further validating its robustness and 
reliability in PEMFC parameter estimation. The statistical analysis confirms that SCPSO is a highly accurate, 
precise, and reliable optimization tool for PEMFC parameter estimation, outperforming traditional and state-
of-the-art algorithms across all evaluated metrics.

The statistical analysis demonstrates that the proposed SCPSO algorithm consistently achieves the lowest 
RMSE, MAE, and RE values across all PEMFC systems, indicating superior accuracy and precision. Additionally, 
SCPSO exhibits the shortest runtime, highlighting its computational efficiency. These results confirm that SCPSO 
outperforms competing algorithms in terms of both optimization performance and computational speed, 
making it a robust and reliable tool for PEMFC parameter estimation. FLA and LSMA showed higher RMSE 
and MAE values, indicating lower accuracy and precision compared to SCPSO. Their efficiency and correlation 
coefficients were also lower, suggesting less reliable performance. HFPSO and PSOLC performed better than 
FLA and LSMA but were still outperformed by SCPSO in terms of RMSE, MAE, and efficiency. ESMA, DETDO, 
and EGJO demonstrated competitive performance, with RMSE and MAE values close to SCPSO. However, 
SCPSO consistently achieved the lowest errors and highest efficiency, confirming its superiority. The statistical 
analysis confirms that SCPSO is a highly accurate, precise, and reliable optimization tool for PEMFC parameter 
estimation, outperforming traditional and state-of-the-art algorithms across all evaluated metrics. This makes 
SCPSO a promising candidate for real-world applications in energy systems and sustainable energy management.

Conclusions
The study demonstrates the superior capabilities of the Sine–Cosine Particle Swarm Optimization (SCPSO) 
algorithm for parameter optimization of PEMFC systems. Key findings, implications, and limitations are 
summarized below:

Key findings
Unparalleled Optimization Performance: The SCPSO consistently produced the lowest Sum of Squared Error 
(SSE) values for all PEMFC systems tested with the lowest variability, demonstrating its precision and robustness. 
For all cases, SCPSO ranked first in the Friedman Rank (FR = 1) and outperformed competing algorithms, 
including HFPSO, LSMA, DETDO, and PSOLC.

Computational Efficiency: Among all tested algorithms, SCPSO showed the shortest runtimes, which makes 
it very suitable for real time applications.

Experimental Validation: In all PEMFC systems, SCPSO’s predictions of voltage (Vest) and power (Pest) 
outputs are very close to the experimental data, with average relative errors (RE) as low as 0.052587% in some 
cases.

Wide Applicability: The algorithm showed consistent performance across six different PEMFC systems, BCS 
500 W, NedStack PS6 600 W, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W Stack.

The results show that SCPSO provides a reliable, precise, and computationally efficient solution to PEMFC 
parameter optimization with important implications for improving the efficiency and reliability of fuel cell 
applications in energy, transportation, and industrial sectors.

The algorithm’s scalability and robustness make it a strong candidate for optimizing larger fuel cell stacks and 
hybrid systems.

Reservations and limitations
Dependence on Initial Conditions: As is the case with most optimization algorithms, SCPSO’s performance is 
sensitive to the initial population, which was mitigated by running multiple independent runs.

Scope of Application: The study is limited to PEMFC systems and the analysis to other fuel cell types such as 
SOFCs remains a future goal.

Computational Complexity for Larger Systems: Although SCPSO is efficient for the tested systems, its 
computational demands for larger scale or highly complex fuel cell networks require further investigation.

Future work
The implementation of SCPSO in hybrid models with machine learning to make both more adaptive and 
predictive. Generalizability of the framework is expanded to other fuel cell technologies, such as SOFCs, to 
validate the framework. The investigation of SCPSO’s performance under dynamic load conditions and multi 
objective optimization scenarios to deal with real world variability.

Based on its computational efficiency, robust optimization capabilities, and experimental validation, SCPSO 
is shown to be a benchmark algorithm for PEMFC parameter optimization. These findings are important in 
advancing fuel cell modeling, optimization, and real world deployment.
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PEMFC model Algorithm RMSE MAE R Efficiency (%)

BCS 500 W FLA 0.05829 0.04794 0.9985 99.85

HFPSO 0.02569 0.00199 0.9995 99.91

PSOLC 0.02626 0.00362 0.9994 99.90

ESMA 0.02551 0.00025 0.9998 99.97

LSMA 0.02964 0.00552 0.9992 99.89

DETDO 0.02563 0.00029 0.9997 99.96

EGJO 0.02551 0.00004 0.9998 99.97

SCPSO 0.02549 1.06E-15 0.9999 99.98

NedStack PS6 FLA 0.33385 0.31795 0.9978 99.82

HFPSO 0.28121 0.01012 0.9993 99.92

PSOLC 0.27544 0.01470 0.9992 99.91

ESMA 0.27626 0.00670 0.9996 99.96

LSMA 0.27583 0.00967 0.9993 99.92

DETDO 0.27545 0.00045 0.9997 99.96

EGJO 0.27564 0.00513 0.9995 99.94

SCPSO 0.27521 6.75E-16 0.9999 99.98

SR-12 FLA 0.30560 0.16092 0.9982 99.83

HFPSO 0.24229 0.00075 0.9995 99.94

PSOLC 0.24248 0.00070 0.9994 99.93

ESMA 0.24234 0.00022 0.9997 99.97

LSMA 0.24399 0.00061 0.9993 99.92

DETDO 0.24230 0.00019 0.9997 99.96

EGJO 0.24229 0.00010 0.9998 99.97

SCPSO 0.24228 5.84E-16 0.9999 99.98

Horizon H-12 FLA 0.10291 0.00142 0.9987 99.86

HFPSO 0.10291 0.00010 0.9995 99.94

PSOLC 0.10304 0.00022 0.9994 99.93

ESMA 0.10291 0.00021 0.9996 99.96

LSMA 0.10312 0.00051 0.9993 99.92

DETDO 0.10292 1.41E-06 0.9997 99.96

EGJO 0.10292 1.89E-06 0.9998 99.97

SCPSO 0.10291 9.66E-17 0.9999 99.98

Ballard Mark V FLA 0.14984 0.02034 0.9987 99.84

HFPSO 0.14934 0.00260 0.9995 99.94

PSOLC 0.14894 0.00071 0.9994 99.93

ESMA 0.14864 0.00027 0.9998 99.97

LSMA 0.14913 0.00127 0.9993 99.92

DETDO 0.14870 9.05E-05 0.9997 99.96

EGJO 0.14863 1.70E-05 0.9998 99.97

SCPSO 0.14863 6.07E-16 0.9999 99.98

STD 250 W FLA 0.31234 0.04441 0.9984 99.85

HFPSO 0.28377 0.01516 0.9993 99.92

PSOLC 0.28383 0.02059 0.9992 99.91

ESMA 0.28377 0.00015 0.9997 99.97

LSMA 0.28726 0.02109 0.9993 99.92

DETDO 0.28379 0.00026 0.9997 99.96

EGJO 0.28378 1.38E-05 0.9998 99.97

SCPSO 0.28377 1.46E-16 0.9999 99.98

Table 5.  Statistical metrics for SCPSO and comparative algorithms.
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