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A B S T R A C T

The comprehensive study embarks on an interdisciplinary approach, merging the rigorous analysis of numerical
simulations with the predictive capabilities of Artificial Intelligence (AI), to investigate the behavior of double-
skin tubular columns (DSTCs) under monotonic loading conditions. This research stands at the intersection of
traditional structural engineering and modern computational techniques, aiming to unravel the complexities
associated with the stress-strain responses of DSTC columns. By leveraging advanced AI models, the study not
only enhances the accuracy of predictions in scenarios laden with complex variables but also significantly
contributes to the optimization of structural systems. Compared to other ML approaches, Adam-Boosted Gradient
boosting regression exhibited the best performance metrics with R2 and RMSE of 0.993 and 51.20 kN and 1 and
4.70685E-18 for load carrying capacity and ultimate strain capacity, respectively. The implications of this
integration are profound, offering pathways to more resilient, efficient, and sustainable construction method-
ologies. The detailed understanding gained from this research provides a solid foundation for future explorations
into the use of FRP materials in construction, paving the way for a new era of engineering solutions that
harmonize strength, durability, and environmental stewardship.

1. Introduction

The study of Double Skin Tubular Columns (DSTCs) is critically
important, particularly in high-rise buildings and offshore platforms,
where achieving a high strength-to-weight ratio and resilience against
extreme environmental conditions are paramount. Research demon-
strates that adopting appropriate construction solutions significantly
enhances the resilience of high-rise buildings to dynamic loadings,
including explosions, through the use of reinforced concrete and
advanced simulation techniques [1]. Furthermore, enhanced seismic
structural systems, such as friction pendulum bearings and seismic
isolation, are effective in achieving strength-to-weight resilience,

ensuring continued operation and safeguarding investments in high-risk
areas [2]. Additionally, evaluation metrics for seismic resilience have
shown that improving the performance of nonstructural components,
such as partition walls and ceilings, can significantly bolster the overall
resilience of high-rise structures [3].

Many studies have been conducted on the structural mechanics and
influencing factors for DSTCs [4–7]. Fanggi and Ozbakkaloglu [4]
investigated how the diameter and thickness of the inner steel tube
significantly influence the compressive behavior of FRP-HSC-steel
DSTCs, demonstrating that larger diameters and thicknesses enhance
ultimate axial stress and strain by improving confinement effects. Xiong
et al. [5] performed a comparative analysis of the compressive behavior
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of FRP-concrete-steel DSTCs, highlighting variations in failure mecha-
nisms and axial stiffness relative to other column types, which is
essential for optimizing DSTC performance in various structural appli-
cations. Additional studies demonstrate that cyclic loading can further
enhance the strength and strain ratios in concrete within DSTCs, as
noted by Fanggi and Ozbakkaloglu [6]. They observed that hollow
DSTCs exhibit greater strength enhancements under cyclic loading
compared to monotonic loading, while filled DSTCs also show increased
strength ratios, underscoring the importance of loading conditions in
DSTC design for high-stress applications. Further research into
FRP-HSC-steel DSTCs shows that FRP provides added confinement,
improving performance under cyclic loads, which is crucial for resil-
ience in seismic or high-impact environments [7]. These studies
collectively provide a comprehensive basis for developing optimized
DSTC configurations that meet the unique demands of modern engi-
neering applications.

Other studies have focused on enhancements through material in-
novations in DSTCs [8–11]. Farahi et al. [8] explored the use of corru-
gated plates in concrete-filled double-skin tubular (CFDST) columns,
revealing significant improvements in ductility and energy absorption.
Wan et al. [9] investigated the reinforcement of CFDST columns with
carbon fiber reinforced polymer (CFRP), introducing a novel design
formula that optimizes performance under axial loads. Recent ad-
vancements have also focused on integrating innovative reinforcement
materials like fiber-reinforced composites and hybrid structures. Huang
et al. [10] demonstrated that hybrid composites incorporating carbon
and glass fibers, enhanced with nano copper oxide particles, signifi-
cantly improve mechanical properties, making them highly suitable for
load-bearing applications. Additionally, Zou et al. [11] presented a
novel rolling strategy using corrugated structures in carbon fiber/-
aluminum composites, achieving notable increases in tensile and
bending strength, which are essential for high-stress environments like
offshore platforms. These material innovations contribute to enhancing
the structural resilience and energy absorption capacities of DSTCs,
addressing the rigorous demands of modern engineering applications.

In exploring the realms of fire resistance and seismic resilience for
DSTCs, Mohd Zuki et al. [12] examined the performance of
concrete-filled double-skin tubular (CFDST) columns under high tem-
peratures, identifying reductions in strength and stiffness due to fire
exposure. Zhang et al. [13] conducted experimental studies on hybrid
DSTCs subjected to axial compression and cyclic lateral loading,
demonstrating their remarkable ductility and robust seismic resistance,
crucial for earthquake-prone regions. Additional studies further
emphasize the importance of fire-resistant designs in high-performance
structures. Dwaikat and Kodur [14] demonstrated that fire exposure
significantly affects the load-bearing capacity of restrained concrete
beams, with high-strength concrete beams showing lower fire resistance
and higher spalling rates due to reduced permeability. Furthermore,
Hashemi et al. [15] introduced a seismic-resilient system using lami-
nated timber panels with Resilient Slip Friction joints, showcasing su-
perior ductility, energy dissipation, and self-centering behavior
compared to conventional systems, thus advancing earthquake-resilient
construction practices. These additional studies provide broader insights
into DSTC applications and the integration of innovative materials for
enhanced resilience.

In the sphere of design and modelling approaches for DSTCs, Patel
et al. [16] made significant strides by developing a comprehensive
computational model specifically for short double-skin concrete-filled
stainless steel tubular (CFDSST) columns, which effectively assesses the
impact of geometric configurations and material strengths. Com-
plementing this, Liang [17] introduced a sophisticated mathematical
model that accurately characterizes the axial load-deflection perfor-
mance of high-strength circular CFDST slender columns under eccentric
loading, offering an efficient approach for both computational analysis
and design purposes. Similar studies can be found in the literature on
design and modelling approaches for DSTCs [18,19].

Some studies focused on alternative materials and sustainability for
DSTCs [20–23]. Youssf et al. [20] delved into the utilization of Rubcrete
in hybrid DSTCs, underscoring the material’s ability to enhance axial
and hoop strain capacities, particularly when using fine rubber particles.
Complementing this, Ali and Salman [21] investigated how the void
ratio of the inner steel tube influences the compression behavior of
hybrid DSTCs, discovering a notable improvement in the stress-strain
behavior of concrete within these structures. These studies point to-
wards innovative approaches in materials usage, contributing to the
sustainability and performance of DSTCs.

Moreover, some studies focused on unique structural configurations
of DSTCs [24–27]. Chen et al. [24] conducted a thorough investigation
into the behavior of thin-walled dodecagonal section double skin
concrete-filled steel tubular beam-columns, employing finite element
modeling to analyze their structural responses. Additionally, Guo et al.
[25] focused on square CFDST short columns with double internal steel
tubes, leading to the development of simplified formulae for accurately
estimating the ultimate strength of these columns. Recent studies have
explored even more unconventional designs, such as circular and
cruciform cross-sections, which enhance both load-bearing capacity and
resilience under seismic loading. For example, Kim et al. [26] examined
the fire resistance of composite columns with circular and rectangular
configurations, finding that clamped-end circular sections exhibit
extended fire resistance. These studies collectively enhance the under-
standing of DSTC structural behavior in less conventional configura-
tions, expanding the possibilities for specialized applications.

Recent advancements in machine learning (ML) have significantly
impacted the field of structural engineering, particularly in performance
prediction and optimization [28–33]. Hong et al. [34] utilized ML
techniques to predict the fire resistance of concrete-filled double-skin
tubular (CFDST) columns, demonstrating improved prediction accuracy
for complex non-linear problems. Similarly, Nguyen et al. [35] explored
the application of gradient boosting regression (GBR) and XGBoost
models for predicting compressive and tensile strengths of concrete,
achieving high efficiency in performance prediction. Stergiou et al. [36]
highlighted the use of ML for enhancing material property prediction
and process optimization, such as thermal and mechanical properties of
structural materials, which leads to improved material performance in
engineering applications. These advancements not only optimize
structural design processes but also enable rapid assessments of complex
structural systems, making ML an indispensable tool in modern
engineering.

Nguyen and Ly [37] explored similar concepts, focusing on the
application of ML in predicting the behavior of CFDST columns under
various loading conditions. Their research underscores the potential of
ML algorithms in enhancing the accuracy and efficiency of structural
analysis in engineering. Furthermore, Wu et al. [38] extended these
studies by integrating ML into traditional engineering approaches like
the Rankine method. They modified the Rankine method to include ML
predictions, resulting in a more accurate and reliable approach for
analyzing CFDST columns under fire attacks.

Recent research on DSTCs has not only significantly advanced our
understanding of their behavior, design, and application in various
contexts but also underscored the transformative role of machine
learning in structural engineering. Innovations in materials and
modeling techniques, including the integration of ML algorithms with
traditional engineering methods, have greatly enhanced the structural
performance of DSTCs. This is evident in their improved strength,
ductility, and resilience to environmental challenges. Moreover, the
application of ML in the analysis and prediction of DSTCs behavior
under varied conditions is a testament to its potential in elevating ac-
curacy and efficiency in structural analysis and design. The ongoing
exploration of new configurations and materials, coupled with the ad-
vancements in machine learning, heralds a promising future for DSTCs
in diverse engineering applications.
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2. Research Significance

This research combines numerical analysis with AI generative
modeling to comprehensively investigate the effects of various param-
eters on fiber reinforced polymer (FRP) column behavior under mono-
tonic loading conditions. Numerical analysis is employed to simulate the
stress-strain behavior under different scenarios, yielding detailed in-
sights. AI generative models enhance this exploration by predicting re-
sponses across a wide range of parameters, particularly in complex
situations that are challenging to simulate directly. The study signifi-
cantly advances the understanding of FRP column behavior, providing
valuable insights for engineers, designers, and researchers. A deeper
comprehension of these parameters facilitates the development of
optimized structural systems that incorporate FRP columns, promoting
safer, more efficient, and sustainable construction practices. The sub-
sequent sections will present a thorough review of related literature,
outline the methodology used, and delve into the individual effects of
key parameters, leading to important conclusions and practical appli-
cations in structural engineering. Fig. 1 illustrates the research’s meth-
odology in a graphic format.

3. Analysis program

3.1. Experimental work

This study is grounded on the findings of two pivotal articles in the
field of FRP concrete-steel hybrid structures. The first, by Fanggi and
Ozbakkaloglu [39], presents an experimental study exploring the
compressive behavior of square FRP-concrete composite columns. This
study involved testing 40 column specimens, which included 24
FRP-concrete-steel DSTCs, four concrete-filled FRP tubes (CFFTs), and
12 CFFTs with inner voids (H-CFFTs). Key parameters such as the con-
crete’s strength, the cross-sectional shape, and the dimensions of the
inner steel tube were investigated. The study found that DSTCs with
circular inner steel tubes displayed increased ultimate axial stress but
reduced ultimate axial strain when compared to DSTCs with hollow
inner steel tubes. Additionally, concrete in hollow DSTCs with square
inner steel tubes developed significantly lower ultimate axial stresses
and strains than their circular counterparts. However, the performance
of these specimens improved dramatically when the square inner steel
tube was filled with concrete.

The second article, by Yu and Teng [40], extends research on circular

Review of relevant literature

Consideration of materials' parameters (Ac, f'c, tf,  Ef, As, fy, Pcu, Ecc)

Determination of considered 
values of each parameter

Development of 26 FEM for parametric study

Approximate each load-axial compression to hyperbolic curve and coefficients 
determined

Variation of parameters to simulate 
additional 59 FEM columns

Formation of 85 FEM columns

Numerical and statistical 
analysis of database

Stage 1 

Change in parameters: fyt to 600 
MPa; cp to 25, 50, 75, 100, 125, 
150, & 175 mm; and t to 5.6 mm  

Determination of correlation 
between the parameters 

Considered range of each 
parameter has no gap 

Stage 2 

Splitting the dataset into 
training and testing phases 

Testing dataset 
(18 datapoints) 

Development of five ML algorithms  

 

Comparison of the performance of the models based on various metrics and previous studies 

Conclusion of the research 

Training dataset 
(97 datapoints) 

XGB 
Stage 3 

AR BR DTR ETR 

Validating 5ML results with Gradient Boosting Regression 
and Adam Boosted Gradient Boosting Regression 

Fig. 1. Flowchart that briefly shows the process of the research methodology.
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hybrid DSTCs to square hybrid DSTCs, where the outer FRP tube is
square while maintaining a circular inner steel tube. This paper focused
on the compressive behavior of these square hybrid DSTCs, using FRP
tubes formed through a wet-layup process. The results demonstrated
that the concrete in these square hybrid DSTCs is effectively confined by
the two tubes, exhibiting behavior similar to that of concrete in
FRP-confined solid columns. The study also proposed a stress-strain
model for concrete in square hybrid DSTCs, which was shown to pro-
vide reasonably accurate predictions of the test results.

Table 1 provides a comprehensive summary of the specimens utilized
in the experimental studies conducted by Fanggi and Ozbakkaloglu
[39], as well as Yu and Teng [40]. It details the dimensions and char-
acteristics of the external columns, which measured 150 × 150 mm. The
internal hole diameter (di) varied between 60.3 mm and 114.5 mm,
while the thickness of the tubes (ts) ranged from 3.2 mm to 6 mm. The
mechanical properties of the steel tubes are meticulously cataloged in
the table, highlighting both the yield strength (fy) and the ultimate
strength (fu). Furthermore, the table delineates the compressive strength
of the concrete (f’c). For an in-depth understanding of the experimental
methodologies employed in this study, additional specifics are system-
atically documented in Table 1.

Our current study leverages these findings to conduct a parametric
study using finite element modeling and machine learning (Fig. 2).
These references provide a foundational understanding of the behavior
of hybrid FRP-concrete-steel structures under compressive loads,
informing the development and validation of our computational models
and machine learning algorithms.

3.2. Parametric study

The parametric study was meticulously structured, building upon the
foundational experimental work previously outlined. This study rigor-
ously examined various influential factors: the number of FRP layers, the
geometric shape of the steel tube, the arrangement patterns of the steel
tubes, as well as the variance in steel tube thickness, diameter, and yield
strength. Table 2 shows the details of the specimens considered in the
parametric study.

To systematically explore these variables, six distinct groups were
delineated for in-depth analysis:

1. Group G2 paralleled Group G1 but incorporated modifications,
specifically a reduction in concrete strength and the number of FRP
layers.

2. Group G3 was designed akin to Group G1 specimens but was distinct
in its inclusion of an additional steel tube, configured as a double
layer with a diameter constituting half that of the original.

3. Group G4, while bearing resemblance to Group G1 specimens,
distinguished itself by enhancing the strength of the steel tube.

4. Group G5mirrored Group G2, albeit with an altered steel strength for
the tubes.

5. Group G6 emulated Group G3, yet differentiated itself by varying the
steel tube strength.

6. Group G7, while fundamentally similar to the other groups, was
uniquely characterized by its distinct concrete strength, steel tube
dimensions, and number of FRP layers.

The intent of these methodically structured groups is to harness the
capabilities of finite element modeling. This strategic approach aims to
not only derive insightful findings from the modeling but also to
leverage these results to enrich machine learning analyses. The ultimate
goal is to cultivate a comprehensive understanding of the stress-strain
behavior inherent to DSTC, thereby advancing the knowledge frontier
in this domain.

4. Numerical Validation

4.1. General

Finite element modeling (FEM) is a cornerstone in the field of
structural engineering, serving as a pivotal tool for understanding and
predicting the behavior of structures under various loads and conditions.
This computational technique breaks down complex structures into
smaller, manageable elements, allowing engineers to scrutinize the
response of materials and designs to stress, vibration, heat, and other
physical effects. FEM’s precision and adaptability make it indispensable
for simulating real-world scenarios, optimizing designs, and ensuring
the safety and efficiency of structures. By providing a detailed insight
into structural performance, FEM aids in the innovation of construction
methods and the advancement of materials science, marking its signif-
icance as an integral component in the evolution and resilience of
modern infrastructure.

ABAQUS, a sophisticated finite element modeling software, has
gained substantial importance in the realm of structural engineering,
primarily due to its robust capabilities in simulating and analyzing
complex structural behaviors. Recent studies highlight its crucial role in
various applications. For instance, Mushthofa et al. [41] emphasized the
significance of ABAQUS in ensuring the structural integrity and func-
tionality of critical systems through precise estimations in steel welding
processes. Bongiovì et al. [42] showcased the software’s utility in con-
ducting thermal and structural analyses, particularly in evaluating the
structural design criteria of European water-cooled lithium lead
breeding blankets. Xie et al. [43] demonstrated the application of

Table 1
Specimens considered by Fanggi and Ozbakkaloglu [39] and Yu and Teng [40].

Ref. No. Code Group Inner Section Steel Tube Arrangement di (mm) ts (mm) FRP Type No. Layers f’c (Mpa) fy (Mpa) fu (Mpa)

[39] DSTC− 1&2 G1 Circular Hollow DSTC Single 60.3 3.6 AFRP 8 98.2 319 384
DSTC− 3&4 Circular Filled DSTC 60.3 3.6 8 98.2 319 384
DSTC− 5&6 Circular Hollow DSTC 88.9 3.2 8 98.2 320 404
DSTC− 7&8 Circular Filled DSTC 88.9 3.2 8 98.2 320 404
DSTC− 9&10 Circular Hollow DSTC 114.3 6.0 8 98.2 449 524
DSTC− 11&12 Circular Filled DSTC 114.3 6.0 8 98.2 449 524
DSTC− 13&14 Circular Hollow DSTC 88.9 3.2 3 47.0 320 404
DSTC− 15&16 Circular Filled DSTC 88.9 3.2 3 47.0 320 404
DSTC− 17&18 Square Hollow DSTC 89.0 3.5 8 98.2 462 492
DSTC− 19&20 Square Filled DSTC 89.0 3.5 8 98.2 462 492
DSTC− 21&22 Square Hollow DSTC 89.0 3.5 3 47.0 462 492
DSTC− 23&24 Square Filled DSTC 89.0 3.5 3 47.0 462 492
CFFT− 1&2 Filled - No Steel Tube - 0 0 8 98.2 0 0
CFFT− 3&4 Filled - No Steel Tube 0 0 3 47.0 0 0

[40] D37-A2-I&II Circular Hollow DSTC Single 76.3 3.3 GFRP 2 37.0 364 433
D37-A3-I&II Circular Hollow DSTC 76.3 3.3 3 37.0 364 433
D37-B2-I&II Circular Hollow DSTC 114.5 5.2 2 37.0 382 427
D37-B3-I&II Circular Hollow DSTC 114.5 5.2 3 37.0 382 427
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ABAQUS in evaluating the safety of undersea structures by establishing a
method for large-deformation simulation of submarine landslides.
Zhang et al. [44] relied on ABAQUS for fatigue life prediction in steel
spiral cases of pumped-storage power plants, highlighting its contribu-
tion to the field of structural engineering. Lastly, Abramowicz et al. [45]
utilized ABAQUS for modeling sustainable laminated veneer lumber
slabs, underscoring its vital role in ensuring the safe operation of civil
engineering structures. These studies collectively reinforce the indis-
pensability of ABAQUS in tackling complex structural challenges,
proving it to be an integral tool in the structural engineering domain.

4.2. Model properties

In the parametric analysis undertaken, each case was meticulously
modeled using ABAQUS software. The modeling primarily focused on
three fundamental components: the concrete body, steel tubes, and FRP
composites, each simulated with distinct element types to best represent
their physical and mechanical properties (Fig. 3).

The concrete body was modeled as C3D6 elements, representing a 6-
node linear triangular prism. This element type is specifically chosen for
its ability to accurately simulate the nonlinear, inelastic behavior of
concrete under load, as well as its capacity to handle complex load ap-
plications and boundary conditions.

The steel tubes, critical for providing structural rigidity and stability,
were modeled using C3D8R elements. These 8-node linear brick ele-
ments, with reduced integration and hourglass control, are adept at
capturing the behavior of steel structures, especially under the condi-
tions of linear elasticity and plasticity, which are paramount in struc-
tural analysis and design.

For the FRP components, S4R elements were employed. These 4-
node, quadrilateral, stress/displacement shell elements are particu-
larly suited for modeling thin shell structures like FRP composites. The
reduced integration and large-strain formulation of S4R elements allow
for an accurate representation of the FRP’s mechanical behavior, espe-
cially under high strain conditions, ensuring a realistic simulation of the
material’s performance.

The interaction between these constituent parts was meticulously
defined using various constraints to simulate the physical behavior of
the interface areas accurately. The interface between the concrete and

the FRP, as well as between the concrete and steel tubes, was modeled
using the surface-to-surface tie constraint. This constraint was meticu-
lously defined to include both tangential and normal behavior, offering a
comprehensive simulation of the interface interactions. The normal
behavior was designated as "hard," ensuring a perfectly bonded inter-
action, while the tangential behavior was modeled using the "penalty"
method, with a friction coefficient of 0.2, to accurately simulate the
frictional forces at play.

Additionally, the extremities of the specimen, namely the start and
end faces, were assigned a coupling constraint. This constraint was
rigorously defined to restrict all degrees of freedom, thereby simulating
a realistic boundary condition that these faces would encounter in
practical scenarios.

The approach adopted in this study is in alignment with recent ad-
vancements and methodologies in the field, as detailed in contemporary
literature. These references not only validate the modeling techniques
and element choices employed but also provide a comparative frame-
work for assessing the predictive accuracy and reliability of the simu-
lation results.

4.3. Material models

The concrete damage plasticity (CDP) model in Abaqus was adopted
in this research to model concrete material. This model is recognized for
its capability to simulate the inelastic behavior of concrete, is a robust
tool underpinned by the principles of continuum damage mechanics and
plasticity theory. This model provides a comprehensive framework for
analyzing the intricate responses of concrete under diverse loading
conditions, including uniaxial load, shear load, seismic loads, and
impact loads. Its utility extends to the examination of complex struc-
tures, notably reinforced concrete elements, which are often subjected
to seismic loading or other dynamic forces. The CDP model’s versatility
and detailed approach make it an indispensable tool in the simulation
and analysis of concrete’s behavior under various stress conditions
[46–48], thereby contributing significantly to the field of structural
engineering and design. Table 3 summarizes the parameters adopted for
defining each concrete grade used in the parametric study.

The material properties of the steel tubes were characterized by an
elastoplastic material model. This model delineates that the steel

Fig. 2. Illustrative diagram of the analytical approach proposed in study.
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exhibits elastic behavior up to the yield point, beyond which it transi-
tions into plastic deformation. To accurately represent the behavior of
each steel grade, a detailed assessment was conducted, incorporating
multiple data points to construct the definitive stress-strain curves.
Table 4 presents the primary parameters employed to define the steel
material properties. In the case of the FRP materials, they were modeled
as laminates, incorporating key mechanical properties such as elastic
modulus, tensile strength, and ultimate tensile strain, all of which are
systematically outlined in Table 5.

4.4. Loads and Boundary Conditions

A static load step, spanning a duration of 1 second, was established
to delineate the applied load. To facilitate the application of concentric
axial loads and the implementation of boundary conditions, two refer-
ence points were strategically positioned on opposing faces of a column.
On one face, the load was allocated to the upper reference point, as
depicted in Fig. 4a. Here, a displacement of 20 mm was meticulously
imposed in the axial direction, concurrently constraining movements in
the other directions. Conversely, on the opposing face, a comprehensive
restriction was imposed on all degrees of freedom, a setup meticulously
illustrated in Fig. 4b.

4.5. Meshing

In developing the ABAQUS model, a meticulous approach was un-
dertaken to determine the optimal mesh size, culminating in the selec-
tion of a 10 mm grid. This decision was informed by a series of mesh
convergence studies, which aimed to balance the dual objectives of
computational efficiency and model accuracy. The chosen mesh size of
10 mm represents a compromise that ensures a sufficient level of detail
to capture the critical stress and strain distributions accurately, while
also keeping the computational demands within manageable limits. This
balance is crucial in finite element analysis, as overly fine meshes can
lead to prohibitively long computation times and excessive resource
usage, while coarse meshes may overlook significant nuances in the
model’s behavior. Therefore, the 10 mm mesh size was strategically
selected to provide a robust and reliable representation of the physical
system, ensuring that the simulation results are both accurate and
computationally feasible.

4.6. Simulation results

4.6.1. Comparison between experimental and FE results
Fig. 5 presents the axial load-strain curves derived from experi-

mental investigations juxtaposed with those obtained from validated
finite element models. The comparison reveals a remarkable correlation

Table 2
Parametric study details.

Code Group Inner Section Steel Tube Arrangement di (mm) ts (mm) FRP Type No. Layers f’c (Mpa) fy (Mpa) fu (Mpa)

DSTC− 1&2 G2 Circular Hollow DSTC Single 60.30 3.60 AFRP 3 36.8 319 384
DSTC− 3&4 Circular Filled DSTC 60.30 3.60 3 36.8 319 384
DSTC− 5&6 Circular Hollow DSTC 88.90 3.20 3 36.8 320 404
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 3 36.8 320 404
DSTC− 9&10 Circular Hollow DSTC 114.30 6.02 3 36.8 449 524
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 3 36.8 449 524
DSTC− 17&18 Square Hollow DSTC 89.00 3.50 3 36.8 462 492
DSTC− 19&20 Square Filled DSTC 89.00 3.50 3 36.8 462 492
D37-A4 Circular Hollow DSTC 76.30 3.30 GFRP 4 37.0 364.3 433.1
D37-B4 Circular Hollow DSTC 114.50 5.20 4 37.0 381.7 426.9
DSTC− 3&4 G3 Circular Filled DSTC Double 60.30 3.60 AFRP 8 98.2 319 384
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 8 98.2 320 404
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 8 98.2 449 524
DSTC− 19&20 Square Filled DSTC 89.00 3.50 8 98.2 462 492
DSTC− 1&2 G4 Circular Hollow DSTC Single 60.30 3.60 8 98.2 667.5 827
DSTC− 3&4 Circular Filled DSTC 60.30 3.60 8 98.2 667.5 827
DSTC− 5&6 Circular Hollow DSTC 88.90 3.20 8 98.2 667.5 827
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 8 98.2 667.5 827
DSTC− 9&10 Circular Hollow DSTC 114.30 6.02 8 98.2 667.5 827
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 8 98.2 667.5 827
DSTC− 13&14 Circular Hollow DSTC 88.90 3.20 3 47.0 667.5 827
DSTC− 15&16 Circular Filled DSTC 88.90 3.20 3 47.0 667.5 827
DSTC− 17&18 Square Hollow DSTC 89.00 3.50 8 98.2 667.5 827
DSTC− 19&20 Square Filled DSTC 89.00 3.50 8 98.2 667.5 827
DSTC− 21&22 Square Hollow DSTC 89.00 3.50 3 47.0 667.5 827
DSTC− 23&24 Square Filled DSTC 89.00 3.50 3 47.0 667.5 827
DSTC− 1&2 G5 Circular Hollow DSTC Single 60.30 3.60 3 36.8 667.5 827
DSTC− 3&4 Circular Filled DSTC 60.30 3.60 3 36.8 667.5 827
DSTC− 5&6 Circular Hollow DSTC 88.90 3.20 3 36.8 667.5 827
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 3 36.8 667.5 827
DSTC− 9&10 Circular Hollow DSTC 114.30 6.02 3 36.8 667.5 827
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 3 36.8 667.5 827
DSTC− 17&18 Square Hollow DSTC 89.00 3.50 3 36.8 667.5 827
DSTC− 19&20 Square Filled DSTC 89.00 3.50 3 36.8 667.5 827
DSTC− 3&4 G6 Circular Filled DSTC Double 60.30 3.60 8 98.2 667.5 827
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 8 98.2 667.5 827
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 8 98.2 667.5 827
DSTC− 19&20 Square Filled DSTC 89.00 3.50 8 98.2 667.5 827
DSTC− 3&4 G7 Circular Filled DSTC Single 60.30 3.60 4 30.0 667.5 827
DSTC− 7&8 Circular Filled DSTC 88.90 3.20 4 30.0 667.5 827
DSTC− 11&12 Circular Filled DSTC 114.30 6.02 4 30.0 667.5 827
DSTC− 15&16 Circular Filled DSTC 88.90 3.20 2 20.0 667.5 827
DSTC− 19&20 Square Filled DSTC 89.00 3.50 4 30.0 667.5 827
DSTC− 23&24 Square Filled DSTC 89.00 3.50 2 20.0 667.5 827
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Fig. 3. Test specimens, 3D configuration of filled and hollow columns., Plan sectional view of configured columns.
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between the two sets of data, evidenced by their proximity and the
minimal, acceptable level of error. This congruence not only un-
derscores the validity of the finite element models but also establishes a
robust foundation for subsequent analyses. Importantly, the reliability
of these models paves the way for their integration into advanced pre-
dictive frameworks, including machine learning algorithms, thereby
enhancing the precision and depth of future analytical endeavors in this
domain.

In a complementary manner, Fig. 6 delineates the correlation be-
tween experimental findings and finite element outcomes with respect
to both peak axial load and strains at failure. It features a trend line that
intersects these data points, conforming to a 45-degree line equation
(y = x). This graphical representation significantly highlights the
alignment of the experimental and model-predicted values. Notably, the
trend line exhibits an R² value of 98.7 % for the ultimate axial load,
indicating an exceptionally high degree of correlation. Similarly, for the
ultimate axial strain, the trend line achieves an R² value of 94.3 %. These
high R² values are indicative of the finite element model’s robust pre-
dictive accuracy and its potential as a reliable tool in the precise
extrapolation of structural behavior under load, thereby reinforcing the
foundational analysis presented in Fig. 5.

4.6.2. Effect of yield strength of steel tube
In the analysis of DSTC specimens featuring single steel tubes with a

yield strength of 667.5 MPa, relative to the comparative yield strengths
of 319, 320, 449, and 462 MPa, it was observed that the ultimate axial
load demonstrated an increase within the range of 6.4–33.3 %. Per-
taining to the ultimate axial strain, variations were noted, encompassing
a decrement of up to 8.2 % and an increment of up to 13.9 %, with the
exception of three distinct specimens. These exceptions registered a
notable reduction in strain, quantified as 31.6 %, 43.2 %, and 90.6 %
respectively. This phenomenon is predominantly attributed to a

reduction in ductility, correlating with an elevation in the steel grade.
This correlation can be traced back to the increased percentages of
carbon within the steel composition, which inversely impacts the
ductility of the tubes, subsequently influencing the overall ductility of
the specimens.

In contrast, specimens constructed with double steel tubes exhibited
a different mechanical response. When the yield strength of these tubes
was escalated from 319, 320, and 449 MPa to 667.5 MPa, there was an
observed enhancement in the ultimate axial load, ranging between
12.8 % and 22.4 %. Concurrently, a marginal elevation was also recor-
ded in the ultimate strain, delineated within a spectrum of 0.9–3.1 %.
These findings imply that the addition of an extra tube to DSTC speci-
mens did not yield a substantial improvement in ductility. For a more
comprehensive understanding of these behavioral trends, reference can
be made to Fig. 7, which delineates the load-strain curves pertinent to
the cases scrutinized within this parametric study.

4.6.3. Effect of number of FRP layers
For the circular hollow DSTC specifications featuring a hollow

diameter of 76.3 mm and a wall thickness of 3.3 mm, it was observed
that augmenting the number of GFRP layers from 2 to 3 catalyzed a 17 %
enhancement in the ultimate axial load. This increment escalated
marginally to 18 % upon the introduction of a fourth layer, signaling a
plateau in strength enhancement beyond three layers. Conversely, a
notable enhancement in section ductility was recorded, with the ulti-
mate strain surging by 60.8 % for three layers and an impressive
150.3 % for four layers.

In the case of the circular hollow DSTC variant with a larger diameter
of 114.5 mm and a thickness of 5.2 mm, the impact of additional GFRP
layers on the ultimate axial load was comparatively subdued, registering
an increase of merely 4 % for three layers and 10.6 % for four layers.
This trend suggests a diminishing return in axial load enhancement with
the increase in section size, thereby reducing the efficacy of additional
GFRP layers on the ultimate axial strength. However, a positive trajec-
tory was noted in the ultimate axial strain, which witnessed an increase
of 17.5 % for three layers and 60.5 % for four layers, albeit these figures
fall short of the improvements observed in the smaller DSTC
configuration.

For an in-depth analysis and graphical representation of these find-
ings, reference is directed to Fig. 8. This comprehensive depiction

Table 3
CDP parameters for concrete modeled in this study.

Parameter C20 C30 C36.8 C37 C47 C98.2

Elasticity modulus (MPa) E 22361 27386 30342 30414 34278 48548
Poisson’s ratio υ 0.2
Density (kg/m3) ρ 2500
Compressive strength (MPa) f’c 20 30 36.8 37 47 98.2
Peak Compressive strain (mm/m) εc 0.00185 0.00210 0.00220 0.00221 0.00235 0.00267
Tensile Strength (MPa) ft 2.08 2.91 3.40 3.41 4.04 5.90
Dilation angle (⁰) ψ 36
Eccentricity e 0.1
Bi-axial to Uni-axial strength ratio fb0/fc0 1.16
Second stress invariant ratio K 0.67
Viscosity parameter μ 0.0005

Table 4
Input parameters for steel material modeled in this study.

Parameter ST319 ST320 ST449 ST462 ST364.3 ST381.7 ST667.5

Elasticity modulus (MPa) E 200000 206900 199000 200000
Poisson’s ratio υ 0.3
Density (kg/m3) ρ 7850
Yield Strength (MPa) fy 319 320 449 462 364.3 381.7 667.5
Yield Strain εy 0.0015 0.0016 0.0022 0.0023 0.0018 0.0019 0.0033
Ultimate Strength (MPa) fu 384 404 524 492 433.1 426.9 827
Ultimate Strain εu 0.0334 0.0243 0.0310 0.008 0.024 0.026 0.028

Table 5
Input parameters for FRP material modeled in this study.

Parameter AFRP GFRP

Elasticity Modulus (GPa) E 128.5 95.3
Tensile strength (MPa) ft 2390 3055
Ultimate tensile strain εc 0.0186 0.0321
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elucidates the detailed interplay between the number of GFRP layers,
the dimensions of the DSTC, and their collective influence on the
structural properties of ultimate axial load and strain.

4.6.4. Effect of shape of inner steel tube (i.e., Circular, Square)
In the investigation of DSTC, the experimental outcomes for Group

G1 specimens, which featured hollow tubes, revealed that DSTC speci-
mens with circular inner steel tubes demonstrated a superior ultimate
axial load capacity, surpassing their square cross-section counterparts by
10–16 %. This trend was not observed in specimens where tubes were
concrete-filled. In this scenario, DSTC specimens with square inner steel
tubes outperformed those with circular cross-sections, exhibiting an
enhancement in ultimate axial load resistance ranging from 4.6 % to

6.3 %. Furthermore, the ultimate axial strain results indicated that
hollow DSTC specimens with circular inner tubes exhibited substantially
higher ultimate strains, 45–55 % greater than those with square inner
tubes, signaling enhanced ductility behavior. However, this distinction
in ductility was not significantly evident in concrete-filled DSTC
specimens.

Group G2 specimens presented a distinct behavior pattern, particu-
larly at lower concrete compressive strength values. Irrespective of the
tubes being filled or hollow, DSTC specimens with square inner tubes
consistently showed superior axial load resistance compared to those
with circular inner tubes. The increase in axial load resistance was
approximately 12.9 % for hollow tubes and 6.7 % for filled tubes. In
terms of ultimate axial strain, square inner tubes in hollow DSTC

Fig. 4. Numerical model details.
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Fig. 5. Comparative analysis of axial load-strain curves: experimental data versus finite element model predictions for selected specimens in the study.

Y. Ren et al. Structures 72 (2025) 108206 

10 



specimens exhibited about 38 % higher strain compared to circular
inner tubes, indicating a pronounced ductility. Yet, this difference in
ductility was not prominently observed in filled DSTC specimens.

The response of Group G4 specimens was analogous to that of Group
G1 concerning ultimate axial load capacity, albeit with a marginally
lower increase percentage. However, the behavior in ultimate axial

strain did not exhibit a clear pattern favoring a particular steel tube
shape. The observed behavior was influenced by another variable, the
concrete compressive strength. For higher compressive strength values,
hollow tubes with square cross-sections displayed better ductility
compared to circular ones, a trend which reversed in the case of filled
tubes. As the compressive strength diminished, the behavior inverted,
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indicating the superiority of circular tubes over square for hollow tubes
and vice versa for filled tubes.

Lastly, the performance of specimen groups G5 and G6 mirrored the
characteristics observed in groups G2 and G3, further substantiating the
observed trends. Comprehensive details regarding the influence of inner
tube shape on ultimate axial strength and ultimate strain are docu-
mented and visually represented in Fig. 9, providing a deeper under-
standing of the structural behavior under varied conditions.

4.6.5. Effect of steel tube arrangement (i.e., Single, Double)
The configuration of steel tubes was found to markedly influence the

ultimate axial load capacity of DSTC specimens. The data indicated that
the incorporation of dual steel tubes resulted in a notable enhancement
of axial strength, ranging from 22.3 % to 45.6 %. This augmentation can
be primarily attributed to the superior material properties of steel
relative to concrete in scenarios involving a single tube. Correspond-
ingly, there was a significant elevation in ultimate strain, with an in-
crease of approximately 51.8–118.3 %. This suggests an improved
ductility in specimens featuring double steel tubes as opposed to their
single-tube counterparts. For a comprehensive analysis and graphical
representation of these findings, refer to Fig. 10.

4.6.6. Effect of steel tube thickness & diameter
In the context of steel tube thickness and diameter, the behavior of

hollow and filled DSTC sections, as observed in Group G1 specimens,
presents intriguing dynamics. For hollow DSTC sections, an increase in
the diameter and thickness of the steel tube was associated with a
decrease in the ultimate axial load capacity. This phenomenon is likely a
consequence of the diminished effective cross-sectional area, which in
turn reduces the axial load-bearing capability. Conversely, in filled
DSTC sections, an increase in the diameter and thickness of the steel tube
correlates with an increase in ultimate axial load capacity, with an
observed increase of approximately 30 %. This enhancement is attrib-
utable to the superior material strength of steel compared to concrete; as
the proportion of steel in the cross section increases, so too does the load
capacity.

When examining strain behavior, it was observed that for hollow
DSTC sections, an increase in the size and thickness of the steel tube
correlates with an increase in ultimate axial strain, suggesting enhanced
ductility. This improvement in ductility can be attributed to the presence
of steel, which bolsters the section’s ductility as its proportion within the
section escalates. However, for filled DSTC sections, the behavior of
ultimate strain did not follow a definitive trend, exhibiting minor in-
creases in some instances and decreases in others.

Groups G2 and G4 specimens mirrored the trends observed in Group
G1, with filled DSTC specimens experiencing notable strength

enhancements, reaching 80 % for G2 specimens and 61 % for G4 spec-
imens. Concerning ultimate strain in filled DSTC specimens, an increase
in the size and thickness of the steel tube led to improved ductility, a
trend consistent with the higher steel ratios in the cross-section
enhancing ductility.

Group G3 specimen results revealed that employing double steel
tubes results in an approximate 26 % increase in ultimate axial strength
as the size and thickness of the steel tubes are augmented. However, this
trend was not mirrored in the ultimate strain, where no consistent
behavior was observed. A similar pattern was noted in Group G6 spec-
imens, with an observed increase in ultimate axial load capacity of
around 37 %, while the ultimate strain did not display any definitive
trend.

For a more detailed analysis of the impact of steel tube size and
thickness on DSTC specimens, refer to Fig. 11.

Fig. 12 shows the FEM result for G2 and G3 specimens illustrating
failure modes for columns with varying parameters. Group G3 specimen
results revealed that employing double steel tubes results in an increase
in ultimate axial strength as the size and thickness of the steel tubes are
augmented. Group G2 specimens presented a distinct behavior pattern,
particularly at lower concrete compressive strength values. Irrespective
of the tubes being filled or hollow, DSTC specimens with square inner
tubes consistently showed superior axial load resistance compared to
those with circular inner tubes. Group G3 specimen results revealed that
employing double steel tubes results in increase in ultimate axial
strength as the size and thickness of the steel tubes are augmented. As
can be seen in the figure, square hollow DSTC and circular hollow DSTC,
ultimate axial load and strain is significantly higher.

5. Machine learning model development

5.1. Overview of the machine learning approach

ML has emerged as a transformative tool in structural engineering,
enabling accurate predictions of complex phenomena that are chal-
lenging to model using conventional analytical or numerical methods. In
this study, the objective of the ML model is to predict two critical pa-
rameters of FRP-confined columns subjected to monotonic compressive
loading: the load-carrying capacity (Pcu) and the ultimate strain capacity
(εcc). These parameters are functions of six key input features, as shown
in Table 6, encompassing material properties and geometric character-
istics, including the area of the concrete section, concrete strength,
thickness of FRP wraps, elastic modulus of FRP, area of steel tubes, and
the yield strength of steel tubes. The overarching goal is to build a robust
predictive framework that can accurately model the non-linear re-
lationships between these input variables and the output parameters,

Fig. 6. Correlation between Experimental and Finite Element Predictions for: ultimate Axial Load. (b) Ultimate Axial Strain.
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Fig. 7. Comparative load-strain curves for single and double steel tubed column specimens with varied yield strengths.
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while also providing interpretable insights into the role of each feature.
A Deep Neural Network (DNN) was chosen as the predictive model

due to its exceptional capacity to model high-dimensional, non-linear
relationships in data. Compared to traditional regression models or
simpler ML algorithms such as decision trees or support vector ma-
chines, DNNs offer a multilayered architecture capable of learning
intricate patterns and interactions in the input space. This advantage is
particularly relevant in the context of FRP-confined columns, where the
interplay between material and geometric properties significantly in-
fluences structural performance. Existing literature underscores the
suitability of DNNs for similar engineering applications.

The DNN architecture employed in this study consists of an input
layer corresponding to the six input features, multiple hidden layers for
feature transformation, and an output layer predicting the two target
variables (Pcu and εcc). The hidden layers utilize rectified linear unit
(ReLU) activation functions, which are well-suited for preventing van-
ishing gradient issues in deep networks given by Eq. (1). The Adam
optimizer, an adaptive gradient-based optimization algorithm, was used
to minimize the mean squared error (MSE) loss function, ensuring effi-
cient convergence during training. To mitigate overfitting, dropout
layers were incorporated into the architecture, randomly deactivating a
fraction of neurons during training.

ReLU(x) = max(0,x) (1)

The selection of a DNN is further justified by its ability to generalize
across diverse datasets, making it ideal for this study where the dataset
exhibits high variability in material properties and geometric configu-
rations. Moreover, the scalability of DNNs allows for future integration
of additional input features, such as environmental conditions or load
eccentricities, further broadening their applicability in structural
engineering.

5.2. Dataset Analysis

5.2.1. Data Collection and Preparation
The dataset used in this study was assembled from experimental data

and numerical simulations, incorporating a diverse range of configura-
tions relevant to FRP-confined columns. The dataset consists of N = 116
samples, ensuring adequate representation of varying material and
geometric properties critical to structural behavior.

Preprocessing was performed to prepare the dataset for input into the
machine learning model. Feature scaling was applied to standardize the
varying ranges of the input features. Since Ac (measured in mm2) and Ef

(measured in MPa) operate on different scales, min-max scaling was
used to transform all features to a range of [0,1] by using Eq. (2). This
transformation ensures uniform contribution to the training of the ma-
chine learning model and avoids bias introduced by features with larger
magnitudes.

xʹ =
x − xmin
xmax − xmin

(2)

Where, xmin is the minimum of the feature, and xmax is the maximum
value of the feature.

This scaling approach ensures uniform contribution of each feature
to the machine learning model, preventing bias introduced by large
magnitudes. Fig. 13 displays box plots of the input features before
scaling, revealing significant disparities in their distributions and the
presence of outliers. Feature Ef and As was found having outliers pres-
ence as seen in Figs. 13 and 14.

In addition to scaling, normalization was applied to address skew-
ness in feature distributions. Outputs such as εcc exhibited pronounced
skewness, which was mitigated using log transformations. This step is
crucial for stabilizing variance and enhancing the model’s learning ca-
pabilities. Post-normalization, the scaled features exhibited uniform
distributions, as illustrated in Fig. 14, further supporting effective model
training.

To ensure robust model development, the dataset was split into
training, validation, and testing subsets using a 70–15–15 ratio. Strati-
fied sampling was employed to maintain balanced representation of
critical features such as tf and Ef , which showed significant variability
across samples. This stratification was essential for exposing the model
to a comprehensive range of feature combinations during training and
validation, ultimately improving its generalization capabilities.

5.2.2. Exploratory Data Analysis (EDA)
The dataset comprises eight key variables, including input features

(Ac, fʹc, tf , Ef , As, fy) and output variables (Pcu, εcc), as described in
Table 7. The mean, standard deviation, minimum, maximum, variance,
skewness, and kurtosis of each variable were computed to understand
their statistical properties.

From the table, Ac exhibits a mean of 18,294.75mm2 with a standard
deviation of 3634.6, indicating moderate variability. The skewness of
− 0.66 and kurtosis of − 1.00 suggest that the distribution is slightly
negatively skewed with thinner tails. fʹc shows a higher variability (std.
dev = 29.6 MPa) and is almost symmetrically distributed
(Skewness=0.13), reflecting a balanced representation of low and high-
strength concrete samples. tf and Ef have notably smaller ranges, with tf
showing a minimal skewness of 0.13 and Ef a pronounced negative
skewness of − 1.93, indicative of a bias towards higher elastic modulus
values.

As and fy exhibit moderate variability, with fy having a slightly
negatively skewed distribution (-0.46), while Pcu, the load-carrying ca-
pacity, demonstrates the highest variability (std. dev= 1159.35 kN) and
a significant positive skewness (1.13), indicating a concentration of
lower values and a few high outliers. Similarly, εcc has a relatively small

Fig. 8. Comparative analysis of ultimate axial load and strain enhancements in DSTC configurations with varying gfrp layer counts.
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Fig. 9. Comparative analysis of ultimate axial strength and strain in DSTC specimens: assessing the influence of inner tube geometry across different spec-
imen groups.
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Fig. 9. (continued).
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range (mean = 0.03 mm/mm), with a near-symmetric distribution
(Skewness=0.58).

Fig. 15 provides a visual representation of these statistics. The top
plots highlight the mean and standard deviation of variables, showing Ef
as the most significant contributor to variability. The variance plot un-
derscores the dominance of Ef and Ac in the dataset, while the skewness
and kurtosis plot confirm the near-normal distribution of most variables
with some exceptions like Ef and Pcu.

The histogram distributions with kernel density estimation (KDE),
shown in Fig. 16, provide deeper insights into the data distributions. For
Ac, the distribution is unimodal and slightly left-skewed. fʹc and tf
demonstrate bimodal distributions, due to the grouping of data into
distinct concrete strengths and FRP configurations. Ef , on the other
hand, shows a highly concentrated distribution near its maximum
values, reflecting the dominance of high-stiffness materials in the
dataset. Similarly, As and fy have distributions skewed towards lower
values, with fy showing a larger concentration below 500 MPa. The
output Pcu is positively skewed, as reflected in the heavy tail of the
distribution, and εcc is almost uniformwith a slight peak around its mean
value.

The relationships between variables were explored using both
Pearson and Spearman correlation coefficients, depicted in Figs. 17 and
18, respectively. Pearson correlation measures linear relationships,

while Spearman ranks the correlations, making it more robust to non-
linear trends.

Fig. 17, the Pearson correlation heatmap, reveals strong positive
correlations between tf and fʹc (0.98) and between Pcu and tf (0.70),
indicating the significant role of FRP thickness in determining load-
carrying capacity. Moderate correlations are also observed between Ef
and Ac (0.47), and between Pcu and fʹc (0.66), suggesting the combined
influence of elastic modulus and concrete strength on structural per-
formance. Interestingly, As exhibits a negative correlation with Ac
(-0.49), due to design trade-offs in column dimensions.

Fig. 18, the Spearman correlation heatmap, highlights similar trends
but with stronger correlations in some cases. For instance, tf shows an
even stronger rank correlation with Pcu (0.81), underscoring its critical
impact. As has a positive correlation with εcc (0.31), suggesting a po-
tential relationship between steel area and strain capacity under
compression.

5.3. Methodology

5.3.1. Model architecture
The DNN architecture developed in this study is designed to effec-

tively model the complex, non-linear relationships between the input
features and the target variables Pcu and εcc The architecture consists of

Fig. 10. Comparative analysis of axial load capacity and ultimate strain in DSTC specimens: single vs. double steel tube configurations.
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Fig. 11. Influence of steel tube diameter and thickness on ultimate axial load capacity and strain in hollow and filled DSTC specimens.
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an input layer, multiple hidden layers, and an output layer, as depicted
in Fig. 19.

The input layer comprises six neurons, each corresponding to one of
the standardized input features detailed in Table 6. These features were
selected based on their significant impact on the compressive behavior
of FRP-confined columns.

The network includes three hidden layers, each containing 64 neu-
rons. This configuration was determined through hyperparameter tun-
ing to balance model complexity and computational efficiency. The
hidden layers employ the ReLU activation function, which is given by
Eq. (1).

The ReLU function introduces non-linearity into the model, allowing
it to learn complex patterns within the data while mitigating the van-
ishing gradient problem commonly encountered in deep networks. To
prevent overfitting and enhance the generalization capability of the

Fig. 12. Failure modes for columns with varying parameters.

Table 6
Variables with their unit and description.

Variable Unit Description

Ac mm2 Area of concrete section
fʹc MPa Concrete strength of unconfined concrete
tf mm Total thickness of FRP wraps
Ef MPa Elastic modulus of FRP
As mm2 Area of steel tubes
fy MPa Yield strength of internal steel tubes
Pcu kN Load carrying capacity of the FRP-confined column
εcc mm/mm Ultimate strain capacity of FRP-confined column
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Fig. 13. Box plot of input features with outliers.

Fig. 14. Box plot of scaled input features with outliers.
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model, dropout regularization layers with a dropout rate of 20 % were
inserted after each hidden layer. This technique randomly deactivates a
fraction of neurons during training, forcing the network to learn more
robust features.

The output layer consists of two neurons corresponding to the target
variables: Pcu and εcc of the FRP-confined columns. Since these are
continuous variables, no activation function was applied to the output
layer, allowing the network to output a wide range of real values.

Key hyperparameters were carefully selected to optimize the per-
formance of the DNN. Table 8 summarizes the hyperparameters used in

the model.
The Adam optimizer was chosen for its efficiency and adaptive

learning rate capabilities, which are beneficial for training deep net-
works. A learning rate of 0.001 was set to ensure stable convergence.
The batch size was fixed at 32, a common choice that provides a good
balance between training speed and model stability.

The DNNwas implemented using the TensorFlow and Keras libraries,
which offer high-level APIs for constructing and training deep learning
models. The model’s architecture is outlined in Algorithm 1.

Table 7
Statistical descriptive analysis of the dataset.

Variable Mean Std. Dev Min Median Max Variance Skewness Kurtosis Q1 Q3 (Q3 - Q1)

Ac 18294.75 3634.60 11427.66 20027.83 22332.57 13210300.00 − 0.66 − 1.00 16122.91 21470.67 5347.77
fʹc 65.94 29.60 20.00 47.00 98.20 876.11 0.13 − 1.90 37.00 98.20 61.20
tf 1.03 0.52 0.34 0.64 1.60 0.27 0.13 − 1.91 0.60 1.60 1.00
Ef 119112.07 22000.21 68000.00 128500.00 128500.00 484009000.00 − 1.93 1.75 128500.00 128500.00 0.00
As 1109.03 575.58 0.00 861.90 2560.82 331297.34 0.38 − 0.11 757.11 1197.00 439.89
fy 431.42 177.42 0.00 449.00 667.50 31477.00 − 0.46 0.39 320.00 667.50 347.50
Pcu 2451.62 1159.35 916.00 2263.79 6724.78 1344092.83 1.13 1.27 1579.48 3115.00 1535.52
εcc 0.03 0.01 0.01 0.03 0.05 0.00 0.58 − 0.07 0.02 0.03 0.01

Fig. 15. Various statistical analysis of the variables in the dataset.
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Fig. 16. Histogram distribution plot with KDE of variables.

Fig. 17. Pearson correlation heatmap with correlation value.
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Fig. 18. Spearman correlation rank correlation heatmap.

Fig. 19. DNN model architecture with input, hidden and output layers.
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Algorithm 1. pseudocode of the DNN Architecture

5.3.2. Training process
The model was trained using the preprocessed dataset, with the data

split into training (70 %), validation (15 %), and testing (15 %) sets to
evaluate the model’s performance on unseen data. Stratified sampling
ensured that each subset adequately represented the variability in the
dataset, particularly for features with significant skewness or outliers.

During training, the MSE loss function was minimized using the
Adam optimizer. Early stopping was implemented to halt training when
the validation loss ceased to improve for a consecutive number of
epochs, thus preventing overfitting.

5.3.3. Model validation
The performance and reliability of the developed DNN model were

rigorously evaluated using several statistical metrics and a robust vali-
dation strategy. This section details the metrics used for performance

evaluation and the cross-validation and hyperparameter tuning
approach adopted, leveraging Bayesian optimization techniques.

To assess the predictive accuracy of the DNN model, four key per-
formance metrics were employed: the coefficient of determination (R2),
RMSE, Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE). These metrics provide comprehensive insights into the
model’s ability to generalize and accurately predict the target variables
Pcu and εcc

The R2 metric quantifies the proportion of variance in the dependent
variable that is predictable from the independent variables. It is defined
using Eq. (3):

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2

(3)

where:

• yi is the actual value,
• ŷi is the predicted value,
• y is the mean of the actual values,
• n is the number of observations.

An R2 value closer to 1 indicates a better fit of the model to the data.
RMSE measures the average magnitude of the prediction errors,

providing a quadratic scoring rule that penalizes large errors more
severely. It is calculated using Eq. (4).

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2
√

(4)

Lower RMSE values indicate better model performance.
MAE provides the average absolute difference between predicted and

actual values, offering a linear score that equally weights all differences.
It is given by Eq. (5).

MAE =
1
n
∑n

i=1
|yi − ŷi | (5)

MAPE expresses the prediction error as a percentage, providing a
normalized measure of the predictive accuracy, given by Eq. (6).

MAPE =
100\%
n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi
yi

⃒
⃒
⃒
⃒ (6)

This metric is particularly useful for comparing errors across datasets
with different scales.

The robustness and generalization capability of the DNN model
heavily depend on the appropriate selection of hyperparameters. To
optimize these parameters and prevent overfitting, a cross-validation
strategy coupled with Bayesian optimization was employed.

Furthermore, k-fold cross-validation was utilized to assess the
model’s performance across different subsets of the data. The dataset
was partitioned into k = 5 folds for balancing bias and variance. In each
iteration, four folds were used for training, and one fold was reserved for
validation. This process was repeated five times, ensuring that each fold
served as the validation set once.

This approach provides a more reliable estimate of the model’s
performance on unseen data by reducing the variance associated with a
single train-test split. It also helps in identifying any potential overfitting
or underfitting issues.

In addition, Bayesian optimization was adopted for hyperparameter
tuning due to its efficiency in handling expensive function evaluations
and its ability to converge to optimal solutions with fewer iterations
compared to grid or random search methods. Table 9 presents key
hyperparameters selected for optimization with description and search
boundaries.

Table 8
Hyperparameters of the DNN Model.

Hyperparameter Value

Number of hidden layers 3
Neurons per hidden layer 64
Activation function ReLU
Dropout rate 20 %
Optimizer Adam
Learning rate 0.001
Batch size 32
Number of epochs 100
Loss function Mean Squared Error

Table 9
Key hyperparameters and their search space selection for optimization.

Hyperparameter Description Values Explored

Number of Hidden Layers
(LLL)

Explored values between 2
and 10.

2, 3, 4, 5, 6, 7, 8, 9, 10

Neurons per Hidden
Layer (NNN)

Ranged from 32 to 128
neurons.

32, 64, 96, 128

Learning Rate (η) Considered values between
1e− 5 and 1e− 2.

0.00001, 0.0001,
0.001, 0.01

Batch Size (BBB) Tested batch sizes of 16, 32,
64, and 128.

16, 32, 64, 128

Dropout Rate (DDD) Varied between 0 % and
50 %.

0 %, 10 %, 20 %,
30 %, 40 %, 50 %
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Algorithm 2. outlines the Bayesian optimization process used for
hyperparameter tuning.

The acquisition function used was the Expected Improvement (EI),
which balances exploration and exploitation by considering both the
mean and uncertainty predictions of the surrogate model.

5.4. Model Interpretation with SHAP Analysis

Understanding the decision-making process of complex machine
learning models, such as deep neural networks, is essential for validating
their predictions and gaining insights into the underlying data re-
lationships. Shapley Additive Explanations (SHAP) provide a unified
framework for interpreting model predictions by assigning each feature
an importance value based on cooperative game theory.

SHAP values quantify the contribution of each input feature to the
prediction of a specific instance, allowing for a detailed analysis of
feature importance. This approach considers all possible combinations
of features, ensuring that the attribution of importance is fair and
consistent. The SHAP value for a feature represents the averagemarginal
contribution of that feature across all possible subsets of features given
by Eq. (7).

ϕi =
∑

S⊆F\{i}

|S|!(|F| − |S| − 1 )!
|F|!

[v(S ∪ {i}) − v(S) ] (7)

where:

• ϕi is the SHAP value for feature iii,
• F is the set of all features,
• S is a subset of features not containing feature iii,
• v(S) is the model’s prediction when only features in subset SSS are
present.

Table 10
Model Performance Metrics to predict outputs.

Metric Pcu (LR) εcc (LR) Pcu (SVR) εcc (SVR) Pcu (RFR) εcc (RFR) Pcu (GBR) εcc (GBR) Pcu (DNN) εcc (DNN)

R2 0.9047 0.5511 0.7074 0.2566 0.9547 0.9027 0.9926 0.9389 0.9973 0.9646
RMSE 315.13 0.0081 552.16 0.0104 217.2 0.0038 87.85 0.003 85.25 0.0022
MAE 275.73 0.0066 328.5 0.0091 124.38 0.0025 71.27 0.0019 67.15 0.0013
MAPE (%) 13.69 29.43 15.24 41.11 5.2 9.65 3.61 7.48 3.2 6.92

Fig. 20. Model performance metrics to predict Pcu and εcc.
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In this equation, the term |S|!(|F|− |S|− 1 )!
|F|! represents the weighting factor

based on the number of features, ensuring that all subsets are equally
considered. The difference v(S ∪ {i}) − v(S) captures the change in the
prediction when feature iii is added to subset S, reflecting its marginal
contribution.

Applying SHAP analysis to our DNN model enables us to interpret
how each of the six input features influences the predicted Pcu and ul-
timate strain capacity εcc.

Each feature’s SHAP value represents its contribution to pushing the
model’s output from the base value (the average prediction over the
training data) towards the actual prediction for that instance. By
aggregating SHAP values across all instances in the dataset, we can
obtain a global interpretation of feature importance. This aggregated
analysis highlights which features consistently have the most significant
impact on the model’s predictions, provides valuable insights into the
factors that most influence the structural performance of FRP-confined
columns.

Furthermore, SHAP values facilitate the detection of any anomalies
or unexpected patterns in the model’s behavior. If certain features
exhibit inconsistent or counterintuitive SHAP values, it may prompt a re-
examination of the data or model assumptions, ensuring the model’s
reliability and validity.

The advantages of using SHAP for model interpretation include:

• Consistency: SHAP values guarantee consistent feature attribution,
ensuring that features contributing more to the model’s predictions
receive higher importance scores.

• Local and Global Interpretability: SHAP provides both instance-
level (local) explanations and overall (global) feature importance,
offering a comprehensive understanding of the model.

• Model-Agnostic: SHAP can be applied to any machine learning
model, including complex ones such as DNNs, without requiring
modifications to the model structure.

5.5. Results and discussion

5.5.1. Model performance
The predictive performance of different machine learning models

was evaluated on the basis of Pcu and εcc. Key metrics including R2,
RMSE, MAE, and MAPE were used to quantitatively assess the models.
The results for all models, including LR, SVR, RFR, GBR, and DNN, are
summarized in Table 1.

The R2 values for Pcu indicate that DNN achieved the best perfor-
mance (R2 = 0.9973), followed closely by GBR (R2 = 0.9926). For εcc,
DNN again outperformed other models with an R2= 0.9646, showing its
ability to explain over 96 % of the variance in the dataset. The Random
Forest Regression (RFR) model also performed well, achieving R2

= 0.9547 for Pcu and R2= 0.9027 for εcc. In contrast, traditional models
including LR and SVR showed significantly lower R2 values, particularly
for εcc, where LR achieved only R2 = 0.5511 and SVR achieved R2

= 0.2566.
The RMSE values further highlight the superior performance of DNN

and GBR. For Pcu, DNN achieved the lowest RMSE of 85.25 kN, closely
followed by GBR with 87.85 kN. Similarly, for εcc, DNN achieved an
RMSE of 0.0022 mm/mm, outperforming GBR (0.0030 mm/mm) and
RFR (0.0038 mm/mm). In terms of MAE, the DNN model consistently
exhibited the lowest errors, reflecting its ability to closely approximate
the actual values with minimal deviation.

MAPE values also corroborate the superior performance of DNN,
achieving only 3.20 % for Pcu and 6.92 % for εcc as shown in Fig. 20.
These values indicate that DNN provides highly accurate predictions,
particularly compared to LR and SVR, which demonstrated significantly
higher MAPE values.

Fig. 21 compares the actual and predicted values of Pcu and εcc for all
models. The DNN and GBRmodels show data points closely aligned with
the diagonal line, indicating near-perfect predictions. By contrast, LR
and SVR models exhibit more scatter, especially for εcc, reflecting their
limited ability to handle complex, non-linear relationships.

The residual plots in Fig. 22 further illustrate the predictive accuracy
of each model. For Pcu, DNN and GBR demonstrate minimal residuals,
indicating better fitting of the data. Conversely, SVR and LR exhibit

Fig. 21. Actual versus models predicted Pcu and εcc.
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larger and more dispersed residuals, particularly at higher values, sug-
gesting underfitting in these regions. Similarly, for εcc, DNN shows the
most consistent residuals close to zero, while LR and SVR suffer from
higher variance, further emphasizing their limitations.

The DNN model demonstrated the most robust performance across
all metrics, owing to its capability to model highly non-linear and
complex relationships inherent in the dataset. The GBR model also
exhibited strong performance, likely due to its ability to handle feature
interactions and capture hierarchical relationships effectively. RFR,
while slightly less accurate than DNN and GBR, still provided reliable
predictions, particularly for εcc.

Traditional models such as LR and SVR were unable to achieve
comparable performance, particularly for εcc, due to their limitations in
capturing non-linearity. The high RMSE and low R2 values for these
models highlight their inadequacy in scenarios with complex variable
dependencies.

The Taylor diagrams in Fig. 23 (A) and (B) offer a comprehensive
visualization of model performance for Pcu and εcc, respectively. These
diagrams plot the standard deviation, correlation coefficient, and root-
mean-squared deviation (RMSD) for each model relative to a reference
dataset. The placement of models on these diagrams provides valuable
insights into their predictive capabilities.

In Fig. 23 (A), which assesses the models for Pcu, the DNN model
shows the closest alignment with the reference point, exhibiting the
highest correlation coefficient (approaching 0.99) and a standard devi-
ation nearly identical to the reference. This indicates that the DNN
model not only captures the variability in Pcu accurately but also aligns
closely with the observed data. GBR follows closely, with slightly higher
deviations and a marginally lower correlation coefficient, while RFR
demonstrates robust performance as well. However, SVR and LR models
are positioned further from the reference, reflecting their comparatively
lower accuracy and limited ability to capture data variability.

In Fig. 23 (B), evaluating the models for εcc, a similar trend is
observed. The DNN model again exhibits the highest performance, with
a correlation coefficient nearing 0.99 and minimal standard deviation
discrepancies. GBR maintains strong alignment, followed by RFR, which

performs reasonably well but shows slightly larger deviations. The LR
and SVR models are once more positioned farther from the reference,
highlighting their inability to model the complexities of strain capacity
predictions effectively.

In conclusion, the results underscore the efficacy of advanced ma-
chine learning models like DNN and GBR for predicting structural pa-
rameters such as Pcu and εcc. These models provide superior accuracy,
making them valuable tools for structural engineering applications
where precise predictions are essential.

5.5.2. Feature importance analysis results
Feature importance analysis was conducted using SHAP (SHapley

Additive exPlanations) values to understand the contribution of input
variables to the predictions of Pcu and εcc. Figs. 24–27 present the SHAP
value distributions for the GBR and RFR models for both output
variables.

Figs. 24 and 25 show the SHAP value distribution for Pcu predictions
by the GBR and RFR models, respectively. These plots indicate that Ac
and tf are the most influential variables in predicting Pcu. The positive
SHAP values associated with larger Ac and tf values highlight their direct
contribution to increasing the load-carrying capacity of the column.
Additionally, fʹc also demonstrated a significant positive impact, albeit
less prominent than Ac and tf.

Interestingly, fy and Ef showed mixed contributions with both posi-
tive and negative SHAP values depending on their ranges. For instance,
higher Ef values tended to have a slight negative impact on Pcu, which
could be attributed to reduced ductility in configurations with overly
stiff FRP layers. This detailed behavior suggests that the interplay be-
tween variables like tf and Ef needs to be carefully considered during
design optimization.

Figs. 26 and 27 illustrate the SHAP value distribution for εcc pre-
dictions by the GBR and RFR models, respectively. Unlike Pcu, the
dominant contributors to εcc predictions were tf and Ef , emphasizing the
importance of FRP properties in determining the strain capacity of
confined columns. Notably, larger tf values consistently exhibited pos-
itive SHAP values, indicating their strong influence on enhancing the

Fig. 22. Predicted Pcu and εcc versus residual error.
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ultimate strain capacity.
On the other hand, As showed a significant negative impact on εcc.

This could be explained by the fact that increasing the steel tube area
might reduce the ductility of the system, thus lowering the strain ca-
pacity. Similarly, higher fʹc values also tended to suppress strain capac-
ity, as concrete with higher compressive strength generally exhibits
reduced deformability.

Key observations from the SHAP analysis includes:

1. Dominant Features:

o For Pcu, Ac and tf were the most influential features across all models,
reflecting the critical role of concrete area and FRP thickness in
enhancing load-carrying capacity.

Fig. 23. Taylor diagram of model’s performance to predict (A). Pcu and (B). εcc.
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o For εcc, tf and Ef emerged as the dominant factors, underlining the
importance of FRP material properties in strain capacity predictions.

2. Interplay of Features:

o The interplay between Ef and tf is significant in both Pcu and εcc, as
overly stiff FRP configurations (Ef ) can counteract the positive effects
of increased FRP thickness (tf ).

o Similarly, the relationship between As and fy highlights trade-offs
between strength and ductility in hybrid concrete-steel systems.

3. Model-Specific Observations:

o GBR consistently assigned higher importance to Ac and tf , while RFR
distributed importance more evenly across variables, potentially
reflecting its less hierarchical structure.

5.5.3. Graphical user interface
To facilitate the practical implementation of the developed ML

models for predicting Pcu and εcc, a user-friendly GUI has been developed
and is hosted on GitHub at SDSTC Prediction GUI Repository. This GUI
provides engineers, researchers, and practitioners with a streamlined
platform to leverage the predictive capabilities of the machine learning
models without requiring in-depth programming expertise.

The GUI, as shown in Fig. 28, allows users to input structural and
material parameters related to FRP-confined columns.

Once these values are entered, users can click the "Predict" button to
generate predictions for Pcu and εcc. The results are displayed in an
intuitive pop-up dialog box for immediate reference, ensuring quick
accessibility to key structural predictions. For instance, in the screenshot
depicted in Fig. 28, the GUI predicts Pcu of 2921.65 kN and εcc of
0.02292 mm/mm based on the provided input parameters.

The GUI is designed with simplicity and efficiency in mind. It uses a
clean, minimalistic layout where each parameter is clearly labeled,
ensuring that users can accurately input data without ambiguity. The

Fig. 24. SHAP value distribution for Pcu predictions using GBR.

Fig. 25. SHAP value distribution for Pcu predictions using RFR.
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interface is lightweight and responsive, making it accessible even on
systems with limited computational resources. Furthermore, the use of
descriptive labels and intuitive functionality reduces the learning curve,
making the tool accessible to a wide range of users, from students to
experienced engineers.

The GUI is implemented using Python, leveraging libraries such as
Tkinter for interface design and backend integration with the trainedML
models. The hosting on GitHub provides easy access to the source code
and instructions for deployment, enabling users to download, install,
and customize the GUI as needed. Additionally, the open-source nature
of the repository encourages collaboration and future enhancements by
the community.

This GUI serves as a valuable tool in structural engineering design
and analysis. By providing immediate predictions of key structural
metrics, it enables engineers to:

• Evaluate different design configurations during preliminary design
stages.

• Optimize material usage for cost-efficiency and performance.
• Perform rapid sensitivity analyses by varying input parameters and
observing their effects on Pcu and εcc.

5.5.4. Limitations and future directions
While the findings of this study provide valuable insights into the

prediction of Pcu and εcc using advanced ML models, several limitations
need to be acknowledged. Addressing these limitations can pave the way
for future improvements and novel research directions.

Limitations

1. Dataset Size and Diversity: Despite efforts to compile a robust
dataset, the sample size (N = 116) is relatively small, potentially
limiting the generalizability of the models. Furthermore, the dataset
may lack sufficient diversity in terms of material properties, geom-
etries, and boundary conditions. For example, variations in envi-
ronmental factors, such as temperature or sustained loading, were
not explicitly included, which could impact real-world applicability.

Fig. 26. SHAP value distribution for εcc predictions using GBR.

Fig. 27. SHAP value distribution for εcc predictions using RFR.
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2. Model Interpretability: Although SHAP values were used to inter-
pret feature contributions, the inherent complexity of DNN and
ensemble models including GBR and RFR poses challenges for full
interpretability. Engineering practitioners may find it difficult to
directly link the model’s predictions to physical phenomena without
extensive additional analyses.

3. Computational Complexity: The DNN model, while highly accu-
rate, requires significant computational resources for training and
hyperparameter tuning. This limitation might restrict its deployment
in scenarios where computational efficiency is critical, such as real-
time structural health monitoring or rapid preliminary design
assessments.

4. Exclusion of Long-term and Cyclic Loading Effects: The current
models focus exclusively onmonotonic loading conditions. However,
many real-world applications, such as seismic or wind-exposed
structures, involve cyclic loading and long-term environmental
degradation, which were not considered in this study.

5. Simplified Feature Interactions: The dataset and models did not
account for complex interdependencies between input features
beyond those captured by statistical relationships. For instance, in-
teractions between FRP properties (tf , Ef ) and concrete parameters
(fʹc) under extreme stress states may exhibit nonlinear behavior that
the current dataset does not adequately reflect.

Future directions

1. Expanding the Dataset: Future studies should focus on increasing
the dataset size by incorporating additional experimental and nu-
merical data. Expanding the diversity of material properties, column
geometries, and loading scenarios will enhance the robustness and
generalizability of the models. Including data on cyclic loading, fire
exposure, and long-term environmental effects will also provide a
more comprehensive basis for predictions.

2. Developing Physics-Informed Machine Learning Models: Inte-
grating domain knowledge into ML models can bridge the gap be-
tween data-driven predictions and physical understanding. Physics-
informed neural networks (PINNs) or hybrid models combining
finite element analysis with ML could improve both accuracy and
interpretability.

3. Enhancing Model Interpretability: Future work should focus on
developing interpretable ML models or techniques that can provide
more explicit physical explanations for predictions. Leveraging
advanced explainability frameworks or simpler, physics-guided
surrogate models could make these tools more accessible to engi-
neering practitioners.

4. Improving Computational Efficiency: To make DNN and other
high-performing models more practical for real-time applications,
efforts should be directed toward optimizing their architectures for
efficiency. Techniques such as model pruning, quantization, and
transfer learning can reduce computational requirements without
compromising accuracy.

5. Incorporating Multimodal Data: Integrating data from diverse
sources, such as experimental measurements, sensor outputs, and
field observations, can enhance the richness of the training data. For
instance, combining visual inspections, acoustic emissions, and load-
displacement data could improve predictions and reliability.

6. Extending to Broader Structural Applications: While this study
focused on FRP-confined columns, the methodologies developed
here can be extended to other structural components and systems,
such as beams, slabs, and hybrid materials. Exploring these exten-
sions will broaden the applicability of the findings.

6. Conclusion

Based on comprehensive numerical and machine learning modeling
conducted on square double-skin tubular columns (SDSTC), the
following conclusions were drawn in this study.

- Enhancing the yield strength of steel in DSTC specimens to
667.5 MPa increases ultimate axial load but results in varied strain
responses: single tubes show significant strain variability due to
reduced ductility from higher carbon content, while double tubes
exhibit minor strain improvements, suggesting minimal ductility
gain with an extra tube.

- Adding GFRP layers to circular hollow DSTC specifications enhances
ultimate axial load and strain, with diminishing returns beyond three
layers. For smaller diameters (76.3 mm), load increases marginally
after three layers, while strain significantly improves up to 150.3 %
for four layers. In larger diameters (114.5 mm), load and strain gains
are more modest, suggesting size affects the efficiency of GFRP layer
additions in improving structural properties.

- DSTC research reveals that hollow specimens with circular tubes
surpass square ones in load capacity (10 %-16 %) and ductility
(45 %-55 %). Conversely, concrete-filled specimens show square
tubes outperforming circular ones in load resistance (4.6 %-6.3 %)
with less pronounced ductility differences. The impact of tube shape
on performance varies with concrete strength, indicating material
and geometric configurations significantly influence DSTC structural
behavior.

- The use of dual steel tubes in DSTC specimens significantly increases
ultimate axial load capacity (22.3 %-45.6 %) and ultimate strain
(51.8 %-118.3 %), indicating enhanced strength and ductility
compared to single-tube configurations. This improvement is
attributed to steel’s superior material properties over concrete.

- In DSTC specimens, increasing steel tube size and thickness decreases
ultimate axial load capacity in hollow sections but increases it in
filled sections by up to 30 %, reflecting steel’s higher strength.
Hollow sections show enhanced ductility with larger steel di-
mensions, while filled sections exhibit variable strain responses.
Strength gains in filled sections are significant, reaching up to 80 %
in certain groups, with double-tube configurations also showing
notable strength increases but varied strain outcomes.

- The machine learning models demonstrated robust performance
across all training and testing phases. The DNN model outperformed
other models, achieving exceptional predictive accuracy for both Pcu

Fig. 28. Screenshot of graphical user interface.
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and εcc. Specifically, the DNN model achieved R2 values of 0.997 and
0.965 for Pcu and εcc, respectively, with corresponding RMSE
values of 85.25 kN and 0.0022 mm/mm. These results indicate that
the DNN model provides highly accurate predictions, outperforming
traditional models such as linear regression, support vector regres-
sion, random forest regression, and gradient boosting regression.
This demonstrates the efficacy of advanced machine learning tech-
niques in capturing the complex nonlinear behavior of DSTC speci-
mens and highlights their potential for future engineering
applications.

The present study has analyzed the impact of a limited set of vari-
ables, such as the concrete’s area and strength, the thickness and elastic
modulus of FRP wrapping layers, and the thickness and yield strength of
the steel tube. Future research should aim to include factors like the
specimen’s size, slenderness ratio, loading conditions (e.g., eccentric or
cyclic loading), FRP material types (PEN, PET, CFRP, etc.), and the
aspect ratio of rectangular cross-sections.
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