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This paper introduces 3D-QTRNet, a novel quantum-inspired neural network for volumetric medical 
image segmentation. Unlike conventional CNNs, which suffer from slow convergence and high 
complexity, and QINNs, which are limited to grayscale segmentation, our approach leverages qutrit 
encoding and tensor ring decomposition. These techniques improve segmentation accuracy, optimize 
memory usage, and accelerate model convergence. The proposed model demonstrates superior 
performance on the BRATS19 and Spleen datasets, outperforming state-of-the-art CNN and quantum 
models in terms of Dice similarity and segmentation precision. This work bridges the gap between 
quantum computing and medical imaging, offering a scalable solution for real-world applications.

Keywords Medical imaging, Image processing, Machine learning, Optimization, Smart healthcare system

Volumetric Segmentation of Medical Images1 is in trends from the recent few years in the field of Medical 
Research and Health Care. It involves dividing a 3D Medical Image into distinct regions based on characteristics 
like intensity, texture or shape. This is a vital function of the model as it helps in rationalizing the structures, 
organs, tissues as well as other details that are abnormal in the images. But the process of Manually segmenting 
volumetric images is quite challenging and demanding for large databases and it needs expertise which can’t 
be available in all cases and even if they are available there is no assurance that the results will be free from 
mistakes. For that, automated image segmentation techniques were introduced to minimize human intervention 
and reducing errors. Region Based Segmentation Edge Based Segmentation are the traditional methods used 
in medical image segmentation, but these methods are not efficient in providing full accuracy due to their 
complexity and they are also sensitive to noise.

With recent advancements in Deep Learning, traditional techniques are introduced in integration with Deep 
Learning Models for higher accuracy. Supervised CNN2 was introduced and achieved high accuracy in 2D 
image segmentation3 but due the limitation that it segments the images in slice by slice manner, which limits 
the processing of the segmented images, With some minor changes 2D-CNNs4 are introduced to overcome the 
limitation of the classical CNNs, 2D-CNNs are able to segment the image in 2D slices, which directly increases 
their accuracy but it are only limited to 2D data and can’t capture 3D information present in the volumetric 
data, So 3D-CNNs5were introduced that outperforms on limitations of 2D-CNNs with comparatively high 
convergence and are able to segment the images and to provide a 3D view. It is highly capable of extracting 
extensive features from the volumetric 3D images and segmenting them more accurately. Researchers developed 
specialized architectures and training methodologies to handle the various challenges which are proposed 
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by 3D volumetric data such as the problem of memory consumption and complexity of the data, it have 3D 
convolution and pooling layers to analyze complex patterns across multiple frames and have improved efficiency 
and performance over the 2D CNNs, but 3D-CNNs also suffer with various limitations, such as lack of interpret 
ability, problem of vanishing gradients and over fitting with slow convergence.

Currently Quantum Inspired Networks6 (QINNs) have been introduced and its simply integration of Deep 
Learning Models and Quantum Computing which overcomes the limitations of traditional Networks, it adds 
faster information processing and solve complex problems in volumetric segmentation with expert-level 
accuracy. Researchers started to explore and develop new quantum neuron models, which directly enhance 
the power of traditional networks. New and advanced quantum inspired algorithms are introduced, which 
increases efficiency through quantum back-propagation algorithms and quantum encoding algorithms7, which 
gives the model more resources, uses qubits to represent the data in multiple states simultaneously due to the 
superposition property of qubits, and use weight vectors to represent the relationships between the different 
layers of the model, Quantum gates are used to manipulate qubits to extract information from them, and are 
used in the training process of the QINNs. However, QINNs suffer from slow convergence, mainly because they 
utilize a complex quantum back-propagation algorithm in training’s of their model, and also due to the use of 
fixed activation axes. QINN models are limited to gray-scale image segmentation. With recent advancements in 
technology, optimized QINNs are going to be introduced.

The proposed model, is tailored and tested on the given benchmark datasets such as the BRATS 2019 dataset 
namely the (Multi modal Brain Tumor Image Segmentation)8 and the Spleen dataset.

The BRATS19 dataset8 mainly consists of the MRI volumes of brain focusing on brain tumor images. It totally 
includes 315 MRI volumes with 240 volumes of high-grade gliomas and also 75 volumes of low-grade Gliomas 
with multiple modalities including the T1-weighted, T1-weighted with contrast-enhanced, T2-weighted and 
FLAIR images with a resolution of 240 × 240 pixels per slice. Whereas the Spleen dataset mainly consists of 61 
CT Scans 41 for training and 20 for testing of the patients undergoing chemotherapy treatment for liver. Each of 
the CT Scan volume contains variable number of slices of 512 × 512 resolutions.

The scope of the proposed model is helping in extending domain of semantic segmentation for volumetric 
medical data, mainly focusing on voxel-wise processing and analysis of complex data which helps in providing 
expert level accuracy in comparison to the traditional models. The models architecture comprises of the 
following layers: first input layer, secondly the intermediate or the hidden layer and at last output layer which is 
connected through III order neighborhood-oriented design to gather complex relationship between the voxels. 
By incorporating the quantum inspired techniques and the cross mutation tensor ring decomposition, the model 
aims to enhance the convergence and segmentation accuracy. Proposed model addresses main challenges such 
as slow convergence, gradient instability and lack of interpret-ability faced by classical networks and aim to 
accelerate the segmentation process with high precision and reduces the problem of distorted segments.

The model includes qutrit encoding, cross mutated tensor ring decomposition voxelwise information 
processing These techniques enable the model to process high-dimensional data efficiently, which is helpful 
for feature extraction the weight vectors are represented using tensor ring representation structure the input 
neurons that have pixel information are portrayed as qutrits as well as the quantum gates are utilized to express 
their inter-connected weights, which are used to manipulate qutrits the 3d-QTR Net model is centered on 
counter-propagation which is bi-directional for more rapid convergence, Adaptive hyper-parameters are linked 
with gray scale image segmentation and information sensitive to voxel is demonstrated in quantum form The 
proposed model demonstrates superior performance compared to traditional models, showcasing its potential 
for advancement in segmentation tasks The primary contributions of this purposed model are highlighted below:

(1) In this work, the authors has come up with a qutrit inspired self-supervised pixel-wise cross-mutated 
tensor ring network for segmentation of volumetric data.

(2) To overcome correlation and the entanglements between model parameters, a cross mutated tensor ring 
structure is used for regularization of data, which helps in gathering more complex relationship information 
from data.

(3) For faster convergence bi-directional counter propagation is used.
(4) Qutrit’s extra states allow the quantum model in encoding the quantum neurons with higher dimensions 

and offer better representation which enables faster counter propagation between these states.
(5) An adaptive voxel-wise Q-sigmoid (Vox-QSig)9 activation function is used.
(6) In this work we used a advanced 3rd order S shaped neighborhood neuron architecture for pixel-wise 

handling of three dimensional image data.
The arrangement of the next sections is structured as follows: overall review of deep learning and quantum 

based segmentation methods with overview of challenges faced by them is showcased in “Prior literature 
review”. “Quantum computing and it’s fundamentals” describes main fundamentals of quantum computing and 
introduces the architecture of the QTR-Net, in “The architecture”. Experimental analysis, which includes dataset 
experimental setups and outcomes, is provided in “Experimental analysis” the advantages and the shortcoming’s 
of the author’s model is presented in Section VI. At last, the results and the conclusion are provided in 
“Conclusion”.

Prior literature review
In this section we will trace the development from the beginnings of volumetric image segmentation1 to the 
changes it has undergone. This section is divided into three main topics: traditional methods for volumetric 
medical image segmentation and their limitations, advancements in deep learning models and integration with 
traditional models, integration of deep learning models and quantum computing.

Originally, image segmentation was performed manually by humans. This task requires an expert to 
continuously monitor the work until the segmentation is complete, which is very time-consuming if the data set 
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is very large. To minimize errors and human intervention, automated methods are therefore proposed, such as 
region-based segmentation. In this method, the images are segmented based on the features of a region and each 
region is classified differently. In the second method, edge-based segmentation, the segmentation is proposed 
based on the edges of the different regions and these are classified.

In recent years, deep learning has made various advances, and then traditional deep learning models, 
which are a combined version of both traditional models and deep learning models, and deeply supervised 
Convolutional Neural Networks (CNN)2, which have higher segmentation accuracy, but segment the images in 
slice by slice manner, which limits the processing of the segmented images, with some minor modifications, we 
then proposed 2D CNNs4that can segment the images into 2D slices, which helps in faster processing of the data 
but still lags behind in many factors as we are not able to utilize the 3D features of MRI and CT scans, hence a 
powerful model was introduced, the 3D CNNs5 that are able to segment the images and provide a 3D view and 
help in understanding. It is highly capable of extracting extensive features from the volumetric 3D images and 
segmenting them more accurately, but suffers from slow convergence10, that distorts the image segments and 
makes it difficult to distinguish features such as shape, size and location, and as the feature levels are increased it 
starts to suffers with vanishing gradient problem.

Currently, quantum-inspired neural networks (QINNs) as an integrated idea is in trends, which adds faster 
information processing to the capabilities of conventional neural networks. QINNs11 have gained acceptance 
in solving complex problems in volumetric image segmentation with expert-level accuracy. It has addressed 
all the challenges that were presented by the earlier models by employing quantum inspired algorithms that 
help in presenting simplicity of the model along with enhanced convergence rate, along with introducing the 
abstraction of learning processes as implemented in quantum computers. High computing costs, error rates 
in quantum processes, and a lack of quantum hardware are some of the obstacles to scaling quantum-inspired 
models for practical implementation. The scalability of existing hybrid quantum-classical systems is hindered by 
energy consumption, memory constraints, and noisy qubits. For real-world applications, developments in error 
correction methods and quantum computers are essential6. It provides more capability to the model, encoding 
the data in qubits leads to encoding in several states at once because of the superposition of qubits, weight vectors 
that represent the connections of one layer to another layer in the model, quantum gates for manipulations on 
qubits to get information out of them, and in the training process of the quantum inspired model named QNN in 
Fig. 3. However, QINNs suffer from slow convergence10, mainly due to the complex quantum back propagation 
algorithm12 used to train the model, and due to the use of fixed activation axes, QINN models are limited to 
gray scale image segmentation. To overcome the traditional models, new models have recently been developed.

Despite the great success of newly developed models, the motivation for the proposed 3D quantum-inspired 
self supervised tensor mesh is as follows:

(1) Additional efforts are required to optimize the hyperparameters of the conventional neural networks for 
deep learning.

(2) The inability of conventional CNN models to capture complex patterns and structures within images for 
accurate segmentation.

(3) The major drawbacks of the QINN models include slow convergence and the employment of fixed 
activation functions that restrict the usage of these models only up to the segmentation of gray-scale image data.

(4) QINN models characterized by high complexity and low interpret ability resulted in low accuracy of 
volumetric image segmentation.

Addressing them authors have offered a Tensor Shallow Neural Network architecture inspired by quantum 
which is self supervised for the segmenting volumes of medical data for overcoming problems associated with 
complex 3D CNNs.

Quantum computing and it’s fundamentals
The fundamental idea of quantum computing offers the features such as superposition, decoherence, coherence 
and quantum entanglement which helps in implementation of quantum algorithms13. Early classical systems are 
based on binary logic, Now most of the quantum systems are based on multiple levels. States of these systems are 
called as qudits (d-level system).

(a) Qubits and qutrits.
The latest quantum d-level system can be represented as combination of d basis states.

 
∣∣Ψ >=

∑
d−1
s=0 α s

∣∣ s >  (1)

Here, every coefficient represents the likelihood that the system will be in the matching basis state. When we use 
s = 2, it’s the traditional quantum two-state system, which is described as a qubit

 
|0 >=

(
1
0
0

)
, |1 >=

(
0
1
0

)
, |2 >=

(
0
0
1

)
.  (2)

Here, the authors used a three-level quantum system with s = 3. Three states described as states 0〉,1〉 and 2〉
are used for every qutrit. The superposition of all three states constitutes the pure state of a qutrit, which is 
represented as:

 |Ψ >= α 0| 0 > +α 1 |1 > +α 2| 2 >  (3)

(b) Quantum Operations.
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To execute qutrit quantum computation, we mainly require the set of unitary operations and perform 
measurements. GellMann14 observable are used, it naturally generalizes the qubit Pauli operations and it 
describes a measurement on qutrits.

 Xp =
∑

d−1
s=0 |s + 1(mod3) >< s|, Zp =

∑
d−1
s=0 θ s|s >< s|  (4)

here θ = ej 2Π
d  represents dth root of unity. Here X and Z generalized Pauli group performs shifting of one 

state to the next and multiplies the states with a phase. To create superposition in the states Hadamard gate is 
used on qutrits.

 
H = 1√

3

[ 1 1 1
1 ej 2π

3 e−j 2π
3

1 e−j 2π
3 ej 2π

3

]
 (5)

The observables we are going to measure are the GellMann14 observable. there are 3 × 3 × 3 for one candidate 
voxel hermitian observables which we generalize qubit Pauli group.

 

λ 1 =

((
0 1 0
1 0 0
0 0 0

)
+

(
0 0 0
0 0 1
0 1 0

))

λ 2 = −i

((
0 1 0

−1 0 0
0 0 0

)
−

(
0 0 0
0 0 1
0 1

)

 

λ 3 =

((
1 0 0
0 −1 0
0 0 0

)
+

(
0 0 0
0 0 1
0 1 0

))
. . . .

λ 26 = −i

((
0 1 0

−1 0 0
0 0 0

)
−

(
0 0 0
0 0 1
0 1 0

)
.

Algorithm 1. Initialize neighboring qutrits neurons and there corresponding central qutrit neuron.

The architecture
Here a 3D qutrit based model which is shown in Fig. 1, self-supervised with a tensor ring network is suggested 
to perform automatic pixel based segmentation of the medial data. The three-dimensional QTRNet architecture 
consists of three layers of volumetric qutrit neurons arranged throughout the architecture layers. The volumetric 
input (H x W x D) is first normalized using the min - max normalization before transforming into qutrits as:

 
α d

m,n = α d
m,n−min(α d

m,n)
max(α d

m,n−min(α d
m,n))  (6)

Then propagated through the three-dimensional input qutrit layer to subsequent intermediate layer and output 
layer of the architecture and then processing takes place in S-structured voxels. Inter layer connections between 
the layers is formed using a 3rd order S-connected pixel wise neighborhood architecture.

 v = voxel (ν )  (7)
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Here the spatial feature from the qutrit neurons as neighborhood pixels are extracted and transmitted as inputs 
which are guided by a voxel multilevel sigmoid function (Vox-Sig)9 and the accumulation at the next layer’s 
candidate central neuron with slope as λ and activation as ϑ.

 

σ V ox−Sig (x) = 1
κ φ +e−λ (z−ϑ )

0 ≤ κ φ ≤ Π
2

 (8)

here κ φ  is described as the multi-response exhibited by S shaped III order neighbor hood voxels and it is 
expressed as:

 
κ φ = χ s

β φ −β φ −1  (9)

here the β φ , β φ −1 are the φ th, φ − 1 response outcomes of the neighborhood architecture and the χ s is 
the contribution of the gray-scale pixels, which is defined as:

 
|χ s >=

[
cos

(
2π ×

(∑
S
n=1 α m,n

))
sin

(
2π ×

(∑
S
n=1 α m,n

))
]

 (10)

Then the information by voxels is counter propagated by the output layer and transmitted to the intermediate 
layer for further processing of the data. Qutrit based neurons from every layer and then reassigned through 
transformation gate, the weights between the layers are being mapped by Phased Hadamard gates which are 
described as:

 H (|θ mk >) = cos
(

2π
3 ω m,k

)
+ ι sin

(
2π
3 ω m,k

)
 (11)

the quantum fuzzy thresholding16 is employed to ascertain how the information is propagating both forward 
and backward between layers by self-organizing weight matrices. Now the product between the quantum states

 |ψ d >= (|α 1 >, |α 2 >, |α 3 >, . . . , |α d >)k

and quantum weights

 |Wd >= (|θ 1 >, |θ 1 >, |θ 1 >, . . . , |θ 1 >)k

Fig. 1. 3D Qutrit Model. For all Central quantum neurons, which is in the middle of all neighboring qutrits, 
It form the S neighborhood-oriented architecture with inter-layer connections, Information from volumetric 
data is mapped to qutrits with the help of angle encoding. The weights interconnected between input and the 
hidden or the intermediate layers are represented as | Optlyr,dpt

b,a >, then for the output between hidden 
layer and the output layer is represented as | Optlyr,dpt

a,c >,similarly for the output and the intermediate 
layer | Optlyr,dpt

c,a > at a layer lyr with depth dpt. Then the interconnected weights are transformed in 
quantum formalism with rotation gates with as rotational angle, which is determined by utilizing the fuzzy 
relative difference15of intensities between central pixel and neighbor hood pixels in the S shaped architecture 
with quantum neurons inside a 3*3*3 structured voxel, here there are multiple such blocks of S-connected 
neighborhood neurons so fuzzy15 intensities form all the blocks are taken through the outcome of there 
respective central qutrit neuron L1,L2,L3.Ln.
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is given as:

 < ψ d | Wd >=
∑

d
s=1 < α s | θ s >= τ d |α s > H |θ s >  (12)

where τ d and Hd are transformation and Hadamard gate.
The dimensions are reduced using the tensor ring decomposition17 which is one of the best data compression 

techniques which enhances the representation of weight matrices, the loss function applied in the architecture is 
expressed in terms of weight matrices’ root mean squared error. with the depth as dt in a given uth epoch which 
is determined by the phase angles specified and with the help of all these components, the whole 3D-QTRNet 
model is designed for volumetric segmentation.

Algorithm 2. Propagating Relationships in Qutrit Model with Cross-Mutated Tensor Ring Network.

Experimental analysis
A. Dataset descriptions
In this proposed 3D QTR-NET all the experiments have been performed using the Multi modal brain tumor 
segmentation dataset8) and the Spleen dataset. The dataset mainly consists 315 MRI volumes. Each pf the volumes 
mainly consists of 155 slices having a resolution 240 × 240 along with the original ground truth (mask labels) 
as well as 4 distinct MRI modalities t1, having FLAIR, t1 with enhanced contrast (t1-ce) and t2. Three primary 
classes of annotation are applied to the segmented labels: non-enhancing tumor region, tumor-enhancing tumor 
region, and tumor core (TC). The Decathlon Medical Segmentation is a free for all challenge mainly for testing 
of various ML algorithms generally utilized for tasks involving segmentation. The segmentation of the Spleen 
images is a task of MSD which mainly consists of 61 CT scans: 41 for training and 20 for the purpose of testing 
the individuals getting liver chemotherapy. A varied number of slices with 512 × 512 resolutions are present in 
each CT Scan volume.

B. Experimental setup
In this given work, experiments were conducted by employing 3D QTR-Net on MR brain images taken from the 
BRATS8 of size 240 × 240 and the Spleen dataset of size 512 × 512 with super computer with GPU integration. 
The proposed 3D-QTR-Net architecture is implemented using multi-class levels of the voxel sigmoid activation 
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function9. The main steepness varied between the ranges from 0.24 to 0.25, with the learning rate of 0.001 and 
the S = 26 (3 × 3 × 3) neighborhood pixels providing optimal performance. Mainly to identify a whole tumor, the 
image segments are then resized in order to correspond with the mask’s dimensions, with result 1 showcasing 
the tumor region and result 0 showcasing the background. Dice Similarity: A standard assessment technique is 
used to evaluate segmented images voxel-to-voxel in comparison with the original image mask. Each of the 2D 
pixels is then predicted as true positive, true negative, false positive, and false negative. The goodness measure 
(predictive positive value) (PPV), accuracy (AC), dice similarity (DS), and sensitivity (SS) are used to evaluate 
results.

Here we are looking at the metrics used to evaluate the results provided by the models it comprises of the 
following:

• True Positive (TP): The condition when the actual result is 1(True) and the model truly predicts it to be 
1(True).

• True Negative (TN): The condition when the actual result is 0(False) and the model truly predicts it to be 
0(False).

• False Positive (FP): The condition when the actual result is 0(False) and the model truly predicts it to be 
1(True).

• False Negative (FN): The condition when the actual result is 1(True) and the model truly predicts it to be 
0(False).

• Precision: It is the measure of positively true predictions out of all positive predictions. It’s the ratio of true 
positives to sum of true positives and false positives.

 Precision = T P
T P +F P  (13)

-Accuracy: It is a measure of instances that are classified correctly to total instances and is calculated as the ratio 
correct predictions to total predictions.

 Accuracy = T P +T N
T P +T N+F P +F N  (14)

-Recall (Sensitivity): Recall, also known as sensitivity. measures the proportion of predictions which are truly 
positive out of total positive predictions in the dataset. It’s simply ratio of true positives to the sum of true 
positives and false negatives.

 Sensitivity = T P
T P +F N  (15)

-Specificity: It mainly measures of the ratio of true negative prediction over all the actual negative instances. It 
can be calculated by taking the ratio of true negatives to addition of false positive and true negative values.

 Specificity = T N
T N+F P  (16)

-Dice Similarity Coefficient (F1 Score): It is frequently used to compare the similarity of predicted image and 
segmentation masks in tasks such as segmentation. It mainly tries to measure the overlap between two image 
masks which are mostly the predicted image and the segmentation mask (ground truth). It is the ratio of twice 
the intersection of the two sets to the sum of the cardinalities of the sets, with 1 indicating perfect overlap and 0 
indicating no overlap.

 F 1 − Score = 2× Precision× Sensitivity
Precision+Sensitivity  (17)

Fig. 2. Results on the BraTS2021 dataset.
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C. Experimental results
In this configuration, the experiments are conducted, and the outcomes are reported with numerical analysis 
utilizing all these models 3D-QTRNet, DRINet18, 3D-UNet19,3DQNet6, and VoxResNet20 using the Spleen and 
BraTS2021 datasets shown in Fig. 2. The provided Tables 1, 2, 3, 4 and 5  presents complete Spleen segmentation 
and also in the Fig.  5. This proves that the proposed model, 3D-QTRNet, performs optimally for spleen 
segmentation of CT volumes using the activation method guided by the 26 neighboring voxel intensities over 
following evaluation matrices: (AC, PV, SS, DC)21–23.

Table 5 provides us the quantitative results which are obtained by using the proposed 3D-QTRNet, DRINet18, 
3D-UNet19,3D-QNet6, and VoxResNet20 on evaluating the AC, DS, SS and PV on all modalities if the BraTS 
dataset.

It has been observed that the proposed model, 3D-QTRNet, outperforms the convolutional models 
(DRINet18, 3D-QNet6, 3D-UNet19, and VoxResNet20) in the prediction of the complete brain tumor. 3D-QTRNet 
is experimented on classical systems; as higher quantum computing tasks such as Q-parallelism13 and many 
more are not yet been fully explored. Comparing the developed quantum model to the classical CNN models, 
requires fewer trainable parameters.

Conclusion
The 3D qutrit inspired network is fully self-supervised and it’s architecture comprises of a S-connected neighbour 
hood topology for processing the voxel to voxel information in segmentation of brain tumor volumes (MR) 
and the Spleen CT volumes are showcased in above sections (Figs. 3, 4, 5). In order to display the efficiency 

Methods Positive value

3D-UNet19 0.943

VoxResNet 20 0.942

3D-QNet6 0.965

DRINet 18 0.969
3D-QTRNet 0.966

Table 4. Performance matrix positive value.

 

Methods Sensitivity

3D-UNet 19 0.823

VoxResNet20 0.882
3D-QNet 6 0.821

DRINet 18 0.802

3D-QTRNet 0.856

Table 3. Performance matrix sensitivity.

 

Methods Dice similarity

3D-UNet 19 0.992
VoxResNet20 0.991

3D-QNet6 0.991

DRINet18 0.982

3D-QTRNet 0.989

Table 2. Performance matrix dice similarity.

 

Methods Accuracy

3D-UNet19 0.737

VoxResNet20 0.751

3D-QNet6 0.751

DRINet18 0.700

3D-QTRNet 0.985

Table 1. Performance matrix accuracy scores.
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of proposed 3D-QTRNet model it is validated against the BraTS-2021 and the Spleen dataset (Fig. 4) which 
promotes automatic segmentation of volumetric images well in comparison to other recent cutting-edge 
techniques. The proposed model is capable of being used immediately in any application, whereas the other 
models for deep learning encounter various challenges. However, the model is unable to yield extremely optimal 
outcomes in the segmentation of multi-level data due to hardware limitations and the undiscovered domain 
of quantum computing. The authors are working in extend and up-scale the 3D-QTRNet model to yield more 
optimal segmentation outcomes.

Fig. 3. Training and validation loss with dice coeff value for BraTS dataset.

 

Methods Modality AC DS PV SS

3D-UNet T1 0.990 0.811 0.736 0.941

T1-CE 0.990 0.807 0.732 0.938

FLAIR 0.992 0.823 0.737 0.943

T2 0.989 0.812 0.735 0.944

VoxResNet T1 0.990 0.810 0.737 0.937

T1-CE 0.989 0.813 0.732 0.943

FLAIR 0.991 0.822 0.751 0.942

T2 0.990 0.807 0.729 0.944

DRINet T1 0.989 0.793 0.701 0.958

T1-CE 0.988 0.800 0.711 0.959

FLAIR 0.989 0.805 0.708 0.969
T2 0.987 0.789 0.700 0.958

T1 0.989 0.801 0.736 0.965
3D-QNet T1-CE 0.989 0.811 0.740 0.957

FLAIR 0.991 0.821 0.751 0.957

T2 0.990 0.814 0.736 0.960

T1 0.989 0.801 0.736 0.965

3D-QTRNet T1-CE 0.989 0.811 0.740 0.957

FLAIR 0.991 0.821 0.751 0.957

T2 0.990 0.814 0.736 0.960

Table 5. Overall comparison of all models with evaluation metrics on brats different modalities.
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Data availability
The datasets used in the current study can be download from below link.  h t t p s :  / / w w w .  k a g g l e  . c o m /  d a t a s e t s / b a l r a 
j 9 8 / m o d e l n e t 4 0 - p r i n c e t o n - 3 d - o b j e c t - d a t a s e t  h t t p s :  / / g i t h  u b . c o m  / i e r o  l s e n / B r a i n - T u m o r - S e g m e n t a t i o n - B r a T S - 2 
0 1 9 https:   //w ww.kag gle .com /code/s hi vamb/3d-co nv olutions-unde rst anding-use-case.
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