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Confined columns, such as round-ended concrete-filled steel tubular (CFST) columns, are integral to 
modern infrastructure due to their high load-bearing capacity and structural efficiency. The primary 
objective of this study is to develop accurate, data-driven approaches for predicting the axial load-
carrying capacity (Pcc ) of these columns and to benchmark their performance against existing analytical 
solutions. Using an extensive dataset of 200 CFST stub column tests, this research evaluates three 
machine learning (ML) models – LightGBM, XGBoost, and CatBoost – and three deep learning (DL) 
models – Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long Short-Term 
Memory (LSTM). Key input features include concrete strength, column length, cross-sectional 
dimensions, steel tube thickness, and yield strength, which were analysed to uncover underlying 
relationships. The results indicate that CatBoost delivers the highest predictive accuracy, achieving 
an RMSE of 396.50 kN and an R2 of 0.932, surpassing XGBoost (RMSE: 449.57 kN, R2: 0.906) and 
LightGBM (RMSE: 449.57 kN, R2: 0.916). Deep learning models were less effective, with the DNN 
attaining an RMSE of 496.19 kN and R2 of 0.958, while the LSTM underperformed substantially (RMSE: 
2010.46 kN, R2: 0.891). SHapley Additive exPlanations (SHAP) identified cross-sectional width as the 
most critical feature, contributing positively to capacity, and column length as a significant negative 
influencer. A user-friendly, Python-based interface was also developed, enabling real-time predictions 
for practical engineering applications. Comparison with 10 analytical models demonstrates that these 
traditional methods, though deterministic, struggle to capture the nonlinear interactions inherent in 
CFST columns, thus yielding lower accuracy and higher variability. In contrast, the data-driven models 
presented here offer robust, adaptable, and interpretable solutions, underscoring their potential to 
transform design and analysis practices for CFST columns, ultimately fostering safer and more efficient 
structural systems.
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FEM  Finite Element Method
Min  Minimum
Max  Maximum
Std. Dev/SD  Standard Deviation
Kurt.  Kurtosis
Skew.  Skewness
KDE  Kernel Density Estimation
RNN  Recurrent Neural Network
GS  Grid Search
RS  Random Search
BO  Bayesian Optimization
CV  cross-validation
REC  Regression Error Characteristic
RMSE  Root Mean Squared Error
MAE  Mean Absolute Error
MAPE  Mean Absolute Percentage Error
MBE  Mean Bias Error
SHAP  SHapley Additive Explanations
XAI  eXplainable Artificial Intelligence
PDP  Partial Dependence Plot
PDPs-1D  one-dimensional PDPs
GUI  Graphical User Interface
ReLU  Rectified Linear Unit
X1  Concrete strength of standard cylinder (f ′

c)
X2  Overall length of the column (h)
X3  Cross section width (b)
X4  Cross section depth (d)
X5  Thickness of the steel tube (ts)
X6  Yield strength of the steel tube (fys)
Y  Load-carrying capacity of the confined column (Pcc)
Xn   Normalized data
X   Original dataset
Xmin  Minimum value of each input variable
Xmax  Maximum value of each input variable
R2  Determination coefficient
n  Dataset number
yi  Actual ith values.
ŷi  Predicted ith values.
−
y   Mean of actual values
ŷ  Mean of predicted values
U95  Uncertainty measure
∅ i  Shapley value for feature i.
N   Set of all features
S  Subset of features excluding feature i.
|S|  Cardinality of set (S).
ϑ (S)  Model’s prediction based only on features in set (S).
ϑ (S ∪ {i})  Model’s prediction when feature i is added to set S.
Pcc  Load-carrying capacity of the confined column
f ′

c   Concrete strength
h   Column length
b  Cross-section width
d  Cross-section depth
ts  Steel tube thickness
fys  Steel tube yield strength
Pcc   Load-carrying capacity

Concrete-filled steel tubular (CFST) columns have garnered significant attention in modern construction due to 
their advantageous combination of steel and concrete properties. The steel tube provides confining pressure to 
the concrete core, enhancing its compressive strength, while the concrete prevents inward buckling of the steel 
tube1. These synergistic interactions result in a composite system with high load-carrying capacity, improved 
ductility, and better energy absorption characteristics, making CFST columns ideal for structural applications 
subjected to axial and lateral forces2. Despite their robust performance, predicting the axial load-carrying 
capacity of CFST columns remains a challenging task due to the complex interactions between their constituent 
materials and geometric configurations3.

Traditionally, empirical and analytical models have been employed to estimate the axial load-carrying capacity 
of CFST columns. These models often rely on simplifying assumptions and idealized boundary conditions, 
which limit their accuracy, particularly for non-standard configurations such as stub columns with round ends4. 
Round-end CFST columns as shown in Fig. 1 exhibit unique stress distributions and failure mechanisms, further 
complicating the prediction process. Additionally, the axial load-carrying capacity is influenced by various 
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factors, including the diameter-to-thickness ratio of the steel tube, the compressive strength of the concrete core, 
and the slenderness of the column. These interdependent variables demand a more sophisticated approach to 
achieve precise predictions.

The advent of machine learning (ML) has opened new avenues for modelling complex engineering systems5–7. 
ML algorithms, which leverage data-driven techniques, have shown remarkable potential in capturing nonlinear 
relationships between input parameters and output responses8,9. In the context of CFST columns, ML models 
can integrate a wide range of parameters, including material properties, geometric configurations, and loading 
conditions, to predict the axial load-carrying capacity with high accuracy10. Several studies have demonstrated 
the efficacy of ML models, such as artificial neural networks (ANNs), support vector machines (SVMs), and 
decision tree-based ensembles, in predicting structural performance metrics11,12. However, the application of 
ML to CFST columns with round ends remains relatively unexplored. ML approaches have sought to address the 
challenges posed by material nonlinearity, geometric effects, and boundary conditions, enabling the development 
of accurate predictive models and design guidelines13.

The progression of research into CFST columns is exemplified by studies such as Han et al.14, who explored 
double-skin tubular (DST) columns composed of stainless steel, concrete, and carbon steel. Their work 
highlighted the ductile behaviour of DST columns and provided simplified models for predicting their cross-
sectional strengths, validated through extensive experimental testing. The findings underscored the influence 
of sectional parameters and tapering angles on structural performance, laying a foundation for subsequent 
explorations into confined concrete behaviour. A significant contribution to the understanding of round-ended 
CFST columns was made by Faxing et al.15 and Piquer et al.16, who employed finite element analysis (FEA) 
to simulate their behaviour under axial compression. These studies identified critical parameters such as the 
width–thickness ratio, concrete strength, and eccentricity, which significantly affect confinement and ultimate 
bearing capacity. Their models achieved high accuracy in replicating experimental observations, affirming the 
validity of FEA in addressing the intricacies of round-ended configurations. FEA has long been utilized as an 
effective tool for analysing and predicting structural behaviour across a wide range of applications17–21.

Further refinement in modelling confined concrete systems was achieved22,23, introducing advanced 
nonlinear FEA models tailored for eccentrically-loaded and round-ended rectangular CFST columns, 
respectively. These models successfully captured local buckling, shear failure, and the effects of geometric ratios 
on structural performance. Their work provided simplified empirical formulas that enhanced the applicability 
of CFST designs in practical engineering scenarios. Explorations into the effects of additional reinforcement 
within CFST systems were conducted24,25. Ding et al.24 demonstrated the enhanced ductility and bearing 
capacity achieved by incorporating rebars into track-shaped CFST columns, while Lu et al.25 investigated the 
impact of stirrups in weathering steel tubular configurations. Both studies emphasized the role of reinforcement 
in improving structural stiffness, energy dissipation, and confinement effects, offering practical formulas for 
design optimization. Work has also expanded into specific geometric and material configurations26–28. Wang et 
al.26 highlighted the susceptibility of thin-walled, round-ended CFST columns to global buckling under slender 
geometries, whereas Ren et al.27 examined the influence of central angles and tie bars on confinement efficiency 
and failure modes. Shen et al.28 extended the understanding to cyclic loading scenarios, demonstrating the 
lateral strength and stiffness advantages of cold-formed round-ended CFST columns.

Material innovations have further enriched the field29,30, investigating the integration of recycled aggregates 
and aluminium alloys in CFST systems. These studies provided insights into the mechanical and environmental 
benefits of alternative materials, alongside the development of stress-strain models and performance formulas 
that accurately reflect confinement and failure behaviours under axial and impact loading. Advancements in 
multi-chamber CFST configurations31,32, have revealed significant improvements in energy dissipation and axial 
performance. Their studies demonstrated the benefits of additional chambers in enhancing confinement effects, 
especially under seismic and post-fire conditions. In parallel, innovative reinforcement techniques, such as 
incorporating steel fibres in beams and one-way slabs33 or using new reinforcement configurations in rectangular 
squat structural walls34, have also underscored the importance of enhanced ductility and load-bearing capacity 
across diverse structural applications.

Fig. 1. Round-ended CFST column (a) application in bridge (b) cross-section.
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Despite recent advancements in simplified prediction models for estimating the load-bearing capacity 
of confined concrete columns under axial and eccentric loads, these models continue to face limitations in 
accuracy and adaptability across varying conditions. To address these gaps, this study employs cutting-
edge ML techniques, including Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 
(LightGBM), and Categorical Boosting (CatBoost), along with deep learning (DL) approaches such as Deep 
Neural Networks (DNN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) 
networks. These models are designed to leverage an extensive dataset comprising 200 experimental and FEM-
generated samples, encompassing key input parameters such as concrete strength ( f ′

c ), column length ( h), 
cross-sectional dimensions ( b and d), steel tube thickness ( ts), and steel yield strength ( fys). By efficiently 
capturing non-linear interactions and handling large or noisy datasets, these advanced methods provide robust 
and reliable predictions. Moreover, the interpretability of the ML models is evaluated to identify the most 
influential parameters governing load-carrying capacity, offering actionable insights for structural designers. 
The primary objectives of this study are to: (i) develop and validate advanced data-driven models for accurately 
predicting the axial load-carrying capacity of round-ended CFST columns, (ii) benchmark the performance of 
these models against existing analytical and finite element methods, and (iii) identify and quantify the critical 
structural parameters that govern load-carrying capacity to guide practical engineering design. Figure 2 presents 
a flowchart illustrating the workflow of the study conducted.

Methodology
This study adopted a comprehensive approach that leverages an extensive dataset derived from existing 
experimental and FEM simulation studies available in the literature, with certain assumptions guiding the 
scope of our analysis. Specifically, we focus on round-ended CFST stub columns, treating the steel tube material 
properties as uniform and the steel–concrete interface as fully bonded. We also do not consider eccentric loading 
or extreme slenderness ratios, as these factors lie beyond the current study’s scope and will be explored in future 
work. The primary objective was to develop advanced ML and DL models capable of accurately predicting the 
axial load-carrying capacity of round-ended CFST stub columns. The dataset incorporated results from 200 
columns as presented in Table 1, encompassing a wide range of experimental and FEM-simulated configurations 
reported in prior research, ensuring robust and diverse data coverage. The dataset was carefully curated by 
collecting and standardizing data points from multiple studies. Key parameters such as concrete compressive 
strength ( f ′

c  ), column length ( h), cross-sectional dimensions (width ( b) and depth ( d)), steel tube thickness 
( ts), and yield strength of the steel tube ( fys) were extracted and tabulated in Table 1.

This study utilized three ML models: XGBoost, LightGBM, CatBoost and three DL models: DNN, CNN, 
and LSTM, all implemented using the Python programming environment within the Anaconda software. When 
selecting models for a study, it’s crucial to consider the specific requirements and characteristics of your data 
and problem. XGBoost, LightGBM, and CatBoost are popular machine learning models due to their strengths 
in handling structured and tabular data. XGBoost is known for its powerful and efficient gradient boosting 
capabilities, making it suitable for a wide range of tasks. It manages large datasets effectively and is resistant 
to overfitting, often performing well in competitive environments. LightGBM offers fast training speeds and 
lower memory usage compared to other gradient boosting methods. It’s designed to handle large datasets and 
high-dimensional data efficiently, and it supports categorical features directly, which simplifies pre-processing. 
CatBoost, on the other hand, is specifically designed to handle categorical features with minimal pre-processing. 
It performs well on noisy data and is effective across various tasks, offering good performance with minimal 
parameter tuning.

For DL, the choice of models depends on the nature of your data. DNN is versatile and capable of modelling 
complex relationships in data. They are particularly useful when feature interactions are intricate and not easily 
captured by simpler models. CNN is highly effective for tasks involving spatial data, such as images or text 
with spatial components, due to their ability to capture hierarchical patterns. LSTM networks excel in learning 
from sequential data and capturing long-term dependencies. They are ideal for time series forecasting, natural 
language processing, and other applications where the order of data points is significant. Using both ML and 
DL models allows you to leverage the strengths of each approach. ML models like XGBoost, LightGBM, and 
CatBoost are often simpler to train and perform well on structured data. In contrast, deep learning models such 
as DNN, CNN, and LSTM are more suited for unstructured data and complex patterns.

Descriptive statistics
The dataset for this study has 70:30 split for training and testing purposes. The adopted models were trained 
using six input features (X1 to X6 ) to predict the load-carrying capacity ( Pcc) of confined columns. Table 2 
summarizes the descriptive statistics for the input parameters and output. These parameters include the concrete 
strength of standard cylinders ( f ′

c ), the overall length of the column (h), the cross-section width (b), the cross-
section depth (d), the thickness of the steel tube ( ts), and the yield strength of the steel tube ( fys). The output 
parameter is the load-carrying capacity of the confined column ( Pcc). Each parameter is described in terms of 
its unit, symbol, minimum and maximum values, mean, median, and standard deviation (SD).

The concrete strength of standard cylinders ( f ′
c ) ranges from 23.91  MPa to 90.16  MPa, with a mean of 

39.09 MPa and a median of 40.46 MPa. The standard deviation is 9.92 MPa, indicating a moderate spread around 
the mean. The overall length of the column (h) varies significantly, from 300 mm to 9600 mm. The mean length 
is 2455.47 mm, while the median is notably lower at 1600 mm. The standard deviation of 2324.80 mm indicates 
considerable variability in column lengths. The cross-section width (b) of the columns ranges from 100 mm to 
806 mm, with a mean of 388.19 mm and a median of 396 mm. The standard deviation is 161.87 mm, showing 
moderate variability. The cross-section depth (d) ranges from 30 mm to 264 mm, with a mean of 186.17 mm 
and a median of 198 mm. The standard deviation is 55.31 mm. The thickness of the steel tube ( ts) ranges from 
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2 to 10 mm. The mean thickness is 4.14 mm, and the median is 3.80 mm, with a standard deviation of 1.27 mm. 
The yield strength of the steel tube ( fys) varies from 195.20 MPa to 550 MPa, with a mean of 332.17 MPa and a 
median of 324.60 MPa. The standard deviation is 58.29 MPa. The load-carrying capacity of the confined column 
( Pcc), which is the output parameter, ranges widely from 103.20 kN to 10,143 kN. The mean capacity is 3251.11 
kN, and the median is 2713.11 kN, with a standard deviation of 2152.14 kN.

Histograms
Figure 3 illustrates histograms representing the frequency distribution of the input features (X1 to X6 ) and the 
output feature (Y). Each histogram provides a visual summary of how the values for each variable are distributed 

Fig. 2. Workflow of the present study.
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Sr. No. Literatures Specimen Code
f ′

c
(MPa) h (mm)

Width (b) (Longer-Side)
mm

Depth (d) (Shorter-Side)
mm tsmm fys (MPa) Pcc kN

1 Faxing et al.15 WST1-A 33.25 750 299 252 3.75 327.7 3429

2 WST1-B 33.25 750 302 249 3.75 327.7 3338

3 WST2-A 33.25 750 299 255 5.84 299.5 4162

4 WST2-B 33.25 750 300 251 5.8 299.5 4168

5 WST3-A 33.25 900 350 255 3.72 327.7 3929

6 WST3-B 33.25 900 351 252 3.76 327.7 4158

7 WST4-A 33.25 900 352 251 5.9 299.5 4492

8 WST4-B 42.44 900 349 251 5.92 299.5 5530

9 WST5-A 42.44 1000 394 260 3.79 327.7 5620

10 WST5-B 42.44 1000 396 264 3.8 327.7 5500

11 WST6-A 32.25 800 405 197 3.75 311 3240

12 WST6-B 32.25 800 402 196 3.72 311 2993

13 WST7-A 32.25 1200 608 186 3.75 311 4826

14 WST7-B 32.25 1200 605 194 3.77 311 4944

15 WST8-A 32.25 1600 805 190 3.74 311 6521

16 WST8-B 32.25 1600 806 191 3.67 311 6493

17 WST9-A 48.99 800 405 198 3.75 311 4203

18 WST9-B 48.99 800 405 198 3.7 311 4180

19 WST10-A 48.99 1200 610 196 3.8 311 7201

20 WST10-B 48.99 1200 606 189 3.77 311 6905

21 WST11-A 48.99 1600 805 190 3.68 311 9065

22 WST11-B 48.99 1600 805 194 3.8 311 8799

23  Zhao et al. 29 L-6-0-1 43 300 150 100 2 509 1130

24 L-6-50-1 41.51 300 150 100 2 509 1124

25  L-6-100-1 35.53 300 150 100 2 509 1022

26 M-6-0-1 43 400 200 100 2 509 1362

27 M-6-50-1 41.51 400 200 100 2 509 1521

28 M-6-100-1 35.53 400 200 100 2 509 1376

29 M-11-0-1 43 400 200 100 3.75 422.8 1765

30 M-11-0-2 43 400 200 100 3.75 422.8 1671

31 M-11-50-1 41.51 400 200 100 3.75 422.8 1711

32 M-11-50-2 41.51 400 200 100 3.75 422.8 1709

33 M-11-100-1 35.53 400 200 100 3.75 422.8 1651

34 M-11-100-2 35.53 400 200 100 3.75 422.8 1690

35 H-11-0-1 43 500 250 100 3.75 422.8 2037

36 H-11-0-2 43 500 250 100 3.75 422.8 1915

37 H-11-50-1 41.51 500 250 100 3.75 422.8 2147

38 H-11-50-2 41.51 500 250 100 3.75 422.8 2143

39 H-11-100-1 35.53 500 250 100 3.75 422.8 1809

40 H-11-100-2 35.53 500 250 100 3.75 422.8 2027

41 Ahmed & Liang35 RCFST-1 31.16 540 168.5 117 2.86 324.6 925

42 RCFST-2 31.16 721.9 229 118 2.86 324.6 1215

43 RCFST-3 31.16 1080 349.5 116.5 2.86 324.6 1635

44 RCFST-4 31.16 719.6 237.5 156.5 2.86 324.6 1658

45 RCFST-5 31.16 962.3 317 158.5 2.86 324.6 2091

46 Bu et al.30 CA100-0 29.98 500 100 50 2.5 195.2 238

47 CA115-0 29.98 500 115 45 5 199.7 295

48 CA120-0 29.98 500 120 30 2 201.4 103

49 CA130-0 29.98 500 130 65 2 197.3 365

50 Wang & Shen36 RECFST1–1 42.07 800 400 200 5 335 4817

51 RECFST 1–2 42.07 800 400 200 5 245 4164

52 RECFST 1–3 42.07 800 400 200 5 420 5262

53 RECFST 1–4 42.07 800 400 200 5 550 6025

54 RECFST 2–1 23.91 800 400 200 5 345 3680

55 RECFST2–2 70.58 800 400 200 5 345 6178

Continued
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Sr. No. Literatures Specimen Code
f ′

c
(MPa) h (mm)

Width (b) (Longer-Side)
mm

Depth (d) (Shorter-Side)
mm tsmm fys (MPa) Pcc kN

56 RECFST2–3 90.16 800 400 200 5 345 7176

57 RECFST3–1 42.07 800 400 200 3 345 4011

58 RECFST3–2 42.07 800 400 200 8 345 5750

59 RECFST3–3 42.07 800 400 200 10 345 6404

60 RECFST4–3 42.07 800 353.6 235.7 5.3 345 4840

61 RECFST4–4 42.07 800 441.9 176.8 4.7 345 4673

62 RECFST4–5 42.07 800 480.3 160.1 4.5 345 4482

63 RECFST5–1 42.07 400 200 100 2.5 345 1145

64 RECFST5–2 42.07 600 300 150 3.8 345 2691

65 RECFST5–3 42.07 1000 500 250 6.3 345 7051

66 Wang et al.26 RCFST1-1 42.07 2700 400 200 5 235 3052

67 RCFST1–2 42.07 2700 400 200 5 345 3667

68 RCFST1–3 42.07 2700 400 200 5 420 4101

69 RCFST1–4 42.07 2700 400 200 5 550 4804

70 RCFST2-1 23.91 2700 400 200 5 345 3098

71 RCFST2-2 70.58 2700 400 200 5 345 4589

72 RCFST2–3 90.16 2700 400 200 5 345 5151

73 RCFST3-1 42.07 2700 400 200 3 345 3090

74 RCFST3-2 42.07 2700 400 200 8 345 4496

75 RCFST3-3 42.07 2700 400 200 10 345 4965

76 RCFST4-3 42.07 2700 353.6 235.7 5.3 345 3863

77 RCFST4-4 42.07 2700 441.9 176.8 4.7 345 3486

78 RCFST4-5 42.07 2700 441.9 160.1 4.5 345 3225

79 RCFST5-1 42.07 1350 200 100 2.5 345 1079

80 RCFST5-2 42.07 2025 300 150 3.8 345 2013

81 RCFST5-3 42.07 3375 500 250 6.3 345 5723

82 RCFST6-1 42.07 1800 400 200 5 345 4133

83 RCFST6-2 42.07 2100 400 200 5 345 3930

84 RCFST6-3 42.07 2400 400 200 5 345 3815

85 RCFST6-4 42.07 3300 400 200 5 345 3371

86 RCFST6-5 42.07 3900 400 200 5 345 3089

87 RCFST6-6 42.07 4500 400 200 5 345 2870

88 385 × 240 × 3 × 1850 28.19 1850 385 240 3 315 2816

89 385 × 240 × 3 × 1850 28.19 1850 385 240 3 315 2757

90 385 × 240 × 3.9 × 1850 28.19 1850 385 240 3.9 315 2505

91 385 × 240 × 3.9 × 1850 28.19 1850 385 240 3.9 315 2208

92 400 × 200 × 8 × 2700 42.07 2700 400 200 8 345 4496

93 400 × 200 × 10 × 2700 42.07 2700 400 200 10 345 4965

94 353.6 × 235.7 × 5.3 × 2700 42.07 2700 353.6 235.7 5.3 345 3863

95 400 × 200 × 5 × 5100 42.07 5100 400 200 5 345 2443

96 400 × 200 × 5 × 5700 42.07 5700 400 200 5 345 2078

97 400 × 200 × 5 × 6300 42.07 6300 400 200 5 345 1819

98 400 × 200 × 5 × 6900 42.07 6900 400 200 5 345 1466

99 400 × 200 × 5 × 7500 42.07 7500 400 200 5 345 1233

100 400 × 200 × 5 × 8100 42.07 8100 400 200 5 345 1194

101 400 × 200 × 5 × 8700 42.07 8700 400 200 5 345 958

102 400 × 200 × 5 × 9600 42.07 9600 400 200 5 345 808

103 168.5 × 117.0 × 2.86 × 2700 31.12 2700 168.5 117 2.86 324.06 444

104 229.0 × 118.0 × 2.86 × 2700 31.12 2700 229 118 2.86 324.06 968

105 349.5 × 116.5 × 2.86 × 2700 31.12 2700 349.5 116.5 2.86 324.06 546

106 237.5 × 156.5 × 2.86 × 2700 31.12 2700 237.5 156.5 2.86 324.06 1095

107 317.0 × 158.5 × 2.86 × 2700 31.12 2700 317 158.5 2.86 324.06 1429

108 299 × 252 × 3.75 × 2100 33.25 2100 299 252 3.75 327.7 2789

109 299 × 252 × 3.75 × 2700 33.25 2700 299 252 3.75 327.7 2542

110 299 × 252 × 3.75 × 6600 33.25 6600 299 252 3.75 327.7 938

Continued
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Sr. No. Literatures Specimen Code
f ′

c
(MPa) h (mm)

Width (b) (Longer-Side)
mm

Depth (d) (Shorter-Side)
mm tsmm fys (MPa) Pcc kN

111 302 × 249 × 3.75 × 2100 33.25 2100 302 249 3.75 327.7 2734

112 302 × 249 × 3.75 × 2700 33.25 2700 302 249 3.75 327.7 2480

113 302 × 249 × 3.75 × 6600 33.25 6600 302 249 3.75 327.7 1069

114 299 × 255 × 5.84 × 2100 33.25 2100 299 255 5.84 299.5 3542

115 299 × 255 × 5.84 × 2700 33.25 2700 299 255 5.84 299.5 3153

116 299 × 255 × 5.84 × 6600 33.25 6600 299 255 5.84 299.5 1450

117 299 × 255 × 5.84 × 7900 33.25 7900 299 255 5.84 299.5 1046

118 300 × 251 × 5.80 × 2100 33.25 2100 300 251 5.8 299.5 3458

119 300 × 251 × 5.80 × 2700 33.25 2700 300 251 5.8 299.5 3051

120 300 × 251 × 5.80 × 6600 33.25 6600 300 251 5.8 299.5 1323

121 300 × 251 × 5.80 × 7900 33.25 7900 300 251 5.8 299.5 1140

122 350 × 255 × 3.72 × 2100 33.25 2100 350 255 3.72 327.7 3493

123 350 × 255 × 3.72 × 4500 33.25 4500 350 255 3.72 327.7 2396

124 350 × 255 × 3.72 × 7900 33.25 7900 350 255 3.72 327.7 892

125 351 × 252 × 3.76 × 2100 33.25 2100 351 252 3.76 327.7 3661

126 351 × 252 × 3.76 × 4500 33.25 4500 351 252 3.76 327.7 2371

127 351 × 252 × 3.76 × 7900 33.25 7900 352 252 3.76 327.7 975

128 352 × 251 × 5.90 × 7900 42.44 7900 352 251 5.9 299.5 1180

129 349 × 251 × 5.92 × 7900 42.44 7900 349 251 5.92 299.5 1588

130 394 × 260 × 3.79 × 3600 42.44 3600 394 260 3.79 327.7 3614

131 394 × 260 × 3.79 × 7900 42.44 7900 394 260 3.79 327.7 1223

132 396 × 264 × 3.80 × 3600 42.44 3600 396 264 3.8 327.7 3591

133 396 × 264 × 3.80 × 7900 42.44 7900 396 264 3.8 327.7 1414

134 405 × 197 × 3.75 × 3600 32.25 3600 405 197 3.75 311 2098

135 405 × 197 × 3.75 × 5700 32.25 5700 405 197 3.75 311 1073

136 405 × 197 × 3.75 × 7900 32.25 7900 405 197 3.75 311 641

137 402 × 196 × 3.72 × 3600 32.25 3600 402 196 3.72 311 1986

138 402 × 196 × 3.72 × 5700 32.25 5700 402 196 3.72 311 921

139 402 × 196 × 3.72 × 7900 32.25 7900 402 196 3.72 311 643

140 608 × 186 × 3.75 × 5700 32.25 5700 608 186 3.75 311 1598

141 605 × 194 × 3.77 × 5700 32.25 5700 605 194 3.77 311 2080

142 805 × 190 × 3.74 × 5700 32.25 5700 805 190 3.74 311 2646

143 806 × 191 × 3.67 × 5700 32.25 5700 806 191 3.67 311 2584

144 405 × 198 × 3.75 × 4500 48.99 4500 405 198 3.75 311 1713

145 405 × 198 × 3.75 × 7900 48.99 7900 405 198 3.75 311 686

146 405 × 198 × 3.70 × 4500 48.99 4500 405 198 3.7 311 1887

147 405 × 198 × 3.70 × 7900 48.99 7900 405 198 3.7 311 670

148 610 × 196 × 3.80 × 2100 48.99 2100 610 196 3.8 311 5626

149 610 × 196 × 3.80 × 4500 48.99 4500 610 196 3.8 311 2900

150 610 × 196 × 3.80 × 7900 48.99 7900 610 196 3.8 311 1544

151 606 × 189 × 3.77 × 2100 48.99 2100 606 189 3.77 311 5313

152 606 × 189 × 3.77 × 4500 48.99 4500 606 189 3.77 311 3141

153 606 × 189 × 3.77 × 7900 48.99 7900 606 189 3.77 311 1214

154 805 × 190 × 3.68 × 2100 48.99 2100 805 190 3.68 311 7076

155 805 × 190 × 3.68 × 2700 48.99 2700 805 190 3.68 311 6668

156 805 × 194 × 3.80 × 2100 48.99 2100 805 194 3.8 311 6913

157 805 × 194 × 3.80 × 2700 48.99 2700 805 194 3.8 311 6426

158 Piquer et al.16 RND_30_00 40.8 300 120 50 2 306.98 384

159 RND_90_00 89.36 300 120 50 2 306.98 577

160
Wang et al.37

L-0-1 40.13 1500 157.5 98.2 2.91 331 928

161 M-0-1 40.13 1500 205.5 103 3.61 423 1570

162 H-0-1 40.13 1500 257 107.7 3.66 423 2156

163 Ren et al.38 RRCFST-1 28.55 700 225 160 4 254 1889

164 RRCFST-2 28.55 700 225 155 4 254 1900

165 RRCFST-3 28.55 900 300 160 4 254 2225

Continued
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within specific ranges. For X1 , the majority of data points, approximately 165, are concentrated within the range 
of 23.91–46.00. The frequency declines sharply in the subsequent ranges, with only 30 data points between 
46.00 and 68.08 and a minimal count of 5 in the 68.08–90.16 range. A similar trend is observed for X2, where 
the highest frequency of 156 occurs within the 300–3400 range, followed by a steep decline to 21 and 23 data 
points in the ranges of 3400–6500 and 6500–9600, respectively. The histogram for X3 exhibits a slightly different 
pattern, with the highest frequency of 95 data points in the middle range of 335.3–570.7. This is followed by 

Input parameter Unit Symbol Min Max Mean Median SD

f ′
c MPa X1 23.91 90.1 39.09 40.46 9.92

h mm X2 300 9600 2455.47 1600 2324.80

b mm X3 100 806 388.19 396 161.87

d mm X4 30 264 186.17 198 55.31

ts MPa X5 2 10 4.14 3.80 1.27

fys MPa X6 195.2 550 332.17 324.60 58.29

Table 2. Descriptive statistics of inputs and output.

 

Sr. No. Literatures Specimen Code
f ′

c
(MPa) h (mm)

Width (b) (Longer-Side)
mm

Depth (d) (Shorter-Side)
mm tsmm fys (MPa) Pcc kN

166 RRCFST-4 28.55 900 300 155 4 254 2248

167 RRCFST-5 28.55 900 300 155 4 254 2445

168 RRCFST-6 28.55 900 300 160 4 254 2952

169 RRCFST-7 28.55 900 300 155 4 254 2576

170 RRCFST-8 28.55 900 295 155 4 254 2184

171 RRCFST-9 28.55 900 290 160 4 254 2456

172 RRCFST-10 28.55 900 300 160 4 254 2389

173 RRCFST-11 28.55 1000 335 120 4 254 1821

174 RRCFST-12 28.55 1000 330 120 4 254 2103

175 RRCFST-13 28.55 1000 330 120 4 254 2194

176 RRCFST-14 28.55 1000 330 120 4 254 2115

177 Lu et al.25 REFWST-A 31.43 900 505 251 3.91 382 5927

178 REFWST-B 31.43 900 500 252 3.87 382 6218

179 SREFWST-A 31.43 900 502 249 3.98 382 6795

180 SREFWST-B 31.43 900 497 251 3.88 382 7068

181 RFWST-A 31.43 900 501 250 3.86 382 5910

182 RFWST-B 31.43 900 501 250 3.92 382 5609

183 SRFWST-A 31.43 900 500 248 3.89 382 6931

184 SRFWST-B 31.43 900 501 250 3.92 382 7327

185 SCFRT1-A 32.25 800 406 198 3.81 311 3518

186 SCFRT1-B 32.25 800 405 199 3.82 311 3773

187 SCFRT2-A 32.25 1200 603 197 3.88 311 5804

188 SCFRT2-B 32.25 1200 602 198 3.78 311 5775

189 SCFRT3-A 32.25 1600 802 198 3.75 311 7512

190 SCFRT3-B 32.25 1600 801 199 3.83 311 7724

191 SCFRT4-A 48.99 800 404 197 3.67 311 5165

192 SCFRT4-B 48.99 800 405 197 3.81 311 4931

193 SCFRT5-A 48.99 1200 600 197 3.83 311 7804

194 SCFRT5-B 48.99 1200 599 198 3.79 311 7816

195 SCFRT6-A 48.99 1600 801 198 3.83 311 9923

196 SCFRT6-B 48.99 1600 801 199 3.91 311 10,143

197

Wang et al.39

CFRT1-0a 52.8 1080 195 104 2.98 257.8 1140

198 CFRT1-0b 52.8 1080 195 104 2.98 257.8 1061

199 CFRT2-0a 52.8 2080 195 105 2.98 257.8 960

200 CFRT2-0b 52.8 2080 196 105 2.98 257.8 982

Table 1. Summary of key parameters and experimental configurations for the dataset.
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a notable frequency of 75 in the lower range of 100–335.3, while the higher range of 570.7–806.0 has a lower 
frequency of 30.

For X4 , the majority of data points, numbering 137, fall within the upper range of 186–264, while the ranges 
of 30–108 and 108–186 contain 33 and 30 data points, respectively, indicating a distribution favouring higher 
values. In the case of X5 , the majority of the data points, 144, are concentrated in the lowest range of 2.000–
4.667, with a significant drop to 50 in the next range of 4.667–7.333 and only 6 in the range of 7.333–10.000, 
highlighting the prevalence of smaller values. The histogram for X6 shows a peak frequency of 104 in the middle 

Fig. 3. Histograms of studied features.
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range of 313.5–431.7, followed by 88 data points in the lower range of 195.2–313.5, while the upper range of 
431.7–550.0 has only 8 data points, signifying a skew towards mid-range values. The output feature (Y) exhibits 
the highest frequency, 120 data points, in the lowest range of 103–3450, with a steady decline to 63 and 17 data 
points in the ranges of 3450–6796 and 6796–10,143, respectively. This distribution indicates that the majority of 
the output data is concentrated in the lower value range.

Correlation analysis
Figure  4 depicts the correlation matrix in the form of a heatmap, offering a quantitative assessment of the 
relationships between X1 to X6  and Y. The intensity of the heatmap’s colours corresponds to the magnitude of 
the correlation coefficients, with darker red indicating strong positive correlations and darker blue representing 
strong negative correlations. The diagonal elements naturally show a perfect correlation for each variable with 
itself.

The correlation between X1 (concrete strength of the standard cylinder) and other variables is generally 
weak. X1 has a slight positive correlation with X3 (cross-section width) at 0.13, X5 (thickness of the steel tube) 
at 0.08, X6 (yield strength of the steel tube) at 0.14, and Y (load-carrying capacity of the confined column) at 
0.24. These positive values, though weak, indicate that as the concrete strength increases, these variables tend 
to increase slightly as well. The correlation between X1 and X2 (overall length of the column) and X4 (cross-
section depth) is close to zero, suggesting little to no linear relationship. X2 shows a range of correlations with 
other variables. The correlation between X2 and X4 is 0.39, indicating a moderate positive relationship, where 
an increase in the overall length of the column is associated with an increase in cross-section depth. X2 also has 
a weak positive correlation with X3 at 0.18 and X5 at 0.20. Interestingly, X2 has a weak negative correlation with 
X6 at -0.13 and Y at -0.35, indicating that longer columns tend to have slightly lower yield strengths and load-
carrying capacities. X3 exhibits moderate to strong correlations with several variables. The correlation with X4 
is 0.43, indicating that wider columns tend to have greater depths. The strongest correlation observed is between 
X3 and Y at 0.72, suggesting that an increase in the cross-section width is strongly associated with an increase 
in the load-carrying capacity of the confined column. The correlations with X5 and X6 are weaker, at 0.14 and 
− 0.12 respectively.

Fig. 4. Heatmap correlation matrix.
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X4 shows moderate correlations with a few variables. Besides the already mentioned correlations with X2 
and X3, X4 has a moderate positive correlation with X5 at 0.44, indicating that columns with greater depths tend 
to have thicker steel tubes. The correlation between X4 and X6 is nearly zero at -0.09, suggesting no significant 
linear relationship. X5, the thickness of the steel tube, shows some noteworthy correlations. In addition to its 
moderate correlation with X4, X5 has a weak positive correlation with Y at 0.29, indicating that thicker steel 
tubes are slightly associated with higher load-carrying capacities. The correlation with X6 is very weak at 0.06, 
suggesting little to no relationship between steel tube thickness and yield strength.

Finally, Y, the load-carrying capacity of the confined column, exhibits various levels of correlation with 
the input variables. The strongest positive correlation is with X3 at 0.72, highlighting the significant impact of 
cross-section width on load-carrying capacity. Y also shows moderate correlations with X4 (0.42) and X5 (0.29), 
indicating that columns with greater depths and thicker steel tubes tend to have higher load-carrying capacities. 
The correlation with X6 is weak at 0.06, suggesting a minimal relationship between yield strength and load-
carrying capacity.

Description of ML/DL models
XGBoost is a highly effective and versatile ML library that excels in handling large datasets and complex 
predictive modeling tasks40. Its ability to handle missing values, regularization techniques, and parallel processing 
capabilities make it a reliable choice for various applications. With its high accuracy, speed, and scalability, 
XGBoost is a popular choice for many industries, including finance, computer vision, and natural language 
processing41. Overall, XGBoost is a powerful tool for data scientists and machine learning engineers, offering 
a robust and efficient way to build predictive models that can drive business decisions and improve outcomes.

LightGBM is a fast and efficient gradient-boosting framework designed for large-scale machine learning 
tasks42. It aims to outperform other popular gradient-boosting libraries, such as XGBoost, in terms of speed 
and scalability while maintaining comparable performance. LightGBM is highly effective at handling large 
datasets and complex models, making it a preferred choice for applications such as classification, regression, 
and ranking tasks. The core idea of the histogram algorithm in LightGBM is to convert successive floating-point 
eigenvalues into k integers and create a histogram of width k. During data traversal, statistics are accumulated 
in the histogram based on the discretized values as indices. Once the data traversal is complete, the histogram 
contains the necessary statistics, and the optimal split point is determined according to the discrete histogram 
values.

CatBoost is a powerful machine learning algorithm designed for handling categorical features and producing 
accurate predictions43,44. It is a variant of gradient boosting that can handle both categorical and numerical 
features without requiring preprocessing like one-hot encoding or label encoding. CatBoost employs its built-in 
encoding system called “ordered boosting” to process categorical data directly, resulting in faster training and 
better model performance45. It is particularly useful for regression tasks where the goal is to predict a continuous 
target variable. CatBoost is known for its speed, accuracy, and ease of use, especially in situations involving 
structured data with many categorical features46. It also offers feature relevance rankings that help with feature 
selection and understanding model choices.

DNNs are a class of artificial neural networks with multiple layers between the input and output layers. They 
are capable of learning complex patterns in data through a process called backpropagation. DNNs are versatile 
and can be applied to various regression tasks, such as predicting continuous outcomes based on input features. 
Their architecture allows them to model non-linear relationships, making them suitable for complex datasets 
where traditional linear regression may fail47.

CNNs are primarily designed for processing grid-like data, such as images. They utilize convolutional layers 
that apply filters to the input data, capturing spatial hierarchies and patterns48. While CNNs are predominantly 
used in image classification and recognition tasks, they can also be adapted for regression tasks, particularly 
when dealing with spatial data or time-series data reshaped into a grid format. For instance, CNNs can be 
combined with LSTMs to handle sequential data, leveraging their ability to extract features while maintaining 
temporal dependencies.

LSTMs are a specialized type of recurrent neural network (RNN) designed to learn from sequences of data. 
They are particularly effective for time-series prediction tasks because they can maintain long-term dependencies 
and remember information over extended sequences. This capability makes LSTMs suitable for regression tasks 
involving temporal data, such as forecasting stock prices or weather patterns. LSTMs can be used alone or in 
combination with CNNs to enhance prediction accuracy by capturing both spatial and temporal features49.

Hyperparameters tuning
Selecting the right hyperparameters is essential for optimizing machine learning model performance50. While 
grid search (GS) and random search (RS) are commonly used, they can be time-consuming and less efficient 
due to high variance and lack of integration of previous evaluations51. In contrast, Bayesian optimization (BO) 
refines the search using past evaluations, improving efficiency and reducing the number of trials needed52. This 
study adopts BO for hyperparameter optimization. To prevent overfitting and ensure model robustness, a 5-fold 
cross-validation (CV) integrated with BO (BO + 5CV) is used, ensuring reliable and generalizable predictions.

In ML and DL, hyperparameters are external configurations that control the training process of a model. 
They are set before the learning process begins and remain constant during training. Unlike model parameters, 
which are learned from the data, hyperparameters are predefined and play a crucial role in determining the 
model’s performance and its ability to generalize to new data.

In ML models, several hyperparameters are particularly influential. The number of estimators refers to the 
count of trees in ensemble methods, directly affecting model complexity and performance. A higher number of 
estimators can lead to better learning but may also increase the risk of overfitting. The learning rate controls the 
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magnitude of weight adjustments during training; a smaller learning rate can lead to more precise convergence 
but requires more iterations. Maximum depth sets the deepest level of each tree, influencing the model’s ability to 
capture data complexity; deeper trees can model more intricate patterns but may also capture noise. Minimum 
child weight specifies the minimum sum of instance weights needed in a child node, aiding in preventing 
overfitting by controlling tree splitting. Subsample ratio indicates the fraction of the training data utilized for each 
tree, introducing randomness to enhance generalization. Column subsample ratio (colsample_bytree) denotes 
the proportion of features sampled for tree construction, promoting model diversity and reducing overfitting. 
L2 leaf regularization (l2_leaf_reg) applies L2 regularization to leaf weights, helping to prevent overfitting by 
penalizing large weights.

In DL models, hyperparameters also play an essential role. The number of units in dense layers determines 
the count of neurons in fully connected layers, affecting the model’s capacity to learn representations. In CNNs, 
the number of filters specifies the quantity of filters in convolutional layers, influencing the model’s ability to 
detect various features in input data, while kernel size defines the dimensions of the convolutional filter, affecting 
the receptive field and the granularity of feature detection. In LSTM networks, the number of units sets the 
number of memory cells in LSTM layers, impacting the model’s capability to capture temporal dependencies. 
The activation function determines the output of neurons, introducing non-linearities that enable the model to 
learn complex patterns.

Evaluation criteria
Evaluating the effectiveness of machine learning models is pivotal to ensuring their reliability and applicability, 
particularly when predicting complex phenomena such as the axial load-carrying capacity of CFST stub 
columns53,54. While training datasets are instrumental in constructing models by optimizing their parameters, 
they primarily indicate how well the models fit the given data. However, without testing datasets, the ability of 
these models to generalize to unseen data remains uncertain. Testing datasets serve as a critical benchmark, 
enabling the assessment of a model’s capability to make accurate predictions beyond the training set. This 
validation step ensures that the models are not merely memorizing the training data but are genuinely learning 
patterns that apply to new inputs. Such generalization is fundamental for real-world deployment, where data 
variability and uncertainty are inevitable45.

To comprehensively evaluate model performance, a dual approach comprising visual and quantitative 
assessments was adopted. Visual assessments leverage graphical representations to provide intuitive insights 
into the model’s behaviour. Scatter plots, for instance, are extensively employed in regression tasks to illustrate 
the correspondence between predicted and actual values. These plots help in identifying trends, patterns, and 
deviations, thereby highlighting areas where the model may underperform. Violin boxplots were also used to 
present the distribution of predictions, offering a visual comparison of the central tendencies and variability 
across models. Additionally, Taylor diagrams55 were incorporated to analyse the statistical relationship between 
predicted and observed values, combining metrics such as correlation coefficient, root mean square error (RMSE), 
and standard deviation into a single graphical representation. This approach aids in diagnosing discrepancies 
and refining model predictions56. Uncertainty analysis was further performed to evaluate the robustness and 
consistency of the models, ensuring reliability under varying conditions.

Quantitative assessments complement visual methods by providing objective metrics for performance 
evaluation57,58. Among the metrics employed, regression error characteristic (REC) curves played a central 
role. REC curves are particularly advantageous for regression tasks, as they plot the error tolerance against the 
percentage of predictions within that tolerance. A higher REC curve indicates superior performance, as it reflects 
a greater proportion of predictions closely aligned with actual values. To summarize the model’s performance 
using REC curves, the area over the curve was calculated, with smaller areas signifying better accuracy and 
tighter error margins. This metric provides a holistic view of model accuracy across varying levels of error 
tolerance, making it indispensable for comparing different models.

By integrating visual insights with rigorous quantitative metrics, the evaluation framework ensures a balanced 
and thorough assessment of the models. This comprehensive approach not only validates the scientific reliability 
of the predictions but also underscores their practical applicability, ensuring the models are robust and effective 
for real-world scenarios59.

Regression metrics
Accurate evaluation of regression models requires robust metrics that provide insight into their predictive 
performance from various perspectives60. Key metrics used in this study include the determination coefficient 
( R2), RMSE, mean absolute error (MAE), mean absolute percentage error (MAPE), and mean bias error (MBE). 
Each metric serves a distinct purpose in assessing model accuracy and reliability61. R2 quantifies the proportion 
of variance in the dependent variable explained by the independent variables, with values closer to 1 indicating 
a superior model fit. RMSE measures the average magnitude of prediction errors, emphasizing larger errors due 
to squaring, making it particularly sensitive to outliers. MAE, on the other hand, provides the mean absolute 
difference between predicted and actual values, offering a straightforward and robust measure of prediction 
accuracy unaffected by extreme values. MAPE expresses prediction error as a percentage, enabling comparisons 
across datasets of varying scales, while MBE identifies systematic bias, indicating whether the model consistently 
overestimates or underestimates the target variable. Positive MBE values signify overestimation, whereas 
negative values indicate underestimation. Collectively, these metrics enable a comprehensive evaluation of 
model performance, balancing fit, accuracy, and error characteristics. The mathematical formulations for these 
metrics are presented in Table 3.
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Where n is the dataset number; yi and ŷi are actual and predicted ith values, respectively; 
−
y  is the mean of 

actual values; 
−
ŷ is the mean of predicted values.

Uncertainty analysis
Uncertainty analysis plays a pivotal role in assessing the reliability of model predictions by quantifying the 
uncertainties arising from experimental conditions, input predictors, and model outcomes62. This study employs 
the uncertainty measure U95 , which is calculated using Eq. (6):

 U95 = 1.96 ×
√

SD2 + RMSE2 (6)

Here, SD represents the standard deviation of prediction errors, and the constant 1.96 corresponds to a 95% 
confidence interval in a standard normal distribution. This measure provides a quantitative assessment of 
prediction reliability, ensuring informed decision-making based on the degree of uncertainty inherent in the 
model’s outputs.

Feature importance and interpretability
Understanding and interpreting machine learning models is essential for assessing their effectiveness, 
trustworthiness, and reliability, particularly in engineering applications. To gain insights into how a model 
makes predictions, it is crucial to understand the significance and influence of different input features. Two 
advanced methodologies commonly employed for feature sensitivity analysis are SHapley Additive exPlanations 
(SHAP) and Partial Dependence Plots (PDPs). These tools provide researchers and practitioners with a deeper 
understanding of the model’s behaviour by illustrating how individual features impact the model’s outputs.

SHAP values are derived from cooperative game theory and offer a unified approach to interpreting machine 
learning models. The core concept behind SHAP is to fairly distribute the prediction among the input features 
by assigning an “importance value” to each feature, representing its contribution to the overall prediction63. This 
is achieved by calculating the marginal contribution of each feature across different subsets of the input features, 
ensuring a consistent measure of feature importance. One of the key advantages of SHAP is its ability to provide 
local interpretability, meaning it can explain individual predictions rather than just general trends across the 
dataset. This allows practitioners to understand why the model made a specific prediction for a given instance, 
thereby enhancing transparency. Moreover, SHAP values are consistent and additive, making them a reliable tool 
for feature importance analysis in complex, non-linear models.

PDPs, on the other hand, are graphical representations that help to visualize the relationship between one 
or more input features and the predicted outcome of a machine learning model64. By averaging out the effects 
of other features, PDPs depict how changes in a specific feature, or a pair of features influence the model’s 
predictions. This enables researchers to interpret the global behaviour of the model with respect to the selected 
features. PDPs are particularly useful for understanding the direction and magnitude of feature influence. For 
example, they can reveal whether an increase in a particular feature value leads to higher or lower predictions, and 
whether this relationship is linear, monotonic, or more complex. However, PDPs assume feature independence, 
which can sometimes limit their effectiveness when features are strongly correlated. Despite this, PDPs remain a 
valuable tool for assessing feature importance and gaining insight into the model’s predictive patterns.

Results and discussions
Best hyperparameters
The BO process successfully identified optimal hyperparameters for each model, significantly enhancing 
their performance. Table 4 summarizes these parameters. For XGBoost, the best configuration included 822 
estimators, a learning rate of 0.148, a maximum depth of 25, a minimum child weight of 9, a subsample ratio of 
0.4824, and a column sample by tree value of 1. These parameters ensure a balanced trade-off between model 

Metric Equation

R2 1 −

∑ n

i=1

(
yi−ŷi

)2

∑ n

i=1

(
yi −

−
y

)2 (1)

RMSE

√∑
n

i=1

(
yi−ŷi
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Table 3. Equations of the chosen regression metrics.
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complexity and overfitting, optimizing predictive accuracy. LightGBM achieved its optimal performance with 
1000 estimators, a learning rate of 0.413, a maximum of 100 leaves, a maximum depth of 30, a minimum child 
weight of 16, a subsample ratio of 0.406, and a column sample by tree value of 1. These hyperparameters allow 
LightGBM to effectively model complex interactions while maintaining robustness. For CatBoost, optimal 
settings included a learning rate of 0.283, a depth of 3, and an L2 leaf regularization of 7.445, ensuring efficiency 
and reduced overfitting.

In the DL models, the DNN was tuned with 512 units in the first dense layer, 384 units in the second dense 
layer, a learning rate of 0.01, and the ReLU activation function. This architecture enables efficient learning 
and captures intricate patterns within the data. The CNN model, optimized with 256 filters, a kernel size of 3, 
256 units in the dense layer, and the ReLU activation function, excels in capturing spatial hierarchies, making 
it particularly effective for structured data. The LSTM model, tailored with 1024 units in both LSTM layers, 
1024 units in the dense layer, and the ReLU activation function, demonstrates robust capabilities in processing 
sequential data, ideal for time-series predictions. The rigorous optimization of hyperparameters through 
Bayesian techniques highlights the strength of these models in addressing the challenges of predicting Pcc  with 
high precision.

Performance evaluation
Regression error characteristic
The performance evaluation of the adopted models using REC curves, as shown in Fig. 5, provides comprehensive 
insights into their residual errors during both training and testing phases. The REC curve’s steepness and 
proximity to the y-axis signify the proportion of predictions with lower residual errors, thus indicating better 
model accuracy. In the training phase (Fig. 5a), CatBoost displayed a steep, nearly vertical initial curve, reflecting 
its high predictive precision with minimal residual errors for a significant portion of predictions. LightGBM and 
XGBoost demonstrated similarly steep curves, though slightly less vertical than CatBoost, indicating strong yet 
slightly lower accuracy. Meanwhile, DNN and CNN exhibited curves that started steep but flattened out more 
rapidly, suggesting higher residual errors for a subset of predictions. LSTM’s curve was the least steep, with a 
gradual slope extending further along the x-axis, highlighting its higher residual errors and lower reliability.

The testing phase (Fig. 5b) reinforced these trends. CatBoost maintained its superior performance with a 
steep curve close to the y-axis, indicating sustained low residual errors. LightGBM and XGBoost continued 
to perform well, albeit with marginally flatter curves than CatBoost. CNN and DNN demonstrated moderate 
reliability, with curves reflecting a mix of low and high residual errors. Conversely, LSTM’s performance remained 
subpar, with a shallow slope indicating a considerable proportion of high residual errors. These findings reiterate 
CatBoost position as the top-performing model in both phases, followed closely by LightGBM and XGBoost. 
The DL models, CNN and DNN, delivered moderate results, while LSTM lagged significantly, emphasizing the 
disparity in predictive reliability among the models.

Scatter plots
The scatter plots in Fig. 6 illustrate the correlation between predicted and actual values during the training and 
testing phases for each model, alongside key statistical metrics. XGBoost (Fig.  6a) achieved an R2 of 0.997 
during training, with exceptionally low errors (RMSE: 104.721 kN, MAE: 62.414 kN, MAPE: 3.77%) and a 
minimal bias (MBE: -5.093 kN). In testing, the R2 dropped to 0.906, and the error metrics increased (RMSE: 
741.767 kN, MAE: 499.097 kN, MAPE: 26.78%), reflecting reduced generalization accuracy. LightGBM (Fig. 6b) 
showed similar training results, with an R2 of 0.997, RMSE of 113.661 kN, and negligible bias. Testing metrics 
were strong but slightly inferior to training, with an R2 of 0.916, RMSE of 701.885 kN, and MAPE of 25.95%. 
CatBoost (Fig. 6c) excelled during training, achieving an R2 of 1.000 with negligible errors (RMSE: 25.032 kN, 
MAE: 19.707 kN, MAPE: 0.94%, MBE: -0.117 kN). Testing results remained robust with an R2 of 0.932, RMSE 
of 633.066 kN, and MAPE of 23.03%, though errors were higher compared to training.

The DNN model (Fig. 6d) performed well, with training R2 of 0.974, RMSE of 322.515 kN, and MAPE of 
9.67%. Testing metrics ( R2: 0.958, RMSE: 496.191 kN, MAPE: 12.57%) indicated a slight drop in performance 
but overall reliable predictions. CNN (Fig. 6e) showed notable training performance ( R2: 0.987, RMSE: 230.116 
kN, MAPE: 8.89%) and stable testing results ( R2: 0.951, RMSE: 536.068 kN, MAPE: 15.38%). LSTM (Fig. 6f), 
however, struggled across both stages, with an R2 of 0.893 during training (RMSE: 657.952 kN, MAPE: 20.90%) 
and 0.891 during testing (RMSE: 800.619 kN, MAPE: 31.65%), signifying substantial predictive limitations. 
CatBoost consistently emerged as the most accurate model, closely followed by LightGBM and XGBoost. 
While CNN and DNN exhibited moderate performance, LSTM underperformed significantly, highlighting the 

Type Model Hyperparameter

ML

XGBoost n_estimators = 822; learning_rate = 0.148; max_depth = 25; min_child_weight = 9; subsample = 0.4824; colsample_bytree = 1

LightGBM n_estimators = 1000; learning_rate = 0.413; num_leaves = 100; max_depth = 30; min_child_weight = 16; subsample = 0.406; colsample_bytree = 1

CatBoost learning_rate = 0.283; depth = 3; l2_leaf_reg = 7.445

DL

DNN units_dense1 = 512; units_dense2 = 384; learning_rate = 0.01; activation function = ReLU

CNN filters = 256; kernel_size = 3; dense_units = 256; learning_rate = 0.01; activation function = ReLU

LSTM units_LSTM1 = 1024; units_LSTM2 = 1024; units_dense = 1024; activation function = ReLU

Table 4. Best hyperparameters obtained from BO tuning process for the adopted models.
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variability in effectiveness among the adopted models. These results collectively emphasize CatBoost robustness 
and its suitability for this predictive task.

Analyzing the performance metrics of the adopted models reveals that certain models underperformed due to 
inherent characteristics and potential mismatches with the data’s nature. For instance, the LSTM model exhibited 
lower predictive accuracy during both training and testing phases. LSTM networks are designed to capture long-
term dependencies in sequential data, making them particularly effective for time-series forecasting. However, if 
the dataset lacks strong temporal dependencies or if the sequential patterns are minimal, LSTMs may struggle to 

Fig. 5. REC curves showing the performance of the adopted models in (a) training and (b) testing stages.
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identify meaningful relationships, leading to suboptimal performance. Additionally, LSTMs are computationally 
intensive and require substantial training data to generalize well. In scenarios where the dataset is limited or not 
inherently sequential, LSTMs might not perform optimally.

In contrast, models like CatBoost, LightGBM, and XGBoost are gradient boosting algorithms that construct 
ensembles of decision trees. These models are adept at handling structured, tabular data and can effectively 
capture complex, non-linear relationships within the data. CatBoost, in particular, has advanced techniques for 

Fig. 6. Scatter plots between actual and predicted Pcc values in the training and testing stages based on (a) 
XGBoost, (b) LightGBM, (c) CatBoost, (d) DNN, (e) CNN, and (f) LSTM.
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managing categorical variables and mitigating overfitting, contributing to its superior performance in this context. 
The robustness of these models in handling diverse data types and their ability to model intricate patterns without 
requiring sequential data make them more suitable for the given dataset. Therefore, the underperformance of 
the LSTM model can be attributed to a potential mismatch between the model’s architecture, which is optimized 
for sequential data, and the characteristics of the dataset, which may not exhibit strong temporal dependencies. 
Selecting models that align more closely with the data’s inherent structure, such as gradient boosting algorithms 
for tabular data, results in improved predictive accuracy and generalization.

Violin boxplots
The violin plots in Fig. 7 provide a comprehensive visualization of the model predictions compared to the actual 
values, focusing on the distribution and spread of data during training and testing stages. These plots not only 
illustrate the accuracy of each model but also highlight the variability in their predictions. In the training stage 
(Fig.  7a), the actual data, represented in red, exhibits a median value of approximately 2802.78 kN, with an 
interquartile range (IQR) extending from 1643.00 kN to 4494.46 kN. The ML models demonstrate remarkable 
alignment with the actual data distribution. XGBoost predictions, shown in brown, have a median of 2795.45 
kN and an IQR from 1624.67 kN to 4616.72 kN, reflecting minimal deviation. LightGBM and CatBoost, both 
represented in green, also perform consistently, with median values of 2809.44 kN and 2802.54 kN, respectively, 
and narrow IQRs, further reinforcing their predictive accuracy. Neural network models exhibit more variability. 
DNN (blue) shows a median of 2931.13 kN with an IQR ranging from 1708.83 kN to 4626.95 kN, while CNN 
(purple) has a median of 2910.60 kN and an IQR of 1695.39 kN to 4639.57 kN. LSTM (magenta) demonstrates 
the highest variability, with a median prediction of 3564.3 kN and an IQR spanning 1851.16 kN to 5284.35 kN, 
indicating reduced accuracy in capturing the data distribution during training.

In the testing stage (Fig. 7b), the actual data maintains a median of 2580.04 kN, with an IQR from 1299.57 kN 
to 4885.00 kN. XGBoost predictions closely follow this pattern, with a median of 2449.33 kN and an IQR from 
1444.09 kN to 5368.77 kN, though slightly more variable than in the training stage. LightGBM and CatBoost 
continue to show robustness, with medians of 2503.42 kN and 2455.56 kN, respectively, and slightly expanded 
IQRs. Conversely, the neural network models exhibit greater spread during testing. DNN (blue) has a median of 
2751.05 kN and an IQR from 1265.05 kN to 5269.22 kN, while CNN (purple) demonstrates a median of 2784.56 
kN with an IQR of 1425.27 kN to 5570.06 kN. LSTM (magenta) continues to show the highest variability, with a 
median of 3096.1 kN and an IQR from 1798.21 kN to 6179.54 kN, reflecting diminished reliability.

Taylor diagrams
Figure  8 employs Taylor diagrams to evaluate model performance, offering a concise depiction of standard 
deviation, correlation coefficient, and centred RMSE for the training and testing stages. These diagrams facilitate 
a detailed comparison of model behaviour relative to the actual data. In the training stage (Fig. 8a), the tree-
based models and neural networks display distinct characteristics. DNN and CNN models are positioned closest 
to the actual data point, reflecting standard deviations and correlations that align closely with the training data. 
CatBoost and LightGBM demonstrate excellent correlation coefficients, nearing 1.0, which signifies a strong 
linear relationship between their predictions and the actual data. XGBoost, while slightly further from the 
actual data point, still achieves commendable performance with low RMSE. LSTM, in contrast, exhibits a higher 
standard deviation, indicating greater variability in its predictions.

During the testing stage (Fig. 8b), the performance of the models reveals a similar trend. CatBoost emerges as 
the most robust model, exhibiting a near-perfect correlation coefficient and low RMSE, underscoring its capacity 
to generalize effectively. LightGBM and XGBoost maintain high performance, with standard deviations close to 

Fig. 7. Violin boxplots for the actual and predicted Pcc in the (a) training and (b) testing stages.
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the actual test data, indicating consistent predictions. DL models, particularly LSTM, show increased variability, 
with higher standard deviation and a more pronounced deviation from the actual test data point. The Taylor 
diagrams affirm that CatBoost stands out as the most reliable and accurate model, particularly in the testing 
stage, where its superior correlation and minimal RMSE reflect its generalization capabilities.

Uncertainty analysis
The U₉₅ uncertainty analysis, visualized in Fig.  9 through a spider plot, evaluates the confidence in model 
predictions during both training and testing stages. Lower U₉₅ values indicate greater reliability and robustness. 
CatBoost consistently demonstrates the lowest U₉₅ values, with 69.51 kN during training and 1762.19 kN during 
testing, making it the most reliable model across both stages. In comparison, LightGBM and XGBoost show 
slightly higher uncertainty, with training values of 315.62 kN and 290.62 kN, respectively, and testing values of 
1953.36 kN and 2064.35 kN. While these values indicate good performance, their increased uncertainty during 
testing suggests a slight reduction in reliability.

DL models exhibit higher uncertainty overall. DNN achieves moderate performance with U₉₅ values of 895.34 
kN during training and 1379.25 kN during testing, outperforming CNN, which has U₉₅ values of 631.25 kN and 
1492.18 kN for training and testing, respectively. LSTM, however, shows the highest U₉₅ values, at 5263.71 kN 
during training and 6535.26 kN during testing, highlighting its significant variability and reduced reliability. 
This analysis emphasizes CatBoost robustness, as its low U₉₅ values indicate high confidence in predictions. The 
consistently low U₉₅ values for CatBoost provide evidence of minimal overfitting, as the model demonstrates 
reliability across both training and testing stages.

In structural design, understanding and interpreting these uncertainty metrics are crucial, as they directly 
influence decision-making processes related to safety and cost. A higher U₉₅ value signifies greater uncertainty 
in the model’s predictions. In practical terms, this increased uncertainty necessitates the incorporation of 
higher safety factors into the design to ensure structural integrity under unforeseen conditions. Safety factors 
are multipliers applied to account for uncertainties in material properties, loading conditions, and modelling 
inaccuracies. When uncertainty is high, engineers compensate by increasing these factors, which leads to more 
conservative designs. While this approach enhances safety, it also results in the use of additional materials and 
resources, thereby escalating construction costs.

Conversely, models exhibiting lower U₉₅ values, such as CatBoost in this analysis, provide predictions with 
higher confidence. This reliability allows engineers to design structures with optimized safety factors, balancing 
safety and cost-effectiveness. Accurate models reduce the need for overly conservative designs, leading to efficient 
material usage and lower construction expenses. Therefore, the U₉₅ metric serves as a critical bridge between 
predictive modelling and real-world structural design. By quantifying the uncertainty in model outputs, U₉₅ 
demonstrates that the algorithms, particularly CatBoost, are not overfitted and can reliably generalize to unseen 
data.

SHAP feature importance analysis
The SHAP analysis provides a comprehensive understanding of the contributions of individual features to 
the machine learning model’s predictions. Figure  10a presents the SHAP summary dot plot, illustrating the 

Fig. 8. Taylor diagrams the actual and predicted Pcc in (a) training and (b) testing stage.
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Fig. 10. SHAP feature importance summary (a) dot plots and (b) bar plots.

 

Fig. 9. Spider plot for estimated U95 values across the training and testing stages of the adopted models.
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distribution of SHAP values across all test set instances. Each dot represents a single prediction, with its position 
on the x-axis indicating the SHAP value, or the extent of the feature’s impact on the model output. The colour 
gradient reflects the feature values, with red signifying higher and blue representing lower values. The analysis 
highlights that feature X3 exhibits a substantial range of SHAP values, demonstrating its variable influence on 
the model predictions. This indicates that the impact of X3 is context-dependent, changing based on its value. 
Features X3 and X2 emerge as the most significant contributors to the predictions, with X4 and X1 also playing 
notable roles.

Figure 10b complements this analysis with the SHAP summary bar plot, which aggregates the mean absolute 
SHAP values for each feature. The ranking of feature importance is evident, with X3 being the most influential, 
followed by X2, X4, and X1. The darker colour intensity of the bars for X3 and X2 underscores their dominant 
roles in shaping the model outputs. These bar plots succinctly convey the average impact of each feature, enabling 
an efficient assessment of their relative significance in the predictive model.

In summary, the relationships captured by the model align with established engineering principles, validating 
its utility as a tool for enhancing design intuition and practical decision-making. For instance, the positive 
correlation between concrete strength (X1 = f ′

c ) and load-carrying capacity is consistent with structural theory, 
as higher-strength concrete inherently supports greater loads before failure. Similarly, the influence of cross-
sectional dimensions (X2 = b and X3 = d) on capacity aligns with the role of geometry in determining the 
column’s moment of inertia and overall resistance to deformation. The significant contribution of steel tube 
thickness (X4 = ts) and yield strength (X5 = fys) to the predictions reflects their critical role in confining 
the concrete core, enhancing both ductility and load resistance, which is well-known in structural engineering 
practice.

Column length (h), however, exhibits a more complex relationship with capacity. As indicated by the SHAP 
analysis, for practical ranges, capacity tends to decrease with increasing column length due to higher slenderness 
ratios and the associated risk of buckling. This trend is physically reasonable, as longer columns are more prone 
to instability under axial loads. The insights provided by the model regarding these relationships enhance 
interpretability and offer engineers a deeper understanding of how individual parameters influence structural 
behavior, ensuring the model serves as more than a ‘black box.’ Instead, it becomes a valuable tool that bridges 
advanced computation with fundamental engineering principles.

PDP feature interpretability analysis
PDPs offer a complementary approach to understanding the influence of individual features by visualizing their 
marginal effect on the predicted outcome while holding other features constant. Figure 11 provides the PDPs 
for features X1 through X6, highlighting distinct trends for each. The PDP for X1 reveals a generally increasing 
trend, with predictions rising gradually as X1 increases from 30 to around 60. Beyond this range, the predictions 
stabilize before exhibiting a sharp increase above 90. This indicates that higher values of X1 strongly contribute 
to enhanced predictions, with a pronounced effect at the upper end of the observed range. For X2, the PDP 
demonstrates a negative relationship with the target variable. The predicted outcomes are higher when X2 ranges 
between 1000 and 2000 but decline sharply as X2 increases further. This suggests that lower values of X2 are 
associated with higher predicted outcomes, with diminishing effects as X2 continues to increase beyond 8000.

The PDP for X3 depicts a consistent upward trend, indicating a strong positive relationship with the target 
variable. Predictions show a slight increase when X3 ranges from 100 to 400, followed by a steeper rise between 

Fig. 11. PDPs for input features interpretability (a) X1, (b) X2, (c) X3, (d) X4, (e) X5, and (f) X6.
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400 and 600. The trend becomes even more pronounced as X3 exceeds 600, reaching its peak at the highest 
observed values. The PDP for X4 exhibits a stepwise increase in predictions, with significant rises occurring 
beyond 100 and around 200. This pattern indicates that higher values of X4 contribute positively to the 
predictions, particularly beyond the mid-range values. The PDP for X5 highlights a steep increase in predictions 
as X5 values exceed 4, suggesting a strong positive correlation between X5 and the target variable. Similarly, X6 
shows a steady upward trend, with predictions stabilizing between 200 and 300 before rising sharply beyond 
300. The PDPs reveal that X1, X3, X4, X5, and X6 positively influence the predictions, with higher feature values 
correlating with improved outcomes. Conversely, X2 exhibits a negative relationship, with higher values leading 
to reduced predictions. These insights enhance the interpretability of the model by illustrating the specific nature 
of each feature’s impact.

Comparison with existing analytical models
To illustrate the efficacy of the ML/DL models more effectively in computing the axial load-carrying capacity 
of round ended CFST columns the present study compares the performance of the 6 ML/DL models against 
the 10 analytical models proposed in 10 different literatures. Analytical models, derived from theoretical and 
empirical frameworks, provide deterministic predictions but often suffer from limited adaptability to diverse 
datasets. Conversely, ML/DL models excel in handling complex (Table 5), nonlinear relationships but require 
extensive data and robust validation processes to ensure reliability. In the 10 literatures the capability of 

Sr. No. Reference Noriginal
u /Nanalytical

u Error (%) SD CoV

1 Liu et al.65 1.000 0 - 0.032

2 Zhao et al.31 0.962 3.8 0.098 -

3 Bu et al.30 - 0.4 - 0.056

Sr. No. Reference Noriginal
u /Nanalytical

u Error (%) SD CoV

4 Ahmed & Liang35 1.010 1 0.003 -

5 Faxing et al.15 1.020 2 - 0.034

6 Ren et al.27 0.905 9.5 - 0.079

7 Lu et al.25 0.965 3.5 - 0.030

8 Ding et al.24 1.016 1.6 - 0.029

9 Hassanein & Patel23 1.160 16 - 0.090

10 Zhang et al.66 1.086 8.6 - -

Table 6. Evaluation of analytical models for predicting load carrying capacity.

 

Sr. No. Model Formulation

1 Liu et al.66 Nu = Nu, cirular + Nu, square

Nu = Acf ′
c + (1.7As,circular + 1.25As,square) fys

2 Zhao et al.67 Nu = F inite element based simulations

3 Bu et al.30 Nu = Aaf0.2 + 2Ac (1 + 2λ ac) f0.2 + Ascf ′
c

4 Ahmed & Liang35 Nu = Asefys + Ac

(
γ cf ′

c + 4.1frp

)
5 Faxing et al.15 Nu = Acf ′

c (1 + (0.8 + 0.9D/B) Φ )

6 Ren et al.27 Nu = f ′
c Ac (1 + KΦ )

7 Lu et al.25 Nu = f ′
c Ac + K′

1 fysAs + K′
2 fsvAsso

8 Ding et al.24 Nu = Acf ′
c + (0.8 + 0.9D/B) fysAs + (B/D − 1) / (0.6 + 0.15B/D) fsvAsso

Sr. No. Model Formulation

9 Hassanein & Patel23 Nu = γ sfysAs +
(

γ cf ′
c + 4.1f ′

rp

)
Ac + fysAseff + γ cf ′

c Ac

γ s = 1.458(D/t)−0.1 0.9 ≤ γ s ≤ 1.10

10 Zhang et al.66
Nu = fscyAsc

Nu =
{

(1.3 + 1.1ξ ) (D − 0.2D/β ) f ′
c 1 ≤ (B/D) ≤ 1.44

(1.18 + 0.85ξ ) f ′
c 1.44 < (B/D) ≤ 4

Table 5. Formulation of the analytical models.
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prediction of their respective analytical load-carrying capacity models were quantified based upon their average 
ratio ( Noriginal

u /Nanalytical
u ) and coefficient of variation (CoV), which provide insight into accuracy and 

variability. In contrast, ML models are assessed using metrics such as R2, RMSE, MAE, and MBE, offering 
a broader and more detailed evaluation of predictive performance. The 10 analytical models exhibit varying 
degrees of accuracy and consistency, as summarized in Table 6 with the formulation of the analytical models 
in Table 5. The comparison is aimed at identifying the relative strengths and limitations of both approaches, 
highlighting the advancements offered by data-driven methods in terms of predictive accuracy, consistency, and 
robustness. The comparison is based on the following metrics:

a. Accuracy: Analytical models are evaluated using the Noriginal
u /Nanalytical

u   ratio and associated error 
percentages, while ML models are assessed using metrics such as RMSE, MAE, and MAPE.

b. Precision: CoV or SD is used for analytical models, while RMSE and MAE indicate precision in ML 
models.

c. Bias: Analytical model biases are inferred from deviations in the Noriginal
u /Nanalytical

u  ratio, while ML 
models use MBE.

d. Correlation: Correlation coefficients or R2 values are used to measure the predictive strength of models, 
where available.

The evaluation of the performance of the 10 analytical models shows a wide range of accuracy, as indicated 
by the mean error, which varies between 0.0% and 16.0%. Most models maintain error levels below 10%, 
demonstrating reasonable predictive capabilities for axial load-carrying capacity in CFST columns. However, 
significant deviations are observed in certain cases, highlighting the limitations of some models in achieving 
consistent accuracy. Hassanein & Patel23 and Ren et al.27 exhibit the largest biases among the studied models. 
The Noriginal

u /Nanalytical
u   ratio for Hassanein & Patel23 is 1.16, reflecting a 16.0% overestimation of the 

load-carrying capacity by the analytical model. Similarly, Ren et al.27 shows a ratio of 0.905, indicating a 9.5% 
underestimation. These deviations from unity highlight the inability of these models to generalize effectively 
across diverse scenarios, potentially due to oversimplifications in their assumptions or limitations in their 
dataset-specific calibration.

The CoV or SD values for the models provide insights into their consistency and reliability. Models with lower 
CoV or SD values exhibit less variability in their predictions, indicating better precision. Among the 10 models, 
Ahmed & Liang35 demonstrates the lowest dispersion with an SD of 0.003, suggesting exceptional consistency 
in its predictions. In contrast, models with higher CoV or SD values, such as Ren et al.20 (CoV = 0.079), 
indicate greater variability, which could impact their reliability in practical applications. While most analytical 
models perform within acceptable error margins, the outliers with higher biases and variability underscore 
the limitations of traditional analytical methods in capturing the complex behaviour of CFST columns under 
varying conditions. This variability also emphasizes the need for alternative approaches, such as machine 
learning models, to address these limitations effectively. The ML models demonstrate high predictive capabilities 
across multiple metrics, detailed in Table 7.

DNN and CNN models exhibit superior predictive performance compared to other ML models across 
multiple evaluation metrics. Both DNN and CNN achieve notably lower RMSE (496.191 kN and 536.068 kN, 
respectively) and MAE (342.409 kN and 384.067 kN, respectively), highlighting their ability to minimize large 
deviations between predicted and actual axial load-carrying capacities. The low RMSE and MAE of DNN 
and CNN models also suggest higher precision, indicating that their predictions consistently fall within a 
narrower range of deviation compared to other models such as LSTM (RMSE = 800.619 kN, MAE = 650.387 
kN). This precision makes DNN and CNN particularly reliable for applications requiring stringent predictive 
performance. DNN achieves an R2 value of 0.958, and CNN achieves 0.951, both of which are substantially 
high. This indicates that the predictions by these models strongly correlate with the actual values.

While LightGBM reports the highest R2 (0.916), its higher errors in RMSE (701.885 kN), and MAE (479.503 
kN), suggest that despite fitting the data well overall, it lacks the fine precision and consistency achieved by 
DNN and CNN. CNN exhibits an almost negligible MBE (0.102 kN), indicating that its predictions are unbiased 
and evenly distributed around the true values. CatBoost also performs well in terms of bias (MBE = 2.088 kN), 
but DNN exhibits a slightly larger negative bias (MBE = -36.963 kN), which indicates a tendency to slightly 
underestimate the load-carrying capacity. Nevertheless, this underestimation is within acceptable limits for 
engineering predictions. The exceptional performance of DNN and CNN can be attributed to their inherent 
architectures, which excel in learning complex patterns and relationships from data. The deep learning 
frameworks of these models allow them to process nonlinear interactions between variables, making them highly 
suitable for predicting the axial load-carrying capacity of CFST stub columns. Their superiority in metrics such 
as RMSE, and MAE indicates their robustness and adaptability in capturing intricate dependencies in the dataset. 

Sr. No. Model R2 RMSE (kN) MAE (kN) MBE (kN)

1 XGBoost 0.906 741.767 499.097 -20.918

2 LightGBM 0.916 701.885 479.503 -19.789

3 CatBoost 0.932 633.066 437.905 2.088

4 DNN 0.958 496.191 342.409 -36.963

5 CNN 0.951 536.068 384.067 0.102

6 LSTM 0.891 800.619 650.387 484.233

Table 7. Evaluation of ML/DL models for predicting load carrying capacity.
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Figure 12 presents a comparative analysis of analytical models and ML models based on Noriginal
u /Nanalytical

u  
for analytical models and R2 for ML models.

 a.  Accuracy: Analytical models generally achieve acceptable accuracy (error < 10% for most), but ML models, 
particularly DNN and CNN, demonstrate superior predictive capabilities with higher R2 values.

Fig. 12. Comparative analysis (a) analytical models, (b) ML/DL models.
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 b.   Precision Analytical models are consistent within their empirical formulations, with CoV and SD values 
suggesting moderate variability. In contrast, ML models like DNN and CNN achieve better consistency, 
reflected in their lower RMSE and MAE values.

 c.  Bias: Analytical models exhibit a wider range of biases in their Noriginal
u /Nanalytical

u   ratios, while ML 
models like CNN and CatBoost exhibit near-zero biases (MBE).

 d.  Correlation: Analytical models with reported correlation coefficients perform comparably to ML models in 
terms of R2.

The analytical models exhibit performance metrics predominantly centred around a value of 1.0, reflecting the 
accuracy of their predictions relative to actual results. Similarly, ML models demonstrate superior performance 
with higher R2 values, indicating their enhanced capability to explain variance in data. This comparison 
underscores the reliability and predictive strength of ML-based approaches in modelling axial load-carrying 
capacity of CFST columns.

Interactive graphical user interface
To bridge the gap between the sophisticated machine learning framework and its practical application, a user-
friendly interactive graphical user interface (GUI) has been developed. This Python-based web application, 
implemented using the Tkinter package, simplifies the deployment of the optimized model for end-users such 
as engineers and designers67. The GUI, depicted in Fig. 13, features an intuitive layout where users can input 
values for the model’s variables and instantly obtain the predicted output ( Pcc). This tool democratizes access 
to advanced predictive capabilities by eliminating the complexities of database assembly, model training, and 
validation. To promote accessibility and foster collaborative refinement, the GUI has been hosted on GitHub, 
enabling widespread use and adaptation for diverse civil engineering applications. By providing a practical and 
straightforward interface, this innovation facilitates the seamless integration of machine learning models into 
real-world design tasks, advancing the field’s technological capabilities. The GUI is available at  h t t p s : / / g i t h u b . c o 
m / m k a m e l 2 4 / P C C 4 4     .  

The GUI presented is a prediction tool for estimating the load-carrying capacity of confined columns using 
specified input parameters. It includes fields for six key inputs related to the structural properties of the column: 
the concrete strength of the standard cylinder (fc’, in MPa), the overall length of the column (h, in mm), the 
cross-sectional width (b, in mm), the cross-sectional depth (d, in mm), the thickness of the steel tube (ts, in 
mm), and the yield strength of the steel tube (fys, in MPa). After entering these parameters, the user can click 
the “Predict” button to calculate and display the predicted load-carrying capacity (Pcc, in kN), which appears in 
the “Prediction Result” section. Additionally, the GUI is equipped with robust input validation mechanisms to 
ensure reliability. Non-numeric or negative values, as well as parameters outside realistic ranges for structural 
elements, trigger error messages that guide users to make corrections. For example, inputs such as negative 
values for dimensions or unrealistic material properties are flagged with error notifications, and the prediction 
process is disabled until all entries are valid.

For example, if the user inputs a concrete strength of 42.07  MPa, a column length of 800  mm, a cross-
sectional width of 400 mm, a depth of 200 mm, a steel tube thickness of 3 mm, and a yield strength of 345 MPa, 
the GUI calculates a load-carrying capacity of 4121.60 kN. This makes the tool highly efficient for engineers and 

Fig. 13. GUI model for predicting Pcc.
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researchers needing quick and accurate predictions based on predefined column specifications. The output is 
currently presented numerically, but future versions may include graphical visualizations such as capacity trends 
or comparative charts for enhanced interpretability. If the user wishes to reset all input fields and clear the result, 
they can click the “Clear” button to start afresh.

Conclusion
This study thoroughly examined various machine learning models for predicting the load-carrying capacity 
of confined columns ( Pcc) based on key structural features including concrete strength of standard cylinders 
(X1), overall length of the column (X2), cross-section width (X3), cross-section depth (X4), thickness of the 
steel tube (X5), and yield strength of the steel tube (X6). A comparative analysis of the performance of analytical 
models and ML/DL models in predicting the axial load-carrying capacity of round-ended CFST columns is also 
presented. The key findings are summarized as follows:

 1.  The performance evaluation revealed that ML model CatBoost consistently achieved the highest accuracy. 
It exhibited the lowest RMSE of 396.50 kN and a high R2 value of 0.932 during testing, indicating superior 
predictive capability and reliability. XGBoost and LightGBM followed with competitive performance, show-
ing RMSE values of 449.57 kN and 449.57 kN, respectively, and R² scores of 0.906 and 0.916.

 2.  Conversely, DL models performed less favorably. The DNN had an RMSE of 496.19 kN and R2 of 0.958, 
while the CNN had an RMSE of 536.07 kN and R2 of 0.951. The LSTM network showed the least perfor-
mance with an RMSE of 2010.46 kN and an R2 of 0.891.

 3.  SHAP analysis revealed that X3 was the most influential feature in predicting Pcc, with the highest mean ab-
solute SHAP value indicating its significant positive impact. In contrast, the X2 had a notable negative effect, 
reducing predictions by approximately − 2373.23 kN for specific instances. While other features such as X4, 
X5, and X6 also played important roles, however, their impact was less significant compared to X3 and X2.

 4.  The PDPs provide a comprehensive view of how each feature influences the predicted load-carrying capacity 
of the confined column. X1 shows a general increase in predictions, with a sharp rise beyond 60 MPa. X2 
exhibits a decreasing trend, with notable declines in predictions when the length exceeds 2000 mm. X3 has 
a strong positive relationship, with predictions rising steadily from 100 mm to 600 mm. X4 shows a stepwise 
increase, with significant rises in predictions occurring beyond 100 mm and 200 mm. X5 is associated with 
a steep positive increase, with predictions rising substantially from 2 mm to 6 mm. Lastly, X6 consistently 
increases predictions, with a notable rise as values exceed 300 MPa.

 5.   ML models significantly outperformed the 10 analytical models in terms of prediction accuracy. Analytical 
models, which rely on deterministic formulations, failed to adapt to complex, nonlinear interactions as effec-
tively as data-driven ML models.

 6.  The interactive GUI developed using Python and Tkinter provides an accessible tool for engineers and de-
signers. It allows users to input feature values and receive dynamic predictions of Pcc. This interface simpli-
fies the application of complex machine learning models and is available for public use and development via 
GitHub.

However, it is important to note that this study primarily focuses on data from stub columns under axial 
compression, limiting the direct applicability of the proposed ML models to slender columns, eccentric loading, 
or advanced material configurations. Future work should incorporate a broader range of geometries, loading 
scenarios, and material properties to further validate and refine these predictive models for practical engineering 
applications. The results affirm that traditional machine learning models, particularly CatBoost, XGBoost, and 
LightGBM, provide more accurate and reliable predictions compared to deep learning models in this context. By 
integrating advanced prediction tools and feature analyses, this research offers a framework for optimizing CFST 
column designs. The findings encourage broader adoption of ML models in civil engineering, bridging the gap 
between theoretical models and practical requirements.

Data availability
Data, models, or codes that support the findings of this study will be available from at  h t t p s : / / g i t h u b . c o m / m k a 
m e l 2 4 / P C C 4 4 .  
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