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ABSTRACT

In this write-up, we focus on pseudo-Hilfer-type fractional order delayed differential equations with bounded definite integral initial condi-
tions on the time interval [0, T']. We begin by establishing relevant lemmas. Then, we derive the solution to the homogeneous Hilfer-type
pseudo-fractional order retarded differential equation that satisfies the appropriate initial condition using classical methods. Next, we obtain
explicit formulas for solutions to linear inhomogeneous Hilfer-type pseudo-fractional time retarded differential equations with constant
coefficients, employing classical ideas. Furthermore, we investigate the existence and uniqueness of the solution of the Hilfer-type pseudo-
fractional order delayed differential equation and demonstrate the stability of the given differential equation in the Ulam-Hyers sense on the
time interval [0, T].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159480

. INTRODUCTION

Differential equations, a fundamental concept in mathematics with ancient roots, saw substantial advancement in the 17th century,
primarily due to the contributions of Gottfried Wilhelm Leibniz and Isaac Newton in the field of calculus. This period marked a systematic
shift in approaching and solving these equations.

The 18th-century contributions of mathematicians like Leonhard Euler elevated the theory of ordinary differential equations, while the
19th century introduced more sophisticated techniques, including the Laplace transform by Pierre-Simon Laplace, streamlining the resolution
of linear differential equations.

The 20th century, with the emergence of computers, brought a transformative shift where numerical methods became indispensable for
solving complex differential equations that were previously deemed insurmountable.

Stability theory, a pivotal tool in understanding system behavior, encompasses both linear and nonlinear stability analysis, addressing
minor perturbations and intricate non-linear systems, respectively. This facet of differential equations is crucial for ensuring the dependability
and practical application of solutions across scientific and engineering domains.

The application of differential equations expanded further to include specialized areas like fractional and delay differential equations.
Fractional differential equations, extending the concept of derivatives and integrals to non-integer orders, play a pivotal role in accurately
modeling physical and engineering systems, capturing complex dynamics, chaos, and multi-dimensional systems.

Conversely, delay differential equations consider the impact of time delays within systems, enhancing the precision and realism of models
in biology, economics, engineering, and beyond.
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This broader scope underscores the growing significance and versatility of differential equations in solving diverse problems. The
advancements in fractional and delay differential equations underscore the depth of mathematical inquiry and the collaborative, cumulative
nature of scientific progress.

In recent times, fractional differential equations (FDEs) have gained prominence for their applications in mechanics, electrical circuits,
and time-delay systems stability analysis. By incorporating derivatives of fractional order, FDEs offer a more nuanced modeling approach
compared to classical differential equations, capturing behaviors beyond the reach of integer-order derivatives alone. Their applications span
various scientific and engineering fields, employing analytical methods like Laplace and Fourier transforms, along with numerical meth-
ods. The adaptability of fractional calculus has led to groundbreaking applications in domains such as control theory, signal processing,
optimization, image processing, finance, and economics.

Similarly, pseudo-analysis is a mathematical theory that generalizes classical analysis by using semiconductors defined by pseudo-
addition and pseudo-multiplication in the real range, instead of real numbers. This concept has piqued the interest of researchers from
different fields such as functionality analysis, functional equations, and variational calculus.

In recent times, many scholars have worked on new formulations of inequalities involving fractional integrals and have investigated the
properties of pseudo-fractional operators. For example, Sousa et al. have studied pseudo-Hilfer-type FDEs.'

The existence and uniqueness problems of FDEs with constant delay and the stability of their solutions are crucial topics in the field
of fractional differential equations. Many renowned scientists, such as Ahmed et al.,”> Moniri et al.,’ Vivek et al.,’ Mahmudov et al.,” >
Khusainov et al.,”* Podlubny,?* and Sousa et al."*” have made significant contributions to these problems."”**

In conclusion, fractional differential equations and pseudo-analysis are fascinating areas of research with wide-ranging applications in
various fields. The works of renowned scientists in these fields have contributed significantly to the advancement of mathematical theory and
its applications in engineering and science.

For instance: Sousa et al.!

{ HE y(t) = Ay(1) @ f(y(t).t €], .
ea,o,r(,+y(t) =)o

The authors of this study investigate the existence and uniqueness of the global solution for Eq. (1.1). The equation involves the y-Hilfer
pseudo-fractional derivative denoted by Hg@j,o +(+), where the order is 0 < a < 1 and the type is 0 < < 1. The parameter y is defined as y
= a — (1 — «). The function f : [tg, +o0) x R" x R" — R" is continuous. <7 is an n x n matrix.

It is worth mentioning that in a previous study by Sousa et al. in 2020, the existence and uniqueness of the global solution for the initial
value problem associated with data (to, y,) was researched. The general form of any solution on the interval .# := [g, b] is given by the system

of Eq. (1.2), where 4 T y(t) denotes the pseudo-fractional derivative of y(t) and .# (¢, y(t)) = f(¢,(¢)). The initial condition is y(to) = y,»

L0 = ey (), 2
y(to) = yo.

with to € I. Afterward, in 2020, Ahmad et al.,” discussed the reachability of linear and non-linear systems in the sense of the y-Hilfer pseudo-
fractional derivative in g-calculus by means of the Mittag-Leffler functions with the form

{H;‘;%“’my(r) = Ay(1) @ Bu(t), t (1o, 1],
-y (1.3)
IGD,(;,Oer(tO) =0,
and
{ HEBY y(t) = Ay(1) @ Bu(t) @ f (1, y(t), u(t)), t € [to, 1], o
ea@oJ(tO) 0,

where H;ﬁ 5’"0 . (+) represents the y-Hilfer pseudo-fractional derivative with order 0 < « <1 and type 0 < 8 < 1. The parameter y is defined

asy=a-pB(1-a),and IeIB &0+ (+) denotes the Riemann-Liouvile pseudo-fractional integral with respect to another function 1 — y. The state
vector is denoted by y € R”, the control vector by u € R”, and A and B are constant matrices of dimensions 7 x n and n x m, respectively. The
non-linear function f : J x R” x R™ — R" is continuous in this context.

However, in this research article, we will be considering the following Hilfer-type pseudo-fractional delay differential equation:

G£:90:€) ¥20Z Aen GL

{H“’ﬁ@ oyt =Aoy(t)@Boy(t-1) @ f(t),te (0;T],7>0, 035)

Ig b o.y(t) = §(t).t € [-7,0],
wherem—-1<a<m,0<B<l,y=(B-1)(m-a)+k+1,k=0,...,m—1.
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To achieve our primary objective of obtaining an analytical solution for the Hilfer-type pseudo-fractional time delay differential equa-
tion (1.5) with a constant delay using classical methods, we first need to obtain the solution for the homogeneous Hilfer-type pseudo-fractional
delay equations (1.6),

{Hg;f‘@my(t) —Aoy(t)®Boy(t-1),te(0;T],T>0, 6)
1- .
Iy 0. y(t) = ¢(1), t € [-7,0].

Subsequently, we employ conventional techniques to determine the explicit solution formula for linear inhomogeneous Hilfer-type
pseudo-fractional time-retarded differential equations with constant coefficients, as presented in Eq. (1.5). We utilize well-established methods
and refer to Eq. (1.7) to facilitate the solution,

{Hggmy(t) —Aoy(t)®Boy(t-1)@ f(t),te (0;T],7>0, w7

1-

Ig o y(t) =0,t € [-7,0].

We make use of the solution of Eq. (1.7) as a particular solution to Eq. (1.5) to derive the analytic solution, considering the conditions m — 1
<a<m,0<B<l,andy=(B-1)(m—-a)+k+1,k=0,...,m— 1. Moreover, we establish the existence and uniqueness of the solution in

our study and additionally investigate the stability of the Hilfer-type pseudo-fractional delay differential equation (FDDE) (1.5) in the Ulam-
Hyers sense over the time interval [0, T].

Il. PRELIMINARIES

In this part, we mention important information that deals with pseudo-analysis, the elements of the fractional analysis, and some
necessary lemmas that will use the proof of the theorem.”""*

e Gamma function: -
I'(a) = f *ledr, a>o.
0

e Beta function:

1
B(t,s):/ 2N 1-2) e s> 0,
0

Let g : ] - Ry be a monotone and continuous function, where J = [a,b] and Ry = [0, +00]. Then we will define the Mittag-Leffler
function as follows.
e The tree parameter Mittag-Leffler function:*

(9 (€)X (9 (=)
Eupg(2) = S;, T(as+B) s S;) T(as+p) s

o Delayed analogue of Mittag-Leffler type function generated by A, B € R of three parameters:'°
T o (n+q)(g(A))"(g(B))! na+gp+y—1
(o) B = 3 5 (714 GG it )
F Z:%q; q ) T(na+qB+y)
e Exponentially bounded f : [0, c0) — R holds an inequality of the form
If@) <1, ¢,

for the real constants g, L > 0 and T > 0.
e Laplace transform £{f(¢)}(s):

F©=2{f0)(0)= [, seC

where f : [0,00) — R is measurable and exponentially bounded on [0, o0 ), then the appointed by exists and is an analytic function of
s for Re(s) > 0.
o Timeshift feature of the Laplace transform:

{f(t-a)H(t-a)}(s) = e “F(s).
e Convolution feature of Laplace transform:

L(fh)(0)} = L{f (O} ()L{r()}(s),

where f,h : [0, 00) — R are exponetially bounded functions.

G£:90:€) ¥20Z Aen GL
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¢ Riemann-Liouville fractional integral:

Bf () = oo [T f (0

1
I(a)
o Hilfer fractional derivative Let m — 1 < a < m, with m € N. The right-sided Hilfer fractional derivatives, denoted by H DZf() of a

function f of order « and type 0 < 8 < 1, are appointed by

(22 m—o d - m—ao
DS () = B PO f ) @D

Taking the limit § — 0 in Eq. (2.1), we have the Rieman-Liouville derivative, given by

B0 f () = I (),

Taking the limit § — 1 in Eq. (2.1), we have the Caputo derivative, given by

D) =10 O )

e For any linear and bounded operator Q) appointed on a Banach space with | Q|| < 1, the operator (I — Q)™ is linear and bounded with
property
(I-)"'=Y o 22
k=0

Lemma IL1. Let g:] — R+ be a monotone and continious function, where | = [a,b] and Ry = [0, +0c0]. Then, for a >0,A€ R, ne Ny
=0,1,2,..., we have

Q—l{;}( ) = i (”H'q)(g( ))qﬂ t(rH-l)oc 1n+l (g(A)t ), Re(s) >0,
(Sa_g(A))n+1 q r((x(n+q+ 1) (X(rH—l)(x

q=0

Proof. Using the expansion
1

S [(n+q
s () e
=

< 1, we find that

1 I S 1 _ 1 i": n+gq (g(A))q:
O O (R = AN AN

Taking the inverse-Laplace transform of the above, we obtain that

-1 1 o) [(n+aq) (8(A))1 _(n+q
L {(sa_g(A))rHl}(t)_"' {Z( )Sqa+a(n+l)}(t)—qz_(:)( q )(g(A))q

q=0 q

- 1 - n+ q (g(A))qta(n+q+l)—l (n+1)a—1 n+1
U = At A’ A
x {Sqa+oc(n+1) }(t) qZ:(:) ( q ) r(a(n +q+ 1)) t Lx(n+1)oc(g( )t )

for |t| = ‘

S (n+q) (g(A))"
qz:;) ( q q)sq§+zx(n+1).

O

Lemma IL.2. Let g : ] — Ry be a monotone and continuous function, where ] = [a,b] and Ry = [0, +oc0]. Then, for a > 0, > y, we obtain

Y
N e [0~ a8
s"—g(4) - g(B)e o
Proof. According to the well-known Neumann series, W can be written through a series expansion as below:
s’ .9 LR Z (g(B))" - Z (g(B))"e™™s
" -g(4) —g(B)e™ " —g(A) 1 - 4B " —g(A) 5 (" -g(A)" i —g(A))"+1
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Then imposing Lemma IL.2 to the final consideration we get

sV

8

s*—g(A) -g(B)e™

L5 ) (g s (q)(gﬁ )

=0 soc(n+l)(1 _ %%))n+l P q s

S5 () g(A)!(g(B)) e
= nz:;) qz:;) ( ) Szx(n+1)+qoc—y

q

From the time delay feature of the Laplace integral transform, we have

eg(t=1)} () (H(t - 1) = ™" 2{g(1)} ().

Then, by taking the Inverse Laplace transform of the aforementioned function, we get

’ = w7 9 n ,—snt

n=0 g=0

eI L R (e e
n=0 g=0 N

q
& (nea (e D ) |
-E S (7" emy CEEE IO a0

We need additional conditions on s, namely: s* > |A| and |s* — g(A)| > |Ble”™ for convergence of the series. But, these conditions can be
removed at the end of the evaluation with analytical continuation, to obtain the desired conclusion for all s € C with Re(s) > 0. O

A. Pseudo-analysis

Assume g : [a, 8] = [0, co] be a monotone and continuous function. We will define pseudo operators as follows (see, e.g., Refs. 1, 25,

and 36-38):

e Pseudo operators:

a@B=g '(gla)+g(B) and aoB=g '(g(a)g(B)),

ep=g"(g(a)-¢(B)) and a@f=g (g(m)'

Suppose that f : [¢,d] — [a, b] is a measurable function.

e g-integral:

e g-Laplace transform:

/[jz]fde:g_l([dg(f(x))dx).

CLf}s) =g (e (f())}())-

Assuming that g is the generator function for the strict pseudo-addition & on the interval [a, b], and g is continuously differentiable
on (a,b), the corresponding pseudo-multiplication © is defined as x ® y = g7' (g(x)g(»)). If a function f is differentiable on (c,d)
and has the same monotonicity as the function g, then the g-derivative of f at the point x € (¢, d) can be defined as follows:

o g-derivative:

o nth-g-derivative:

)]

(n)® n
L o etron)

Now we will give some essential information about the Hilfer operator and Hilfer-type fractional derivative.

J. Math. Phys. 65, 052701 (2024); doi: 10.1063/5.0159480
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e Riemann-Liouville pseudo-fractional integral.
Assuming that g : [a,b] — [0, +00] is an increasing function that defines pseudo-addition & and pseudo-multiplication ® operations,
the right-sided and left-sided Riemann-Liouville pseudo-fractional integrals of a measurable function f : [a,b] — [a, b] with a positive
order « > 0 can be defined in the following manner:

(X _ t)oc—l

ot -¢ (Bsr6) - [ 7[5 )or]oa

and
(x _ t)tx—l

Bos £ =8 (18 () = [ b][ (W)Q f(t)]@dt.

o Hilfer pseudo-fractional derivatives.
Consider a generator function g : [a,b] — [0, 0] that is increasing, defining the pseudo-addition @ and pseudo-multiplication ®
operations. The right-sided and left-sided Hilfer pseudo-fractional derivatives of a measurable function f : [a,b] — [a, b], with orders
m—1<a<mand type 0 < f <1, respectively, can be defined as follows:

Hyloui f () = ("Dig(£(x))) = 5;”;+“>g”(ddx—rfn)®fété,ﬂf<x>,
and

Hy, f(x) =g ("De(F (%)) = 1522_“>g‘1(})91;gbf<x>.
Note that

Hefourf (%) =8 (L2 Dlag(f (%)) = o6 s Dl g f (3,
and

Heloy f(x) =g (17D} ¢(F(x))) = I, "Dl (),

where y = a + §(m — «). For extra information about pseudo-analysis, see Refs. 37-40.
In the following, we will first discuss the derivation of the formulas of the pseudo-Mittag-Leffler functions and their definitions based
on these calculations.

o The one parameter pseudo-Mittag-Leffler function:

() - g (Fug(2)) =& (Z {e@) ) _ ég‘l(M) Bl (2)) o™ T(as+1))].

M(as+1) ) = Mas+1) ) =5
where (6); is the famous Pochhammer symbol denoting rg;)s )

o The two-parameter pseudo-Mittag-Leffler function:

550 -6 (buge@) -6 (5 785 ) - 6 ({45 ) - B e () 0 s+ )]

o The three-parameter pseudo-Mittag-Leffler function:

H30 =6 () = (3 ey 5 ) -8 (e 57

s=0 F(ocs+,8) s! s=0

&5 ol (st )l (2D @l () o (5]

-& (g7 (@) 0g ™ (T(as+p))) @ (¢ ((g())) @™ (sH) ]

s=0

Oq

o The pseudo-bivariate Mittag-Leffler function:
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Y R O)is a))'(g(b))*
aﬁy(a>b) g ( i,ﬁ,y(g(“)»g(b))) (Z Z r(loc(+)slﬁ+y) (sl ))lls(lg( ) )

Bty SO B e ()

=88 [(¢7' () og ™' (Tla+sp+y))) o ((¢7' ((8(@) (8(8)))) @ (7" (11 x )
=8 & [(g () og (Tla+sp+y)) o (g7 (@) o8 ((e®))) @ (7' () ©g7'(H))]

1=0s=0

698

1=0s=0

o Delayed analogue of pseudo-Mittag-Leffler type function generated by A, B € R of three parameters:

aﬁy(A B; t) g_l( aﬁy(g(A) g(B) g(t)))

n+q) (g(A))" (g(B))"
( )r(m+q/3+y) (g(t = nr))e by H(g(t—nr»)
ntq (gt = n))" B B gt - nr))
( )(g(A)) (¢(B)) DN )

5 [g((qq )) 0g™ ((5(4)") 08 ((2())")

q=0

M3

]
=]

=g'l(i

n=0 g

=0
n=0q=0 g

Il
®8 /—\

Il
=}

n

og ' ((g(t- )™ ) 0 g (H(g(t - 1)) 0 g7 (T(na+ g8 +)) ],

where H(-) : R — R is the Heaviside function appointed as follows

1, ift >0,
H(t) =
0, ift <0.

Theorem II.1 (Ref. 25, p. 254, Theorem 27)
Assume that g is the additive generator of the strict-pseudo-addition ® on [a,b], so that g is continuously differentiable on (a, b),0 <m -1 <

a <m,0< B <1ands e R Then, the g-Laplace transform of the pseudo-Hilfer pseudo-fractional derivative of order a is given by

2{" @@o+f(X)}=[g’l(S‘”)G>5~’€’3{f(96)}]erZEEO1 [ (P @ (R (g | 2.3)

I1l. EXPLICIT SOLUTIONS OF HOMOGENEOUS HILFER-TYPE PSEUDO-FRACTIONAL DIFFERENTIAL EQUATION

This section has demonstrated the explicit solution to the Hilfer-type pseudo-fractional differential equation system (3.1),

{H@me(t) Aoy(t)®Boy(t-1),te(0:T],7>0,
(3.1)
ea@o+)’(t) ¢(t),t € [-7,0].
wherem—-1<a<m0<p<l,y=(B-1)(m-a)+k+1,k=0,...,m—1.

Theorem III.1. A unique analytical solutiony € C"([-7, T], R) of the initial problem (3.1) has as shown below:

-1)(m-a)+k+1)

®EL, (A, Bst) © ¢ 1)@B@f ER®.(ABit—1-5) 0 ¢(s) ©ds.
[=7.min (t-7,0)]

m=2( _; t(ﬁ—l)(m—a)Jrk 7,0 (k)
y(t) = 6_9 (g (r((ﬁ ) @ (A ® B) © E(x:oc,(ﬁ—l)(m—a)+tx+k+l(A’B; t— T)) © (p()

Proof. Suppose that T = co. Assume that (1.5) has a unique m times continuously differentiable solution y and f are continuous and

exponentially bounded, and H;;’f;,o ..y is exponentially bounded on [0, 00), then Laplace transforms of them exist. We are going to receive an
integral representation of the solution to the linear homogeneous Hilfer-type pseudo-fractional differential equation.
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First of all, we are imposing the Laplace integral transform to both sides of (3.1) with the help of Theorem IL1,
e {Hglo 0 (0} (5) =7 [¢{e(Helonr®)} 0] =g [¢{"Di e (1) ]
- [l )0 - T (P ) o)
=0
- (et e’s [¢ (") o IR y(0)
—g (M or@e’s [P o],

CH (0] =g (0 ¥(9) 88 [¢7 (") o gf] (32)

where 28 {y(£)}(s) = Y(s).

¢ {Aoy()@Boy(t-1)}(s) =g (¢g(Aoy(t) @Boy(t-1)})
=g (2{g(A)g(r(1) +g(B)g(y(t - 1))}) =A@ L2(y(1)) @ Bo £2(y(t - 7))
=AGY(s)®Bo L(y(t-1)).

we get
’ ®{Aoy(t)@Boy(t-1)}(s)=A0Y(s) ®Bo L8(y(t - 1)) (3.3)

E(t=1))(s) =g (L(g(t=1))(5)).

and by using substitution of t — 7 = 6, we receive that

et-1)}) = [T gt-ne = [T g(0))e Vo= [T g(y(0))e a0
= [ aoone s+ [T grone@as] - [ g6 s
£TYOO)() = [ gt e+ (O (5).

On the other hand, due to the integral property of the pseudo-Riemann-Liouville-fraction, we obtain the following results. Let’s also note that
the initial condition of the issue we are reviewing is manifested in the following case:

Iaooy(t) =y(t) = y(1) = $(1),1 € [-7,0]

in there #(-) : R — R is the unit-step function, which it has defined as below:

S () if —7<t<0,
W)_{o ift > 0,

Therefore we get the following relations:
Ht-0}e) = [ gOlt-m)e e+ THgG(O)}(5) = [ 9@t =) dt+ e L)} (6),
y(t-1))(s) =g () 0 Y(s) ® L%($(t 1)) (s). (3:4)
By using the formula (3.2)-(3.4) we get the following results:
gl oevEe’s [P o] a0 v eBo g () 0 V() 8 ¢ {d(t-1)}()]
Afterward, we write the above relation in the following explicit form:

[¢' (s eAeBag ()]0 Y(s) = ’:é: [g‘1 (smIPrebokoly qs’g] ®Bo e®{§(t-1)}(s). (3.5)
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Then, we solve (3.5) with respect to Y(s),

pubs.aip.org/aip/jmp

v =['8! (¢ PN 0 40) 0o (i - D)) |0 [¢ (D e a0 Bog ()]

g [m BBkl 451 1 o(B)g(22((f - 7))(5))

-8 S —g(A) -g(B)e ™
T Y {0 st ) 8(B)
=\ 2 e me™ T g @t ) T gy —gBe

g(B)
s*-g(A)-g(B)e™

g(A) +g(B)e™ )*H n(-Prapk=to () N
s*-g(A)-g(B) )= s*-g(A)-g(B)e™"

(o
By relation (2.2), we h_ave
s~ g(A) - g(B)e™]
(=g E [ ~g(a) " (e(B)) )
[« - g(4) - g(B)e "] " = io [(5° - g(a) "D (g(B)ye"].

If we replace the expression (3.6) in the Y(s) formula obtained above, we get the following results:

Y(s) g{(z

k=0 k=0

—¢{g(@(t - T))})

o{g(g(t- T))}]-

T (g 1= (- g(a)) Te(B)e

m—2
g (g1) + ((4) +g(B)e) 2 s’““‘ﬁ”“ﬁ"‘”g(sbé”))

i [~ g(A) " (g(B))"e *“]+g<¢é’”‘”)s*mﬁ*“ﬁ§) [ - g(a) ™" (g(B))"e™"]

+8(B)¢{g(9[t - TD}(S)Z [ —g(A))“'“”(g(B))"e-W]}.

Imposing the inverse g-Laplace transform to the above result, we get

O ( [Z BBy (400 (o4 1 g(B)e™T) ST IRl o(s(0))

k=0

O (- g) (B o) S

- o) (=g e Jelgtdte- D) )

- g(4)) " (g(B)"e ]

(3.6)

Taking the inverse Laplace transform of the statement above and by using Lemma II.1, Lemma II.2 and time shift and convolution property

of the Laplace transform, we gain an explicit representation of solution for an initial issue (3.1)

m—2
y(t) Zg—l{g—llz: Sm(l—ﬁ)+aﬁ—k—lg(¢(()k))

k=0
+i qf (" . q)(g(A)) e ﬁ)((mq)f o)+t
+§; ; (n ;r q)(g(A))qH(g(B)) %gwgm&))
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(1-B)(m—a)—m+1 —snt

+i i ( ;q)( (A)) (g(B))an a(n+q+1) : g(‘pém_Z))
n=0 g=0 s
55 (1) S )

I R (g(é[r—ﬂ))(s)](r)}

y()=g" [z e ()

A q+1 B n —enr
agf-fq-#?)) (1 (/;g)gm )2)+1 € ((PO)

q)(g(A)1(g(B))"™'e™

) w(rrarD) - (1=B) (a1 8(90) -+

q

(8(A)™ (g(B))"e™

1 (m-2)
"‘("‘*"1‘*'1) (1-B) (m—a)+m— 18 (¢0 )

—SNT

n e e
(e @B s

n q)(g(A))q(g(B))”eﬂ"Tg (

m—1)
a(n+q+1)—p(a—m) (¢0 )

i N eWﬂ{g(«é[r—r])}<s>}(t>}.

Then we get the following result:

Ao ) m-2 t(l B)(m-a)—k ®
y(t) =g k; F((l—ﬁ)(m—rx)—k+1)g(¢° )

S 5 (" ey e T - (e o))

2 g (" q)(g(A))q(g(B))"“ r(if(; (+nq++11) )T )_a((n:qj;)((; ﬁ_)(:;i)l) H(t—(n+1)7)g(¢o) + -+
+n§) g (n ; q)(g(A))qH(g(B))n r(Ext(; Ernq++1l))r)_a((”l+q_+;)-(<;ﬁ_)(:)—i):nm:zl) H(t- (n+1)0)g(¢" )
55 (7 s A e o D)
S (") -t

; (t —nr— S)ot(n+q+l)—l

re) [ 5 5 (" 0o U - - 8- )

9 m-2 t(l B) (m—a)—k
y(t)—g( (F((l—/)’)(m—a)—k+1)+(g(A)+g(B))
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(t—(n+ 1)T)"‘("W“)*(l*ﬁ)(mfaﬂk
[a(n+q+1) - (1-p)(m-a) +k+1)

u (= nr)eCrrar)=pla=m-1 -
T(a(n+q+1)-pla- m))H(t_ nt)g(¢y )

o (t = (n+1)7 —g)errarD-1

w5 [T 5 571wy T H(t—(n+1>r—s)g(¢(s>)ds)

e
(Mg 108

”;q)(g(A))q(g(B»" )g(¢gk>>

+

(
O ( : q)(g(A))q(g(B))

s

3
Il
=}
=
I

. m-2 t(l B) (m—a)—k ®
=8 (};} (F((l 7[3)(14170() —k+ 1) + (g(A) +g(B))anca+(ﬁ 1)(m— a)+k+1(g(A) g(B) t_T)¢ )

Eraa (gAY g B 06" +g(B) [ Eraaa(),a(B)st -7 S)g(¢(s))ds)

o £(B=1) (m—a)+k o i ®
- k=0 g H ® (A ® B) © Eot,ot,(ﬂ—l)(m—zx)+a+k+1(A’ B;g (t - T)) ©) ¢0

N((E-D(m-a)+j+ 1)
@ET,GB (A B: -1 m—1 ® o
waa(A:Big (1)) © ¢ @B@f 4 EZ® . (A,Bg (¢t 5)) @ ¢(s) @ ds.
[-7min (t-7,0)]

We get
2 $(B=1) (m—a)+k ®
y(t) 630( (F((ﬂ—l)(m a)+k+1))®(A®B)®Eazx([j‘ 1) (m— tx)+zx+k+1(ABg (t_T)))®¢ ®
®
Ex2.(4,Bg (1) @ " 1>@B@f[ o EX® (ABig ' (t-7-5)) © ¢(s) © ds. (.7)
—71,min (t—1,0

If we take t > 7 then,

(&) [&]
f[ ; EX® (A,Big™ (t—'r—s))@(/)(s)@ds—[[ . EX® (ABig ' (t-7-5)) @ ¢(s) @ ds. (3.8)
—T,t— 7,0
If we take t < 7 then,
(&) (&3]
f ; EX® (A Big (1 -1 7s))®¢(s)®ds—/[ ] EX® (ABig ' (t-7-5)) @ ¢(s) @ ds. (3.9)
—T,t— Tt—T
By using (3.8) and (3.9) we will get following result:
(&3] (&)
f E?® (A, Big™ (thfs))G(p(s)@ds—[ EX® (ABig ' (t-7-5)) ® ¢(s) © ds. (3.10)
[-7t-1] [=7.min (t-7,0)]
(]

IV. INTEGRAL REPRESENTATION OF SOLUTION TO LINEAR INHOMOGENEOUS HILFER-TYPE
PSEUDO-FRACTIONAL TIME DELAY DIFFERENTIAL EQUATIONS

In this part, by imposing the classical manners to solve (1.5), we will obtain the explicit formula for the solutions of linear inhomogeneous
fractional Hilfer-type pseudo-fractional differential equations with invariable coefficients and time delay.
Let us examine the following two Hilfer-type pseudo-FDDEs with constant coefficients:

G£:90:€) ¥20Z Aen GL

{ HYE L y(t)=Aey(t)@Boy(t-1)e f(t).te (0;T],7 >0, @)
®®0+)’(t) 0,t € [-7,0]
and
{Hgﬁ®0+y(t) —Aoy(t)®Boy(t-1),te (0;T],7>0, 2
€B®0+)’(t) ¢(t).t € [-7,0],
wherem—-1<a<m,0<B<1l,y=(B-1)(m-a)+k+1,k=0,...,m—1.
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The following lemma plays an important role in the proof of the subsequent theorem, which can be obtained from classical ways about
the solution of the system (1.5).

Lemma IV.1. If y, and y, are the solutions systems (4.1) and (4.2), respectively, then y(t) = y, @y, is the general solution of system (1.5).

Mention that the solution y, of (4.2) is investigated in paragraph IIL In other words, to reach our goal, we need to find y, which is a
particular solution of (1.5).

LemmaIV.2. Assumem —1<a <m,0< <1 form>2. Then, we have the following relation:

(t S)(l B)(m—a)— l(s n)lrx+po¢+a—1ds _ (t7 Ir— n)m—ﬁ(m—a)+lo¢+pa—23((1 7ﬂ)(m _ a), (l+ 1)(X +P0‘)~

N+l
Proof. To prove the lemma, we use the definition of the Beta function and substitution of u =

(t )(l—ﬁ)(m—a)—l(s_ Ir— rl)ltxﬂmﬂx—lds

N+t
1
= (t _Ir- ”)m_ﬁ(m_“)'*l“‘*‘l’“_zf u(l—ﬁ)(m—“)—l(l _ u)loc+tx—ldu
0

= (t—Ip— )" POm= a2 (1 _ By (m = a), (1+ 1) + pa).

we obtain

We denote the following theorem for the particular solution of Eq. (1.5).

Theorem IV.1. A solution j € C"([0,T],R) of (1.5) holding zero initial conditions 7(t) = 0, t € [-7,0), 7 (0) =0, 0 < k < m — 1 has
the following form:

y(t):f[:j E® (A Bg (t=5)) @ f(s) ods, t>0. (43)

Proof. Using the method of variation of constants, any solution j of the the inhomogeneous system must be provided in the following
shape:

(1) = f[ B (ABig (t=5) 0 h(s) ods, >0, (4.4)
where h(s), 0 <'s < t is a sought vector function and y(0) = 0,
50 = [ BB (1=5) 0 () @ds =g [ Eraalg(A).g(B)s 1= )g(h()ks )
Hefo0 3(0) = ¢ (DfeG(0)) =87 ("D3( [ Braale(a)-g(B)s - 9)g(h(s))is )
"D3Le(3(1)) = "D [ Braalg(4).8(B)s1 - )g(h(s))as )
- Iﬁ('"‘”d—fqﬂ“ﬁ)""‘”( [ Braa(a(a). (Bt~ )g(h(s))as

d
S ( [ =900t [ (g(a), g(B)s—ﬂ)g(h(n))dﬂdS)

F((l—ﬂ)(m «))

:zﬁw-w(m O [ [ PO (a(4),g(B)ss - ﬂ)g(h(ﬂ))dﬂdS)

_ m—a) 1-B)(m—a)—1 e
I ey a9 o), gk s

O sy i ([ =90 g (s~ )

_ yB(m—a) 1 d” g (=B) (m-a)-1 nra
= (1"((1—[3)(111—0c))d1"”/0 g(h(ﬂ))(fn (t-5s) p nz;);)( )(g(A))q(g(B))

I(qo + na + oc) =0 420

(s—nt—n)H(s— 11) _ B(m—a) & (n+q
)dn) ’ (r((l_ﬁ)(m 2 =" ewremy
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ﬂft (t —nr— n)m—/i(m—oc)+not+qot—2H(t —nr—

1)
T((n+ D+ qa) g(h(m)dnB((1 =~ F)(m ~a), (n+ 1>a+qa>)

m—ﬂ(m—tx)+na+qa—2H(t —nr— ’7)

_Bm-a)[ > = [+ 1 nd” ot (t-nt-n)
- (ZMZ_%( q )(g(A))q(g(B)) dT’”fo I(m—p(m—a)+na+qa-1) g(h(n))dq)'

On the other hand, F("~%) ;Tr:, (f(®) = CDﬂ (ockm) f(t), and according to the formula between Riemann-Luovile and Caputo fractional
derivatives, we have

o “>d £(8) = DR g1y = Rpfeem £y @), is0

i T(k-pBla+m))

With the help of the following binomial identity:

(n+q)=(n+q—1)+(n+q—l)) nas1,
q q q-1

and imposing the Leibniz rule for higher-order derivatives (Huseynov et al., 2021,” see Theorem 3.2), we achieve

Mg (3(1)) = P L (Z > (“q)(g(A)) (g(B)"

n=0 g=0

t (t —nr - n)mfﬁ(mfzx)Jrnquoc—ZH(t - ’1)
§ /0 T(m—B(m—a) +na+qga—1) g(h(n))dn)

" nr— m—P(m—a)+na+pa—2 —nr—
- e "“*’"(ZZ( I [CONEE e ’”g(h(n))dn)

I'(m-p(m-a)+na+pa—1)

n=0 g=0
(= )" PO H (e )
e o et

oo oo n+q_ ; an ¢ (t—lT—ﬂ)m_ﬁ(m_a)+na+qa_2H(t—HT—I’])
S (M ey [ D

oo oo (4, am ¢ —nr— m—p(m—a)+na+qa—2 —n7—
ST ety g [ S

—nr— 71)0:/3+na+qa—2H(t —nr— ’1)
I'(af +na+qa—1)

T COIESWS (‘1 1)(g(A))q(g(B>>" [ £(h(m))dn
n=1 q=0 q 0

S n o\ ep+natqa—2 _ _
+ZZ( ;q )(g(A)) (¢(B))" f (t=nv rgﬂ+mq+qf£t1)m 1 o(h(n))dy

nrT — n)“ﬁ+”“+q“_2H(t -(n+1)t-1n)

s+ 3 3 ("1 [T DI sy

nr — rl)txﬂ+mx+(q+l)a—2H(t_ nr— ’7)

By +1 a (-
5 z( e ey = gty

= 8(h(1)) +8(4) [ Eruapeas(@(A).2(B);t = 1)g(h () +g(B) [ Ebaapias (8(4).8(B): = 7~ m)g(h(m)d

0. 7(0) =87 (D G(0)) =87 (8(h(1)) +8(A) [ Biapras (@A) (B)st = n)g(hn))ebn
+ 8(B) [ Eruapras(8(4).g(B)it = 7= 1)g(h(n)dn) = A ® 3(1) ® Byt~ 1) @ h() = A ©7(1) @ By(t - 1) © f(2).

Therefore, we obtain that h(t) = f(t) for t € [0, T]. ]

G£:90:€) ¥20Z Aen GL
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Eventually, we obtain the next theorem for the unique analytical solution of the Cauchy problem (1.5).

Theorem IV.2. A unique analytical solution y € C"([-1, T],R) of the initial issue (1.1) has the following form:
m-2( t(ﬁ—l)(m—a)+k

)= &

=9 (g (r((/s- D(m—a) +k+1)

OEL®, (A, B¢ (1) @ g\ ”@B@/ EX® (ABig ' (t—7—5)) © ¢(s) @ ds

[=7,min (t-7,0)]

®
eaf[] EZ® (AB;g ' (t-s)) 0 f(s)@ds, t>0.
0t

k
)ea (A®B) QEaa(ﬁ 1)(m— a)+a+k+1(A B; g (t—T))) ®¢( :

Proof. The proof of the theorem is immediate. Therefore, we pass above it. O

V. EXISTENCE AND UNIQUENESS PROBLEM FOR NONLINEAR TIME RETARDED HILFER-TYPE
PSEUDO-FRACTIONAL DIFFERENTIAL EQUATIONS

In the following section, we will look at the initial issue of a nonlinear Hilfer-type pseudo-fractional differential equation with constant
delay.

{H“’aoJ(t) =Aoy(t)®Boy(t-1)® f(ty(t)),t € (0:T],7 >0, -

Iy ¥(t) = $(1),t € [-7,0]
Where m—1<a<m, 0<f<1,y(-)€R, f(-¥(-)) : [0,00) x R > R is a nonlinear perturbation and also a continuous function. And we

will also suppose that (t - f(¢,0)) € C([0,00),R). Then, according to Theorem IV.2, we obtain the solution of the nonlinear Hilfer-type
pseudo-FDE (5.1) as follows:

t(ﬂ 1)(m-a)+k . ®
y(t) 0( (F((/3 1)(m_(x)+k+1))®(A®B)®Eaa(ﬁ 1)(m— a)+u+k+1(ABg (t T)))®¢

®E;® . (A,B;g ' (1)) @(;55'” YeBo f o] EZ2 (ABig ' (t—1-5)) 0 ¢(s) @ ds
7,min (f—7,0

®
@f[ ] ES® (ABig  (t-5)) @ f(sy(s)) @ds, t>0.
ot
First of all, we denote the following lemmas and notes: For x(-) : [a,b] — R+, we will define the norm of the function as follows:

lx(D)llg =g (lg(x(D))])-

Lemma V.1 (Ref. 5, page 12, Lemma 5.1). The following estimation satisfies true:
|Ef o pank (A B )] < 71 exp (JAJ" + B¢ F). (5.2)
fork=0,1,...,m-1

Corollary V.1 (Ref. 5, page 12, Corollary 5.1)
For m > 2, the following conclusion satisfies:

|Egampom (4, Bs1)| < "™ exp (JAJL* + |BE*™P). (5.3)

Analogously, we will get the following results for pseudo-Mittag-Leffler functions.

Lemma V.2. Assume a generator g : [a,b] — [0, 00] and A, B € R. For following delayed pseudo-Mittag-Leffler function estimation holds

G£:90:€) ¥20Z Aen GL

true:
-1 -1 k-1 -1 _
ELS gk (ABig  (0)]g <g ' () @ g7 (exp (A" + [B|t*F)). (5.4)
fork=0,1,...,m-1.
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Proof.

e gk (ABig ()l =87 (8(1ES pari (A Big ™ (1))]))
=8 ([Eaapare(2(A).g(B) D)) <7 (¢ exp (lg(A) e + lg(B)* ™))
<g ' (") o7 (exp (Al + Bl )).

[m]
Then, we can denote analogously following the corollary.
Corollary V.2. Let a generator g : [a,b] — [0,00] and A, B € R. For m > 2, the following inequality holds:
B2 (A Big ™ ()l <87 () 07" (exp (Al + Bt ) ). (55)
Theorem V.1. Assume that the following hypothesizes are true:
(H1)f:[0,T]xR—R be a continuous function:
(Hz)there exist C>0 such that f holds the Lipschitz condition:
F(69) 0 F(ta)l < Colyode V(ty)(to)c[0.T] xR (56)
Then, the problem (5.1) has a unique global continuous solution on [0, T].
Proof. Assume that a ball be appointed as Bg := y € C([0, T],R) : ||yl < R, w > 0 where R > 0 with
Rz [WolgPleg (1) osolg" Vyesog (I(a) o Blo [¢leeD]o (¢ (0" eSog  (T(a) 0 C),  (57)
where
m=2f (-1 (m=e)+k 1 (B-1) (m—c) +atk
W = Al® B T S
k?o(g (F((ﬁ—l)(m—a)+k+l) @ (AleB) og”'( )e

D= max (1£(1,0); © exp ()5 = exp (g(4) + g (B))T).

Now, we set an integral operator F on Bg as below:
F:C([0,T],R)oBr3y— F(y) :=(t > (Fy)(t)) € C([0, T],R),
through the following formula:
t(ﬁ—l)(m—ot)+k
I((f-1)(m—a)+k+1)
T,® -1 (m-1) ® T,® -1
OF uu(A,Big (1)) @ ¢y ®Bo Epna(ABig (t—7-5)) @ ¢(s) ©ds

[-7.min (t-7,0)]

®
eaf[ ]E;;gio,(A,B;g—l(t—s))@f(s,y(s))@ds, te[0,T].
0,t

m-2 — T, — k
CORal| XD LT R L

We can establish that operator F is well-defined based on condition (H;), and thus, the existence of a solution to the initial issue (5.1) is
equivalent to the existence of a fixed point for the integral operator F on the set Bg. To prove the uniqueness of the fixed point, we will apply
the contraction mapping principle. However, instead of using the maximum norm C([0, T], R), which only yields a local solution within the
subinterval [0, T], we will consider equipping C([0, T], R) with the weighted maximum norm | - || with respect to the exponential function,
defined as

e = trer[lg);]{ly(t)\g @exp (wt)},Vy e C([0,T],R).

Since two norms | - ||eo and | - | are equivalent, C([0, T], R, | - ||») is also a Banach space. The proof is separated into two parts.

G£:90:€) ¥20Z Aen GL
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Step 1: We prove that F(Bg) c Bg. In this part, we look at the following estimation:

gDl \ _ 1 [(Pe(»)) (D]
)< (steaten)

|(B)(8)]g @ exp () =g ( g(exp (wt)) g(exp (wt)) [

First of all, we denote the following notes for use in the process of proof:

m—=2

[(B-1) (m-a)+k
EONO =2 (om0 155D

Eraae(A) 2B 00 <8 (B) [T Eraa(A) (Bt - - )g(p(5))es
+ [ Biaa(8(A),g(B) £~ )g(f (539t € [0.T],

Then, we will get

IF(g())(®)] _ L (FD g(6) + g(A)| +1g(B)|
glexp (wt)) ~ glexp (wt)) i T((B-1)(m—a)+k+1) g(exp (wi))

+(2(A) + 8(B))Eb (5 1) (mayraskr1 (§(A).g(B)s t — r))gwé”)

m=2 . ot (k) I ) (m-1)
+k§0 B (8-1) (m—ct) +arkr1 (8(A) g (B)s t = 7) g5 )| + (o (wt))\ Eiaa(g(A),g(B)st)|g(¢s" )]
g(B)| 0 Y .
o B BB - (909
1 to
¥ 2exp (b)) fo |Eawa(g(A).g(B)st = 5)[g(f(5¥(s))) —&(f(s0))| + [g(f (5,0))lds

mz—:z t(ﬁ—l)(m—tx)+k
<
i T(B-1)(m-a)+k+1

) g(o$)+ (g(A)] + |g<B>|)’:2 |E (5 1) (may sk (§(A), €(B)s t = 7) g (98]

1 T . (m-1 |g(B)| 0 .
+m|Eaaa(g(A)’g(B)’t)”g(% ))|+Wf |Eaaa(g(A),g(B)it =7~ 5)|g(¢(s)| ds
m[ |Eaaa(g(A).g(B)st —s)[g(f(s:5(s))) - g(f(s0))| + |g(f (5,0))lds
m-2 t(ﬁ 1) (m—a)+k

IR (e wwary LGRSOV |g<B)|>z B -1y -y sarke1 (§(A4), g (B)s = 7) g (9]

(5.8)

L PN <0.)] e
+g(exp (wt))|E0¢,0¢,0¢(g(A)’g(B)’t)”g(¢0 )| g(exp (wt))f |Eaaa(g(A) g(B) t )| (eXp (wS))‘g(gb( )|d
_ [ b= ) e (s, 9())) — e F(5.0))8LEXP(@9))
o @) Jo Eras(8() 8B lg(f (5y(5)) s (OE CE s

. | glexp (@9)) |
[ IEaae ()8 (B =) le(F (s OIS T s

By using from this formula and (5.8) we obtain

— (1) (m-a) k ©
Ok e @) <8¢ (i ks ) 4

- k
e(aleB)o’® |Em<ﬁ Dmeayrarkes (A Bg T (=) © 9
®|EL2, (A, B; g‘1<t)>|g o [¢" ™ @ exp (wt)

®|B| @ exp (wt) © / IE5® (A, B;g ' (t—17-5))|; © exp (ws) © |¢(s)]g @ exp (ws) ® ds
f |Eaaa(A,B;g (t - @|f(sy(s)) © f(5.0)|g © exp (ws) @ exp (ws) © ds @ exp (wt)

o [ (A g™ (=)l 0 1f (5.0) @ exp (ws) @ exp (ws) 0 ds
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Now take Vt € [0, T] and Vy € Br. By using (H,) by means of Lemma V.2, we receive
t(ﬂ—l)(m—at)+k

(k)
T((B-1)(m-a)+k+ 1))®|¢0 le

m=2 _ —1) (m—a)+a+k - o k
oAl B) o 'e ¢~ ((t- )PP ) 067! ((exp (1A] +1B)(t - 1)) 01457l

(E (Dl @ exp () < Eg’l(

og ' (") @ g ((exp (JA| + [BN) @ (9" "¢ @ exp (wt)

e a-1 -1 a
®|B| @ exp (wt) ® f[_no]g ((t ) ) og ((exp (JA] + B))(t—7-35)") ®@exp (ws) ® |p(s)|g @ exp (ws) © ds
GB/[:: g_l((t - s)“_l) @g_l((exp (JA]+|B)(t-$)") @ Coly(s)l @ exp (ws) @ exp (ws) @ ds @ exp (wt)
@f[of] gil((t - S)DH) @gil((exp(|A\ +|B)(t-9)%) @ | (s,0)|g @ exp (ws) © exp (ws) © ds.

Using the substitution r — s = u and Lipschitz condition (H;), we get

m—2 t(ﬁ—l)(m—a)+k ®
Ok oesp@) <8¢ (i) 4

a(4/®[B) 0 g (14700 ) 0 g7 (exp (4] + B)E) © |4
eg (1) o g " ((exp (JA| + |B)1*) © [¢{" "l @ exp (wt)
(&)
®|B| @ exp (wt) © /[—ro] g_l((t —T- s)“_l) O |¢(s)]g @ exp (ws) © exp (ws) © ds (Dg_l((exp (JA] + 1B (£)Y)

©C 0 exp (wf) © [(:: g (1= 9)"") 0 ly(s)s © exp (ws) @ exp (ws) © ds © g~ ((exp (JA] + B)) (1))

® a-1 -1 «
@[O’t]g ((t -s) ) O 1f(5,0)|; @ exp (ws) © exp (ws) ©ds O g ((exp(|A\ +[B])()%) @ exp (wt)

m-2 T(ﬁ—l)(m—ot)+k
<58 (r((/;— D(m—a)+k+1)

og ' ((exp (JA| +BNT*) @ ¢, @ ¢ () @ g~ ((exp (|A] + BN T®) @ ¢{" "

®|B| @ exp (wt) © f[oi] g ((t=9)"") @exp (w(s = 1)) © ds © maxeqo,r){|$(1)g @ exp (wt)} @ ¢ ((exp (|A] + [B)(T)")

k m-2 _ —1)(m-a)+a+k
oo (a8 o5 g ! (19D

® 1 a—1 -1 o
®Coexp(wt) ® ./[o,z] g ((t -s) ) Oexp(ws) ©ds® trer[l(;)i))T(]{|y(t)|g oexp(wt)}og ((exp (JA]+ [BD(T)®)

o [ & (1= ") @ exp (w9 @.ds© max {1 (50) @ exp (1)} 0¢” ((exp (4] +[B)(1)*) @ exp (wt)
T(B-1) (=) +k
I((B-1)(m-a)+k+1)
osolglkog (1) oS |4" ;@ |BloSoexp (vr) 0 f[] g ((t=9)"") o exp (ws) 0ds 0 ¢

m-2 _ k m-2 _ —1)(m-a)+a
B0k oepe) <5 o6l e ala 8 o5 ¢ ! (10

® ®
®CoSoexp(wt)® g ((t-9)"") oexp(ws) @dso |yl ®D e S @ exp (wt)f[ ]gfl((t -5)"") @ exp (ws) © ds
o

(0]
m2( TB-Dm-a)+k 1 (B=1) (m—a) +a+k ®)
= Al @ |B T N
k?o(g (F((ﬂ—l)(m—tx)+k+l) ®(| ‘®| ‘)Qg ( )® ®|¢0 ‘g

®
@gil(TDH) [oRNJO) |¢ém_1)\g ®|Bl© Soexp (wt) ® f[ ]gfl(u'x*l) © exp (wt) ® exp (—wu) ©® du © ||¢]|lo
0.t

®
®CoSoexp(wt)o® [ ]g_l(u“_l) O exp (wt) @exp (~wu) © du o |y]w
0t
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®
®DoSoexp (wt)f[ ]gfl(uafl)Gexp (wt) @ exp (~wu) @ du
0f
k - a— m— ® a—
-wolleg () oso " Vyelpose [ ()0 (-ow 0 duo |l
® =1/ a—1 @ -1/ a-1
®CoSoe : ]g (1) oexp(-wu) ©duo |yl,®DoS : ]g (u"") @ exp (~wu) © du
0 0f

k - a— m— - o ® - a—
-wolp log (1" esely" kelblesog (@ | (") oep (- odvol4l

-1 a @ -1/ a-1 -1/ « @ =1/ a1
oCoSog (0)o0 g (v oeep(-v)odve|ylseDoSog ' (w*) : ]g (V) oexp(-v)odv
0,wt

[0,wt]
®
=Wo |¢(§k) Leg (T Hoese \gbgm_l)Lg ®S @gil(w“)/[o u (V) oexp(-v)ody
o(lBle[¢l.eCo lyl.® D)
®
<Wo |¢(§k) Leg (Tr"Hoese \(/)(()m_l)Lg &S @gil(w“)/[o w]gfl(vafl) ©exp(-v) ®@dv
k - o— m—
o (Blo|¢l.®Co oo D)=Wols log (") o504
®8¢ (I(a) @g  (¢") @ (1Blo ¢|o® Co [y|o® D)
k - a— m— . — - o
swolpeg (T esoly" e si™ (I(«) g™ (v) @ (Bje [¢l.® CoRo D).
Taking the maximum over [0, T] and using inequality (5.6), we obtain the following relation:
|Fylo <R

For this reason, F : Bg — Br. In other words, F is well-defined on Bg.
Step 2. In this step, we will represent that F is a contractive mapping. We should demonstrate that F is a contraction over Bg. To see this,
let Vy, 0 € Br. Mention that

(Fy)(t)e(Fa)(t):/[(j E® (ABig  (t-5)) 0 (f(s,9(s)) © f(s,0(s)) @ ds, >0, (5.9)

Thus, for any ¢ € [0, T], from Lemma V.2 and (H)-Lipschitz condition, it follows that

|(Fg(»)) () - (Fg(ff))(t)l)
g(exp (wt))

()08 (Fo) (0 2 exp ()57
-1 1 to

<6 oy . Eomse() 81 e (5 39)) -6 (09
1 1 ® -1

- oy ) © S S4B -9 0 () © (s 0 0

<(Coexp ((|Al +|B)t" ))@exp(wt)@f (t D 1)@|y(s)ea(s)|g®exp(a)s)(Dexp(a)s)@als

< (Coexp ((|A|+|B))t")) @ exp (wt) © [[] g ((t=9"") @ exp (ws) 0 ds © max {ly(1) - o(1)|; @ exp (1)}

® 1 a-1
:(C@exp((|A|+|B|)t°‘))®exp(wt)®.[[0)t]g_ ((t=s)"") o exp(ws) @ds® |y - oo

®
= (Coexp ((JA] +|B)t")) @ exp (wt) ® ‘/[- ]g_l(u“_l) O exp (wt) ®exp (—wu) ©du o |y - oo
ot

(&)
=Coexp((JA|+[B)tY) @ : ]g‘l(u“‘l)@exp(—wu)@du@||y—a||w
0,t

— o ® — a—
= (Coexp((JA] +B)*) g (@ )of[m]g " oeexp(-v)odve |y-ol.

- o ® - a—
<(Coep((al+ B og W) o [~ ¢ (") e () odvo ly ol
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=exp ((JAl+[B)r) 0 Cog ' (T(a) og ' (0*) @ [y~ ala
<exp((|A|+[B)T*) 0 Cog ' (T(a) @ (@) @y~ =S0Cog  (T(«) 0g (&) @ [y~ 0]a
Then, we get
(Fy)(1) © (Fo) (1) o exp (wt) < S@Cog ™ (T(a) @ () © [y~ 0w
Taking maximum on [0, T'], we will get the following conclusion:
IF(») & F(o)|o <S©Cog  (N(a) @8 (&) © |y = oo (5.10)
If we choose w > (S®@ Co g ' (T(a)) @ g™" (w“))i, then F is a contraction. Thus, by Banach’s fixed point theorem, there exists a unique

fixed point of F which is just the unique global continuous solution of (5.1).

]

Remark V.1. If the assumptions (H1) and (H,) are satisfied for all t € [0, 00), then the claim of this theorem holds on the half-real line R,
i.e,. for any (m — 1)-times continuously differentiable initial data ¢ : [-7,0] — R, the non-linear Hilfer-type pseudo-fractional order differential
equation with a constant delay (5.1) has a unique global continuous solution on [0, o).

VI. ULAM-HYERS STABILITY ANALYSIS ON HILFER-TYPE PSEUDO-FRACTIONAL DIFFERENTIAL EQUATION WITH
A CONSTANT DELAY

In the following part, we debate the stability of the Hilfer-type pseudo-fractional DDE (5.1) in the Ulam-Hyers sense on [0, T'].
Suppose that ¢ > 0. Let us imagine the Hilfer-type pseudo-fractional delay differential equation (5.1) and the initial issue for the following
inequality:
|H@®0+a(t) 0Aod(t)oBod(t-1)0 f(t,a(t))g<e for te[0,T] (6.1)

Definition VL1. Equation (6.1) is Ulam-Hyers stable if there is 6 > 0 such that for every € > 0 and for every solution o € C([0,T],R) of
inequality (6.1), there is a solution y € C([0, T],R) of Eq. (5.1) that holds the inequality due to a weighted norm:
lyeole<e®6, te[0,T] (6.2)

Remark VI.1. A function o € C([0, T],R) is a solution of the inequality (6.1) if and only if there is a function f € C([0, T], R) which fulfills
the following conditions:

M [fOg<s
@ HY o(t)eAeda(t)yoBaa(t-1)0 f(ta(t)) = f(t),t € [0,T].

Due to the Remark V1.1, the solution of following equation:

HY o()eAoa(t)eBaa(t—1) = f(to(t)) @ f(t).t € [0,T] (6.3)
can be demonstrated by
o2 HB-1) =)k o . ®
o= (¢ (T 1) ® A OB O E s s (g (11 0
SELS (4B () od" Vebo [T ES(ABg (1-7-) 04 od

GB/[.(:] ,x,m(A Bg_l(t—s)) o f(s,0(s)) @dsa /[. q mm(A Bg_l(t—s)) o f(s)@ds
(o)W ® [* BB (-0 s 0ds 1<[0.1],

To use Lemma V.2, the difference o(t) © (F(z))(t) can be evaluated as follows:

® 1 -1
008 (POl = | [ Bt g™ (=) 0 S () 0dsl < [ [Fi2a(aBig (1= 9)ls 0 (o) 0 s
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@
<eog (N og  (exp((JA]+|B)tY)) @ /[0 : ds<eog ' (T*)og '(exp ((|A| + |B))T)) =0 g (T*) S (6.4)

Finally, with constant delay, we are ready to assert and prove the Ulam-Hyers stability result for Hilfer-type pseudo-FDE.

Theorem VI.1. Suppose that (Hy and H») are satisfied. Then the Eq. (5.1) is Ulam-Hyers stable on [0, T].

Proof. Assume that o € C[0, T],R is a solution of the inequality (6.1). Let y be a unique solution of the Cauchy problem for Hilfer-type
pseudo-fractional DDE (5.1), that is

m—2 ) t(ﬁ—l)(m—ot)Jrk ® ) ®
- - A®B)OE" ABg (t -
yn=g (g (F((ﬁ—l)(m—tx)+k+1))@( ® B) © Eqg,(p-1)(m-a) rasksr (A Big (¢ T)))G‘/’o
@
oE2 (ABg ' (1) o¢" VeBo f[ -~ ER®.(ABig  (t—1-5)) @ ¢(s) @ds
—71,min (t—1,0

@/[‘:: Ex® (AB;g '(t-5)) @ f(s,0(s)) @ds:= (Fy)(t), te[0,T]. (6.5)

By using estimation (5.9) and (6.5), we obtain
@ —
M1 S o0l oexp (@) = ()1 © (F)(D) 6 [ Exu(ABig” (1-9) @ 1) 0 dly 0 exp (1)

® 1
<IEN@ @ (PO oexp W ® [ EEu(ABg™ (-9 0If (9 0ds

<Cog ' (I(a) @exp ((JA|+|B)T*) 0g (@) @ |y —olu®e0g ' (T) @ g ' (exp ((|A] + |B))T%))
=S0Cog '(I(a)og ' (@)o|y-cleecog (TY) oS
We take maximum on [0, T'], then we obtain
ly-olo<SoLog (N(a) og (¢*) 0 ly-olu@eog (T @S
that gives that

ly-olos<eo (g (T 0o (16s0Cog  (I(@) 0g (o).
By choosingw > (g(S@Co g™ (1"(0())))i which implies that
ly-olo<eo8 (6.6)

where
6:= (g (TYeSo(1eSeoCog ' (T(a) g (o).

VII. AN EXAMPLE

In this section, we present an example validating the major theoretical results stated in Secs. V and VI. The existence, uniqueness, and
stability analysis of solutions in this example rely on the application of Theorem VI.1.
Consider the Hilfer pseudo-fractional differential equation with a constant delay, given by

{Hé;*eﬁay(t) -30y 070yt~ 0 XD (02 o

Il oy(t) =t+5, te[-2,0],

where « =1.4,§=05m=2,7=2,T=2,A=3,B=7,and ¢(t) = t + 5. The function ¢(¢) is continuously differentiable for ¢ € [-2,0] and
the nonlinear perturbation f(t) = % is continuous on [-2,0] x R. Let g(¢) = 2¢ + 1 for all t € R be a monotone and continuous function,

with its inverse g ' () = 5. We have ¢, = 5 and ¢; = 1.
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75 Solution of the Hilfer-type pseudo-fractional delay differential equation
. T T T T T T T T T

6.5 L 4
|

y@®

55 T i

FIG. 1. Solution of the Eq. (7.1) within the interval [0, 2].

The parameter y is defined as (8 — 1)(m — a) + k+ 1, where k = 0,...,m — 1. Substituting a = 1.4, 8 = 0.5, and m = 2 into the expression
for y, we obtain y = k + 0.7, where k takes the values 0 and 1. Since y(0) = 5 and y'(0) = 1, the exact analytical representation of the solution
of (7.1) can be represented as follows:

§(1) = (g(r(t(Tﬂ) ©(307) 0% 101 (37ig" (t—z)))

@ —_
€9E1.4,1‘4,1.4(3 78 ‘() op @70 /[_2 min (-20)] E%ff1.4,1A4(3’7§g H(t-2-s))0 ¢(s) @ ds

cos (y(S))

241

o EfiunsGrig =90

It is clear that, by using the above basic pseudo-operations and conditions, we can simplify the exact solution of (7.1). Such that we will
obtain the following result for the solution of the Hilfer pseudo-fractional delay differential equation, which is equivalent to the exact solution,
so that it can express pseudo-operations.

—0.3

ar(07) © o2 A

min (1-2,0)
* f Ei41414(7,15 (-2 75))(155 + %)ds

2

/ E1.4,1‘4,144(7 15; (t - S))(cos(y(s)) )ds

It is not difficult to see that condition H(2) holds. By mean value theorem, for any y, z € R, there exists & € (y,z) such that

E%.4,1.4,1‘4(7, 15;¢)

y(t) =

If(ty)e f(t2)lg <lyez,

The statement H(2) is valid with C being equivalent to 1, as per Theorem (VI.1) and Eq. (5.1). This implies that the Hilfer pseudo-fractional
differential equation with a constant delay, as given in Eq. (7.1), has a single solution that is stable in the Ulam-Hyers sense over the interval
[0,2]. Finally, we will give the graphical representation of the solution set for Eq. (7.1) within the interval [0, 2] in Fig. 1.
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