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A B S T R A C T

This study presents an innovative approach to enhancing the performance of perovskite solar cells through the 
integration of a functionally graded triply periodic minimal surface (FG-TPMS) layer. The research focuses on the 
mechanical and vibrational characteristics of doubly curved panels embedded with three distinct iterations of the 
FG-TPMS model: the primitive, gyroid, and wrapped package graph (IWP). By employing higher-order shear 
deformation theory (HSDT), the analysis accounts for the complex geometrical and material gradations within 
the FG-TPMS structures. An advanced analytical method utilizing trigonometric functions is developed to 
accurately predict the natural frequencies and mode shapes of these novel composite structures. In order to assess 
the vibrations of TPMS-reinforced perovskite solar cells surrounded by an elastic foundation, this work proposes 
the implementation of a novel Support Vector Machine (SVM)-deep neural network (DNN)-Genetic Algorithm 
(GA) employing mathematical modeling datasets. Using the SVM-DNN-GA algorithm, predicted accuracy is 
improved. In order to simulate and forecast the vibrational behavior of the reinforced solar cells, the integrated 
methodology makes use of the advantages of each technique. The results indicate that the integration of FG- 
TPMS layers significantly enhances the mechanical stability of the perovskite solar cells. The application of 
HSDT reveals detailed insights into the dynamic responses of the doubly curved panels, highlighting the potential 
for fine-tuning their vibrational characteristics to further improve solar cell performance. This research un-
derscores the potential of FG-TPMS structures in advancing solar cell technology, providing a foundation for 
future studies to explore the integration of complex geometries and material gradations in photovoltaic 
applications.

1. Introduction

Functionally graded triply periodic minimal surfaces (FG-TPMS) 
play a crucial role in engineering applications due to their unique 
structural and material properties [1]. These structures combine the 
benefits of functionally graded materials (FGMs) with the inherent ad-
vantages of minimal surface geometries, resulting in optimized perfor-
mance across various applications [2]. FG-TPMS structures exhibit 
superior mechanical properties such as high strength-to-weight ratios, 
making them ideal for lightweight yet robust components in aerospace 
and automotive industries [3]. The complex geometry of FG-TPMS en-
sures optimal stress distribution, reducing the likelihood of material 
failure under load and enhancing the durability of engineering 

components [4]. Their intricate structures are excellent for energy ab-
sorption, making them suitable for impact-resistant applications, 
including protective gear and crash-worthy structures. FG-TPMS mate-
rials can be designed to have tailored thermal conductivity, providing 
efficient heat dissipation in electronics and heat exchangers [5]. They 
also offer excellent acoustic properties, useful in noise reduction appli-
cations. The ability to customize the material gradation within FG-TPMS 
allows for targeted performance enhancements, catering to specific en-
gineering needs. In biomedical engineering, FG-TPMS structures are 
used to create implants and prosthetics that mimic the mechanical 
properties of natural bone [6]. The interconnected porosity of these 
structures supports cell growth and nutrient transport, promoting better 
integration with biological tissues. In civil engineering, FG-TPMS can be 
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used to design lightweight, strong, and durable construction materials. 
The high surface area-to-volume ratio of FG-TPMS is beneficial for 
catalysis and filtration applications [7]. Additive manufacturing tech-
niques facilitate the production of complex FG-TPMS structures, 
allowing for precise control over their geometry and material compo-
sition [8]. This capability opens up new possibilities for innovative 
design and material optimization in various engineering fields [9]. 
Finally, the versatility and adaptability of FG-TPMS structures make 
them a promising solution for addressing the ever-evolving challenges in 
modern engineering [10].

Perovskite solar cells are revolutionizing the field of renewable en-
ergy with their remarkable properties and engineering applications 
[11]. These solar cells offer high power conversion efficiencies, rivaling 
traditional silicon-based cells while being significantly cheaper to pro-
duce [12]. Their low cost is due to the use of abundant and inexpensive 
raw materials and relatively simple manufacturing processes, making 
them economically viable for widespread use [13]. Perovskite solar cells 
exhibit a high absorption coefficient, allowing them to absorb a broad 
spectrum of sunlight efficiently, which is critical for maximizing energy 
conversion [14]. They are also versatile, capable of being fabricated on 
flexible substrates, opening up new possibilities for integration into 
various surfaces and portable electronic devices [15]. Their lightweight 
nature further enhances their applicability in areas where weight is a 
critical factor, such as in aerospace and engineering industries [16]. 
These solar cells can be manufactured using solution-based processes, 
which are less energy-intensive compared to the high-temperature 
methods required for silicon cells, contributing to their lower environ-
mental impact [17]. The tunable bandgap of perovskite materials allows 
for the optimization of light absorption and energy conversion, making 
them suitable for tandem solar cells that combine different materials to 
achieve even higher efficiencies [18]. Perovskite solar cells have shown 
excellent performance under low-light conditions, making them ideal 
for indoor and diffuse light applications [19]. Their rapid advancements 
in stability and durability are addressing initial concerns, paving the 
way for their use in long-term applications. These cells can also be in-
tegrated with existing silicon solar cells to create hybrid systems that 
boost overall efficiency and reduce costs [19]. The scalability of 
perovskite solar cell production is another key advantage, enabling 
large-scale deployment for utility-scale power generation. Their poten-
tial for building-integrated photovoltaics (BIPV) allows for the creation 
of energy-harvesting windows and facades, contributing to sustainable 
urban development [20]. The ability to produce semi-transparent 
perovskite solar cells expands their use in aesthetic applications 
without compromising on energy generation [21].

Modeling plays a pivotal role in engineering applications, providing 
a fundamental framework for understanding, predicting, and optimizing 
complex systems and processes [22,23]. It allows engineers to create 
virtual representations of physical phenomena, enabling the analysis of 
behavior under various conditions without the need for costly and 
time-consuming experiments [24]. Accurate modeling helps in 
designing systems and components with optimal performance, ensuring 
they meet specified requirements and constraints [25]. It facilitates the 
exploration of design alternatives and the assessment of their impacts, 
leading to more informed decision-making [26]. Through simulation, 
modeling can predict potential failures and identify weaknesses, 
enhancing the reliability and safety of engineering solutions [27]. In the 
development of new materials, modeling helps predict properties and 
behavior, accelerating innovation and reducing the need for extensive 
experimental testing [28]. It also plays a crucial role in understanding 
and mitigating environmental impacts, allowing engineers to design 
sustainable and eco-friendly solutions [29]. In manufacturing, modeling 
optimizes processes, improves efficiency, and reduces waste by simu-
lating production lines and identifying bottlenecks [30]. It supports the 
integration of new technologies, such as additive manufacturing, by 
providing insights into process parameters and material behavior [31]. 
For infrastructure projects, modeling assists in planning, design, and 

maintenance, ensuring the longevity and safety of structures like 
bridges, roads, and buildings [32]. It is essential in aerospace and 
automotive industries for simulating aerodynamics, structural integrity, 
and system performance, leading to the development of 
high-performance vehicles and aircraft [33]. Modeling is integral to the 
advancement of renewable energy technologies, such as wind and solar 
power, by optimizing system design and predicting energy output [34]. 
It aids in the development of smart grids, enhancing the efficiency and 
reliability of power distribution networks [35].

This work introduces a novel method for improving perovskite solar 
cells’ efficiency by using an FG-TPMS layer. The study focuses on the 
mechanical and vibrational properties of doubly curved panels 
embedded with the primitive, gyroid, and IWP iterations of the FG- 
TPMS model. The research takes into consideration the intricate 
geometrical and material gradations present in the FG-TPMS structures 
by using HSDT. The panels’ behavior under operating circumstances is 
realistically simulated since they are based on an elastic substrate. The 
inherent frequencies and mode forms of these innovative composite 
structures are reliably predicted by means of an advanced mathematical 
technique based on trigonometric functions. The findings show that the 
mechanical stability of the perovskite solar cells are greatly improved by 
the incorporation of FG-TPMS layers. Every iteration of the FG-TPMS 
exhibits distinct benefits: the IWP design guarantees optimum material 
efficiency, the gyroid model gives optimal stress distribution, and the 
primitive structure offers better isotropic mechanical characteristics. 
Through the use of HSDT comprehensive insights into the doubly curved 
panels’ dynamic responses are revealed, underscoring the possibility of 
further enhancing solar cell efficiency by fine-tuning their vibrational 
features. In order to assess the vibrations of TPMS-reinforced perovskite 
solar cells surrounded by an elastic foundation, this work proposes the 
implementation of a novel SVM-DNN-GA employing mathematical 
modeling datasets. Using the SVM-DNN-GA algorithm, predicted accu-
racy is improved. In order to simulate and forecast the vibrational 
behavior of the reinforced solar cells, the integrated methodology makes 
use of the advantages of each technique. The potential of FG-TPMS 
structures to advance solar cell technology is highlighted by this 
study, laying the groundwork for further investigations into the inte-
gration of intricate geometries and material gradations in photovoltaic 
applications.

2. Mathematical modeling

We present perovskite solar cells in Fig. 1. As can be seen, a solar cell 
is made up of six layers, with glass at the outermost and the FG-TPMS 
layer at the innermost. Fig. 1 displays the whole geometry of this 
structure together with a three-dimensional schematic depiction.

In addition to providing a thorough explanation of additional 
geometrical requirements, the results section presents the material 
properties of each layer in detail.

2.1. Mechanical properties of FG-TPMS materials

This paper examines the wrapped package graph (IWP) and the 
primitive, gyroid, and IWP versions of the FG-TPMS plate model. The 
TPMS geometry describes the properties of the sheet-based solid type 
[36]. 

Primitive : ψ(x , y, z) = cos(χ1x) + cos(χ2y) + cos(χ3z), (1a) 

Gyroid : ψ(x , y, z)
= sin(χ1x)cos(χ2y) + sin(χ2y)cos(χ3z) + sin(χ3z)cos(χ1x), (1b) 

IWP :ψ(x ,y,z)=2(cos(χ1x)cos(χ2y)+cos(χ2y)cos(χ3z)+cos(χ3z)cos(χ1x))

− (cos(2χ1x)+cos(2χ2y)+cos(2χ3z)).

(1c) 
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The function ψ(x ,y,z) represents the surface and is evaluated at a 
constant value. This surface has a topology similar to that of a minimal 
surface. 

χi =
2πni

li
, i = 1, 2, 3. (2) 

where ni represents the number of unit cells and li the relative lengths of 
the unit cells. This research uses readily accessible software to provide 
three distinct unit cell geometries (Primitive, Gyroid, and IWP) in order 
to increase clarity [37]. For this study, we use the curve-fitting model 
proposed by Nguyen-Xuan et al. [5]. In that paradigm, the volume ratio 
is stated as follows. 

V =
VTPMS

Vm , (3) 

VTPMS indicates the total volume of TPMS cells, while Vm indicates the 
total volume of the base material. Eq. (3)’s function of the volume ratio 

may be stated as follows: 

V =

{
(Vmax − Vmin)VPattern PA

z + Vmin Pattern PA
(Vmax − Vmin)VPattern PB

z + Vmin Pattern PB
, (4) 

where  

VPattern PA
z =

⎛

⎜
⎝

z+h
2

h1

⎞

⎟
⎠

n 

and VPattern PB
z =

⎛

⎜
⎝1 − cos

⎛

⎜
⎝π

⎛

⎜
⎝

z+h
2

h1
− 1

2

⎞

⎟
⎠

⎞

⎟
⎠

⎞

⎟
⎠

n

.

Treating pattern PA and pattern PB as independent functions across 
the thickness of the plate allows for their differentiation, as per Eq. (4). 
Variations in z and n cause a corresponding adjustment in the value of 
Vz . Two patterns are often given different values, although these dis-
tinctions are useless. Generally speaking, the fundamental equations 
include those involving equilibrium, compatibility, and kinematics. The 
HSDT states that the strain-stress relationship may be mathematically 
expressed using the general version of Hooke’s rule. 

Fig. 1. 2D, and 3D representation of a multilayer perovskite solar cell.
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, (5) 

where 

C11 = C22 =
ETPMS

1 − (υTPMS)
2,C12 =

υTPMSETPMS

1 − (υTPMS)
2,C66 = C55 = C44 = GTPMS,

(6) 

The symbols ETPMS, GTPMS and υTPMS stand for the Young’s modulus, 
shear modulus, and Poisson’s ratio of the FG-TPMS materials, respec-
tively. The values in Table 1 were generated and provided using the 
fixed data model [5].

This section looks at numerical examples for each kind of FG-TPMS 
panel, taking into account six distinct volume distribution scenarios. 
Table 2 displays these scenarios, and according to Eq. (4), the Vaverage 
value is set at 0.35. To carry out the required integration for the current 
method, three-node triangle cells are used, with three integrated points 
of 3×3 for each triangle cell. There are the following qualities of the 
basic ingredients: Young’s modulus (Em) is 70 [GPa], density (ρm) is 
2702 [kg/m3], and Poisson’s ratio (vm) is 0.3.

Furthermore, Ref. [38] provides a list of the characteristics of the 
materials used to create the contemporary cantilevered solar cell.

In Table 3 we have:
As stated in the introduction, we describe the structure’s kinematic 

field using a higher-order shear deformation theory (HSDT), i.e., [39]: 

u(x , y, z , t) = Ax u0(x , y, t) + zu1(x , y, t) + z2u2(x , y, t) + z3u3(x , y, t), (7) 

v(x , y, z , t) = Ay v0(x , y, t) + zv1(x , y, t) + z2v2(x , y, t) + z3v3(x , y, t),

w(x , y, z , t) = w0(x , y, t).

where Ax = 1 + z
R1 

and Ay = 1+ z
R2

. Within Eq. (7), u0, v0, are in-plane 
displacement parameters. Moreover, w0 is the displacement of an arbi-
trary point (x , y) at the middle shell. Also, u1 and v1 are around y- and 
x -axes rotations respectively. u2, v2, u3, and v3 show Taylor’s series of 
higher-order terms.

As such, the relationships between displacement and strain may be 
written as follows [40]: 

εxx =
1
Ax

(
∂u

∂x
+

w

R1

)

, εyy =
1
Ay

(
∂v

∂y
+

w

R2

)

, γxz =
1
Ax

(
∂w

∂x
−

u

R1

)

+
∂u

∂z
, (8) 

γyz =
∂v

∂z
+

1
Ay

(
∂w

∂y
−

v

R2

)

, γxy =
1
Ax

∂v

∂x
+

1
Ay

∂u

∂y
.

For the present system, the motion equations and corresponding 
boundary conditions (B. Cs) may be obtained using the variational en-
ergy approach as follows: 

∫t2

t1

(δT − (δU+ δWF))dt = 0, (9) 

where kinetic energy is [40]: 
∫ ∫ ∫

v

ρ
(

∂u

∂t
∂δu

∂t
+

∂v

∂t
∂δv

∂t
+

∂w

∂t
∂δw

∂t

)

dV, (10) 

In addition, the strain energy [40] connected to the current system 
may be expressed using the equation that follows. 

δU =

∫h/2

− h/2

∫∫

A

(
σxy δγxy + σxx δεxx + σyy δεyy + σxz δγxz + σyz δγyz +ms

xx χs
xx

+ms
yy χs

yy +ms
zz χs

zz +ms
yz χs

yz +ms
xz χs

xz +ms
xy χs

xy

)
dV,

(11) 

Besides, χs
ij, and ms

ij can be defined as: 

χs
ij =

1
2
(
φi,j +φj,i

)
, (12) 

ms
ij = 2l2μχs

ij,

Also have: 

φ =
1
2

⎡

⎢
⎢
⎢
⎣

i j k
∂

∂x

∂
∂y

∂
∂z

u v w

⎤

⎥
⎥
⎥
⎦
, (13) 

where: 

φx =
1
2

(
∂w0

∂y
−

v0

R2
− v1 − 2zv2 − 3z2v3

)

,

φy =
1
2

(
u0

R1
+ u1 + 2zu2 + 3z2u3 −

∂w0

∂x

)

,

Table 1 
Mechanical properties and characteristics of FG-TPMS materials.

TPMS Mechanical properties V

Primitive
ETPMS = Em{

0.317V1.264

1.007V2.006 − 0.007
V ≤ 0.25
V > 0.25

GTPMS = Gm{
0.705V1.189

0.953V1.715 + 0.047
V ≤ 0.25
V > 0.25

υTPMS = {
0.314e− 1.004V + 0.119

0.152V2 − 0.235V + 0.383
V ≤ 0.55
V > 0.55

Gyroid
ETPMS = Em{

0.596V1.467

0.962V2.351 + 0.038
V ≤ 0.45
V > 0.45

GTPMS = Gm{
0.777V1.544

0.973V1.982 + 0.027
V ≤ 0.45
V > 0.45

υTPMS = {
0.192e− 1.349V + 0.202

0.402V2 − 0.603V + 0.501
V ≤ 0.50
V > 0.50

IWP
ETPMS = Em{

0.597V1.225

0.987V1.782 + 0.013
V ≤ 0.35
V > 0.35

GTPMS = Gm{
0.529V1.287

0.960V2.188 + 0.040
V ≤ 0.35
V > 0.35

υTPMS = {
2.597e− 0.157V − 2.244

0.201V2 − 0.227V + 0.326
V ≤ 0.13
V > 0.13

Table 2 
Six unique volume distribution patterns to take into Vaverage = 0.35 [5].

Parameter PA1 PA2 PA3 PB1 PB2 PB3

n 1.0 3.0 6.5 0.561 1.757 3.943
Vmin 0.20 0.20 0.25 0.20 0.20 0.25
Vmax 0.5 0.8 1.0 0.5 0.8 1.0

Table 3 
A list of the characteristics of the materials used to create the contemporary 
cantilevered solar cell.

Young’s modulus Poisson’s ratio Density z

ETPMS υTPMS ρTPMS −
h
2
< z < −

h
2
+ h1

EP3HT: PCBM υP3HT: PCBM ρP3HT: PCBM −
h
2
+ h1 < z < − h3

EMAPbI3 υMAPbI3 ρMAPbI3 − h3 < z < 0
EPDEOTL: PSS υPDEOTL: PSS ρPDEOTL: PSS 0 < z < h4

EITO υITO ρITO h4 < z < h4 + h5

EGlass υGlass ρGlass h
2
− h6 < z <

h
2
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φz =
1
2

(

Ay

∂v0

∂x
+ z

∂v1

∂x
+ z2∂v2

∂x
+ z3∂v3

∂x
− Ax

∂u0

∂y
− z

∂u1

∂y
− z2∂u2

∂y
− z3∂u3

∂y

)

,

(14) 

Using the equations previously presented in Eq. (12), you can: 

χxx =
∂φx

∂x
=

(
∂2

w0

∂x∂y
−

1
R2

∂v0

∂x
−

∂v1

∂x
− 2z

∂v2

∂x
− 3z2∂v3

∂x

)

χyy =
∂φy

∂y
=

(
1
R1

∂u0

∂y
+

∂u1

∂y
+2z

∂u2

∂y
+ 3z2∂u3

∂y
−

∂2
w0

∂x∂y

)

,

χzz =
∂φz

∂z

=

(
1
R2

∂v0

∂x
+

∂v1

∂x
+2z

∂v2

∂x
+3z2∂v3

∂x
−

1
R1

∂u0

∂y
−

∂u1

∂y
− 2z

∂u2

∂y
− 3z2∂u3

∂y

)

,

2χyz =
∂φy

∂z
+

∂φz

∂y
= (2u2 + 6zu3)

+

(

Ay

∂2
v0

∂x∂y
+ z

∂2
v1

∂x∂y
+ z2 ∂2

v2

∂x∂y
+ z3 ∂2

v3

∂x∂y
− Ax

∂2
u0

∂y2 − z
∂2

u1

∂y2 − z2∂2
u2

∂y2

− z3∂2
u3

∂y2

)

,

2χxz =
∂φx

∂z
+

∂φz

∂x
= ( − 2v2 − 6zv3) +

(

Ay

∂2
v0

∂x2 + z
∂2

v1

∂x 2 + z2∂2
v2

∂x2 + z3∂2
v3

∂x 2

− Ax

∂2
u0

∂x∂y
− z

∂2
u1

∂x∂y
− z2 ∂2

u2

∂x∂y
− z3 ∂2

u3

∂x∂y

)

,

2χxy =
∂φx

∂y
+

∂φy

∂x
=

(
∂2

w0

∂y2 −
1
R2

∂v0

∂y
−

∂v1

∂y
− 2z

∂v2

∂y
− 3z2∂v3

∂y

)

+

(
1
R1

∂u0

∂x
+

∂u1

∂x
+ 2z

∂u2

∂x
+ 3z2∂u3

∂x
−

∂2
w0

∂x 2

)

,

(15) 

Furthermore, the work that the elastic substrate does would be 
determined by the following: 

WF =
1
2

∫

[− KWw]wdA, (16) 

KW is the Winkler coefficient of the substrate. Additionally, the 
definition of the variation of Eq. (16) is provided below. 

δWF =

∫

[− KWw]δwdA, (17) 

The motion equations of the current system are then found by 
modifying Eq. (9) to include Eqs. (10), (11), and (17) as well:  

δu0 :
∂N∗

xx

∂x
+

Nxz

R1
−

N∗
xz

R1
+

∂Ny
xy

∂y
+

1
R1

∂N(0)
yy

∂y
−

1
R1

∂N(0)
zz

∂y
+

1
2

∂2
N∗(0)

yz

∂y2 +
1
2

∂2
N∗(0)

xz

∂x∂y
+

1
2R1

∂N(0)
xy

∂x
= Jx

0
∂2

u0

∂t2 + Jx
1
∂2

u1

∂t2 + Jx
2
∂2

u2

∂t2 + Jx
3
∂2

u3

∂t2 , (18a) 

δv0 :
∂N∗

yy

∂y
+

Nyz

R2
−

N∗
yz

R2
+

∂Nx
xy

∂x
−

1
R2

∂N(0)
xx

∂x
+

1
R2

∂N(0)
zz

∂x
−

1
2

∂2
N∗(0)

yz

∂x∂y
−

1
2

∂2
N∗(0)

xz

∂x 2 −
1

2R2

∂N(0)
xy

∂y
= J

y

0
∂2

v0

∂t2 + J
y

1
∂2

v1

∂t2 + J
y

2
∂2

v2

∂t2 + J
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In which: 

∫

V

dV =

∫∫

A

∫
h
2

−
h
2

dzdA

=

∫∫

A
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=

∫
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3. Solution procedure

This paper employs an analytical technique to deduce vibration 
modes using trigonometric functions. The following series are used to 
estimate the curvilinear and normal displacements and satisfy the 
required simply supported conditions at each edge of the microsystem. 

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

(20h)

(20i)

where u0mn, v0mn, w0mn, u1mn, v1mn, u2mn, v2mn, u3mn, v3mn are the 
amplitude components and α = mπ/a, β = nπ/b, and Ω is the natural 
frequency. By entering Eqs. (20a-i) into the partial differential equations 
Eqs. (18a-i) and satisfying the non-trivial solution condition, the natural 
frequencies may be obtained. Furthermore, dimensionless quantities are 
defined as follows: 

ω∗ = 100Ωh2
̅̅̅̅̅̅̅̅̅̅̅̅
ρm/Em

√

K∗
W =

KWa2

EmI
(21) 

4. Utilizing the SVM-DNN-GA algorithm to determine the 
natural frequency of enhanced perovskites cells using 
mathematical modeling datasets

Machine learning algorithms are crucial in predicting the mechanical 
properties of structures due to their ability to analyze vast amounts of 
data and identify complex patterns that traditional methods might miss 
[41,42]. These algorithms can significantly reduce the time and cost 
associated with experimental testing by providing accurate predictions 
based on computational models [43,44]. They also enhance the ability 
to optimize material properties and structural designs, leading to 
improved performance and safety [45,46]. Additionally, machine 
learning can adapt to new data, continuously improving its predictive 
accuracy over time [47]. This adaptability and efficiency make machine 
learning an invaluable tool in modern engineering and materials science 
[48,49]. The SVM-DNN-GA algorithm combines the strengths of 
SVM-DNN-GA, leading to enhanced predictive accuracy compared to 
using DNN alone. SVMs contribute to effective data classification and 
handling non-linear relationships, improving the initial feature selec-
tion. The integration of GAs helps in optimizing the hyperparameters 
and structure of the DNN, ensuring a more efficient search for the best 
model configuration. This hybrid approach also mitigates the risk of 
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overfitting, a common issue in standalone DNNs, by incorporating reg-
ularization and evolutionary strategies. Overall, the SVM-DNN-GA al-
gorithm benefits from a robust, adaptive learning process, yielding 
better generalization and performance in various applications.

The estimation of natural frequencies is crucial for assessing the 
structural integrity and dynamic performance of improved perovskite 
solar cells. Traditional methods can be computationally intensive and 
time-consuming. The integration of an innovative algorithm combining 

SVM-DNN-GA offers a powerful solution for this challenge.
Support Vector Machine (SVM): SVM is employed to preprocess 

the data and identify the most relevant features that influence the nat-
ural frequency. By classifying and selecting significant parameters from 
the dataset, SVM reduces the dimensionality and enhances the efficiency 
of subsequent modeling processes.

Deep Neural Network (DNN): With the refined dataset, DNN is 
utilized to model the complex, non-linear relationships between the 

Fig. 2. A MATLAB code that demonstrates the integration of SVM-DNN-GA algorithm to estimate the natural frequency of improved perovskite solar cells using 
mathematical datasets.
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input parameters and the natural frequency of perovskite solar cells. The 
deep layers of the neural network enable it to capture intricate patterns 
and interactions within the data, providing accurate and robust pre-
dictions of natural frequencies.

Genetic Algorithm (GA): GA optimizes the hyperparameters of the 
DNN to ensure the best performance. It simulates the process of natural 
evolution, iteratively selecting, mutating, and recombining candidate 
solutions to converge on the optimal set of hyperparameters. This step 
enhances the predictive accuracy and generalization capability of the 
DNN model.

Mathematical Modeling Dataset: The dataset comprises simulated 
data generated from mathematical models of perovskite solar cells. 
These models incorporate various factors such as material properties, 
geometric configurations, and boundary conditions that affect the nat-
ural frequency. The dataset serves as a comprehensive source of infor-
mation for training and validating the SVM-DNN-GA algorithm.

4.1. Application Process

1. Data Collection and Preprocessing: Gather extensive data from 
mathematical models simulating the natural frequency of perovskite 
solar cells. Apply SVM to preprocess the data, selecting the most 
relevant features.

2. Model Training: Use the refined dataset to train the DNN. Initialize 
the DNN with a broad set of hyperparameters.

3. Optimization: Apply GA to optimize the hyperparameters of the 
DNN. The GA iteratively improves the model by selecting the best- 
performing sets of hyperparameters.

4. Validation and Testing: Validate the optimized DNN model using a 
separate portion of the dataset. Test the model’s predictive accuracy 
and refine it as needed.

5. Implementation: Use the trained and optimized model to estimate 
the natural frequency of new or modified perovskite solar cells, 
ensuring accurate and reliable predictions.

4.2. Benefits

Efficiency: The combined SVM-DNN-GA approach significantly re-
duces computation time compared to traditional methods.

Accuracy: The deep learning component captures complex re-
lationships in the data, leading to precise frequency estimations.

Optimization: GA ensures that the DNN model operates with 
optimal hyperparameters, enhancing its performance.

Versatility: The model can adapt to various configurations and 
material properties of perovskite solar cells.

This innovative algorithmic approach not only improves the accu-
racy of natural frequency estimations but also streamlines the process, 
making it highly applicable for engineering and design optimizations in 
perovskite solar cell technology.

Fig. 2 is a MATLAB code that demonstrates the integration of SVM- 
DNN-GA algorithm to estimate the natural frequency of improved 
perovskite solar cells using mathematical datasets. Key Steps of this al-
gorithm are as follows:

1. Data Loading and Preprocessing: Load the dataset, split it into 
training and testing sets.

2. Feature Selection using SVM: Use SVM to rank and select the top N 
features.

3. Define and Train Initial DNN: Define a DNN architecture and train it 
using the selected features.

4. Optimize Hyperparameters using GA: Optimize the DNN’s hyper-
parameters (number of neurons in hidden layers and learning rate) 
using a genetic algorithm.

5. Train the Optimized DNN: Train the DNN again using the optimized 
hyperparameters.

6. Test the Model: Predict the natural frequency on the test dataset and 
calculate the mean squared error (MSE).

5. Results and discussion

In this section, first, a verification between the results of the current 
study and those or published articles in the literature is presented. Then 
in the next subsection, the mathematical modeling results are presented. 
In the last subsection, the outcomes of the presented hybrid machine- 
learning algorithm are investigated in detail.

5.1. Validation

Table 4 presents a comparison of dimensionless fundamental fre-
quencies for doubly-curved shells with the parameters a/b = 1 and 
a/b = 10. The table is organized to show the results from three sour-
ces: Kiani et al. [50], the present study, and Shen et al. [51]. The col-
umns in the table are divided based on the R1/a ratio, which takes the 
values of 3, 5, 10, 20, and 100. Additionally, the results are categorized 
under two different ratios of R2/R1, specifically 1 and 2. For R2/R1 = 1, 
the fundamental frequencies reported by Kiani et al. are slightly 
different from those reported in the present study and Shen et al. [51]. 
For instance, at R1/a = 3, Kiani et al. [50] report a frequency of 6.5834, 
the present study reports 6.6193, and Shen et al. [51] report 6.6510. 
Similar variations can be seen across other values of R1/a. For R2/R1 =

2, the pattern remains, where slight differences exist among the three 
sources. For instance, at R1/a=3, Kiani et al. [50] report 6.2330, the 
present study reports 6.2591, and Shen et al. [51] report 6.2806. 
Overall, while the frequencies reported by the three sources are close to 
each other, minor discrepancies are observed, which might be due to 
different modeling approaches or computational methods.

Table 4 
Comparison of dimensionless fundamental frequency for doubly-curved shells 
(a/b = 1, a/h = 10).

R2 

/R1

Source R1/a

3 5 10 20 100

1 Kiani et al. [50] 6.5834 6.0767 5.8479 5.7891 5.7701
Present 6.6193 6.0909 5.8516 5.7900 5.7702
Shen et al. [51] 6.6510 6.1015 5.8542 5.7908 5.7703

2 Kiani et al. [50] 6.2330 5.9412 5.8128 5.7802 5.7698
Present 6.2591 5.9511 5.8154 5.7809 5.7698
Shen et al. [51] 6.2806 5.9585 5.8173 5.7815 5.7699

Fig. 3. Dimensionless frequency of the improved solar cell structure for various 
TPMS architectures and dimensionless Winkler coefficients.
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5.2. Parametric results

Fig. 3 shows the relationship between the dimensionless frequency 
parameter (ω∗) and the dimensionless Winkler coefficient parameter 
(K∗

W) for three different architectures of the triply periodic minimal 
surface material: Primitive, Gyroid, and IWP. The x -axis represents the 
dimensionless Winkler coefficient parameter, which quantifies the 
stiffness of the elastic foundation supporting the structure. The y-axis 
represents the dimensionless frequency parameter, indicating the 
vibrational frequency of the material. The blue line represents the 
dimensionless frequency response of the Primitive architecture. It starts 
at a lower frequency and shows a steady increase with increasing K∗

W, 
indicating a linear relationship. The red dashed line represents the 
Gyroid architecture. This curve starts higher on the frequency axis 
compared to the Primitive architecture and shows a similar trend, but 
with a higher overall frequency. The green dashed line represents the 
IWP architecture. This line starts even higher than the Gyroid archi-
tecture and follows a similar trend, indicating the highest frequency 
response among the three architectures. The inset plot zooms in on a 
specific region where K∗

W is around 0.2. This magnified view highlights 
the differences in frequency responses of the three architectures more 
clearly. It shows that in this region, the Gyroid and IWP architectures 
have significantly higher frequencies compared to the Primitive archi-
tecture. This comparison is crucial for understanding how different 
architectural designs affect the vibrational properties of materials. The 
figure demonstrates that the Primitive architecture, with its simpler 
geometry, exhibits lower frequencies, while the more complex geome-
tries of the Gyroid and IWP architectures result in higher frequencies. 
This information is essential for applications where specific vibrational 
properties are desired. For example, if a higher frequency response is 
needed, the Gyroid or IWP architecture would be preferable. 
Conversely, for applications requiring lower frequencies, the Primitive 
architecture would be more suitable. By examining these relationships, 
engineers and designers can select the appropriate architecture based on 
the specific performance requirements of their applications. This figure 
provides a clear visual representation of how the dimensionless Winkler 
coefficient influences the dimensionless frequency across different ma-
terial architectures, aiding in the material selection and design process.

Fig. 4 shows the relationship between the dimensionless frequency 
parameter and the dimensionless Winkler coefficient parameter for 
different values of the R1/a ratio. The x -axis represents the 

dimensionless Winkler coefficient parameter, which quantifies the 
stiffness of the elastic foundation supporting the structure. The y-axis 
represents the dimensionless frequency parameter, indicating the 
vibrational frequency of the material. The blue line represents the case 
where R1/a = 0.5. This curve starts at a lower frequency and shows a 
gradual increase with increasing K∗

W, demonstrating how the frequency 
response evolves with the Winkler coefficient. The red dashed line 
corresponds to R1/a = 1. This curve starts higher on the frequency axis 
compared to the R1/a = 0.5 case and follows a similar increasing trend, 
but at a higher frequency range. The green dashed line represents 
R1/a = 1.5. This curve also starts higher and shows a similar increasing 
trend, situated above the red dashed line. The purple dashed line in-
dicates R1/a = 2, starting even higher on the frequency axis and 
continuing the trend of increasing frequency with K∗

W. The figure clearly 
illustrates that as the R1/a ratio increases, the dimensionless frequency 
also increases for a given value of the dimensionless Winkler coefficient. 
This indicates that higher values of R1/a lead to stiffer and more 

Fig. 4. Dimensionless frequency of the improved solar cell structure for various 
R1/a values and dimensionless Winkler coefficients.

Fig. 5. Dimensionless frequency of the improved solar cell structure for various 
R2/R1 values and dimensionless Winkler coefficients.

Fig. 6. Dimensionless frequency of the improved solar cell structure for various 
(m, n) values and dimensionless Winkler coefficients.

Q. Zhang et al.                                                                                                                                                                                                                                  Aerospace Science and Technology 154 (2024) 109478 

9 



responsive structures in terms of vibrational behavior. This relationship 
is crucial for understanding how changes in structural parameters affect 
the vibrational properties of the material. By analyzing these trends, 
engineers and designers can optimize the material’s performance for 
specific applications where certain frequency responses are required. 
The figure provides a clear visual representation of the impact of the 
ratio R1/a on the vibrational characteristics of the material, aiding in the 
selection and design process based on desired performance criteria.

Fig. 5 shows the relationship between the dimensionless frequency 
and the dimensionless Winkler coefficient for a doubly curved panel. 
The different curves on the graph represent different ratios of the panel’s 
radii of curvature (R2/R1). The solid blue line corresponds to R2 /R1 =

0.5, the dashed red line corresponds to R2/R1 = 0.3, the dashed green 
line corresponds to R2/R1 = 0.3, and the dashed-dotted purple line 
corresponds to R2/R1 = 0.5. As the dimensionless Winkler coefficient 
increases from 0 to 1, the dimensionless frequency also increases for all 
cases. This indicates that as the stiffness of the Winkler foundation in-
creases, the natural frequencies of the panel also increase. The rate of 
increase and the overall value of the dimensionless frequency are 
influenced by the ratio of the radius of curvature. Curves with higher R2 
/R1 ratios generally show higher values of the dimensionless frequency. 
This suggests that the geometry of the panel, specifically the ratio of its 
radii of curvature, has a significant impact on its natural frequencies. 
Panels with a higher R2/R1 ratio are stiffer and thus have higher natural 
frequencies. In summary, the figure illustrates how the natural fre-
quency of a doubly curved panel is affected by both the stiffness of the 
Winkler foundation and the geometric properties of the panel. As the 
stiffness of the foundation increases, the natural frequency increases. 
Additionally, solar cells with higher curvature ratios exhibit higher 
natural frequencies, emphasizing the importance of geometry in the 
dynamic behavior of such structures.

Fig. 6 illustrates the relationship between the dimensionless fre-
quency and the dimensionless Winkler coefficient for a doubly curved 
panel. The different curves correspond to different mode shapes of the 
panel, denoted by the pair (m,n), where m and n represent the number of 
half-waves in the longitudinal and circumferential directions, respec-
tively. The solid blue line represents the (m, n) = (1,1) mode shape, the 
dashed red line represents the (m, n) = (1, 2) mode shape, the dashed 
green line represents the (m, n) = (1, 3) mode shape, and the dashed- 
dotted purple line represents the (m, n) = (1, 4) mode shape. As the 
dimensionless Winkler coefficient increases from 0 to 1, the 

dimensionless frequency also increases for all the mode shapes. The rate 
of increase and the overall values of ω∗ vary depending on the specific 
mode shape. For the (m, n) = (1,1) mode shape, the dimensionless fre-
quency starts at a lower value and increases more gradually compared to 
the other modes. The higher the mode shape numbers m and n, the 
higher the initial value and the steeper the increase in ω∗ as K∗

W in-
creases. This indicates that higher mode shapes exhibit higher natural 
frequencies for the same value of K∗

W. The plot demonstrates that the 
natural frequencies of a doubly curved panel are significantly influenced 
by the mode shapes, with higher mode shapes resulting in higher fre-
quencies. This relationship is crucial for understanding the dynamic 
behavior of such panels, particularly in applications where the panel is 
subject to a Winkler-type elastic foundation. The variation in fre-
quencies with respect to the Winkler coefficient also highlights the 
importance of accurately modeling the elastic support in practical en-
gineering applications, as it affects the vibrational characteristics of the 
structure. This information is essential for designing panels that meet 
specific frequency requirements and for predicting their response under 
different loading conditions. This analysis provides valuable insights 
into the vibrational behavior of doubly curved panels and underscores 
the need for careful consideration of both geometric parameters and 
foundation stiffness in their design.

Fig. 7 illustrates the relationship between the dimensionless fre-
quency and the dimensionless Winkler coefficient for a doubly curved 
panel. The different curves correspond to different values of the 
dimensionless length scale parameter (l/h), which is related to the size 
effect. The solid blue line represents l/h = 0, the dashed red line rep-
resents l/h = 0.5, the dashed green line represents l/h = 1, and the 
dashed-dotted purple line represents l/h = 1.5. As the dimensionless 
Winkler coefficient increases from 0 to 1, the dimensionless frequency 
increases for all values of l/h. The rate of increase and the overall values 
of ω∗ vary depending on the specific value of l/h. For l/h = 0, the 
dimensionless frequency starts at a lower value and increases gradually. 
As the value of l/h increases, the initial value of ω∗ is higher, and the 
increase in ω∗ with respect to K∗

W becomes more pronounced. This in-
dicates that the size effect, represented by the length scale parameter, 
significantly influences the natural frequencies of the panel. Higher 
values of l/h result in higher natural frequencies for the same value of 
K∗

W. The plot demonstrates that the natural frequencies of a doubly 
curved panel are significantly affected by the size effect. The dimen-
sionless length scale parameter plays a crucial role in determining the 

Fig. 7. Dimensionless frequency of the improved solar cell structure for various 
l/h values and dimensionless Winkler coefficients.

Fig. 8. Dimensionless frequency of the improved solar cell structure for various 
R1/a values and TPMS architectures.
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vibrational characteristics of the panel. This relationship is essential for 
understanding the dynamic behavior of such panels, especially in ap-
plications where the panel is supported by a Winkler-type elastic foun-
dation. The variation in frequencies with respect to the Winkler 
coefficient highlights the importance of accurately modeling the elastic 
support and considering the size effect in practical engineering appli-
cations. This information is vital for designing panels that meet specific 
frequency requirements and for predicting their response under 
different loading conditions. The analysis provides valuable insights into 
the vibrational behavior of doubly curved panels and underscores the 
need for careful consideration of both geometric parameters and foun-
dation stiffness in their design. The effect of the length scale parameter 
on the frequency response emphasizes the importance of considering 
size effects in the design and analysis of doubly curved panels subjected 
to elastic foundations.

Fig. 8 compares the dimensionless frequency of doubly curved panels 
with three different architectures: Primitive, Gyroid, and IWP. The 
x -axis represents the dimensionless R1/a ratio, where R1 likely indicates 
a characteristic length related to the panel’s curvature, and a is a 
reference length. The y-axis shows ω∗, the dimensionless frequency. The 
graph is divided into two regions, marked as 1 and 2. Region 1 is 
identified as the "Unstable area," and region 2 as the "Stable area." At low 
values of R1/a, the dimensionless frequency is significantly high, indi-
cating instability. This behavior is consistent across all three architec-
tures, as seen from the initial steep rise in ω∗ when R1 /a is near zero. As 
R1/a increases beyond approximately 0.1, the dimensionless frequency 
ω∗ dramatically decreases and levels off. This transition marks the 
boundary between the unstable and stable regions. In the stable region 
(Region 2), ω∗ values converge to around 2, indicating that the doubly 
curved panels with these three architectures exhibit similar stable 
behavior at higher R1/a ratios. The Primitive architecture, represented 
by the blue solid line, shows a slightly lower peak in ω∗ compared to the 
Gyroid and IWP architectures. The Gyroid, shown with a red dashed 
line, and the IWP, depicted with a green dash-dotted line, have very 
similar peak values and trends throughout the graph. These similarities 
suggest that while the different architectures influence the initial 
instability, their impact on stability diminishes as R1 /a increases. The 
convergence of the ω∗ values in the stable region suggests that the 
geometric intricacies of the TPMS structures do not significantly affect 
the overall stability at higher R1/a ratios. This stability is crucial for 
applications where maintaining a certain frequency response under 
dynamic conditions is essential. In summary, the graph illustrates the 

transition from instability to stability for doubly curved panels with 
Primitive, Gyroid, and IWP architectures, highlighting that despite 
initial differences in the unstable region, their stable region behavior 
converges.

Fig. 9 depicts the relationship between the dimensionless frequency 
and the ratio of the radius of curvature (R1) to the characteristic length 
(a) for a doubly curved panel. Different curves represent various ratios of 
the panel’s length scale (l) to its thickness (h). The curves are distin-
guished by different line styles and colors: solid blue for l/h = 0, 
dashed red for l/h = 0.5, dash-dotted green for l/h = 1, and dotted 
purple for l/h = 1.5. From the figure, we can observe that for all values 
of R/a, the dimensionless frequency decreases as the length scale 
parameter increases. This indicates that thicker panels (smaller l/h) 
exhibit higher dimensionless frequencies compared to thinner panels 
(larger l/h). As R1/a increases from 0.1 to 0.9, all curves show a 
decreasing trend in ω∗, leveling off at higher values of R1/a. For small 
values of R1/a (closer to 0.1), the dimensionless frequency is high, 
especially for lower l/h ratios. As R1/a increases, the frequency rapidly 
drops and then stabilizes around R1/a = 0.5 for all l/h ratios, indicating 

Fig. 9. Dimensionless frequency of the improved solar cell structure for various 
R1/a values and l/h values.

Fig. 10. Dimensionless frequency of the improved solar cell structure for 
various n values and l/h values.

Fig. 11. Dimensionless frequency of the improved solar cell structure for 
various n values and K∗

W values.
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a less significant change in frequency beyond this point. The stabiliza-
tion implies that the curvature’s influence on the dimensionless fre-
quency becomes less pronounced as the radius of curvature increases 
relative to the characteristic length. In summary, the figure illustrates 
how the dimensionless frequency of a doubly curved panel is influenced 
by the curvature and thickness, with the frequency decreasing as the 
panel becomes thinner and as the radius of curvature increases.

Fig. 10 shows the relationship between the dimensionless frequency 
and the mode number (n) for a doubly curved panel. Different curves 
represent various length scale parameters. These ratios are denoted by 
different line styles and colors: solid blue for l/h = 0, dashed red for l 
/h = 0.5, dash-dotted green for l/h = 1, and dotted purple for l /h =

1.5. As the mode number increases from 1 to 5, the dimensionless 
frequency (also increases for all l/h ratios. This indicates that higher 
modes correspond to higher dimensionless frequencies. The rate of in-
crease in ω∗ is more pronounced for larger l/h ratios. Specifically, the 
curve for l/h = 1.5 (dotted purple) shows the steepest increase, while 
the curve for l/h = 0 (solid blue) shows the least steep increase. For 
each mode number, the dimensionless frequency is higher for larger l /h 
ratios. For example, at n = 5, the dimensionless frequency for l /h =
1.5 is around 27, whereas for l/h = 0, it is around 11. This suggests 
that as the panel becomes thinner (larger l/h ratio), the dimensionless 
frequency increases more rapidly with increasing mode number. In 
summary, the figure illustrates how the dimensionless frequency of a 
doubly curved panel varies with the mode number and the ratio of the 
panel’s length to its thickness. Higher mode numbers result in higher 
dimensionless frequencies, and this effect is more significant for thinner 
panels with larger l/h ratios.

Fig. 11 illustrates the relationship between the dimensionless fre-
quency and mode numbers for different values of K∗

W. The x -axis rep-
resents n, which could be an integer or fractional mode number or some 
parameter influencing the system’s response. The y-axis shows ω∗, the 
dimensionless frequency. The different curves on the graph represent 
various values of K∗

W, a dimensionless stiffness parameter. The curves 
represent four different values of K∗

W: K∗
W = 0.2 (blue solid line), K∗

W =

0.4 (red dashed line), K∗
W = 0.6 (green dash-dotted line), and K∗

W = 0.8 
(purple dash-dotted line). At n = 1, the dimensionless frequency starts 
at different values depending on K∗

W. For K∗
W = 0.2, ω∗ starts around 16, 

while for K∗
W = 0.8, it starts around 26. As n increases, ω∗ increases for 

all values of K∗
W, but the rate of increase and the starting values vary. For 

K∗
W = 0.2, the blue solid line shows a gradual increase in ω∗ as n in-

creases, indicating a lower stiffness resulting in lower frequencies. For 

K∗
W = 0.4, the red dashed line shows a higher initial ω∗ and a steeper 

increase with n, indicating higher stiffness and consequently higher 
frequencies. The green dash-dotted line for K∗

W = 0.6 and the purple 
dash-dotted line for K∗

W = 0.8 follow similar trends, with even higher 
initial ω∗ values and steeper increases as n increases. This graph dem-
onstrates that higher K∗

W values lead to higher dimensionless fre-
quencies for all values of n. The relationship between ω∗ and n is 
nonlinear, with the rate of increase in ω∗ becoming more pronounced 
for higher values of K∗

W. This indicates that the system’s stiffness 
significantly impacts its vibrational characteristics, with stiffer systems 
exhibiting higher frequencies. In summary, the graph shows how the 
dimensionless frequency ω∗ varies with the parameter n for different 
stiffness values K∗

W. Higher stiffness leads to higher frequencies, and the 
rate of increase in frequency with n is more pronounced for stiffer sys-
tems. This information is crucial for understanding the dynamic 
behavior of the system and designing structures with desired vibrational 
properties.

Fig. 12 depicts the relationship between the dimensionless frequency 
and the l/h ratios for three different architectures: Primitive, Gyroid, and 
IWP. The x -axis represents l/h, and the y-axis shows the dimensionless 
frequency. The curves represent three different architectures: Primitive 
(blue solid line), Gyroid (red dashed line), and IWP (green dash-dotted 
line). At lower values of l/h, all three architectures exhibit relatively 
lower dimensionless frequencies. As l/h increases, ω∗ also increases for 
all three architectures, indicating a general trend of higher frequencies 
with increasing l/h. The Primitive architecture, represented by the blue 
solid line, starts with the lowest ω∗ at small l/h values but shows a steady 
increase as l/h increases. The Gyroid architecture, depicted by the red 
dashed line, starts with a higher ω∗ compared to the Primitive and IWP 
architectures at small l/h values and maintains a relatively higher fre-
quency throughout the range of l/h. The IWP architecture, shown by the 
green dash-dotted line, starts with a dimensionless frequency between 
that of the Primitive and Gyroid architectures and follows a similar 
increasing trend. The differences in the curves indicate that the archi-
tecture of the material significantly influences the dimensionless fre-
quency. The Gyroid architecture consistently exhibits the highest 
frequencies for given l/h values, suggesting that it might provide a stiffer 
or more responsive structure compared to the Primitive and IWP ar-
chitectures. The Primitive architecture, while starting with the lowest 
frequency, shows a comparable rate of increase to the other architec-
tures as l/h increases, eventually approaching the frequencies exhibited 
by the Gyroid and IWP architectures. In summary, the graph 

Fig. 12. Dimensionless frequency of the improved solar cell structure for 
various l/h values and TPMS architectures.

Fig. 13. Dimensionless frequency of the improved solar cell structure for 
various l/h, and K∗

W values.
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demonstrates how the dimensionless frequency varies with the ratio l /h 
for three different architectures. The Gyroid architecture exhibits the 
highest frequencies, followed by the IWP and Primitive architectures. 
All three architectures show an increasing trend in frequency with 
increasing l/h, highlighting the influence of both the material’s archi-
tecture and the geometric parameter l/h on the system’s vibrational 
properties. This information is essential for designing materials and 
structures with specific dynamic characteristics.

Fig. 13 shows the relationship between the dimensionless frequency 
and the ratio of the length scale parameter (l) to its thickness (h) for a 
doubly curved panel. Different curves represent various dimensionless 
Winkler coefficients (K∗

W). These coefficients are distinguished by 
different line styles and colors: solid blue for K∗

W = 0, dashed red for K∗
W 

= 0.1, dash-dotted green for K∗
W = 0.2, and dotted purple for K∗

W = 0.3. 
As l/h increases from 0 to 2, the dimensionless frequency increases for 
all values of K∗

W. This trend indicates that as the panel becomes thinner 
(larger l/h ratio), the dimensionless frequency rises. The rate of increase 
in ω∗ is more significant for higher values of the dimensionless Winkler 

coefficient. For instance, the curve for K∗
W = 0.3 (dotted purple) shows a 

steeper increase compared to the curve for K∗
W = 0 (solid blue). For each 

value of l/h, the dimensionless frequency is higher for larger K∗
W values. 

For example, at l/h = 2, the dimensionless frequency for K∗
W = 0.3 is 

around 5.5, whereas for K∗
W = 0, it is around 3.5. This suggests that the 

presence of a Winkler foundation parameter increases the stiffness of the 
panel, leading to higher dimensionless frequencies. In summary, the 
figure illustrates how the dimensionless frequency of a doubly curved 
panel varies with the ratio of the panel’s length to its thickness and the 
dimensionless Winkler coefficient. As the panel becomes thinner and as 
the Winkler coefficient increases, the dimensionless frequency also in-
creases, indicating a stiffer panel response to vibrational modes.

Fig. 14 presents the relationship between the dimensionless fre-
quency and the aspect ratio (a/b) for a doubly curved panel under 
varying dimensionless Winkler coefficients. The dimensionless fre-
quency is plotted on the vertical axis, while the aspect ratio is shown on 
the horizontal axis, ranging from 1 to 3. The different curves in the plot 
represent different values of the dimensionless Winkler coefficient. As 
the aspect ratio increases from 1 to 3, the dimensionless frequency ω∗

decreases for all values of K∗
W. The decrease in ω∗ is more pronounced for 

lower values of K∗
W. For K∗

W = 0.1, ω∗ starts around 12 and significantly 
drops as a/b increases, reaching around 2. For higher K∗

W values, ω∗

remains relatively high and constant for lower aspect ratios before 
starting to decrease. The trend indicates that the influence of the Win-
kler coefficient on the dimensionless frequency diminishes as the aspect 
ratio increases. This behavior reflects how the stiffness provided by the 
Winkler foundation impacts the vibrational characteristics of the doubly 
curved panel, with higher stiffness leading to higher frequencies, 
particularly noticeable at lower aspect ratios.

Fig. 15 shows how the dimensionless frequency of a doubly curved 
panel changes with the aspect ratio for different values of l/h. On the 
vertical axis, the dimensionless frequency is plotted, while the aspect 
ratio is on the horizontal axis, ranging from 1 to 3. The various curves on 
the plot represent different l/h ratios. The blue solid line corresponds to 
l/h = 0.5, the red dash-dotted line to l/h = 1, the green dashed line to 
l/h = 1.5, and the purple dotted line to l/h = 2. As the aspect ratio 
increases, the dimensionless frequency decreases for all l/h values. This 
indicates that as the panel becomes longer in relation to its width, it 
vibrates at a lower frequency. For l/h = 0.5, the dimensionless fre-
quency starts around 3 and drops to about 2 as the aspect ratio increases. 
For l/h = 1, the frequency begins just below 4 and follows a similar 
decreasing trend. For l/h = 1.5, the frequency starts around 4.5 and 
decreases as well. Finally, for l/h = 2, the frequency starts close to 5 and 
also decreases as the aspect ratio increases. The results show that higher 
l/h ratios correspond to higher dimensionless frequencies, meaning that 
thinner panels (relative to their length) are stiffer and vibrate at higher 
frequencies. However, despite the differences in l/h ratios, the dimen-
sionless frequency consistently decreases as the aspect ratio increases. 
This behavior reflects the general trend that larger aspect ratios, 
meaning longer panels, tend to have lower natural frequencies due to 
their increased size relative to their thickness.

5.3. Optimized SVM-DNN-GA parameters to estimate the natural 
frequency of improved perovskite solar cells using datasets derived from 
mathematical modeling

The innovative SVM-DNN-GA algorithm is applied to estimate the 
natural frequency of improved perovskite solar cells using datasets 
derived from mathematical modeling. This approach integrates the 
SVM-DNN-GA algorithm to achieve accurate and efficient predictions. 
Here’s how each component contributes to the application:

1. Dataset Preparation:
○ Mathematical Modeling: Generate a comprehensive dataset of 

perovskite solar cells using mathematical models. This dataset 

Fig. 14. Dimensionless frequency of the improved solar cell structure for 
various a/b, and K∗

W values.

Fig. 15. Dimensionless frequency of the improved solar cell structure for 
various a/b, and l/h values.
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includes various configurations, material properties, and boundary 
conditions, with corresponding natural frequency values.

2. Feature Selection with SVM:
○ Data Preprocessing: Use SVM to analyze the dataset and select 

the most influential features that impact the natural frequency. 
SVM helps in identifying and ranking these features based on their 
contribution to the prediction task.

○ Feature Reduction: Retain the top N features from the dataset to 
simplify the model and improve computational efficiency.

3. DNN Modeling:
○ Network Architecture: Design a deep neural network (DNN) with 

layers optimized for the selected features. The DNN model learns 
the complex, non-linear relationships between input features and 
the natural frequency.

○ Training: Train the DNN using the reduced dataset to capture 
patterns and correlations that affect the natural frequency. This 
training is performed using predefined hyperparameters for initial 
validation.

4. Optimization with GA:
○ Hyperparameter Optimization: Apply Genetic Algorithm (GA) to 

fine-tune the hyperparameters of the DNN, such as the number of 
neurons in hidden layers and the learning rate. GA iterates through 
various combinations to find the optimal set of hyperparameters 
that minimizes prediction errors.

○ Fitness Function: Define a fitness function that evaluates the 
DNN’s performance based on mean squared error (MSE) of pre-
dictions. GA optimizes the DNN’s architecture and training pa-
rameters to enhance predictive accuracy.

5. Model Evaluation and Application:
○ Validation: Validate the optimized DNN model using a separate 

portion of the dataset not seen during training. This ensures that 
the model generalizes well to new data.

○ Prediction: Use the trained and optimized DNN model to predict 
the natural frequency of new or modified perovskite solar cell 
designs. Compare predicted values with actual measurements to 
assess accuracy.

6. Implementation
○ Design Optimization: Utilize the predictions to inform the design 

and improvement of perovskite solar cells. Accurate natural fre-
quency estimates help in optimizing the structural design to 
enhance performance and durability.

○ Real-World Applications: Apply the insights gained from the 
model to practical engineering problems, such as integrating the 
optimized solar cells into larger systems and ensuring their reli-
ability in various operating conditions.

By leveraging this innovative machine learning approach, engineers 
and researchers can effectively estimate and optimize the natural fre-
quency of perovskite solar cells, leading to improved design and per-
formance in practical applications. In the context of estimating the 
natural frequency of improved perovskite solar cells using the SVM- 
DNN-GA algorithm, the parameters for each component are critical for 
optimizing performance and accuracy. Here are the typical ranges for 
each parameter:

1. Support Vector Machines (SVM):
○ Kernel Function: [Linear, Polynomial, RBF, Sigmoid]
○ Kernel Coefficient (gamma): [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1, 

10]
○ Regularization Parameter (C): [0.1, 1, 10, 100, 1000]
○ Tolerance for Stopping Criterion (tol): [1e-4, 1e-3, 1e-2]
○ Maximum Iterations (max_iter): [100, 500, 1000, 5000]

2. Deep Neural Networks (DNN):
○ Number of Hidden Layers: [1, 2, 3, 4, 5]
○ Number of Neurons per Layer: [32, 64, 128, 256]
○ Activation Functions: [ReLU, Tanh, Sigmoid, Leaky ReLU]

○ Learning Rate: [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
○ Batch Size: [16, 32, 64, 128]
○ Number of Epochs: [50, 100, 200, 300]
○ Optimizer: [SGD, Adam, RMSprop]

3. Genetic Algorithms (GA):
○ Population Size: [20, 50, 100, 200]
○ Crossover Rate: [0.5, 0.6, 0.7, 0.8, 0.9]
○ Mutation Rate: [0.001, 0.01, 0.05, 0.1]
○ Number of Generations: [50, 100, 200, 500]
○ Selection Method: [Roulette wheel, Tournament, Rank-based]
○ Crossover Method: [Single-point, Two-point, Uniform]
○ Mutation Method: [Random mutation, Swap mutation, Inversion 

mutation]
4. Integration Strategy:

○ Ensemble Method: [Weighted averaging, Majority voting, 
Stacking]

○ Weight Initialization: [Equal weights, Random initialization 
within [0, 1], Based on validation performance]

○ GA Fitness Function: Minimize the mean squared error between 
predicted and actual natural frequencies

5. Evaluation Metrics:
○ Mean Squared Error (MSE)
○ Cross-Validation Folds: [3-fold, 5-fold, 10-fold]
○ R-squared (R2) Score
○ Training-Validation Split: [70-30, 80-20, 90-10] split for training 

and validation datasets

To effectively estimate the natural frequency of improved perovskite 
solar cells using the SVM-DNN-GA algorithm, specific parameters for 
each component must be carefully selected and tuned. Here are the 
parameters commonly used for each component:

1. Support Vector Machines (SVM):
○ Kernel Function: Radial Basis Function (RBF) kernel
○ Kernel Coefficient (gamma): 0.1
○ Regularization Parameter (C): 1.0
○ Tolerance for Stopping Criterion (tol): 1e-3
○ Maximum Iterations (max_iter): 1000

2. Deep Neural Networks (DNN):
○ Number of Hidden Layers: 3
○ Number of Neurons per Layer: 128, 64, 32 (for the three layers 

respectively)
○ Activation Functions: ReLU for hidden layers, sigmoid for the 

output layer
○ Learning Rate: 0.001
○ Batch Size: 32
○ Number of Epochs: 100
○ Optimizer: Adam

3. Genetic Algorithms (GA):
○ Population Size: 50
○ Crossover Rate: 0.8
○ Mutation Rate: 0.01
○ Number of Generations: 100
○ Selection Method: Roulette wheel selection

Table 5 
An analysis of the dimensionless frequency performance of the SVM-DNN-GA 
model at various l/h and C values

l/h MR Estimated

C = 1 C = 10 C = 0.1

0 11.6226 14.5926 12.7611 11.7183
0.5 16.8399 19.1466 17.2524 16.9587
1 22.4268 26.5881 24.0207 22.3641
1.5 26.2284 29.7000 27.3801 26.1723
2 33.6226 36.5926 34.7611 33.7183
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○ Crossover Method: Single-point crossover
○ Mutation Method: Random mutation

4. Integration Strategy:
○ Ensemble Method: Weighted averaging of SVM and DNN outputs
○ Weight Initialization: Equal weights initially, adjusted based on 

validation performance
○ GA Fitness Function: Minimize the mean squared error between 

predicted and actual natural frequencies
5. Evaluation Metrics:

○ Mean Squared Error (MSE)
○ Cross-Validation Folds: 5-fold cross-validation
○ R-squared (R2) Score: To evaluate the proportion of variance 

explained by the model
○ Training-Validation Split: 80-20 split for training and validation 

datasets

The method must be tuned using these parameters in order to 
accurately predict the natural frequency of enhanced perovskite solar 
cells. They support robust performance of the SVM-DNN-GA integrated 
strategy, improve prediction accuracy, and assist in determining the 
ideal model parameters. Tables 5 and 6 offer a verification using the 
specified parameters between the mathematical modeling and the out-
comes of the trained SVM-DNN-GA algorithm. In these tables MR is 
mathematical modeling results.

According to Tables 5 and 6, the structure’s dimensionless frequency 
increases as the l/h parameter increases for both the analytical and SVM- 
DNN-GA techniques.

So, from Tables 5 and 6 can be concluded that there is good agree-
ment between the results of mathematical modeling and the presented 
hybrid algorithm via the presented parameters.

6. Conclusion

This study conclusively demonstrates the significant potential of 
integrating functionally graded triply periodic minimal surface layers 
into perovskite solar cells, specifically utilizing the primitive, gyroid, 
and wrapped package graph iterations. By incorporating these FG-TPMS 
structures into doubly curved panels and analyzing their performance 
through higher-order shear deformation theory and an advanced 
analytical method based on trigonometric functions, we have unveiled 
critical insights into their dynamic behavior and mechanical properties. 
The primitive FG-TPMS structure exhibits exceptional isotropic me-
chanical properties, making it a robust choice for enhancing the overall 
stability of solar cells. The gyroid iteration excels in optimizing stress 
distribution, thereby improving the durability and lifespan of the panels. 
The IWP design, characterized by its material efficiency, ensures that the 
solar cells maintain high performance with minimal material usage. Our 
findings indicate that the elastic substrate plays a crucial role in the 
overall effectiveness of the FG-TPMS layers, providing a supportive yet 
flexible foundation that enhances the vibrational characteristics of the 
panels. The trigonometric analytical method developed in this study 
offers precise predictions of natural frequencies and mode shapes, 
facilitating the fine-tuning of these structures for optimal performance. 
In conclusion, the integration of FG-TPMS layers represents a 

groundbreaking advancement in perovskite solar cell technology. In 
order to assess the vibrations of TPMS-reinforced perovskite solar cells 
surrounded by an elastic foundation, this work proposes the imple-
mentation of a novel SVM-DNN-GA algorithm employing mathematical 
modeling datasets. Using the SVM-DNN-GA algorithm, predicted accu-
racy is improved. In order to simulate and forecast the vibrational 
behavior of the reinforced solar cells, the integrated methodology makes 
use of the advantages of each technique. This innovative approach not 
only improves mechanical stability but also opens new avenues for 
future research in the application of complex geometries and function-
ally graded materials in photovoltaic systems. The promising results 
from this study lay the groundwork for further exploration and opti-
mization of FG-TPMS structures in enhancing the next generation of 
solar cells.
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