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Abstract: In the fields of mathematics and information sciences, binary relations are vital. Fuzzy 
sets (FSs), rough sets (RSs), and soft sets (SSs) are mathematical strategies that effectively handle 
ambiguous and imprecise data in practical situations. This work presents various properties of the 
roughness of fuzzy sets regarding foresets (F-sets) and aftersets (A-sets) using soft binary relations 
(SBRs). Initially, two pairs of fuzzy soft sets (FSSs) are obtained by approximating a fuzzy subset 
using an SBR, and their distinctive axiomatic systems are explored. Additionally, two types of fuzzy 
topologies that result from soft reflexive relations (SRRs) are examined. Numerous similarity 
relations allied with SBRs are also investigated. In addition, we present the accuracy measure and 
roughness measure for a fuzzy subset based on the mass assignment of the fuzzy subset through soft 
relations. Next, we outline a decision-making (DM) approach within the context of the proposed 
method. In addition, we provide two algorithms and decision phases. Ultimately, an applied example 
is used to evaluate the reliability of the decision processes. An extensive comparison study confirms 
the proposed method's feasibility and superiority over current DM methods. 
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1. Introduction 

Conventional tools for reasoning and computation are typically precise. However, most 
real-world problems across diverse fields such as social sciences, engineering, environmental studies, 
and medicine involve imprecise and ambiguous data. These problems, characterized by varying 
degrees of uncertainty, cannot be effectively addressed using traditional mathematical tools. 
Probability theory has historically been regarded as a powerful approach to handling uncertainty. 
However, its application often requires systems to be stochastically stable, a fundamental prerequisite 
that necessitates a substantial number of validation trials. This process can be time-consuming, which 
is impractical in today's fast-paced world where efficiency is paramount. To address this challenge, 
unconventional methods must be explored. Researchers are increasingly focused on developing 
strategies to extract meaningful insights from ambiguous and uncertain information. These efforts 
have garnered significant attention from experts across various scientific and technological domains. 
In this context, Zadeh [1] made a pivotal contribution by introducing the FS theory, which provides a 
mathematical framework for managing uncertainty and interpreting linguistic terms in human 
language. This groundbreaking innovation marked a significant leap forward, accelerating 
advancements in the field. 

FSs provide a more flexible framework than traditional crisp sets by permitting elements to 
belong to multiple sets with varying membership grades. This capability enables FSs to circumvent 
the inherent ambiguity in real-world dilemmas. By representing uncertainty and gradation, FS theory 
proves advantageous for modelling complex systems and human decision-making processes, where 
boundaries are often indistinct. Over time, various generalizations of FS theory have emerged, 
including interval-valued FSs, intuitionistic FSs, vague sets, and neutrosophic FSs [2]. While these 
theories have proven valuable for managing uncertainty, each presents unique challenges. As 
Molodtsov [3] highlighted, these challenges underscore the need for further refinement and 
innovation in this domain. 

Molodtsov [3] presented the SS theory as an essential idea for another numerical tool designed 
to handle ambiguity. One of the most promising characteristics of SSs is their capability to 
circumvent uncertainty using a parametric manner. In practical applications, information is often 
incomplete or ambiguous, making it challenging to represent using classical set theory. However, SSs 
offer a more flexible framework, enabling the effective modelling of such imprecise and uncertain 
dilemmas. Additionally, SSs offer a wide range of actions that are quite helpful in handling many 
kinds of scenarios. The author of [4] provided some exercises in SS theory and hypotheses. Maji et al. [5] 
employed the SS hypothesis in a DM problem. FSSs were also developed by the same creators as 
classical SSs [6]. In light of FSSs, Roy and Maji demonstrated a technique for question affirmation 
based on unclear multi-eyewitness information and related it to decision-based problems. Many 
authors have considered the idea of parametric reduction in SSs [7]. Numerous scholars have 
contemplated the paradigm of SSs in alternate points of view [8]. Alcantud et al. [9] conducted a 
comprehensive systematic literature survey on SS theory, providing an in-depth analysis of its 
development, applications, and theoretical advancements. Bayram et al. [10] fostered an advanced 
encryption scheme based on SSs. SS theory has been fruitfully applied across numerous realms, 
including decision analysis [11], data mining [12], image processing, machine learning, coding 
theory, group theory, and cryptography, as reported in [13, 14]. 

RS theory was first proposed by Pawlak [15] as another approach to classifying incomplete 
information. The RS efficiently incorporates uncertainty by offering lower and upper approximations. 
The philosophy of RS is founded on the premise that every object in the universe is associated with 
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specific information. Objects sharing similar information are considered indistinguishable from one 
another. This indistinguishability, formalized as the indiscernibility relation, serves as the 
mathematical cornerstone of RS theory. In most cases, the indiscernibility relation is also titled an 
equivalence relation (ER). Even though the RS paradigm has been applied successfully in various 
realms, this is not generally the case, as ERs have been replaced with arbitrary binary relations to 
avoid the restrictive conditions of ERs when addressing practical problems. Several authors have 
deliberated rough approximation operators using neighborhood systems inspired by arbitrary binary 
relations, such as Overlapping containment rough neighborhoods [16, 17], cardinality rough 
neighborhoods [18, 19, 20], intersection rough neighborhoods [21], subset rough neighborhoods [22], 
and topological neighborhoods [23]. Zhu [24] introduced the concept of generalized RS based on 
relational structures. She et al. [25] incorporated logical operators into RS theory, further extending 
its applicability. Dubois and Prade [26] developed the fuzzy RS (FRS) framework by replacing crisp 
relations with fuzzy relations. Gul et al. [27] proposed an RS variant grounded in fuzzy preference 
relations. The authors in [28] introduced a novel approach for the fuzzification of RSs using 
α-indiscernibility. Meanwhile, Greco and Slowinski [29] presented a dominance-based RS model, 
further diversifying the applications of RS theory. Zhan and Zhu [30] conducted a systematic review 
of DM methods based on SSs, FSSs, and rough SS. 

Binary relations play a vital role in the creation of topological structures across various 
disciplines. Topology, a significant branch of mathematics, extends beyond its theoretical 
foundations to influence numerous mathematical domains and practical applications. Particularly, the 
generation of topologies through relations and the representation of topological notions via relational 
contexts serve to bridge the gap between abstract topology and its real-world applicability. Salama et 
al. [31] familiarized topological approaches for generalized RSs, while Shabir and Naz [32] founded 
the concept of soft topological spaces, characterized by an initial universe defined by a fixed set of 
parameters. Li et al. [33] explored the interrelations among SSs, soft rough sets (SRSs), and 
topological structures. Furthermore, Riaz et al. [34] explored soft multi-rough set topology and its 
applications in DM. 

A SBR is a parameterized collection of binary relations in the universe. Rough approximations 
in RS theory only take into account one binary relation. Rough approximations can handle multiple 
binary relations while taking into account SBRs. If we predetermine the set of parameters and let 
each parameter match the same binary relation, then this binary relation (BR) becomes an SBR. Thus, 
every ordinary BR on a set is thought to be an SBR, emphasizing the fact that SBRs deserve 
additional investigation. Qurashi et al. [35] inspected rough fuzzy substructures of quantale module 
under SBRs and related DM applications. Additionally, Feng et al. [36] deployed SBRs to 
semigroups. The authors of [37] exposed multigranulation roughness of a set via SBRs. Soft relations 
were used to take a different approach to DM in [38]. Mehmood et al. [39] disclosed the roughness 
of FSs by BRs induced from SBRs with application in DM. The authors of [40, 41] propounded a 
fusion among SSs, FSs, and RSs. Kanwal and Shabir [42] studied the approximation of ideals in 
semigroups by SBRs. The authors of [43] studied the reduction of an information system via SBRs. 

Maji et al. [5] began the possibility of SS applications in DM. Some errors in this early work 
were pointed out by Chen et al. [7]. The authors of [24] explored novel operations within the 
framework of SSs. Maji et al. [44] introduced the concept of FSSs, establishing a significant 
extension of the SS theory. Feng et al. [45] investigated the relationship between SSs and RSs, 
leading to the development of a hybrid model known as soft RSs (SRSs). The authors of [46] refined 
this concept further by proposing a modified version of SRS. The authors of [47] defined the notion of a 
soft rough fuzzy covering using soft neighborhoods and studied its properties in detail. Li and Xie [48] 
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examined the interconnections between SSs, SRSs, and topologies, highlighting their theoretical 
implications. Ayub et al. [49] analyzed modules of fractions under the frameworks of FSs and SSs. 
Many researchers have proposed a roughness measure for FSs by mass assignment [50]. Banerjee 
and Pal [51] presented an FS roughness measure. Many authors have delivered different ways of DM 
within the context of the SS paradigm [52, 53]. Çağman and Enginoğlu [54] proposed the idea of soft 
matrix theory and its decision-making. 

It is well-recognized that many problems involve two distinct universes, including the 
relationship between customer objections and their corresponding solutions in enterprise 
management, the alignment of customer characteristics with product features in personalized 
marketing, and the association between mechanical defects and their remedies in machine diagnostics. 
To address these problems, the RS variant has been generalized over two universes. Liu [55] designed an 
RS version based on two universes with applications. Based on the interrelation between two 
universes, Liu et al. [56] developed a link between the graded RS and suitable parameters. The 
authors of [57] anticipated a probabilistic RS model to deal with uncertainty. Xu et al. [58] pioneered 
the FRS mechanism over two universes. Zhai and Wang [59] formulated a variable precision RS 
model over two universes and its properties. In [60], the authors devised an approach to emergency 
DM based on decision-theoretic RS over two universes. 

1.1. Motivations and research gaps 

The knowledge gaps, motivations, and originality of this article are encapsulated as: 
(1) From the examined reviewed literature, it becomes evident that numerous researchers have 

proposed various hybrid models integrating FSs, RSs, and SSs. Despite abundant research and the 
quick growth of FSs, RSs, and SSs, many real-world situations remain unexplored. To the best of our 
knowledge, there does not exist any appropriate study where the roughness of an FS using SBRs is 
explored. As a result, the purpose of this work is to provide a new roughness mechanism for FSs in 
the context of SBRs. This strategy is fundamentally different from all former approaches, in which 
we approximate an FS by using SBRs over two universes concerning the A-sets and F-sets. 

(2) Moreover, many real applications involve the consideration of two universes. For example, 
patients in a hospital frequently have several symptoms at the same time. A single disease might have 
a diversity of clinical symptoms. Consequently, it might be difficult for a doctor to determine 
whether or not a patient is suffering from a particular disease. In such circumstances, RS paradigms 
are better in two universes: one for the clinical symptoms and the other for the patients. To address 
this situation, the RS contexts have been prolonged over dual universes. Based on the above 
literature survey, it becomes evident that the concept of the roughness of FSs has not been explored 
through SBRs in dual-universe settings, leaving a significant gap in the theoretical development of 
RS theory. Additionally, the roughness of SSs via SBRs over dual universes allows us to analyze 
objects from two universes and gain a more comprehensive understanding of their relationship. 

(3) Besides, despite the potential of rough FSs in handling uncertainty, their application in 
decision-making in the context of SBRs remains underdeveloped, necessitating further research to 
bridge this gap and enhance practical implementations. 

1.2. Main contributions 

The main contributions of this work are outlined as follows: 
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 The main objective of this study is to construct a more comprehensive and robust approach to 
the roughness of FSs via SBRs. We concentrate on rough approximations of an FS through 
SBRs, which are titled the lower approximation and upper approximation concerning the A-sets 
and F-sets. 

 To investigate several axiomatic systems of newly constructed lower and upper approximations 
with concrete illustrations. 

 To frame two kinds of soft topologies induced from SRRs. 
 To study several similarity relations associated with SBRs. 
 To present accuracy and roughness measures based on the idea of mass assignment of an 

FS via SBRs. 
 Given the assistance of the recommended mechanism, efforts are made to establish an FS-based 

DM approach regarding A-sets and F-sets, respectively. 
 To validate the established work’s dominance and performance by a comparative analysis 

between the projected method and some existing techniques. 

1.3. Organization of this work 

The remaining of this paper is organized as follows: Some basic ideas related to RSs, FSs, SSs, 
and SBRs are provided in Section 2. In Section 3, we formulate rough approximations of an FS based 
on an SBR in terms of A-sets and F-sets and explore their axiomatics systems in detail with several 
concrete illustrations. Section 4 examines two types of fuzzy topologies brought about by SRRs and 
analyzes their properties. Section 5 focuses on soft similarity relations associated with SBRs. In 
Section 6, we provide the membership functions for FSs regarding the A-sets and the F-sets, together 
with their corresponding degrees of accuracy and roughness. An approach to an FS's roughness 
measure using SBRs is given in Section 7. We offer a strategy for dealing with a DM problem using 
the proposed framework with two algorithms in Section 8. Also, a practical application of 
decision-making problems is provided. In Section 9, we execute an in-depth comparative analysis of 
our devised scheme with several preexisting approaches. Section 10 provides an overview of the 
conclusion and future research recommendations of this article. 

2. Preliminaries 

This segment introduces fundamental notions related to SSs, FSs, RSs, and SBRs. Unless 
otherwise stated, 𝑈𝑈 and 𝑊𝑊 are presumed to be non-empty finite sets throughout this work. 
Definition 1. A subset of 𝑈𝑈 × 𝑊𝑊 is a binary relation from 𝑈𝑈 to 𝑊𝑊, and a subset of 𝑈𝑈 × 𝑈𝑈 is 
stated to as a binary relation on 𝑈𝑈. 
Definition 2. If 𝜋𝜋 is a 𝐵𝐵𝐵𝐵 on 𝑈𝑈, it is considered as: 
1) Reflexive if and only if (𝒻𝒻,𝒻𝒻) ∈ 𝜋𝜋 ∀ 𝒻𝒻 in 𝑈𝑈. 
2) Symmetric if ∀ 𝒻𝒻,𝓌𝓌 ∈ 𝑈𝑈, (𝒻𝒻,𝓌𝓌) ∈ 𝜋𝜋 ⇒ (𝓌𝓌,𝒻𝒻) ∈ 𝜋𝜋. 
3) Transitive if ∀ 𝒻𝒻,ℊ,𝓌𝓌 ∈ 𝑈𝑈, (𝒻𝒻,ℊ) ∈ 𝜋𝜋 and (ℊ,𝓌𝓌) ∈ 𝜋𝜋 ⇒ (𝒻𝒻,𝓌𝓌) ∈ 𝜋𝜋. 
4) 𝜋𝜋 is named an ER if it is reflexive, symmetric, and transitive. 
Definition 3. [15] An approximation space is a pair (𝒰𝒰,𝜋𝜋), where 𝒰𝒰 is a non-empty finite set and 
𝜋𝜋 is an 𝐸𝐸𝐵𝐵 on 𝒰𝒰.  𝒳𝒳 is definable if 𝒳𝒳 ⊆ 𝒰𝒰 is the union of some equivalence classes of 𝒰𝒰. If not, 
it is entitled as undefinable. If 𝒳𝒳 is undefinable, we can make two definable subsets that we refer to 
as lower and upper approximations of 𝒳𝒳, which are respectively represented as follows: 
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𝜋𝜋(𝒳𝒳) =∪ {[𝓀𝓀]𝜋𝜋: [𝓀𝓀]𝜗𝜗 ⊆ 𝒳𝒳},        (2.1) 

𝜗𝜗(𝒳𝒳) =∪ {[𝓀𝓀]𝜋𝜋: [𝓀𝓀]𝜗𝜗 ∩ 𝒳𝒳 ≠ ∅}.       (2.2) 

An RS is denoted by a pair (𝜋𝜋(𝒳𝒳),𝜋𝜋(𝒳𝒳)). The set 

𝐵𝐵𝐵𝐵𝐵𝐵(𝒳𝒳) =  𝜋𝜋(𝒳𝒳) −  𝜋𝜋(𝒳𝒳) ,        (2.3) 

is said to be the boundary region. 𝒳𝒳 is definable if 𝐵𝐵𝐵𝐵𝐵𝐵(𝒳𝒳) = ∅; else, 𝒳𝒳 is an RS. 
According to the previous definition, we infer that: 

• The lower approximation 𝜋𝜋(𝒳𝒳) is a gathering of objects that can be classified with full 
guarantee as a member of set 𝒳𝒳 with the information of 𝜋𝜋. 

• The upper approximation 𝜋𝜋(𝒳𝒳)  is an assemblage of elements that may possibly be 
characterized as an element of set 𝒳𝒳 using knowledge of 𝜋𝜋. 

Definition 4. [1] A mapping 𝜆𝜆:𝒰𝒰 → [0,1] defines an FS 𝜆𝜆 in 𝒰𝒰. The membership value 𝜆𝜆(𝑥𝑥) for 
𝑥𝑥 in 𝒰𝒰 effectively indicates the extent to which 𝑥𝑥 is a member of the FS 𝜆𝜆. 

Let two FSs be in 𝒰𝒰 𝑎𝑎𝑎𝑎 𝜆𝜆₁ and 𝜆𝜆₂. If 𝜆𝜆₁(𝑢𝑢) ≤ 𝜆𝜆₂(𝑢𝑢) for every 𝑢𝑢  in 𝒰𝒰 , then 𝜆𝜆₁ ≤ 𝜆𝜆₂. 
Additionally, 𝜆𝜆₁ = 𝜆𝜆₂ when 𝜆𝜆₁ ≥ 𝜆𝜆₂ and 𝜆𝜆₁ ≤ 𝜆𝜆₂. 

The assemblage of all FSs in 𝒰𝒰 is symbolized by 𝐹𝐹(𝒰𝒰). 
Definition 5. [1] If (𝑢𝑢) = 0 ∀𝑢𝑢 ∈ 𝒰𝒰, then an FS 𝜆𝜆 in 𝒰𝒰 is referred to as null FS. An FS 𝜆𝜆 is 
considered full FS if (𝑢𝑢) = 1 ∀𝑢𝑢 ∈ 𝒰𝒰. Typically, a null FS is represented by 0 and a full FS by 1. 

FS intersection, union, and complement are defined component-wise using Zadeh's min-max 
system. With 𝜆𝜆, 𝜇𝜇 ∈ 𝐹𝐹(𝒰𝒰) and 𝑥𝑥 ∈ 𝒰𝒰, we have 
1) (𝜆𝜆 ∩ 𝜇𝜇)(𝑥𝑥) = 𝜆𝜆(𝑥𝑥)⋀𝜇𝜇(𝑥𝑥), 
2) (𝜆𝜆 ∪ 𝜇𝜇)(𝑥𝑥) = 𝜆𝜆(𝑥𝑥)⋁𝜇𝜇(𝑥𝑥), 
3)  𝜆𝜆𝑐𝑐 (𝑥𝑥) = 1 − 𝜆𝜆(𝑥𝑥). 
Definition 6. The 𝛼𝛼-𝑐𝑐𝑢𝑢𝑐𝑐 or 𝛼𝛼-level set of an FS 𝜆𝜆 in 𝒰𝒰, with a number 𝛼𝛼 ∈  (0,1), is described as: 

𝜆𝜆𝛼𝛼 = {𝑥𝑥 ∈ 𝑈𝑈: 𝜆𝜆(𝑥𝑥) ≥ 𝛼𝛼}.        (2.4) 

Let 𝒰𝒰 be the non-empty universe. The family of all subsets of 𝒰𝒰 (i.e., all FSs in 𝒰𝒰) is represented 
as 𝑃𝑃(𝒰𝒰) (resp. 𝜗𝜗(𝒰𝒰)). 
Definition 7. [8] A pair (𝜗𝜗,𝐴𝐴) is called an FSS over 𝒰𝒰 if 𝜗𝜗 is a mapping given by 𝜗𝜗:𝐴𝐴 → ₣(𝒰𝒰) 
and 𝐴𝐴 is a subset of 𝐸𝐸 (the set of parameters). Thus, 𝜗𝜗(𝑒𝑒) is an FS in ∀𝑒𝑒 ∈ 𝐴𝐴. Hence, an FSS 
over 𝒰𝒰 is a gathering of FSs in 𝒰𝒰. 
Definition 8. [8] If (1) 𝐴𝐴 ⊆ 𝐵𝐵 and (2) 𝐹𝐹(𝑒𝑒) is an FS of (𝑒𝑒) ∀𝑒𝑒 ∈ 𝐴𝐴, then we say that (𝜗𝜗,𝐴𝐴) is a 
fuzzy soft subset of (𝐺𝐺,𝐵𝐵) for two FSSs (𝜗𝜗,𝐴𝐴) and (𝐺𝐺,𝐵𝐵) over a universe 𝑈𝑈. If (𝐹𝐹,𝐴𝐴) is a 
fuzzy soft subset of (𝐺𝐺,𝐵𝐵) and (𝐺𝐺,𝐵𝐵) is a fuzzy soft subset of (𝜗𝜗,𝐴𝐴), then two FSSs (𝜗𝜗,𝐴𝐴) and 
(𝐺𝐺,𝐵𝐵) over a universe 𝒰𝒰 are called fuzzy soft equal. 
Definition 9. [8] For every 𝑒𝑒 ∈ 𝐴𝐴 such that 𝐻𝐻(𝑒𝑒) = 𝜗𝜗(𝑒𝑒)  ∪ 𝐺𝐺(𝑒𝑒), the FSS (𝐻𝐻,𝐴𝐴) is the union of 
two FSSs (𝜗𝜗,𝐴𝐴) and (𝐺𝐺,𝐴𝐴) over the universe 𝒰𝒰 ∀𝑒𝑒 ∈ 𝐴𝐴 such that 𝐻𝐻(𝑒𝑒) = 𝜗𝜗(𝑒𝑒)  ∩ 𝐺𝐺(𝑒𝑒), the 
FSS (𝐻𝐻,𝐴𝐴) over the universe 𝒰𝒰 is the intersection of two FSSs (𝜗𝜗,𝐴𝐴) and (𝐺𝐺,𝐴𝐴). 
Definition 10. [36] Assume that (𝜗𝜗,𝐴𝐴) is an SBR from 𝑈𝑈 to 𝑊𝑊, where 𝐴𝐴 ⊆ 𝐸𝐸, if (𝜗𝜗,𝐴𝐴) is a SS 
over 𝑈𝑈 × 𝑊𝑊 , i.e., 𝜗𝜗 ∶ 𝐴𝐴 → 𝑃𝑃(𝑈𝑈 × 𝑊𝑊).  A parameterized collection of 𝐵𝐵𝐵𝐵𝑎𝑎  from 𝑈𝑈  to 𝑊𝑊  is 
denoted by (𝜗𝜗,𝐴𝐴). In other words, for every parameter 𝑒𝑒 in 𝐴𝐴, we have a 𝐵𝐵𝐵𝐵 𝜗𝜗(𝑒𝑒) from 𝑈𝑈 to 𝑊𝑊. 

3. Approximation of a fuzzy set through soft binary relations 

In this section, we use an SBR from a set 𝑈𝑈 to 𝑊𝑊 to define the rough approximations of an FS 
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in terms of F-sets and A-sets. For this purpose, we approximate an FS of universe 𝑊𝑊 in universe 𝑈𝑈 
and an FS of 𝑈𝑈 in 𝑊𝑊 using A-sets and F-sets of SBRs, respectively. In this way, we attain two 
FSSs corresponding to FSs in 𝑊𝑊 (resp. 𝑈𝑈). We also scrutinize several axiomatic systems of these 
approximations. We discuss several concrete illustrations to better comprehend the proposed notions. 
Definition 11. Let (𝜗𝜗,𝐴𝐴) be an 𝑆𝑆𝐵𝐵𝐵𝐵 from 𝑈𝑈 to 𝑊𝑊 and 𝜆𝜆 be an FS of 𝑊𝑊. Then, the lower 
approximation 𝜗𝜗𝜆𝜆 and upper approximation 𝜗𝜗

𝜆𝜆
 of 𝜆𝜆 concerning A-sets are postulated as follows: 

𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢) = �
⋀𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎′)      𝑖𝑖𝑖𝑖 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙,
0                               𝑖𝑖𝑖𝑖 𝑢𝑢𝜗𝜗(𝑒𝑒) = 𝜙𝜙,

      (3.1) 

and 

𝜗𝜗
𝜆𝜆

(𝑒𝑒)(𝑢𝑢) = �
⋁𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎′)      𝑖𝑖𝑖𝑖 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙,
0                               𝑖𝑖𝑖𝑖 𝑢𝑢𝜗𝜗(𝑒𝑒) = 𝜙𝜙,

      (3.2) 

where 𝑢𝑢𝜗𝜗(𝑒𝑒) = {𝑤𝑤 ∈ 𝑊𝑊: (𝑢𝑢,𝑤𝑤) ∈ 𝜗𝜗(𝑒𝑒)} and is called the A-set of 𝑢𝑢 for 𝑢𝑢 ∈ 𝑈𝑈 and 𝑒𝑒 ∈ 𝐴𝐴. 
In Definition 11, a SBR from 𝑈𝑈 to 𝑊𝑊 is assumed, and a FS in 𝑊𝑊 can be approximated as 

lower and upper approximations regarding A-sets. The resultant sets are two FSSs over 𝑈𝑈. 
The information about the object 𝑢𝑢 interpreted by lower and upper approximations is as follows: 

• 𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢) specifies the degree to which the object 𝑢𝑢 certainly has the property 𝑒𝑒. 

• 𝜗𝜗
𝜆𝜆

(𝑒𝑒)(𝑢𝑢) shows the degree to which the object 𝑢𝑢 possibly has the property 𝑒𝑒. 
Definition 12. Let (𝜗𝜗,𝐴𝐴) be an 𝑆𝑆𝐵𝐵𝐵𝐵 from 𝑈𝑈 to 𝑊𝑊. Then, the lower approximation 𝛿𝛿𝜗𝜗 and upper 
approximation 𝛿𝛿𝜗𝜗 of an FS 𝛿𝛿 of 𝑈𝑈 regarding F-sets are characterized as follows: 

𝛿𝛿𝜗𝜗(𝑒𝑒)(𝑤𝑤) = �
⋀𝑎𝑎′∈𝜗𝜗(𝑒𝑒)𝑤𝑤𝛿𝛿(𝑎𝑎′)            𝑖𝑖𝑖𝑖 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙,
0                                    𝑖𝑖𝑖𝑖 𝜗𝜗(𝑒𝑒)𝑤𝑤 = 𝜙𝜙,

     (3.3) 

and 

𝛿𝛿𝜗𝜗(𝑒𝑒)(𝑤𝑤) = �
⋁𝑎𝑎′∈𝜗𝜗(𝑒𝑒)𝑤𝑤𝛿𝛿(𝑎𝑎′)            𝑖𝑖𝑖𝑖 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙,
0                                    𝑖𝑖𝑖𝑖 𝜗𝜗(𝑒𝑒)𝑤𝑤 = 𝜙𝜙,

      (3.4) 

where 𝜗𝜗(𝑒𝑒)𝑤𝑤 = {𝑢𝑢 ∈ 𝑈𝑈: (𝑢𝑢,𝑤𝑤) ∈ 𝜗𝜗(𝑒𝑒)} and is called the F-set of 𝑤𝑤 for 𝑤𝑤 ∈ 𝑊𝑊 and 𝑒𝑒 ∈ 𝐴𝐴. 
Moreover, 𝜗𝜗𝜆𝜆:𝐴𝐴 → 𝜗𝜗(𝑈𝑈), 𝜗𝜗

𝜆𝜆
:𝐴𝐴 → 𝜗𝜗(𝑈𝑈) and 𝛿𝛿𝜗𝜗 ∶ 𝐴𝐴 → 𝜗𝜗(𝑊𝑊), 𝛿𝛿𝜗𝜗 ∶ 𝐴𝐴 → 𝜗𝜗(𝑊𝑊) and we say 

(𝑈𝑈,𝑊𝑊,𝜗𝜗) is a generalized soft approximation space. 
In the following, we elaborate on an example to better comprehend the above-described ideas. 

Example 1. Assume 𝑀𝑀𝑀𝑀.𝑋𝑋  wishes to purchase a bike for himself. Let 
𝑈𝑈 = {the set of all bikes models} = {𝐵𝐵1,𝐵𝐵2,𝐵𝐵3,𝐵𝐵4,𝐵𝐵5,𝐵𝐵6 }  and 𝑊𝑊 = {the colors of all models} =
{𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4} and the set of attributes be 𝐴𝐴 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3} = {the set of stores near his home}. 

Describe 𝜗𝜗:𝐴𝐴 → 𝑃𝑃(𝑈𝑈 × 𝑊𝑊) by 

𝜗𝜗(𝑒𝑒1) = �
(𝐵𝐵1, 𝑐𝑐1), (𝐵𝐵1, 𝑐𝑐2), (𝐵𝐵1, 𝑐𝑐3), (𝐵𝐵2, 𝑐𝑐2), (𝐵𝐵2, 𝑐𝑐4),
(𝐵𝐵4, 𝑐𝑐2), (𝐵𝐵4, 𝑐𝑐3), (𝐵𝐵5, 𝑐𝑐3), (𝐵𝐵5, 𝑐𝑐4), (𝐵𝐵6, 𝑐𝑐1)�, 

𝜗𝜗(𝑒𝑒2) = {(𝐵𝐵1, 𝑐𝑐3), (𝐵𝐵2, 𝑐𝑐3), (𝐵𝐵4, 𝑐𝑐1), (𝐵𝐵5, 𝑐𝑐1), (𝐵𝐵6, 𝑐𝑐2), (𝐵𝐵6, 𝑐𝑐3)}, 

𝜗𝜗(𝑒𝑒3) = {(𝐵𝐵3, 𝑐𝑐3), (𝐵𝐵3, 𝑐𝑐1), (𝐵𝐵2, 𝑐𝑐4), (𝐵𝐵5, 𝑐𝑐3), (𝐵𝐵5, 𝑐𝑐4)}, 

signifies the relation between models and colors accessible on store 𝑒𝑒𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 3. Then 

𝐵𝐵1𝜗𝜗(𝑒𝑒1) = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3},𝐵𝐵2𝜗𝜗(𝑒𝑒1) = {𝑐𝑐2, 𝑐𝑐4},𝐵𝐵3𝜗𝜗(𝑒𝑒1) = 𝜙𝜙, 
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𝐵𝐵4𝜗𝜗(𝑒𝑒1) = {𝑐𝑐2, 𝑐𝑐3},𝐵𝐵5𝜗𝜗(𝑒𝑒1) = {𝑐𝑐3, 𝑐𝑐4},𝐵𝐵6𝜗𝜗(𝑒𝑒1) = {𝑐𝑐1}, 

and 

𝐵𝐵1𝜗𝜗(𝑒𝑒2) = {𝑐𝑐3},𝐵𝐵2𝜗𝜗(𝑒𝑒2) = {𝑐𝑐3},𝐵𝐵3𝜗𝜗(𝑒𝑒2) = 𝜙𝜙, 

𝐵𝐵4𝜗𝜗(𝑒𝑒2) = {𝑐𝑐1},𝐵𝐵5𝜗𝜗(𝑒𝑒2) = {𝑐𝑐1},𝐵𝐵6𝜗𝜗(𝑒𝑒2) = {𝑐𝑐2, 𝑐𝑐3}, 

and 

𝐵𝐵1𝜗𝜗(𝑒𝑒3) = 𝜙𝜙,𝐵𝐵2𝜗𝜗(𝑒𝑒3) = {𝑐𝑐4},𝐵𝐵3𝜗𝜗(𝑒𝑒3) = {𝑐𝑐1, 𝑐𝑐3}, 

𝐵𝐵4𝜗𝜗(𝑒𝑒3) = 𝜙𝜙,𝐵𝐵5𝜗𝜗(𝑒𝑒3) = {𝑐𝑐3, 𝑐𝑐4},𝐵𝐵6𝜗𝜗(𝑒𝑒3) = 𝜙𝜙. 

Similarly 

𝜗𝜗(𝑒𝑒1)𝑐𝑐1 = {𝐵𝐵1,𝐵𝐵6},𝜗𝜗(𝑒𝑒1)𝑐𝑐2 = {𝐵𝐵1,𝐵𝐵2,𝐵𝐵4}, 

𝜗𝜗(𝑒𝑒1)𝑐𝑐3 = {𝐵𝐵1,𝐵𝐵4,𝐵𝐵5},𝜗𝜗(𝑒𝑒1)𝑐𝑐4 = {𝐵𝐵2,𝐵𝐵5}, 

and 

𝜗𝜗(𝑒𝑒2)𝑐𝑐1 = {𝐵𝐵4,𝐵𝐵5},𝜗𝜗(𝑒𝑒2)𝑐𝑐2 = {𝐵𝐵6}, 

𝜗𝜗(𝑒𝑒2)𝑐𝑐3 = {𝐵𝐵1,𝐵𝐵2},𝜗𝜗(𝑒𝑒2)𝑐𝑐4 = 𝜙𝜙, 

and 

𝜗𝜗(𝑒𝑒3)𝑐𝑐1 = {𝐵𝐵3},𝜗𝜗(𝑒𝑒3)𝑐𝑐2 = 𝜙𝜙, 

𝜗𝜗(𝑒𝑒3)𝑐𝑐3 = {𝐵𝐵3,𝐵𝐵5},𝜗𝜗(𝑒𝑒3)𝑐𝑐4 = {𝐵𝐵2,𝐵𝐵5}. 

Define 𝜆𝜆:𝑊𝑊 → [0,1], which characterizes the preference of the color given by 𝑀𝑀𝑀𝑀.𝑋𝑋 such that  

𝜆𝜆(𝑐𝑐1) = 0.9, 𝜆𝜆(𝑐𝑐2) = 0.8, 𝜆𝜆(𝑐𝑐3) = 0.4, 𝜆𝜆(𝑐𝑐4) = 0. 

And define 𝛿𝛿:𝑈𝑈 → [0,1], which signifies the preference of the color given by 𝑀𝑀𝑀𝑀.𝑋𝑋 such that 

𝛿𝛿(𝐵𝐵1) = 1, 𝛿𝛿(𝐵𝐵2) = 0.7 , 𝛿𝛿(𝐵𝐵3) = 0.5 , 𝛿𝛿(𝐵𝐵4) = 0.1, 𝛿𝛿(𝐵𝐵5) = 0, 𝛿𝛿(𝐵𝐵6) = 0.4. 

Consequently, the lower and upper approximations regarding the F-sets and the A-sets are, 
respectively, given in Tables 1 and 2. 

Table 1. Lower and upper approximations w.r.t. A-sets. 

 𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4 𝐵𝐵5 𝐵𝐵6 
𝜗𝜗𝜆𝜆(𝑒𝑒1) 0.4 0 0 0.4 0 0.9 

𝜗𝜗
𝜆𝜆

(𝑒𝑒1) 0.9 0.8 0 0.8 0.4 0.9 

𝜗𝜗𝜆𝜆(𝑒𝑒2) 0.4 0.4 0 0.9 0.9 0.4 

𝜗𝜗
𝜆𝜆

(𝑒𝑒2) 0.4 0.4 0 0.9 0.9 0.8 

𝜗𝜗𝜆𝜆(𝑒𝑒3) 0 0 0.4 0 0 0 

𝜗𝜗
𝜆𝜆

(𝑒𝑒3) 0 0 0.9 0 0.4 0 
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Table 2. Lower and upper approximations w.r.t. F-sets. 

 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 
𝛿𝛿𝜗𝜗(𝑒𝑒1) 0.4 0.1 0 0 
𝛿𝛿𝜗𝜗(𝑒𝑒1) 1 1 1 0.7 
𝛿𝛿𝜗𝜗(𝑒𝑒2) 0 0.4 0.7 0 
𝛿𝛿𝜗𝜗(𝑒𝑒2) 0.1 0.4 1 0 
𝛿𝛿𝜗𝜗(𝑒𝑒3) 0.5 0 0 0 
𝛿𝛿𝜗𝜗(𝑒𝑒3) 0.5 0 0.5 0.7 

Hence, 𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)(𝐵𝐵) gives the degree of definite fulfilment of the objects of 𝐵𝐵𝜗𝜗(𝑒𝑒𝑖𝑖) to 𝜆𝜆 on store 𝑒𝑒𝑖𝑖, 

and 𝜗𝜗
𝜆𝜆

(𝑒𝑒𝑖𝑖)(𝐵𝐵) provides the degree of possible fulfilment of the objects of 𝐵𝐵𝜗𝜗(𝑒𝑒𝑖𝑖) to 𝜆𝜆 on store 𝑒𝑒𝑖𝑖 
for 1 ≤ 𝑖𝑖 ≤ 3 regarding aftersets. Similarly, 𝛿𝛿𝜗𝜗(𝑒𝑒𝑖𝑖)(𝐵𝐵) gives the degree of definite fulfilment of 
the objects of 𝜗𝜗(𝑒𝑒𝑖𝑖)𝐵𝐵 to 𝛿𝛿 on store 𝑒𝑒𝑖𝑖, and 𝛿𝛿𝜗𝜗(𝑒𝑒𝑖𝑖)(𝐵𝐵) gives the degree of possible fulfilment of 
the objects of 𝜗𝜗(𝑒𝑒𝑖𝑖)𝐵𝐵 to 𝛿𝛿 on store 𝑒𝑒𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 3 regarding foresets. 
Theorem 1. Given a generalized soft approximation space (𝑈𝑈,𝑊𝑊,𝜗𝜗) and an 𝑆𝑆𝐵𝐵𝐵𝐵 𝜗𝜗:𝐴𝐴 → 𝑃𝑃(𝑈𝑈 ×
𝑊𝑊) from 𝑈𝑈 to 𝑊𝑊. Then, the following statements hold for the lower and upper approximations 
regarding A-sets for any 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 ∈ 𝜗𝜗(𝑊𝑊): 
1) 𝜆𝜆1 ≤ 𝜆𝜆2 ⟹ 𝜗𝜗𝜆𝜆1 ≤ 𝜗𝜗𝜆𝜆2, 

2) 𝜆𝜆1 ≤ 𝜆𝜆2 ⟹ 𝜗𝜗
𝜆𝜆1 ≤ 𝜗𝜗

𝜆𝜆2, 
3) 𝜗𝜗𝜆𝜆1⋂𝜗𝜗𝜆𝜆2 = 𝜗𝜗𝜆𝜆1⋂𝜆𝜆2, 

4) 𝜗𝜗
𝜆𝜆1⋂𝜗𝜗

𝜆𝜆2 ≥ 𝜗𝜗
𝜆𝜆1⋂𝜆𝜆2 , 

5) 𝜗𝜗𝜆𝜆1⋃𝜗𝜗𝜆𝜆2 ≤ 𝜗𝜗𝜆𝜆1⋃𝜆𝜆2, 

6) 𝜗𝜗
𝜆𝜆1⋃𝜗𝜗

𝜆𝜆2 = 𝜗𝜗
𝜆𝜆1⋃𝜆𝜆2, 

7) 𝜗𝜗1(𝑒𝑒)(𝑢𝑢) = 1 for all 𝑒𝑒 ∈ 𝐴𝐴 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 
8) 𝜗𝜗

1
(𝑒𝑒)(𝑢𝑢) = 1 for all 𝑒𝑒 ∈ 𝐴𝐴 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 

9) 𝜗𝜗𝜆𝜆 = �𝜗𝜗
𝜆𝜆𝑐𝑐
�
𝑐𝑐
 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 

10) 𝜗𝜗
𝜆𝜆

= �𝜗𝜗𝜆𝜆𝑐𝑐�
𝑐𝑐
 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 

11) 𝜗𝜗0 = 0 = 𝜗𝜗
0
. 

Proof. For 𝑢𝑢 ∈ 𝑈𝑈, we have two cases: (i) If 𝑢𝑢𝜗𝜗(𝑒𝑒) = 𝜙𝜙 and (ii) If 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙. If 𝑢𝑢𝜗𝜗(𝑒𝑒) = 𝜙𝜙, then 
all the above parts are trivial. So, we consider only the case when 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙. 
1) Since, 𝜆𝜆1 ≤ 𝜆𝜆2 , so 𝜗𝜗𝜆𝜆1  (e)(u) = ⋀𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎′) ≤ ⋀𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑎𝑎′)  = 𝜗𝜗𝜆𝜆2  (e)(u). Hence, 

𝜗𝜗𝜆𝜆1 ≤ 𝜗𝜗𝜆𝜆2. 

2) Since, 𝜆𝜆1 ≤ 𝜆𝜆2 , so 𝜗𝜗
𝜆𝜆1  (e)(u) = ⋁𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎′) ≤ ⋁𝑎𝑎′∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑎𝑎′) =  𝜗𝜗

𝜆𝜆2 (e)(u). 

Hence, 𝜗𝜗
𝜆𝜆1 ≤ 𝜗𝜗

𝜆𝜆2. 
3) Consider �𝜗𝜗𝜆𝜆1⋂𝜗𝜗𝜆𝜆2�(𝑒𝑒)(𝑢𝑢) = 𝜗𝜗𝜆𝜆1(𝑒𝑒)(𝑢𝑢)⋀ 𝜗𝜗𝜆𝜆2(𝑒𝑒)(𝑢𝑢) = 
�⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎)�⋀ �⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑎𝑎)� = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  �𝜆𝜆1(𝑎𝑎) ⋀𝜆𝜆2(𝑎𝑎)� = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1 ⋀𝜆𝜆2)(𝑎𝑎) =

𝜗𝜗𝜆𝜆1⋂𝜆𝜆2(𝑒𝑒)(𝑢𝑢). Hence, 𝜗𝜗𝜆𝜆1⋂𝜗𝜗𝜆𝜆2 = 𝜗𝜗𝜆𝜆1⋂𝜆𝜆2. 

4) Consider �𝜗𝜗
𝜆𝜆1⋂𝜗𝜗

𝜆𝜆2� (𝑒𝑒)(𝑢𝑢) = 𝜗𝜗
𝜆𝜆1(𝑒𝑒)(𝑢𝑢)⋀ 𝜗𝜗

𝜆𝜆2(𝑒𝑒)(𝑢𝑢) = 
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�∨𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎)�⋀ �∨𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑎𝑎)� ≥∨𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1 ⋀𝜆𝜆2)(𝑎𝑎) = 𝜗𝜗
𝜆𝜆1⋂𝜆𝜆2(𝑒𝑒)(𝑢𝑢). 

Hence, 𝜗𝜗
𝜆𝜆1⋂𝜗𝜗

𝜆𝜆2 = 𝜗𝜗
𝜆𝜆1⋂𝜆𝜆2. 

5) Consider �𝜗𝜗𝜆𝜆1⋃𝜗𝜗𝜆𝜆2�(𝑒𝑒)(𝑢𝑢) = 𝜗𝜗𝜆𝜆1(𝑒𝑒)(𝑢𝑢)⋁𝜗𝜗𝜆𝜆2(𝑒𝑒)(𝑢𝑢) = 
�⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎)�⋁ �⋀𝑏𝑏∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑏𝑏)� = ⋀𝑎𝑎,𝑏𝑏∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1(𝑎𝑎) ⋁𝜆𝜆2(𝑏𝑏)  ) ≤ ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1  ∨ 𝜆𝜆2  )(𝑎𝑎) =

𝜗𝜗𝜆𝜆1⋃𝜆𝜆2(𝑒𝑒)(𝑢𝑢). Hence, 𝜗𝜗𝜆𝜆1⋃𝜗𝜗𝜆𝜆2 ≤ 𝜗𝜗𝜆𝜆1⋃𝜆𝜆2. 

6) Consider �𝜗𝜗
𝜆𝜆1⋃𝜗𝜗

𝜆𝜆2� (𝑒𝑒)(𝑢𝑢) = 𝜗𝜗
𝜆𝜆1(𝑒𝑒)(𝑢𝑢)⋁𝜗𝜗

𝜆𝜆2(𝑒𝑒)(𝑢𝑢) = 

�⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆1(𝑎𝑎)�⋁ �⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆2(𝑎𝑎)� = ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1(𝑎𝑎) ⋁𝜆𝜆2(𝑎𝑎)  ) =∨𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (𝜆𝜆1 ⋁𝜆𝜆2  )(𝑎𝑎) =

�𝜗𝜗
𝜆𝜆1⋃𝜆𝜆2� (𝑒𝑒)(𝑢𝑢). Hence, 𝜗𝜗

𝜆𝜆1⋃𝜗𝜗
𝜆𝜆2 = 𝜗𝜗

𝜆𝜆1⋃𝜆𝜆2. 
7) Consider 𝜗𝜗1(𝑒𝑒)(𝑢𝑢) = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  1(𝑎𝑎) = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (1) = 1, because 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙. 

8) Consider 𝜗𝜗
1

(𝑒𝑒)(𝑢𝑢) = ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  1(𝑎𝑎) = ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  (1) = 1, because 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙. 

9) Consider 𝜗𝜗
𝜆𝜆𝑐𝑐

(𝑒𝑒)(𝑢𝑢) = ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆𝑐𝑐(𝑎𝑎) = ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  �1 − 𝜆𝜆(𝑎𝑎)� = �⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)  𝜆𝜆(𝑎𝑎)�
𝑐𝑐

= 

�𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢)�
𝑐𝑐
. Therefore, �𝜗𝜗

𝜆𝜆𝑐𝑐
(𝑒𝑒)(𝑢𝑢)�

𝑐𝑐

= 𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢). Hence, 𝜗𝜗𝜆𝜆 = �𝜗𝜗
𝜆𝜆𝑐𝑐
�
𝑐𝑐
. 

10) By part (9), 𝜗𝜗𝜆𝜆 = �𝜗𝜗
𝜆𝜆𝑐𝑐
�
𝑐𝑐
, thererfore, 𝜗𝜗𝜆𝜆𝑐𝑐 = �𝜗𝜗

(𝜆𝜆𝑐𝑐)𝑐𝑐
�
𝑐𝑐
⟹ 𝜗𝜗𝜆𝜆𝑐𝑐 = �𝜗𝜗

𝜆𝜆
�
𝑐𝑐
. 

Hence, 𝜗𝜗
𝜆𝜆

= �𝜗𝜗𝜆𝜆𝑐𝑐�
𝑐𝑐
. 

11) Straightforward. 
Theorem 2. Given a generalized soft approximation space (𝑈𝑈,𝑊𝑊,𝜗𝜗) and an 𝑆𝑆𝐵𝐵𝐵𝐵 𝜗𝜗:𝐴𝐴 → 𝑃𝑃(𝑈𝑈 ×
𝑊𝑊) from 𝑈𝑈 to 𝑊𝑊. Then, the subsequent features hold for the lower and upper approximations with 
regard to the F-sets for any 𝛿𝛿, 𝛿𝛿1, 𝛿𝛿2,∈ 𝜗𝜗(𝑈𝑈): 
1) 𝛿𝛿1 ≤ 𝛿𝛿2 ⟹ 𝛿𝛿1𝜗𝜗 ≤ 𝛿𝛿2𝜗𝜗, 
2) 𝛿𝛿1 ≤ 𝛿𝛿2 ⟹ 𝛿𝛿1𝜗𝜗 ≤ 𝛿𝛿2𝜗𝜗, 
3) 𝛿𝛿1𝜗𝜗⋂ 𝛿𝛿2𝜗𝜗= 𝛿𝛿1 ∩ 𝛿𝛿2𝜗𝜗, 
4) 𝛿𝛿1𝜗𝜗⋂𝛿𝛿2𝜗𝜗 ≥ 𝛿𝛿1 ∩ 𝛿𝛿2𝜗𝜗, 
5) 𝛿𝛿1𝜗𝜗⋃ 𝛿𝛿2𝜗𝜗 ≤ 𝛿𝛿1 ∪ 𝛿𝛿2𝜗𝜗, 
6) 𝛿𝛿1𝜗𝜗⋃𝛿𝛿2𝜗𝜗 = 𝛿𝛿1 ∪ 𝛿𝛿2𝜗𝜗, 
7) 1𝜗𝜗(𝑒𝑒)(𝑢𝑢) = 1 for all 𝑒𝑒 ∈ 𝐴𝐴 if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙, 
8) 1𝜗𝜗(𝑒𝑒)(𝑢𝑢) = 1 for all 𝑒𝑒 ∈ 𝐴𝐴 if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙. 
9) 𝛿𝛿𝜗𝜗 = �𝛿𝛿𝑐𝑐𝜗𝜗�

𝑐𝑐
 if 𝜗𝜗(𝑒𝑒)(𝑤𝑤) ≠ 𝜙𝜙, 

10) 𝛿𝛿𝜗𝜗 = �𝛿𝛿𝑐𝑐𝜗𝜗�
𝑐𝑐
 if 𝜗𝜗(𝑒𝑒)(𝑤𝑤) ≠ 𝜙𝜙. 

11) 0𝜗𝜗 = 0 = 0𝜗𝜗. 
Proof. Similar to the proof of Theorem 1. 

In general, equality does not hold in the preceding Theorems 4 and 5 assertions, as 
demonstrated by the following illustration. 
Example 2. Consider 𝑊𝑊 = {𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4} , 𝑈𝑈 = {𝐵𝐵,𝑢𝑢, 𝑜𝑜, 𝑏𝑏,𝑤𝑤}  and 𝐴𝐴 = {𝑒𝑒1, 𝑒𝑒2} . Define 
𝐹𝐹:𝐴𝐴 ⟶ 𝑃𝑃(𝑈𝑈 × 𝑊𝑊) by 

𝜗𝜗(𝑒𝑒1) = �
(𝐵𝐵,𝑚𝑚1), (𝐵𝐵,𝑚𝑚2), (𝑜𝑜,𝑚𝑚3), (𝑜𝑜,𝑚𝑚4), (𝑢𝑢,𝑚𝑚1), (𝑜𝑜,𝑚𝑚2),

(𝐵𝐵,𝑚𝑚3), (𝑢𝑢,𝑚𝑚4) �, 
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𝜗𝜗(𝑒𝑒2) = �
(𝑏𝑏,𝑚𝑚3), (𝑏𝑏,𝑚𝑚1), (𝑏𝑏,𝑚𝑚2),
(𝑤𝑤,𝑚𝑚1), (𝑤𝑤,𝑚𝑚3), (𝑤𝑤,𝑚𝑚4)�. 

Now, 

𝐵𝐵𝜗𝜗(𝑒𝑒1) = {𝑚𝑚1,𝑚𝑚2,𝑚𝑚3},𝑢𝑢𝜗𝜗(𝑒𝑒1) = {𝑚𝑚1,𝑚𝑚4}, 𝑜𝑜𝑜𝑜(𝑒𝑒1) = {𝑚𝑚2,𝑚𝑚3,𝑚𝑚4}, 

𝑏𝑏𝜗𝜗(𝑒𝑒1) = 𝜙𝜙,𝑤𝑤𝜗𝜗(𝑒𝑒1) = 𝜙𝜙, 

and 

𝐵𝐵𝜗𝜗(𝑒𝑒2) = 𝜙𝜙,𝑢𝑢𝜗𝜗(𝑒𝑒2) = 𝜙𝜙, 𝑜𝑜𝜗𝜗(𝑒𝑒2) = 𝜙𝜙 

𝑏𝑏𝜗𝜗(𝑒𝑒2) = {𝑚𝑚1,𝑚𝑚2,𝑚𝑚3},𝑤𝑤𝜗𝜗(𝑒𝑒2) = {𝑚𝑚1,𝑚𝑚3,𝑚𝑚4}. 

Moreover, 

𝜗𝜗(𝑒𝑒1)𝑚𝑚1 = {𝐵𝐵,𝑢𝑢},𝜗𝜗(𝑒𝑒1)𝑚𝑚2 = {𝐵𝐵, 𝑜𝑜},𝜗𝜗(𝑒𝑒1)𝑚𝑚3 = {𝐵𝐵, 𝑜𝑜}, 

𝜗𝜗(𝑒𝑒1)𝑚𝑚4 = {𝑜𝑜,𝑢𝑢}, 

and 

𝜗𝜗(𝑒𝑒2)𝑚𝑚1 = {𝑏𝑏,𝑤𝑤},𝜗𝜗(𝑒𝑒2)𝑚𝑚2 = {𝑏𝑏},𝜗𝜗(𝑒𝑒2)𝑚𝑚3 = {𝑏𝑏,𝑤𝑤}, 

𝜗𝜗(𝑒𝑒2)𝑚𝑚4 = {𝑤𝑤}. 

Define 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆1⋂𝜆𝜆2, 𝜆𝜆1⋃𝜆𝜆2:𝑊𝑊 ⟶ [0,1] as exhibited in Table 3. 

Table 3. λ1, λ2, λ1⋂λ2, λ1⋃λ2. 

 𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 
𝜆𝜆1 0.1 0 0.5 0.4 

𝜆𝜆2 0.2 1 0.3 0.6 

𝜆𝜆1⋂𝜆𝜆2 0.1 0 0.3 0.4 

𝜆𝜆1⋃𝜆𝜆2 0.2 1 0.5 0.6 

Define 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿1⋂𝛿𝛿2, 𝛿𝛿1⋃𝛿𝛿2:𝑈𝑈 ⟶ [0,1], which are displayed in Table 4. 

Table 4. δ1, δ2, δ1⋂δ2, δ1⋃δ2. 

 𝐵𝐵 𝑢𝑢 𝑜𝑜 𝑏𝑏 𝑤𝑤 
𝛿𝛿1 0.1 0.5 0.3 0.6 0.8 

𝛿𝛿2 0 0.1 0.4 1 0.7 

𝛿𝛿1⋂𝛿𝛿2 0 0.1 0.3 0.6 0.7 

𝛿𝛿1⋃𝛿𝛿2 0.1 0.5 0.4 1 0.8 

Thus, lower and upper approximations of 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆1⋂𝜆𝜆2, 𝜆𝜆1⋃𝜆𝜆2 w.r.t. A-sets are tabulated in Table 5. 
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Table 5. Lower and upper approximations. 

 (𝑒𝑒1)(𝑜𝑜) 

𝜗𝜗
𝜆𝜆1 0.5 

𝜗𝜗
𝜆𝜆2 1 

𝜗𝜗𝜆𝜆1 0 

𝜗𝜗𝜆𝜆2 0.3 

𝜗𝜗
𝜆𝜆1⋂𝜆𝜆2 0.4 

𝜗𝜗𝜆𝜆1⋃𝜆𝜆2 0.5 

Also, lower and upper approximations of 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿1⋂𝛿𝛿2, 𝛿𝛿1⋃𝛿𝛿2  w.r.t. F-sets are 
demonstrated in Table 6. 

Table 6. Lower and upper approximations. 

 (𝑒𝑒1)(𝑜𝑜) 
𝛿𝛿1𝜗𝜗 0.4 

 
𝛿𝛿2𝜗𝜗 0.5 

 
𝛿𝛿1𝜗𝜗 0.1 

 
𝛿𝛿2𝜗𝜗 0.3 

 
𝛿𝛿1 ∩ 𝛿𝛿2𝜗𝜗 0.3 

𝛿𝛿1 ∪ 𝛿𝛿2𝜗𝜗 0.4 

Hence, 𝜗𝜗
𝜆𝜆1(𝑒𝑒1)(𝑜𝑜)⋂𝜗𝜗

𝜆𝜆2(𝑒𝑒1)(𝑜𝑜) ≰ 𝜗𝜗
𝜆𝜆1⋂𝜆𝜆2(𝑒𝑒1)(𝑜𝑜)  and 

𝜗𝜗𝜆𝜆1⋃𝜆𝜆2(𝑒𝑒1)(𝑜𝑜) ≰ 𝜗𝜗𝜆𝜆1(𝑒𝑒1)(𝑜𝑜)⋃𝜗𝜗𝜆𝜆2(𝑒𝑒1)(𝑜𝑜). 
Similarly, 𝛿𝛿1𝜗𝜗(𝑒𝑒1)(𝑚𝑚4)⋂ 𝛿𝛿2𝜗𝜗(𝑒𝑒1)(𝑚𝑚4) ≰ 𝛿𝛿1 ∩ 𝛿𝛿2𝜗𝜗(𝑒𝑒1)(𝑚𝑚4) and 𝛿𝛿1 ∪ 𝛿𝛿2𝜗𝜗(𝑒𝑒1)(𝑚𝑚4) ≰

𝛿𝛿1𝜗𝜗(𝑒𝑒1)(𝑚𝑚4) ⋃𝛿𝛿2𝜗𝜗(𝑒𝑒1)(𝑚𝑚4). 
Theorem 3. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized soft approximation space. Then, subsequent axioms 
hold for both lower and upper approximations regarding A-sets for {𝑖𝑖 ∈ 𝐼𝐼: 𝜆𝜆𝑖𝑖} ⊆ 𝜗𝜗(𝑈𝑈): 
1) 𝜗𝜗(⋂𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) = ⋂𝑖𝑖∈𝐼𝐼𝜗𝜗𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
2) 𝜗𝜗(⋃𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) ⊇ ⋃𝑖𝑖∈𝐼𝐼𝜗𝜗𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 

3) 𝑜𝑜(⋃𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) = ⋃𝑖𝑖∈𝐼𝐼𝜗𝜗
𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 

4) 𝜗𝜗
(⋂𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) ⊆ ⋂𝑖𝑖∈𝐼𝐼𝜗𝜗

𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. 
1) Take 𝜆𝜆𝑖𝑖 ∈ 𝜗𝜗(𝑈𝑈), where 𝑖𝑖 ∈ 𝐼𝐼. Then we have 
𝜗𝜗(⋂𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)(⋀𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑎𝑎) = ⋀𝑖𝑖∈𝐼𝐼 �⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆𝑖𝑖(𝑎𝑎)� = ⋂𝑖𝑖∈𝐼𝐼𝜗𝜗𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
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2) Take 𝜆𝜆𝑖𝑖 ∈ 𝜗𝜗(𝑈𝑈), where 𝑖𝑖 ∈ 𝐼𝐼. Then we have 
𝜗𝜗(⋃𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑒𝑒) = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)(⋁𝑖𝑖∈𝐼𝐼𝜆𝜆𝑖𝑖)(𝑎𝑎) ≥ ⋁𝑖𝑖∈𝐼𝐼 �⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆𝑖𝑖(𝑎𝑎)� = ⋃𝑖𝑖∈𝐼𝐼𝜗𝜗𝜆𝜆𝑖𝑖(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
3) The proof is analogous to (1). 
4) The proof is similar to (2). 
Theorem 4. Presume that (𝑈𝑈,𝑊𝑊,𝜗𝜗) is a generalized soft approximation space. Then, the following 
properties for lower and upper approximations regarding F-sets hold for {𝑖𝑖 ∈ 𝐼𝐼: 𝛿𝛿𝑖𝑖} ⊆ 𝜗𝜗(𝑊𝑊): 
1) ∩𝑖𝑖∈𝐼𝐼 𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) = ⋂𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ∀𝑒𝑒 ∈ 𝐴𝐴; 
2) ⋃𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ⊇ ⋃𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ∀𝑒𝑒 ∈ 𝐴𝐴; 
3) ⋃𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) = ⋃𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ∀𝑒𝑒 ∈ 𝐴𝐴; 
4) ∩𝑖𝑖∈𝐼𝐼 𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ⊆ ⋂𝑖𝑖∈𝐼𝐼𝛿𝛿𝑖𝑖𝜗𝜗(𝑒𝑒) ∀𝑒𝑒 ∈ 𝐴𝐴. 
Proof. The proof is analogous to the proof of Theorem 3. 
Definition 13. An 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈 is defined as (𝜗𝜗,𝐴𝐴) if (𝜗𝜗,A) is a SS over 𝑈𝑈 × 𝑈𝑈. Actually, a 
parameterized set of 𝐵𝐵𝐵𝐵𝑎𝑎 on 𝑈𝑈 is represented by (𝜗𝜗,𝐴𝐴). In other words, for every parameter 𝑒𝑒 in 
𝐴𝐴, we have a 𝐵𝐵𝐵𝐵 𝜗𝜗(𝑒𝑒) on 𝑈𝑈. 
Definition 14. If for every 𝑒𝑒 in 𝐴𝐴, 𝜗𝜗(𝑒𝑒) is a reflexive relation on 𝑈𝑈, then 𝜗𝜗(𝑒𝑒) is an 𝑆𝑆𝐵𝐵𝐵𝐵 (𝜗𝜗,𝐴𝐴) 
on 𝑈𝑈. Each 𝑢𝑢𝜗𝜗(𝑒𝑒) (resp. 𝜗𝜗(𝑒𝑒)𝑢𝑢) in this particular case is non-empty, and 𝑢𝑢 ∈ 𝑢𝑢𝜗𝜗(𝑒𝑒) (resp. 𝜗𝜗(𝑒𝑒)𝑢𝑢).  
Definition 15. If an 𝑆𝑆𝐵𝐵𝐵𝐵 (𝜗𝜗,𝐴𝐴) on 𝑈𝑈 is also a soft reflexive, soft symmetric, and soft transitive 
relation on 𝑈𝑈, then it is a soft equivalence relation (SER) on 𝑈𝑈. 
Definition 16. If 𝜗𝜗(𝑒𝑒) for every 𝑒𝑒 in 𝐴𝐴 is an 𝐸𝐸𝐵𝐵 on 𝑈𝑈, then a 𝑆𝑆𝐵𝐵𝐵𝐵 (𝜗𝜗,𝐴𝐴) on 𝑈𝑈 is a SER on 𝑈𝑈. 
Every 𝜗𝜗(𝑒𝑒) on 𝑈𝑈 is an 𝐸𝐸𝐵𝐵 if (𝜗𝜗,𝐴𝐴) is a 𝑆𝑆𝐸𝐸𝐵𝐵 on 𝑈𝑈. The set 𝑈𝑈 is thereby split into equivalence 
classes 𝑢𝑢𝜗𝜗(𝑒𝑒) by 𝜗𝜗(𝑒𝑒).𝑢𝑢𝜗𝜗(𝑒𝑒) = 𝜗𝜗(𝑒𝑒)𝑢𝑢 in this instance, and {𝑢𝑢𝜗𝜗(𝑒𝑒):𝑢𝑢 ∈ 𝑈𝑈} is a partition of 𝑈𝑈. 
Additionally, 𝜗𝜗𝜆𝜆(𝑒𝑒) = 𝜆𝜆𝜗𝜗(𝑒𝑒) and 𝜗𝜗

𝜆𝜆
(𝑒𝑒) = 𝜆𝜆𝜗𝜗�(𝑒𝑒) apply in this scenario. Additional features of the 

approximation operators regarding 𝑆𝑆𝐵𝐵𝐵𝐵 are as follows: 
Theorem 5. For 𝜆𝜆 ∈ 𝜗𝜗(𝑈𝑈), the following features for lower and upper approximations w.r.t. A-sets hold: 
1) 𝜗𝜗𝜆𝜆(𝑒𝑒) ≤ 𝜆𝜆 for all 𝑒𝑒 ∈ 𝐴𝐴; 

2) 𝜆𝜆 ≤ 𝜗𝜗
𝜆𝜆

(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴; 
3) 𝜗𝜗𝜆𝜆(𝑒𝑒) ≤ 𝜗𝜗

𝜆𝜆
(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 

Proof. For 𝑢𝑢 ∈ 𝑈𝑈, 
1) Consider 𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢) = ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) ≤ 𝜆𝜆(𝑢𝑢), because 𝑢𝑢 ∈ 𝑢𝑢𝐹𝐹(𝑒𝑒), therefore 𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢) ≤ 𝜆𝜆(𝑢𝑢). 

Hence, 𝜗𝜗𝜆𝜆(𝑒𝑒) ≤ 𝜆𝜆. 

2) Consider 𝜆𝜆(𝑢𝑢) ≤ ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) = 𝜗𝜗
𝜆𝜆

(𝑒𝑒)(𝑢𝑢). Hence, 𝜆𝜆 ≤ 𝜗𝜗
𝜆𝜆

(𝑒𝑒). 
3) It directly follows from (1) and (2). 
Theorem 6. For 𝛿𝛿 ∈ 𝜗𝜗(𝑊𝑊), the succeeding characteristics for lower and upper approximations 
regarding the F-sets hold: 
1) 𝛿𝛿𝜗𝜗(𝑒𝑒) ≤ 𝛿𝛿 for all 𝑒𝑒 ∈ 𝐴𝐴; 
2) 𝛿𝛿 ≤ 𝛿𝛿𝜗𝜗(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴; 
3) 𝛿𝛿𝜗𝜗(𝑒𝑒) ≤ 𝛿𝛿𝜗𝜗(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. Identical to the proof of above theorem. 
Theorem 7. Let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 on a non-empty set 𝑈𝑈 such that 𝜗𝜗(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒) for all 
𝑒𝑒 ∈ 𝐴𝐴. Then, 𝜎𝜎𝜇𝜇(𝑒𝑒) ≤ 𝜗𝜗𝜇𝜇(𝑒𝑒) and 𝜗𝜗

𝜇𝜇
(𝑒𝑒) ≤ 𝜎𝜎𝜇𝜇(𝑒𝑒) for all 𝜇𝜇 ∈ 𝜗𝜗(𝑈𝑈) and 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 

Proof. Let 𝜇𝜇 ∈ 𝜗𝜗(𝑈𝑈). Since 𝜗𝜗(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒), we have 𝑢𝑢𝜗𝜗(𝑒𝑒) ⊆ 𝑢𝑢𝜎𝜎(𝑒𝑒) for all 𝑢𝑢 ∈ 𝑈𝑈  and 𝑒𝑒 ∈ 𝐴𝐴. 
Therefore, ⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜇𝜇(𝑎𝑎) ≥ ⋀𝑎𝑎∈𝑢𝑢𝑢𝑢(𝑒𝑒)𝜇𝜇(𝑎𝑎)  and ⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜇𝜇(𝑎𝑎) ≤ ⋁𝑎𝑎∈𝑢𝑢𝑢𝑢(𝑒𝑒)𝜇𝜇(𝑎𝑎)  for all 𝑢𝑢 ∈ 𝑈𝑈 . By 

AIMS Mathematics  Volume 10, Issue 4, 9637–9673. 



9650 

Definition 11, 𝜎𝜎𝜇𝜇(𝑒𝑒) ≤ 𝜗𝜗𝜇𝜇(𝑒𝑒) and 𝜗𝜗
𝜇𝜇

(𝑒𝑒) ≤ 𝜎𝜎𝜇𝜇(𝑒𝑒) regarding A-sets. 
Theorem 8. Let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 on 𝑈𝑈 such that 𝜗𝜗(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 
Then, 𝜇𝜇𝑢𝑢(𝑒𝑒) ≤ 𝜇𝜇𝜗𝜗(𝑒𝑒) and 𝜗𝜗𝑢𝑢(𝑒𝑒) ≤ 𝜇𝜇𝑢𝑢(𝑒𝑒) for all 𝜇𝜇 ∈ 𝜗𝜗(𝑈𝑈) and 𝑒𝑒 ∈ 𝐴𝐴 regarding F-sets. 
Proof. Analogous to the proof of Theorem 7. 
Corollary 1. Let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 on 𝑈𝑈. Then, the following claims hold for all 
𝜆𝜆 ∈ 𝜗𝜗(𝑈𝑈) and 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) �𝜗𝜗⋂𝜎𝜎�

𝜆𝜆
(𝑒𝑒) ≤ �𝜗𝜗�

𝜆𝜆
(𝑒𝑒)⋂(𝜎𝜎)𝜆𝜆(𝑒𝑒); 

2) �𝜗𝜗⋂𝜎𝜎�𝜆𝜆(𝑒𝑒) ≥ �𝜗𝜗�𝜆𝜆(𝑒𝑒)⋂�𝜎𝜎�𝜆𝜆(𝑒𝑒). 
Proof. 
1) Let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎  on 𝑈𝑈 . Then, (𝜗𝜗⋂𝜎𝜎,𝐴𝐴) is also a 𝑆𝑆𝐵𝐵𝐵𝐵  on 𝑈𝑈 . Also, 

(𝜗𝜗⋂𝜎𝜎)(𝑒𝑒) ⊆ 𝜗𝜗(𝑒𝑒)  and (𝜗𝜗⋂𝜎𝜎)(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒) . By Theorem 7, �𝜗𝜗⋂𝜎𝜎�
𝜆𝜆

(𝑒𝑒) ≤ (𝜗𝜗)𝜆𝜆(𝑒𝑒)  and 

�𝜗𝜗⋂𝜎𝜎�
𝜆𝜆

(𝑒𝑒) ≤ (𝜎𝜎)𝜆𝜆(𝑒𝑒) for any 𝜆𝜆 ∈ 𝜗𝜗(𝑈𝑈). This proves that �𝜗𝜗⋂𝜎𝜎�
𝜆𝜆

(𝑒𝑒) ≤ �𝜗𝜗�
𝜆𝜆

(𝑒𝑒)⋂(𝜎𝜎)𝜆𝜆(𝑒𝑒) 
for all 𝜆𝜆 ∈ 𝜗𝜗(𝑈𝑈) and 𝑒𝑒 ∈ 𝐴𝐴. 

2) This can be proved as (1). 
Corollary 2. Let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 on a non-empty set 𝑈𝑈. Then, the following 
assertions hold for all 𝛿𝛿 ∈ 𝜗𝜗(𝑈𝑈) and 𝑒𝑒 ∈ 𝐴𝐴 with respect to F-sets. 
1) 𝛿𝛿(𝜗𝜗∩𝑢𝑢)(𝑒𝑒) ≤ 𝛿𝛿𝜗𝜗(𝑒𝑒)⋂𝛿𝛿𝑢𝑢(𝑒𝑒)(𝑒𝑒); 
2) 𝛿𝛿(𝜗𝜗∩𝑢𝑢)(𝑒𝑒) ≥ 𝛿𝛿𝜗𝜗(𝑒𝑒)⋃𝛿𝛿𝑢𝑢(𝑒𝑒). 
Proof. Analogous to the proof of the above corollary. 

4. Approximation of a fuzzy set through soft binary relations 

This section examines two different types of fuzzy topologies brought about by SRRs, and it 
also takes certain related findings into consideration. 
Definition 17. If a family of FSs on 𝑇𝑇 ⊆ ℱ (𝑈𝑈) satisfies the following three axioms, it is referred to 
as a fuzzy topology for 𝑈𝑈: 
1) 0,1 ∈ 𝑇𝑇. 
2) ∀𝜆𝜆, 𝜇𝜇 ∈ 𝑇𝑇 ⇒ 𝜆𝜆⋀µ ∈ 𝑇𝑇. 
3) ∀�𝜆𝜆𝑗𝑗�𝑗𝑗∈𝐽𝐽 ∈ 𝑇𝑇 ⟹∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗 ∈ 𝑇𝑇. 

Moreover, the pair (𝑈𝑈,𝑇𝑇) is named a fuzzy topological space and the elements of 𝑇𝑇 are called 
fuzzy open sets. 
Theorem 9. If (𝜗𝜗,𝐴𝐴) is a 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈, then 𝑇𝑇𝑒𝑒 = �𝜆𝜆 ∈ ℱ (𝑈𝑈):𝜗𝜗𝜆𝜆(𝑒𝑒) = 𝜆𝜆� is a fuzzy topology on 
𝑈𝑈 for each 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. 
1) Take 𝑒𝑒 ∈ 𝐴𝐴. By Theorem 1, 𝜗𝜗0(𝑒𝑒) = 0 and 𝜗𝜗1(𝑒𝑒) = 1. This implies that 0,1 ∈ 𝑇𝑇𝑒𝑒. 
2) Let 𝜆𝜆, 𝛿𝛿 ∈ 𝑇𝑇𝑒𝑒. This implies 𝜗𝜗𝜆𝜆(𝑒𝑒) = 𝜆𝜆 and 𝜗𝜗𝛿𝛿(𝑒𝑒) = 𝛿𝛿. Now, by using Theorem 1, 𝜗𝜗𝜆𝜆⋀𝛿𝛿(𝑒𝑒) =

𝜗𝜗𝜆𝜆(𝑒𝑒)⋂𝜗𝜗𝛿𝛿(𝑒𝑒) = 𝜆𝜆⋀𝛿𝛿. This implies that 𝜆𝜆⋀𝛿𝛿 ∈ 𝑇𝑇𝑒𝑒. 
3) Let 𝜆𝜆𝑗𝑗 ∈ 𝑇𝑇𝑒𝑒. This implies 𝐹𝐹𝜆𝜆𝑗𝑗(𝑒𝑒) = 𝜆𝜆𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽. Since, the relation is 𝑆𝑆𝐵𝐵, so by Theorem 5, 

𝜗𝜗∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗(𝑒𝑒) ≤∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗 . Since, 𝜆𝜆𝑗𝑗 ≤∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗 . By using Theorem 1, 𝜗𝜗𝜆𝜆𝑗𝑗(𝑒𝑒) ≤ 𝜗𝜗∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗(𝑒𝑒) . This 
implies ∨𝑗𝑗∈𝐽𝐽 𝜗𝜗𝜆𝜆𝑗𝑗(𝑒𝑒) ≤ 𝜗𝜗∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗(𝑒𝑒) . This implies that ∨𝑗𝑗∈𝐽𝐽  𝜆𝜆𝑗𝑗 ≤ 𝜗𝜗∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗(𝑒𝑒) . Therefore, 
𝜗𝜗∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗(𝑒𝑒) =∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗. Hence, ∨𝑗𝑗∈𝐽𝐽  𝜆𝜆𝑗𝑗 ∈ 𝑇𝑇𝑒𝑒. 

Theorem 10. If (𝜗𝜗,𝐴𝐴) is a 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈, then 𝑇𝑇𝑒𝑒′ = �𝜇𝜇 ∈ ℱ (𝑈𝑈): 𝜇𝜇𝜗𝜗(𝑒𝑒) = 𝜇𝜇� is a fuzzy topology on 
𝑈𝑈 for 𝑒𝑒 ∈ 𝐴𝐴. 
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Proof. Analogous to the proof of Theorem 9. 
Remark 1. In the above two theorems, corresponding to each 𝑒𝑒 ∈ 𝐴𝐴, we construct two fuzzy 
topologies on 𝑈𝑈 . If we define 𝑇𝑇𝑒𝑒 = �𝜆𝜆 ∈ ℱ (𝑈𝑈):𝜗𝜗𝜆𝜆(𝑒𝑒) = 𝜆𝜆 for all 𝑒𝑒 ∈ 𝐴𝐴� , then 𝑇𝑇𝑒𝑒  is a fuzzy 
topology on 𝑈𝑈 and 𝑇𝑇𝑒𝑒 = ⋂𝑒𝑒∈𝐴𝐴𝑇𝑇𝑒𝑒. Similarly, if we define 𝑇𝑇𝑒𝑒′ = �𝜇𝜇 ∈ ℱ (𝑈𝑈): 𝜗𝜗𝜇𝜇 (𝑒𝑒) = 𝜇𝜇 for all 𝑒𝑒 ∈
𝐴𝐴�, then 𝑇𝑇𝑒𝑒′ is a fuzzy topology on 𝑈𝑈 and 𝑇𝑇𝑒𝑒′ = ⋂𝑒𝑒∈𝐴𝐴𝑇𝑇𝑒𝑒′. 
Definition 18. Let (𝜗𝜗,𝐴𝐴) be a 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 over 𝑈𝑈. Define a 𝐵𝐵𝐵𝐵 𝐵𝐵𝜗𝜗 on 𝑈𝑈 by 𝑥𝑥𝐵𝐵𝜗𝜗𝑦𝑦 ⇔ 𝑥𝑥𝜗𝜗(𝑒𝑒)𝑦𝑦 for 
some 𝑒𝑒 ∈ 𝐸𝐸 where 𝑥𝑥, 𝑦𝑦 ∈ 𝑈𝑈. Then, 𝐵𝐵𝜗𝜗 is called the 𝐵𝐵𝐵𝐵 induced by (𝜗𝜗,𝐴𝐴). 
Remark 2. (𝜗𝜗,𝐴𝐴)  is a 𝑆𝑆𝐵𝐵𝐵𝐵  over 𝑈𝑈 ⇒ 𝐵𝐵𝜗𝜗  is a reflexive relation over 𝑈𝑈 . (𝜗𝜗,𝐴𝐴)  is a soft 
symmetric relation over 𝑈𝑈 ⇒ 𝐵𝐵𝜗𝜗 is a symmetric relation over 𝑈𝑈. 
Theorem 11. Let (𝑈𝑈,𝑊𝑊,𝐵𝐵𝜗𝜗) be a generalized approximation space and (𝜗𝜗,𝐴𝐴) be a 𝑆𝑆𝐵𝐵𝐵𝐵 over 𝑈𝑈. 
For 𝜆𝜆1, 𝜆𝜆2 ∈ ℱ (𝑈𝑈), the following properties for lower and upper approximations regarding A-sets hold: 
1) 𝜆𝜆1 ≤ 𝜆𝜆2 ⇒ 𝐵𝐵𝜗𝜗(𝜆𝜆1) ≤ 𝐵𝐵𝜗𝜗(𝜆𝜆2), 
2) 𝜆𝜆1 ≤ 𝜆𝜆2 ⇒ 𝐵𝐵𝜗𝜗(𝜆𝜆1) ≤ 𝐵𝐵𝜗𝜗(𝜆𝜆2), 
3) 𝐵𝐵𝜗𝜗(𝜆𝜆1) ∩ 𝐵𝐵𝜗𝜗(𝜆𝜆2) = 𝐵𝐵𝜗𝜗(𝜆𝜆1 ∩ 𝜆𝜆2), 
4) 𝐵𝐵𝜗𝜗(𝜆𝜆1) ∩ 𝐵𝐵𝜗𝜗(𝜆𝜆2) ≥ 𝐵𝐵𝜗𝜗(𝜆𝜆1 ∩ 𝜆𝜆2), 
5) 𝐵𝐵𝜗𝜗(𝜆𝜆1) ∪ 𝐵𝐵𝜗𝜗(𝜆𝜆2) ≤ 𝐵𝐵𝜗𝜗(𝜆𝜆1 ∪ 𝜆𝜆2), 
6) 𝐵𝐵𝜗𝜗(𝜆𝜆1) ∪ 𝐵𝐵𝜗𝜗(𝜆𝜆2) = 𝐵𝐵𝜗𝜗(𝜆𝜆1 ∪ 𝜆𝜆2), 
7) 𝐵𝐵𝜗𝜗(1) = 1 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 
8) 𝐵𝐵𝜗𝜗(1) = 1 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 
9) 𝐵𝐵𝜗𝜗(𝜆𝜆) = �𝐵𝐵𝜗𝜗(𝜆𝜆𝑐𝑐)�

𝑐𝑐
 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 

10) 𝐵𝐵𝜗𝜗(𝜆𝜆) = �𝐵𝐵𝜗𝜗(𝜆𝜆𝑐𝑐)�
𝑐𝑐
 if 𝑢𝑢𝜗𝜗(𝑒𝑒) ≠ 𝜙𝜙, 

11) 𝐵𝐵𝜗𝜗(0) = 0 = 𝐵𝐵𝜗𝜗(0). 
Proof. Similar to the proof of Theorem 1. 
Theorem 12. Let (𝑈𝑈,𝑊𝑊,𝐵𝐵𝜗𝜗) be a generalized approximation space and (𝐹𝐹,𝐴𝐴) be a SBR over 𝑈𝑈. 
For δ1, δ2 ∈ ℱ (𝑈𝑈), the following properties for lower and upper approximations regarding F-sets hold: 
1) 𝛿𝛿1 ≤ 𝛿𝛿2 ⇒ (𝛿𝛿₁)𝐵𝐵𝜗𝜗 ≤ (𝛿𝛿2)𝐵𝐵𝜗𝜗. 
2) 𝛿𝛿1 ≤ 𝛿𝛿2 ⇒ (𝛿𝛿₁)𝐵𝐵𝜗𝜗 ≤ (𝛿𝛿2)𝐵𝐵𝜗𝜗. 
3) (𝛿𝛿1)𝐵𝐵𝜗𝜗 ∩ (𝛿𝛿2)𝐵𝐵𝜗𝜗 = (𝛿𝛿1 ∩ 𝛿𝛿2)𝐵𝐵𝜗𝜗. 
4) (𝛿𝛿₁)𝐵𝐵𝜗𝜗 ∩ (𝛿𝛿2)𝐵𝐵𝜗𝜗 ≥ (𝛿𝛿₁ ∩ 𝛿𝛿2)𝐵𝐵𝜗𝜗. 
5) (𝛿𝛿1)𝐵𝐵𝜗𝜗 ∪ (𝛿𝛿2)𝐵𝐵𝜗𝜗 ≤ (𝛿𝛿₁ ∪ 𝛿𝛿2)𝐵𝐵𝜗𝜗. 
6) (𝛿𝛿1)𝐵𝐵𝜗𝜗 ∪ (𝛿𝛿2)𝐵𝐵𝜗𝜗 = (𝛿𝛿1 ∪ 𝛿𝛿2)𝐵𝐵𝜗𝜗. 
7) (1)𝐵𝐵𝜗𝜗 = 1 if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙. 
8)  (1)𝐵𝐵𝜗𝜗 = 1 if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙. 
9) (𝛿𝛿)𝐵𝐵𝜗𝜗 = ((𝛿𝛿𝑐𝑐)𝐵𝐵𝜗𝜗)𝑐𝑐      if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙. 
10)  (𝛿𝛿)𝐵𝐵𝜗𝜗 = ((𝛿𝛿𝑐𝑐)𝐵𝐵𝜗𝜗)𝑐𝑐   if 𝜗𝜗(𝑒𝑒)𝑤𝑤 ≠ 𝜙𝜙. 
11) (0)𝐵𝐵𝜗𝜗 = 1 = (0)𝐵𝐵𝑣𝑣. 
Proof. Analogous to the proof of Theorem 2. 
Theorem 13. If (𝜗𝜗,𝐴𝐴) is a 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈, then 𝑇𝑇𝑅𝑅𝐹𝐹 = �𝜆𝜆 ∈ ℱ (𝑈𝑈):𝐵𝐵𝜗𝜗(𝜆𝜆) = 𝜆𝜆� is a fuzzy topology 
on 𝑈𝑈 regarding A-sets for any 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. 
1) By Theorem 11, 𝐵𝐵𝜗𝜗(0) = 0 and 𝐵𝐵𝜗𝜗(1) = 1. This implies 0,1 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗 . 
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2) Let 𝜆𝜆, 𝛿𝛿 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗 . This implies 𝐵𝐵𝜗𝜗(𝜆𝜆) = 𝜆𝜆  and 𝐵𝐵𝜗𝜗(𝛿𝛿) = 𝛿𝛿 . Now, by using Theorem 11, 
𝐵𝐵𝜗𝜗(𝜆𝜆 ∩ 𝛿𝛿) = 𝐵𝐵𝜗𝜗(𝜆𝜆) ∩ 𝐵𝐵𝜗𝜗(𝛿𝛿) = 𝜆𝜆⋀𝛿𝛿. This implies 𝜆𝜆⋀𝛿𝛿 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗 . 

3) Let 𝜆𝜆𝑗𝑗 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗. This implies, 𝐵𝐵𝜗𝜗(𝜆𝜆𝑗𝑗) = 𝜆𝜆𝑗𝑗 for 𝑗𝑗 ∈ 𝐽𝐽. Since, the relation is 𝑆𝑆𝐵𝐵𝐵𝐵, by Theorem 5, 
𝐵𝐵𝜗𝜗(∪𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗) ≤ (∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗). Since 𝜆𝜆𝑗𝑗 ≤∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗. By using Theorem 11, 𝐵𝐵𝜗𝜗(𝜆𝜆𝑗𝑗) ≤ 𝐵𝐵𝜗𝜗(∪𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗). This 
implies ∪𝑗𝑗∈𝐽𝐽 𝐵𝐵𝜗𝜗(𝜆𝜆𝑗𝑗) ≤ 𝐵𝐵𝜗𝜗(∪𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗). Therefore, ∪𝑗𝑗∈𝐽𝐽 𝐵𝐵𝜗𝜗�𝜆𝜆𝑗𝑗� = 𝐵𝐵𝜗𝜗(∪𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗). Hence, ∨𝑗𝑗∈𝐽𝐽 𝜆𝜆𝑗𝑗 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗. 

Theorem 14. If (𝜗𝜗,𝐴𝐴) is a 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈, then 𝑇𝑇′𝑅𝑅𝜗𝜗 = �𝜆𝜆 ∈ ℱ (𝑈𝑈): (𝜇𝜇)𝐵𝐵𝜗𝜗 = 𝜇𝜇� is a fuzzy topology 
on 𝑈𝑈 regarding F-sets for 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. Similar to the proof of Theorem 13. 
Theorem 15. If (𝜗𝜗,𝐴𝐴)  is a 𝑆𝑆𝐵𝐵𝐵𝐵  over 𝑈𝑈 , then 𝑇𝑇𝑒𝑒 = 𝑇𝑇𝑅𝑅𝜗𝜗  regarding A-sets and 𝑇𝑇′𝑒𝑒 = 𝑇𝑇′𝑅𝑅𝜗𝜗 
regarding F-sets. 
Proof. Let 𝜆𝜆 ∈ 𝑇𝑇𝑅𝑅𝜗𝜗. This implies 𝐵𝐵𝜗𝜗(𝜆𝜆) = 𝜆𝜆. So ⋀𝑎𝑎∈𝑢𝑢𝑅𝑅𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) = 𝜆𝜆. Since 𝐵𝐵𝜗𝜗 = ⋃𝑒𝑒∈𝐴𝐴𝜗𝜗(𝑒𝑒) 
𝜆𝜆 ∈ ⋂𝑒𝑒∈𝐴𝐴𝑇𝑇𝑒𝑒. Hence, 𝜆𝜆 ∈ 𝑇𝑇𝑒𝑒. 

5. Similarity relations associated with soft binary relations 

Some BRs between FSs are defined based on rough approximation, and their related 
characteristics are examined in this section. 
Definition 19. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space. For 𝜆𝜆1, 𝜆𝜆2 ∈ ℱ (𝑊𝑊), we define 
(1). 𝜆𝜆1 ∽ 𝜆𝜆2 if and only if 𝜗𝜗𝜆𝜆1 = 𝜗𝜗𝜆𝜆2, 

(2). 𝜆𝜆1 ∼ 𝜆𝜆2 if and only if 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

𝜆𝜆2, 
(3). 𝜆𝜆1 ≈ 𝜆𝜆2 if and only if 𝜗𝜗𝜆𝜆1 = 𝜗𝜗𝜆𝜆2 and 𝜗𝜗

𝜆𝜆1 = 𝜗𝜗
𝜆𝜆2. 

Definition 20. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space. For 𝛿𝛿1, 𝛿𝛿2 ∈ ℱ (𝑈𝑈), we define 
(1). 𝛿𝛿1 ∽  𝛿𝛿2 if and only if 𝜗𝜗 𝛿𝛿1 = 𝜗𝜗 𝛿𝛿₂ , 

(2). 𝛿𝛿1 ∼  𝛿𝛿2 if and only if 𝜗𝜗 
𝛿𝛿1

=  𝜗𝜗 
𝛿𝛿₂

, 
(3). 𝛿𝛿1 ≈  𝛿𝛿2 if and only if 𝜗𝜗 𝛿𝛿1 = 𝜗𝜗 𝛿𝛿₂  and 𝜗𝜗 

𝛿𝛿1
=  𝜗𝜗 

𝛿𝛿₂
. 

The lower fuzzy similarity relation, upper fuzzy similarity relation, and fuzzy similarity relation 
are called for these binary relations, respectively. Obviously, 𝜗𝜗𝜆𝜆1 and 𝜗𝜗

𝜆𝜆1 are similar if and only if 
they are both lower and upper similar for 𝜆𝜆 ∈ ℱ (𝑊𝑊), and they are both lower and upper similar for 
𝛿𝛿 ∈ ℱ (𝑈𝑈) if and only if 𝜗𝜗 𝛿𝛿1  and 𝜗𝜗 

𝛿𝛿1
 are similar. 

Proposition 1. The relations ∽ ,∼ and ≈ are 𝐸𝐸𝐵𝐵𝑎𝑎 on ℱ (𝑈𝑈). 
Proof. Obvious. 
Proposition 2. The relations ∽,∼ and ≈ are 𝐸𝐸𝐵𝐵𝑎𝑎 on ℱ (𝑊𝑊). 
Proof. Straightforward. 
Theorem 16. Let (𝜗𝜗,𝐴𝐴) be a 𝑆𝑆𝐵𝐵𝐵𝐵 on 𝑈𝑈. For 𝜆𝜆𝑖𝑖 ∈ ℱ (𝑈𝑈), where 𝑖𝑖 = 1,2,3,4, the subsequent 
assumptions are true: 
1) 𝜆𝜆1 ∼ 𝜆𝜆2 if and only if 𝜆𝜆1 ∼ (𝜆𝜆1 ∪ 𝜆𝜆2) ∼ 𝜆𝜆2; 
2) 𝜆𝜆1 ∼ 𝜆𝜆2 and 𝜆𝜆3 ∼ 𝜆𝜆4 imply that (𝜆𝜆1 ∪ 𝜆𝜆3) ∼ (𝜆𝜆2 ∪ 𝜆𝜆4); 
3) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆2 ∼ 0 imply that 𝜆𝜆1 ∼ 0; 
4) (𝜆𝜆1 ∪ 𝜆𝜆2) ∼ 0 if and only if 𝜆𝜆1 ∼ 0 and 𝜆𝜆2 ∼ 0; 
5) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆1 ∼ 1 imply that 𝜆𝜆2 ∼ 1; 
6) If (𝜆𝜆1 ∩ 𝜆𝜆2) ∼ 1 then, 𝜆𝜆1 ∼ 1 and 𝜆𝜆2 ∼ 1. 
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Proof. 
1) Let 𝜆𝜆1 ∼ 𝜆𝜆2. Then 𝜗𝜗

𝜆𝜆1 = 𝜗𝜗
𝜆𝜆2. By part (6) of Theorem 1, we get 𝜗𝜗

𝜆𝜆1∪𝜆𝜆2 = 𝜗𝜗
𝜆𝜆1⋃𝜗𝜗

𝜆𝜆2 = 𝜗𝜗
𝜆𝜆1 =

𝜗𝜗
𝜆𝜆2 so 𝜆𝜆1 ∼ (𝜆𝜆1 ∪ 𝜆𝜆2) ∼ 𝜆𝜆2. The converse holds by transitivity of the relation ∼. 

2) Given that 𝜆𝜆1 ∼ 𝜆𝜆2 and 𝜆𝜆3 ∼ 𝜆𝜆4. Then 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

𝜆𝜆2 and 𝜗𝜗
𝜆𝜆3 = 𝜗𝜗

𝜆𝜆4. By part (6) of Theorem 1, 
we get 𝜗𝜗

𝜆𝜆1∪𝜆𝜆3 = 𝜗𝜗
𝜆𝜆1 ∪ 𝜗𝜗

𝜆𝜆3 = 𝜗𝜗
𝜆𝜆2 ∪ 𝜗𝜗

𝜆𝜆4 = 𝜗𝜗
𝜆𝜆2∨𝜆𝜆4. Thus, (𝜆𝜆1 ∪ 𝜆𝜆3) ∼ (𝜆𝜆2 ∪ 𝜆𝜆4). 

3) Given 𝜆𝜆2 ∼ 0 . This implies 𝜗𝜗
𝜆𝜆2 = 𝜗𝜗

0
. Also, 𝜆𝜆1 ≤ 𝜆𝜆2 ⇒ 𝜗𝜗

𝜆𝜆1 ⊆ 𝜗𝜗
𝜆𝜆2 = 𝜗𝜗

0
. It follows that 

𝜗𝜗
𝜆𝜆1 ⊆ 𝜗𝜗

0
 but 𝜗𝜗

0
⊆ 𝜗𝜗

𝜆𝜆1. Therefore, 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

0
⇒ 𝜆𝜆1 ∼ 0. 

4) Let 𝜆𝜆1 ∼ 0 and 𝜆𝜆2 ∼ 0. Then 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

0
 and 𝜗𝜗𝜆𝜆2 = 𝜗𝜗

0
. By part (6) of Theorem 1, we get 

𝜗𝜗
𝜆𝜆1∪𝜆𝜆2 = 𝜗𝜗

𝜆𝜆1 ∪ 𝜗𝜗
𝜆𝜆2 = 𝜗𝜗

0
∪ 𝜗𝜗

0
= 𝜗𝜗

0
. Thus, (𝜆𝜆1⋃𝜆𝜆2) ∼ 0. The converse follows from (3). 

5) Given 𝜆𝜆1 ∼ 1 . This implies 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

1
. Also, 𝜆𝜆1 ≤ 𝜆𝜆2 ⇒ 𝜗𝜗

𝜆𝜆2 ⊇ 𝜗𝜗
𝜆𝜆1 = 𝜗𝜗

1
= 1 ⊇ 𝜗𝜗

𝜆𝜆2 .  
Therefore, 𝜗𝜗

𝜆𝜆2 = 𝜗𝜗
1
⇒ 𝜆𝜆2 ∼ 1. 

6) It follows from (5). 
Theorem 17. Let (𝜗𝜗,𝐴𝐴) be a SRR on 𝑈𝑈. For 𝛿𝛿𝑖𝑖 ∈ ℱ (𝑈𝑈), where 𝑖𝑖 = 1,2,3,4, the subsequent 
assumptions are true: 
1) 𝛿𝛿1 ∼ 𝛿𝛿2 if and only if 𝛿𝛿1 ∼ (𝛿𝛿1⋃𝛿𝛿2) ∼ 𝛿𝛿2; 
2) 𝛿𝛿1 ∼ 𝛿𝛿2 and 𝛿𝛿3 ∼ 𝛿𝛿4 imply that (𝛿𝛿1⋃𝛿𝛿3) ∼ (𝛿𝛿2⋃𝛿𝛿4); 
3) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿2 ∼ 0 imply that 𝛿𝛿1 ∼ 0; 
4) (𝛿𝛿1⋃𝛿𝛿2) ∼ 0 if and only if 𝛿𝛿1 ∼ 0 and 𝛿𝛿2 ∼ 0; 
5) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿1 ∼ 1 imply that 𝛿𝛿2 ∼ 1; 
6) If (𝛿𝛿1⋂𝛿𝛿3) ∼ 1 then, 𝛿𝛿1 ∼ 1 and 𝛿𝛿2 ∼ 1. 
Proof. Similar to the proof of Theorem 16. 
Theorem 18. Let (𝜗𝜗,𝐴𝐴) be a SRR on 𝑈𝑈. For 𝜆𝜆𝑖𝑖 ∈ ℱ (𝑈𝑈), where 𝑖𝑖 = 1,2,3,4, the subsequent 
assumptions are true: 
1) 𝜆𝜆1 ∽ 𝜆𝜆2 if and only if 𝜆𝜆1 ∽ (𝜆𝜆1⋂𝜆𝜆2) ∽ 𝜆𝜆2; 
2) 𝜆𝜆1 ∽ 𝜆𝜆2 and 𝜆𝜆3 ∽ 𝜆𝜆4 imply that (𝜆𝜆1⋂𝜆𝜆3) ∽ (𝜆𝜆2⋂𝜆𝜆4); 
3) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆2 ∽ 0 imply that 𝜆𝜆1 ∽ 0; 
4) (𝜆𝜆1⋃𝜆𝜆2) ∽ 0 if and only if 𝜆𝜆1 ∽ 0 and 𝜆𝜆2 ∽ 0; 
5) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆1 ∽ 1 imply that 𝜆𝜆2 ∽ 1; 
6) If (𝜆𝜆1⋂𝜆𝜆2) ∽ 1 then, 𝜆𝜆1 ∽ 1 and 𝜆𝜆2 ∽ 1. 
Proof. Analogous to the proof of Theorem 16. 
Theorem 19. Let (𝜗𝜗,𝐴𝐴) be a SRR on 𝑈𝑈. For 𝛿𝛿𝑖𝑖 ∈ ℱ (𝑈𝑈), where 𝑖𝑖 = 1,2,3,4, the succeeding 
assumptions are valid: 
1) 𝛿𝛿1 ∽ 𝛿𝛿2 if and only if 𝛿𝛿1 ∽ (𝛿𝛿1⋂𝛿𝛿2) ∽ 𝛿𝛿2; 
2) 𝛿𝛿1 ∽ 𝛿𝛿2 and 𝛿𝛿3 ∽ 𝛿𝛿4 imply that (𝛿𝛿1⋂𝛿𝛿3) ∽ (𝛿𝛿2⋂𝛿𝛿4); 
3) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿2 ∽ 0 imply that 𝛿𝛿1 ∽ 0; 
4) (𝛿𝛿1⋃𝛿𝛿2) ∽ 0 if and only if 𝛿𝛿1 ∽ 0 and 𝛿𝛿2 ∽ 0; 
5) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿1 ∽ 1 imply that 𝛿𝛿2 ∽ 1; 
6) If (𝛿𝛿1⋂𝛿𝛿2) ∽ 1 then, 𝛿𝛿1 ∽ 1 and 𝛿𝛿2 ∽ 1. 
Proof. Similar to the proof of Theorem 16. 
Theorem 20. Let (𝜗𝜗,𝐴𝐴)  be a SRR on 𝑈𝑈 . For 𝜆𝜆𝑖𝑖 ∈ ℱ (𝑈𝑈) , where 𝑖𝑖 = 1,2,  the following 
assumptions are true: 
1) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆2 ≈ 0 imply that 𝜆𝜆1 ≈ 0; 
2) 𝜆𝜆1 ≤ 𝜆𝜆2 and 𝜆𝜆1 ≈ 1 imply that 𝜆𝜆2 ≈ 1; 
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3) (𝜆𝜆1⋃𝜆𝜆2) ≈ 0, then 𝜆𝜆1 ≈ 0 and 𝜆𝜆2 ≈ 0; 
4) (𝜆𝜆1⋂𝜆𝜆2) ≈ 1, then 𝜆𝜆1 ≈ 1 and 𝜆𝜆2 ≈ 1; 
5) 𝜆𝜆1 ≈ 𝜆𝜆2 if and only if 𝜆𝜆1 ∼ (𝜆𝜆1⋃𝜆𝜆2) ∼ 𝜆𝜆2 and 𝜆𝜆1 ∽ (𝜆𝜆1⋂𝜆𝜆2) ∽ 𝜆𝜆2. 
Proof. It follows immediately from Theorems 1 and 18. 
Theorem 21. Let (𝜗𝜗,𝐴𝐴)  be a SRR on 𝑈𝑈 . For 𝛿𝛿𝑖𝑖 ∈ ℱ (𝑈𝑈), where 𝑖𝑖 = 1,2,3,  the subsequent 
assumptions are valid: 
1) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿2 ≈ 0 imply that 𝛿𝛿1 ≈ 0; 
2) 𝛿𝛿1 ≤ 𝛿𝛿2 and 𝛿𝛿1 ≈ 1 imply that 𝛿𝛿2 ≈ 1; 
3) (𝛿𝛿1⋃𝛿𝛿2) ≈ 0, then 𝛿𝛿1 ≈ 0 and 𝛿𝛿2 ≈ 0; 
4) (𝛿𝛿1⋂𝛿𝛿2) ≈ 1, then 𝛿𝛿1 ≈ 1 and 𝛿𝛿2 ≈ 1; 
5) 𝛿𝛿1 ≈ 𝛿𝛿2 if and only if 𝛿𝛿1 ∼ (𝛿𝛿1⋃𝛿𝛿2) ∼ 𝛿𝛿2 and 𝛿𝛿1 ∽ (𝛿𝛿1⋂𝛿𝛿2) ∽ 𝛿𝛿2. 
Proof. Analogous to the proof of Theorem 20. 

6. Accuracy measures 

An approach to examining the degree to which the membership functions of FSs accurately 
characterize the objects is provided by the approximation of FSs. This section presents the 
membership functions of FSs regarding. A-sets and F-sets, together with their corresponding degrees 
of accuracy and roughness. To achieve this, we first give a definition and some properties of the 
α-level cuts of an FS. 
Definition 21. Let 𝑈𝑈 be a non-empty universe and 𝜆𝜆 ∈ ℱ (𝑈𝑈). For 0 ≨ 𝛼𝛼 ≤ 1, the 𝛼𝛼 −level cut of 
𝜆𝜆 is denoted and defined as: 

𝜆𝜆𝑎𝑎 = {𝑢𝑢 ∈ 𝑈𝑈: 𝜆𝜆(𝑢𝑢) ≥ 𝛼𝛼}.         (6.1) 

Lemma 1. Let 𝑈𝑈 be a non-empty universe and 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈). For 0 ≨ 𝛼𝛼 ≤ 1, 𝜆𝜆 ≤ 𝜇𝜇 implies that 
𝜆𝜆𝛼𝛼 ⊆ 𝜇𝜇𝛼𝛼. 
Proof. It follows directly from Definition 21. 
Lemma 2. Let 𝑈𝑈 be a non-empty universe and 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. Then 𝜆𝜆𝛼𝛼 ⊆ 𝜆𝜆𝛽𝛽. 
Proof. It follows immediately from Definition 21. 

Note that 𝜗𝜗 (𝜆𝜆𝛼𝛼)  is the lower approximation of the crisp set 𝜆𝜆𝛼𝛼  while �𝜗𝜗𝜆𝜆(𝑒𝑒)�
𝛼𝛼

 is the 

𝛼𝛼 −level cut of 𝜗𝜗𝜆𝜆(𝑒𝑒) regarding A-sets. Therefore, 

�𝜗𝜗𝜆𝜆  (e)�
𝛼𝛼

= �𝑢𝑢 ∈ 𝑈𝑈:𝜗𝜗𝜆𝜆(𝑒𝑒)(𝑢𝑢) ≥ 𝛼𝛼� = �𝑢𝑢 ∈ 𝑈𝑈:⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) ≥ 𝛼𝛼� 

and 

�𝜗𝜗
𝜆𝜆 

(e)�
𝛼𝛼

= �𝑢𝑢 ∈ 𝑈𝑈:⋁𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) ≥ 𝛼𝛼� for all 𝑒𝑒 ∈ 𝐴𝐴. 

Similarly, for 𝛿𝛿 ∈ ℱ (𝑈𝑈), it follows that 

� 𝜗𝜗 𝛿𝛿 (𝑒𝑒)�
𝛼𝛼

= �𝑢𝑢 ∈ 𝑈𝑈: 𝜗𝜗 𝛿𝛿 (𝑒𝑒)(𝑢𝑢) ≥ 𝛼𝛼� = �𝑢𝑢 ∈ 𝑈𝑈:⋀𝑎𝑎∈𝜗𝜗(𝑒𝑒)𝑢𝑢𝛿𝛿(𝑎𝑎) ≥ 𝛼𝛼� 

and 

� 𝜗𝜗 
𝛿𝛿

(𝑒𝑒)�
𝛼𝛼

= �𝑢𝑢 ∈ 𝑈𝑈:⋁𝑎𝑎∈𝜗𝜗(𝑒𝑒)𝑢𝑢𝛿𝛿(𝑎𝑎) ≥ 𝛼𝛼� for all 𝑒𝑒 ∈ 𝐴𝐴 
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regarding F-sets. 
Lemma 3. Let (𝐹𝐹,𝐴𝐴) be a 𝑆𝑆𝐵𝐵𝐵𝐵 on a non-empty universe 𝑈𝑈, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛼𝛼 ≤ 1. Then, 
the following assertions hold w.r.t the A-sets: 
1) 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒) = �𝜗𝜗𝜆𝜆(𝑒𝑒)�

𝛼𝛼
 for all 𝑒𝑒 ∈ 𝐴𝐴, 

2) 𝜗𝜗
(𝜆𝜆𝛼𝛼)

(𝑒𝑒) = �𝜗𝜗
𝜆𝜆

(𝑒𝑒)�
𝛼𝛼

 for all 𝑒𝑒 ∈ 𝐴𝐴. 

Proof. 
1) Consider 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛼𝛼 ≤ 1. For the crisp set 𝜆𝜆𝛼𝛼, we have 

𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒)  = {𝑢𝑢 ∈ 𝑈𝑈:𝑢𝑢𝜗𝜗(𝑒𝑒) ⊆ 𝜆𝜆𝛼𝛼} = {𝑢𝑢 ∈ 𝑈𝑈: 𝜆𝜆(𝑎𝑎) ≥ 𝛼𝛼 𝑖𝑖𝑜𝑜𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 ∈ 𝑢𝑢𝜗𝜗(𝑒𝑒)} 

= �𝑢𝑢 ∈ 𝑈𝑈:⋀𝑎𝑎∈𝑢𝑢𝜗𝜗(𝑒𝑒)𝜆𝜆(𝑎𝑎) ≥ 𝛼𝛼� = �𝜗𝜗𝜆𝜆(𝑒𝑒)�
𝛼𝛼

 for all 𝑒𝑒 ∈ 𝐴𝐴. 

2) It can be verified in the similar way as (1). 
Lemma 4. Let (𝜗𝜗,𝐴𝐴) be a SRR on a non-empty universe 𝑈𝑈, 𝛿𝛿 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛼𝛼 ≤ 1. Then, the 
following assertions hold regarding F-sets: 
1) 𝜗𝜗 (𝛿𝛿𝛼𝛼) (𝑒𝑒) = � 𝜗𝜗 𝛿𝛿 (𝑒𝑒)�

𝛼𝛼
 for all 𝑒𝑒 ∈ 𝐴𝐴, 

2) 𝜗𝜗 
(𝛿𝛿𝛼𝛼)

(𝑒𝑒) = � 𝜗𝜗 
𝛿𝛿

(𝑒𝑒)�
𝛼𝛼

 for all 𝑒𝑒 ∈ 𝐴𝐴. 

Proof. Similar to the proof of Lemma 3. 
Now, we define the degrees of accuracy and roughness for membership functions of a FS in a 

non-empty finite universe. 
Definition 22. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space. The degree of accuracy for the 
membership of 𝜆𝜆 ∈ ℱ (𝑈𝑈), regarding parameters 𝛼𝛼,𝛽𝛽  such that 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 and regarding 
A-sets, is denoted and postulated as: 

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒𝑖𝑖) = �𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒𝑖𝑖)�/ �𝜗𝜗

�𝜆𝜆𝛽𝛽�(𝑒𝑒𝑖𝑖)� for all 𝑒𝑒𝑖𝑖 ∈ 𝐴𝐴.    (6.2) 

Likewise, the degree of accuracy for the membership of 𝛿𝛿 ∈ ℱ (𝑈𝑈), regarding parameters 𝛼𝛼,𝛽𝛽 such 
that 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 and regarding F-sets, is denoted and portrayed as: 

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝛿𝛿)(𝑒𝑒𝑖𝑖) = � 𝜗𝜗 (𝛿𝛿𝛼𝛼) (𝑒𝑒𝑖𝑖)�/ � 𝜗𝜗 

(𝛿𝛿𝛽𝛽)
(𝑒𝑒𝑖𝑖)� for all 𝑒𝑒𝑖𝑖 ∈ 𝐴𝐴.    (6.3) 

The degree of roughness for the membership of 𝜆𝜆 ∈ ℱ (𝑈𝑈), rergarding parameters 𝛼𝛼,𝛽𝛽  with 
0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 and regarding A-sets, is denoted and postulated as: 

(𝜆𝜆)(𝑒𝑒𝑖𝑖) = 1 − 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒𝑖𝑖) for all 𝑒𝑒𝑖𝑖 ∈ 𝐴𝐴.      (6.4) 

In the same way, the degree of roughness for the membership of 𝛿𝛿 ∈ ℱ (𝑈𝑈), regarding parameters 
𝛼𝛼,𝛽𝛽 such that 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 and regarding F-sets, is denoted and described as: 

𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝛿𝛿)(𝑒𝑒𝑖𝑖) = 1 −  𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝛿𝛿)(𝑒𝑒𝑖𝑖) for all 𝑒𝑒𝑖𝑖 ∈ 𝐴𝐴.     (6.5) 

Note that, in the case of 𝑆𝑆𝐸𝐸𝐵𝐵, the concept of the F-sets and A-sets coincide. Further, 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒) or 

𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒) comprise the objects of 𝑈𝑈 having 𝛼𝛼 or 𝛽𝛽 as the least degree of definite or possible 

fulfilment in 𝜆𝜆 for all 𝑒𝑒𝑖𝑖 ∈ 𝐴𝐴. Equivalently, 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒𝑖𝑖) or 𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒𝑖𝑖) can be interpreted as the union 

of the soft equivalence classes of 𝑈𝑈 having a degree of fulfilment of at least 𝛼𝛼 or 𝛽𝛽 in the lower 
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or upper fuzzy approximation of 𝜆𝜆 regarding A-sets. Therefore, the parameters 𝛼𝛼 and 𝛽𝛽 serve as 
the thresholds of sure and possible fulfilment of the objects of 𝛼𝛼 or 𝛽𝛽 in 𝜆𝜆, respectively. Hence, 
𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒𝑖𝑖) may be interpreted as the degree to which the membership function of 𝜆𝜆 is accurate, 

constrained to the threshold parameters 𝛼𝛼 and 𝛽𝛽. In other words, 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒𝑖𝑖) describes how 

accurate the membership function of the FS is regarding A-sets. 
Example 3. Let 𝑈𝑈 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐6, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐10, 𝑐𝑐11} be a collection of trees of different types 
and 𝐴𝐴 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4} be a set of parameters such that 𝑒𝑒1 stands for the attribute Height, 𝑒𝑒2 
stands for Age, 𝑒𝑒3 stands for Fruitibility, and 𝑒𝑒4 stands for the Thickness. Define a SER 𝜗𝜗:𝐴𝐴 →
𝑃𝑃(𝑈𝑈 × 𝑈𝑈) for each 𝑒𝑒 ∈ 𝐴𝐴. The corresponding soft equivalence class for each of the SERs is 
obtained as follows: 
For 𝜗𝜗(𝑒𝑒1), the soft equivalence classes 𝑐𝑐𝜗𝜗(𝑒𝑒1) are: {𝑐𝑐1, 𝑐𝑐10}, {𝑐𝑐2, 𝑐𝑐4, 𝑐𝑐6, 𝑐𝑐7}, {𝑐𝑐3, 𝑐𝑐5, 𝑐𝑐8, 𝑐𝑐9, }, {𝑐𝑐11}. 
For 𝜗𝜗(𝑒𝑒2), the soft equivalence classes 𝑐𝑐𝜗𝜗(𝑒𝑒2) are: {𝑐𝑐1}, {𝑐𝑐2, 𝑐𝑐11}, {𝑐𝑐4, 𝑐𝑐7}, {𝑐𝑐3, 𝑐𝑐5, 𝑐𝑐8, 𝑐𝑐9, }, {𝑐𝑐6, 𝑐𝑐10}. 
For 𝜗𝜗(𝑒𝑒3), the soft equivalence classes 𝑐𝑐𝜗𝜗(𝑒𝑒3) are: {𝑐𝑐1}, {𝑐𝑐2}, {𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐10}, {𝑐𝑐6}, {𝑐𝑐11}. 
For 𝜗𝜗(𝑒𝑒4), the soft equivalence classes 𝑐𝑐𝜗𝜗(𝑒𝑒4) are: {𝑐𝑐10}, {𝑐𝑐6}, {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9}, {𝑐𝑐11}. 

Define 𝜆𝜆 ∶ 𝑈𝑈 → [0,1] by 

𝜆𝜆(𝑐𝑐1) = 0.9, 𝜆𝜆(𝑐𝑐2) = 0.6, 𝜆𝜆(𝑐𝑐3) = 0.3, 𝜆𝜆(𝑐𝑐4) = 0, 

𝜆𝜆(𝑐𝑐5) = 0.2, 𝜆𝜆(𝑐𝑐6) = 0.4, 𝜆𝜆(𝑐𝑐7) = 0.6, 𝜆𝜆(𝑐𝑐8) = 0.8, 

𝜆𝜆(𝑐𝑐9) = 1, 𝜆𝜆(𝑐𝑐10) = 0, 𝜆𝜆(𝑐𝑐11) = 1. 

Take 𝛼𝛼 = 0.7 and 𝛽𝛽 = 0.6. Then 𝛼𝛼 −level cuts 𝜆𝜆0.6 and 𝜆𝜆0.7 are calculated as: 

𝜆𝜆0.6 = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐11}, 

𝜆𝜆0.7 = {𝑐𝑐1, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐11}. 

Now, 

𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒1) = {𝑐𝑐11},𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒2) = {𝑐𝑐1}, 

𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒3) = {𝑐𝑐1, 𝑐𝑐11},𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒4) = {𝑐𝑐11}. 

And, 

𝜗𝜗
(𝜆𝜆0.6)

(𝑒𝑒1) = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐6, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐10, 𝑐𝑐11},  

𝜗𝜗
(𝜆𝜆0.6)

(𝑒𝑒2) = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐11}, 

                  𝜗𝜗
(𝜆𝜆0.6)

(𝑒𝑒3) = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐10, 𝑐𝑐11}, 

𝜗𝜗
(𝜆𝜆0.6)

(𝑒𝑒4) = {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, 𝑐𝑐5, 𝑐𝑐7, 𝑐𝑐8, 𝑐𝑐9, 𝑐𝑐11}. 

The degree of accuracy for the membership of λ is calculated as follows: 

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒1) = �𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒1)�/ �𝜗𝜗

(𝜆𝜆0.6)
(𝑒𝑒1)� = 1/11 = 0.091, 

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒2) = �𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒2)�/ �𝜗𝜗

(𝜆𝜆0.6)
(𝑒𝑒2)� = 1/9 = 0.111, 

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒3) = �𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒3)�/ �𝜗𝜗

(𝜆𝜆0.6)
(𝑒𝑒3)� = 1/5 = 0.200, 
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𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒4) = �𝜗𝜗(𝜆𝜆0.7)(𝑒𝑒4)�/ �𝜗𝜗

(𝜆𝜆0.6)
(𝑒𝑒4)� = 1/9 = 0.111. 

Hence, 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒𝑖𝑖) displays the degree to which the membership function of 𝜆𝜆 is accurately 

constrained to the parameters 𝛼𝛼 and 𝛽𝛽 for 𝑖𝑖 = 1,2,3,4 regarding A-sets. Similarly, we can show it 
in the case of F-sets. 
Theorem 22. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
Then, 0 ≤ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 1 for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
Proof. For a FS 𝜆𝜆 ∈ ℱ (𝑈𝑈) and the parameters 𝛼𝛼,𝛽𝛽 such that 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. By using Lemma 
6.3, 𝜆𝜆𝛼𝛼(𝑒𝑒) ⊆ 𝜆𝜆𝛽𝛽(𝑒𝑒). Now, according to Theorem 1, 𝜗𝜗𝜆𝜆𝛼𝛼(𝑒𝑒) ≤  𝜗𝜗

𝜆𝜆𝛼𝛼(𝑒𝑒) ≤ 𝜗𝜗
𝜆𝜆𝛽𝛽(𝑒𝑒). So �𝜗𝜗 𝜆𝜆𝛼𝛼  (e)�  ≤

  �𝜗𝜗
𝜆𝜆𝛽𝛽(𝑒𝑒)�, therefore the ratio �𝜗𝜗𝜆𝜆𝛼𝛼  (e)  / 𝜗𝜗

𝜆𝜆𝛽𝛽(𝑒𝑒)  �  fluctuates between 0 and 1, which yields 
certainly 0 ≤ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 1 for all 𝑒𝑒 ∈ 𝐴𝐴. 
Corollary 3. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
Then, 0 ≤ 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 1 for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
Proof. It is a direct consequence of Definition 22 and Theorem 22. 
Theorem 23. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 
for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) If 𝛼𝛼 stands fixed, then 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) increase with the increase in 𝛽𝛽. 
2) If 𝛽𝛽 stands fixed, then 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) decrease with the increase in 𝛼𝛼. 
Proof. 
1) Let 𝛼𝛼  stand fixed and let 0 ≨ 𝛽𝛽1 ≤ 𝛽𝛽2 ≤ 1 . Using Lemma 6.2, we have 𝜆𝜆𝛽𝛽2 ≤ 𝜆𝜆𝛽𝛽1 . By 

Theorem 1, 𝜗𝜗
𝜆𝜆𝛽𝛽2(𝑒𝑒) ≤ 𝜗𝜗

𝜆𝜆𝛽𝛽1(𝑒𝑒)  or �𝜗𝜗
𝜆𝜆𝛽𝛽2(𝑒𝑒)� ≤ �𝜗𝜗

𝜆𝜆𝛽𝛽1(𝑒𝑒)� . This implies that �𝜗𝜗𝜆𝜆𝛼𝛼(𝑒𝑒)�/

�𝜗𝜗
𝜆𝜆𝛽𝛽1(𝑒𝑒)� ≤ �𝜗𝜗𝜆𝜆𝛼𝛼(𝑒𝑒)�/ �𝜗𝜗

𝜆𝜆𝛽𝛽2(𝑒𝑒)� . That is 𝛾𝛾(𝛼𝛼,𝛽𝛽1)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 𝛾𝛾(𝛼𝛼,𝛽𝛽2)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) . This shows that 
𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) increase with the increase in 𝛽𝛽 for all 𝑒𝑒 ∈ 𝐴𝐴. 

(2) Similar to the proof of (1). 
Corollary 4. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 
regarding A-sets. 
1) If 𝛼𝛼 stands fixed, then 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) decrease with the increase in 𝛽𝛽. 
2) If 𝛽𝛽 stands fixed, then 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) increase with the increase in 𝛼𝛼 for all 𝑒𝑒 ∈ 𝐴𝐴. 
Proof. Direct consequence of Definition 22 and Theorem 23. 
Theorem 24. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
Then, 𝜆𝜆 ≤ 𝜇𝜇 implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 and regarding A-sets. 

1) 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒), whenever 𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒) = 𝜗𝜗

�𝜇𝜇𝛽𝛽�(𝑒𝑒); 
2) 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜇𝜇)(𝑒𝑒), whenever 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒) = 𝜗𝜗(𝜇𝜇𝛼𝛼)(𝑒𝑒). 

Proof. 
1) Presume that 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 and 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) with 𝜆𝜆 ≤ 𝜇𝜇. By Theorem 1, 𝜗𝜗(𝜆𝜆𝛼𝛼) (𝑒𝑒)  ≤ 

𝜗𝜗(𝜇𝜇𝛼𝛼) (e)  or �𝜗𝜗(𝜆𝜆𝛼𝛼) (e) � ≤ �𝜗𝜗(µ𝛼𝛼) (e)� . This implies that �𝜗𝜗(𝜆𝜆𝛼𝛼) (e) �/ �𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒)� ≤ �𝜗𝜗(𝜇𝜇𝛼𝛼) (e) �/

�𝜗𝜗
�𝜇𝜇𝛽𝛽�(𝑒𝑒)�. Hence, 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜇𝜇)(𝑒𝑒). 

2) Identical to the proof of (1). 
Corollary 5. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
Then, 𝜆𝜆 ≤ 𝜇𝜇 implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 and regarding A-sets. 
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1) 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒), whenever 𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒) = 𝜗𝜗

�𝜇𝜇𝛽𝛽�(𝑒𝑒); 
2) 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≤ 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜇𝜇)(𝑒𝑒), whenever 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒) = 𝜗𝜗(𝜇𝜇𝛼𝛼)(𝑒𝑒). 

Proof. Immediately follows from Definition 22 and Theorem 23. 
Theorem 25. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
If (𝜎𝜎,𝐴𝐴)  is a 𝑆𝑆𝐸𝐸𝐵𝐵  on 𝑈𝑈  such that 𝐹𝐹(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒) . Then, 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝑢𝑢 (𝜆𝜆)(𝑒𝑒)  for all 

𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
Proof. Let 𝜆𝜆 ∈ ℱ (𝑈𝑈) and let (𝜗𝜗,𝐴𝐴) and (𝜎𝜎,𝐴𝐴) be two 𝑆𝑆𝐸𝐸𝐵𝐵 on 𝑈𝑈 such that 𝜗𝜗(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒). By 
Theorem 3.4, 𝜗𝜗 𝜆𝜆  (e)  ≥ 𝜎𝜎 𝜆𝜆  (e)  and 𝜗𝜗

𝜆𝜆
(𝑒𝑒) ≤ 𝜎𝜎𝜆𝜆(𝑒𝑒) . Using Lemma 1, 𝜗𝜗(𝜆𝜆𝛼𝛼)  (e)  ≥ 𝜎𝜎(𝜆𝜆𝛼𝛼)  (e) 

and 𝜗𝜗�𝜆𝜆𝛽𝛽�  (e)  ≤ 𝜎𝜎�𝜆𝜆𝛽𝛽�  (e) . By Lemma 3, �𝜗𝜗(𝜆𝜆𝛼𝛼)  (e)� = �𝜗𝜗(𝜆𝜆)𝛼𝛼  (e)� ≥ �𝜎𝜎(𝜆𝜆)𝛼𝛼  (e)� = �𝜎𝜎(𝜆𝜆𝛼𝛼)  (e)� 

and �𝜗𝜗
�𝜆𝜆𝛽𝛽� 

 (e)� = �𝜗𝜗
(𝜆𝜆)𝛽𝛽 

 (e)� ≥ �𝜎𝜎(𝜆𝜆)𝛽𝛽  (e)� = �𝜎𝜎�𝜆𝜆𝛽𝛽�  (e)�. 

Rearranging and dividing the above two equations, we get 

�𝜗𝜗(𝜆𝜆𝛼𝛼)  (e)�/ �𝜗𝜗
�𝜆𝜆𝛽𝛽� 

 (e)� ≥ �𝜎𝜎(𝜆𝜆𝛼𝛼)  (e)�/ �𝜎𝜎�𝜆𝜆𝛽𝛽�  (e)� . Hence, 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝑢𝑢 (𝜆𝜆)(𝑒𝑒)  for all 

𝑒𝑒 ∈ 𝐴𝐴. 
Corollary 6. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 
If (𝜎𝜎,𝐴𝐴)  is a 𝑆𝑆𝐸𝐸𝐵𝐵  on 𝑈𝑈  such that 𝜗𝜗(𝑒𝑒) ⊆ 𝜎𝜎(𝑒𝑒) . Then, 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝑢𝑢 (𝜆𝜆)(𝑒𝑒)  for all 

𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
Proof. Direct consequence of Definition 22 and Theorem 25. 
Theorem 26. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ≃ F µ  implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒); 

2) 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒). 
Proof. 

1) Let 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1 such that 𝜆𝜆 ≃ F µ . From Definition 19, 𝐹𝐹𝜆𝜆 (e) = 
𝜗𝜗𝜇𝜇 (e) . Now by Theorem 17, 𝜗𝜗𝜆𝜆⋂𝜇𝜇 (e) = 𝜗𝜗𝜆𝜆 (e) . Thus, 𝜗𝜗(𝜆𝜆⋂𝜇𝜇)𝛼𝛼 (e) = 𝜗𝜗(𝜆𝜆)𝛼𝛼 (e) . Therefore, 

�𝜗𝜗(𝜆𝜆⋂𝜇𝜇)𝛼𝛼 (e)� = �𝜗𝜗(𝜆𝜆)𝛼𝛼 (e)�. On the other hand, 𝜆𝜆⋂𝜇𝜇 ≤ 𝜆𝜆, which implies 𝜗𝜗
(𝜆𝜆⋂𝜇𝜇) 

(e) ≤ 𝜗𝜗
(𝜆𝜆) 

(e) 

or 𝜗𝜗
(𝜆𝜆⋂𝜇𝜇)𝛽𝛽 

(e) ≤ 𝜗𝜗
(𝜆𝜆)𝛽𝛽 

(e). Therefore, �𝜗𝜗
(𝜆𝜆⋂𝜇𝜇)𝛽𝛽 

(e)� ≤ �𝜗𝜗
(𝜆𝜆)𝛽𝛽 

(e)�. Therefore, by re-setting, we 

get �𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)𝛼𝛼 (e)�/ �𝜗𝜗
(𝜆𝜆⋂𝜇𝜇)𝛽𝛽 

(e)� ≥ �𝜗𝜗 (𝜆𝜆)𝛼𝛼 (e)�/ �𝜗𝜗
(𝜆𝜆)𝛽𝛽 

(e)�. Hence, 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)(𝑒𝑒) ≥

𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 

2) This can be proved in the same manner as (1). 
Corollary 7. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ≃ F µ  implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒); 

2) 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆⋂𝜇𝜇)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒). 
Proof. Direct consequence of Definition 22 and Theorem 26. 
Theorem 27. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ∼ F µ  implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆⋃𝜇𝜇)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒); 
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2) 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆⋃𝜇𝜇)(𝑒𝑒) ≥ 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒). 
Proof. Same the proof of Theorem 26. 
Corollary 8. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ∼ F µ  implies the following assertions for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
1) 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆⋃𝜇𝜇)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒); 

2) 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆⋃𝜇𝜇)(𝑒𝑒) ≥ 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒). 
Proof. Direct consequence of Definition 22 and Theorem 27. 
Theorem 28. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ≈ F µ  implies that 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) = 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 

Proof. Let 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1  and 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈)  such that 𝜆𝜆 ≈ F µ . By Definition 19, 𝜗𝜗𝜆𝜆(𝑒𝑒) =

𝜗𝜗𝜇𝜇(𝑒𝑒) and 𝜗𝜗
𝜆𝜆

(𝑒𝑒) = 𝜗𝜗
𝜇𝜇

(𝑒𝑒). By Lemma 3, 𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒) = 𝜗𝜗(𝜇𝜇𝛼𝛼)(𝑒𝑒) and 𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒) = 𝜗𝜗

�𝜇𝜇𝛽𝛽�(𝑒𝑒). That is, 

�𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒)� = �𝜗𝜗(𝜇𝜇𝛼𝛼)(𝑒𝑒)�  and �𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒)� = �𝜗𝜗

�𝜇𝜇𝛽𝛽�(𝑒𝑒)� . This yields �𝜗𝜗(𝜆𝜆𝛼𝛼)(𝑒𝑒)�/ �𝜗𝜗
�𝜆𝜆𝛽𝛽�(𝑒𝑒)� =

�𝜗𝜗(𝜇𝜇𝛼𝛼)(𝑒𝑒)�/ �𝜗𝜗
�𝜇𝜇𝛽𝛽�(𝑒𝑒)�. Hence, 𝛾𝛾(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜆𝜆)(𝑒𝑒) = 𝛾𝛾(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜇𝜇)(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴. 

Corollary 9. Let (𝑈𝑈,𝑊𝑊,𝜗𝜗) be a generalized approximation space, 𝜆𝜆, 𝜇𝜇 ∈ ℱ (𝑈𝑈) and 0 ≨ 𝛽𝛽 ≤ 𝛼𝛼 ≤ 1. 

Then, 𝜆𝜆 ≈ F µ  implies that 𝜌𝜌(𝛼𝛼,𝛽𝛽)
𝜗𝜗 (𝜆𝜆)(𝑒𝑒) = 𝜌𝜌(𝛼𝛼,𝛽𝛽)

𝜗𝜗 (𝜇𝜇)(𝑒𝑒) for all 𝑒𝑒 ∈ 𝐴𝐴 regarding A-sets. 
Proof. The proof follows immediately from Definition 22 and Theorem 28. 
Note: In the context of SER, the notions of F-sets and A-sets are equivalent. Consequently, all the 
preceding results remain valid when applied to F-sets. 

7. Accuracy measures 

Definition 23. Let (𝜗𝜗,𝐴𝐴) be an 𝑆𝑆𝐵𝐵𝐵𝐵 over 𝑈𝑈 and let 𝜆𝜆 be an FS in 𝑈𝑈. The upper and lower 
approximations 𝜗𝜗

𝜆𝜆
 and 𝜗𝜗𝜆𝜆 regarding 𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖) are defined by: 

     𝜗𝜗
𝜆𝜆

(𝑒𝑒𝑖𝑖)�𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖)� = 𝑚𝑚𝑎𝑎𝑥𝑥𝑣𝑣∈𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖){𝜆𝜆(𝑜𝑜)}  .       (7.1) 

And  

𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)�𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖)� = 𝑚𝑚𝑖𝑖𝐵𝐵𝑣𝑣∈𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖){𝜆𝜆(𝑜𝑜)}.       (7.2) 

These two FSSs, 𝜆𝜆∗  and 𝜆𝜆∗, are generated by these lower and upper approximations in 𝑈𝑈 
postulated as: 

𝜆𝜆∗(𝑖𝑖)(𝑢𝑢) = 𝜗𝜗
𝜆𝜆

(𝑒𝑒𝑖𝑖)�𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖)�,       (7.3) 

and 

𝜆𝜆∗(𝑖𝑖)(𝑢𝑢) = 𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)�𝑢𝑢𝜗𝜗(𝑒𝑒𝑖𝑖)�.       (7.4) 

For any 𝑢𝑢 ∈ 𝑈𝑈, 𝜆𝜆∗(𝑖𝑖)(𝑢𝑢) and 𝜆𝜆∗(𝑖𝑖)(𝑢𝑢) can be seen as the degree to which 𝑢𝑢 possibly (resp. 
definitely) belongs to the FS 𝜆𝜆. 

Let 𝑈𝑈 be a universal set and 𝜗𝜗 be an 𝑆𝑆𝐵𝐵𝐵𝐵. For 𝜆𝜆 a normal FS in 𝑈𝑈, assume that the range of 
the membership function 𝜆𝜆 rng(𝜆𝜆) = {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛}, where 𝛼𝛼𝑖𝑖 ≩ 𝛼𝛼𝑖𝑖+1 ≩ 0, for 𝑖𝑖 = 1,2,3, … ,𝐵𝐵 − 1 
and 𝛼𝛼1 = 1 . The mass assignment of 𝜆𝜆  denoted by 𝑚𝑚𝜆𝜆  satisfies 𝑚𝑚𝜆𝜆(𝜙𝜙)(𝑒𝑒𝑖𝑖) = (1 − 𝛼𝛼1)(𝑒𝑒𝑖𝑖) , 
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𝑚𝑚𝜆𝜆(𝜆𝜆𝑖𝑖)(𝑒𝑒𝑖𝑖) = (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖+1)(𝑒𝑒𝑖𝑖)  for 𝑖𝑖 = 1,2,3, … ,𝐵𝐵  with 𝛼𝛼𝑛𝑛+1 = 0  by convention, where 
𝜆𝜆𝑖𝑖 = {𝑥𝑥 ∈ 𝑈𝑈: 𝜆𝜆(𝑥𝑥) ≥ 𝛼𝛼𝑖𝑖} for 1 ≤ 𝑖𝑖 ≤ 𝐵𝐵. 

It has been proposed that the mass assignment of a fuzzy concept provides probability-based 
semantics for the fuzzy concept's membership function. The mass assignment theory has been 
utilized in several areas, including word computing and decision tree induction. 

Now, we define the roughness measure of λ regarding SBRs and regarding A-sets as follows: 
𝜌𝜌�𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖) = ∑ 𝑚𝑚𝜆𝜆(𝜆𝜆𝑖𝑖)(𝑒𝑒𝑖𝑖) �1 − �𝜗𝜗𝜆𝜆𝑖𝑖(𝑒𝑒𝑖𝑖)�/ �𝜗𝜗

𝜆𝜆𝑖𝑖(𝑒𝑒𝑖𝑖)��𝑛𝑛
𝑖𝑖=1 .     (7.5) 

The roughness measure is not a number but a vector. Corresponding to each parameter of a SER, 
we have the corresponding component of the roughness measure vector. 

For the sake of illustration, now consider an example as follows: 
Example 4. Let 𝑈𝑈 = {1,2,3,4,5,6,7,8,9,10,11} and 𝐴𝐴 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4, 𝑒𝑒5} be a set of parameters. 
Define a 𝑆𝑆𝐸𝐸𝐵𝐵 𝜗𝜗:𝐴𝐴 → 𝑃𝑃(𝑈𝑈 × 𝑈𝑈) for each 𝑒𝑒 ∈ 𝐴𝐴. The corresponding soft equivalence class for each 
of the SERs is obtained as follows: 
For 𝜗𝜗(𝑒𝑒1), the soft equivalence classes 𝑢𝑢𝜗𝜗(𝑒𝑒1) are: {1,10}, {2,4,6,7}, {3,5,8,9}, {11}.  
For 𝜗𝜗(𝑒𝑒2), the soft equivalence classes 𝑢𝑢𝜗𝜗(𝑒𝑒2) are: {1}, {2,11}, {4,7}, {3,5,8,9}, {6,10}. 
For 𝜗𝜗(𝑒𝑒3), the soft equivalence classes 𝑢𝑢𝜗𝜗(𝑒𝑒3) are: {1}, {2}, {3,4,5,7,8,9,10}, {6}, {11}. 
For 𝜗𝜗(𝑒𝑒4), the soft equivalence classes 𝑢𝑢𝜗𝜗(𝑒𝑒4) are: {2}, {3,4,5,7,8,9,11}, {1,6,10}. 
For 𝜗𝜗(𝑒𝑒5), the soft equivalence classes 𝑢𝑢𝜗𝜗(𝑒𝑒5) are: {10}, {6}, {1,2,3,4,5,7,8,9}, {11}. 

Consider a linguistic value "𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎" whose membership function is defined by Table 7. The 
approximations of the FS "𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎" are given in Table 8. The mass assignment for "𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎" 
corresponding to each soft equivalence class is presented in Table 9. The lower and upper 
approximations corresponding to each soft equivalence class are given in Table 10. The order of the 
corresponding lower and upper approximations are displayed in Table 11. 

Table 7. The membership function of "𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎". 

 

 

Table 8. The approximations of the FS 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎. 

 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎∗ 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎∗ 
Corresponding to 𝑖𝑖 = 1 {0,0,0,0} {1,0.8,0.8,0} 
Corresponding to 𝑖𝑖 = 2 {1,0,0,0,0} {1,0.8,0.6,0.8,0.2} 
Corresponding to 𝑖𝑖 = 3 {1,0.8,0,0.2,0} {1,0.8,0.8,0.2,0} 
Corresponding to 𝑖𝑖 = 4 {0.8,0,0} {0.8,0.8,1} 
Corresponding to 𝑖𝑖 = 5 {0.2,0,0,0} {0.2,0,1,0} 

  

𝑢𝑢 1 2 3 4 5 6 7 8 9 10 11 
𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢) 1 0.8 0.8 0.6 0.4 0.2 0 0 0 0 0 
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Table 9. Mass assignment corresponding to each soft equivalence class. 

 𝑀𝑀𝐵𝐵𝑔𝑔(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎) 𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 
(𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒𝑖𝑖) 

For 𝑖𝑖 = 1 {1, 0.8, 0.6, 0.4} 

�

{1},
{1,2,3},

{1,2,3,4},
{1,2,3,4,5}

� 

0.2 

For 𝑖𝑖 = 2 {1, 0.8, 0.6, 0.4, 0.2} 

⎝

⎜
⎛

{1},
{1,2,3},

{1,2,3,4},
{1,2,3,4,5},

{1,2,3,4,5,6}⎠

⎟
⎞

 

0.2 

For 𝑖𝑖 = 3 {1, 0.8, 0.6, 0.4, 0.2} 

⎝

⎜
⎛

{1},
{1,2,3},

{1,2,3,4},
{1,2,3,4,5},

{1,2,3,4,5,6}⎠

⎟
⎞

 

0.2 

For 𝑖𝑖 = 4 {1, 0.8, 0.6} 
�

{1},
{1,2,3},

{1,2,3,4, }
� 

0.2 

For 𝑖𝑖 = 5 {1, 0.8, 0.6, 0.4} 

�

{1},
{1,2,3},

{1,2,3,4},
{1,2,3,4,5}

� 

0.2 

Table 10. Lower and upper approximations corresponding to each soft equivalence class w.r.t. A-set. 

 𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖) 𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖) 

 
Corresponding 
to 𝑖𝑖 = 1 

 
{𝜙𝜙,𝜙𝜙,𝜙𝜙,𝜙𝜙} �

{1,10},
{3,5,8,9},
{3,5,8,9},

𝜙𝜙

� 

 
 
Corresponding 
to 𝑖𝑖 = 2 

 
 

�{1},𝜙𝜙,𝜙𝜙,𝜙𝜙,𝜙𝜙� 

⎩
⎪
⎨

⎪
⎧

{1},
{3,5,8,9},

{4,7},
{3,5,8,9},

{6,10} ⎭
⎪
⎬

⎪
⎫

 

 
 
Corresponding 
to 𝑖𝑖 = 3 

 
 
�{1}, {2,11},𝜙𝜙, {6},𝜙𝜙� 

⎩
⎪
⎨

⎪
⎧

{1},
{3,4,5,7,8,9,10},
{3,4,5,7,8,9,10},

{6},
𝜙𝜙 ⎭

⎪
⎬

⎪
⎫

 

 
Corresponding 
to 𝑖𝑖 = 4 

 
�{2},𝜙𝜙,𝜙𝜙� �

{3,4,5,7,8,9,11},
{3,4,5,7,8,9,11},

{1,6,10}
� 

 
Corresponding 
to 𝑖𝑖 = 5 

 
�{6},𝜙𝜙,𝜙𝜙,𝜙𝜙� �

{6},
𝜙𝜙,

{1,2,3,4,5,7,8,9},
𝜙𝜙

� 
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Table 11. Order of corresponding lower and upper approximations regarding A-sets. 

 �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖)� �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖)� 

Corresponding 
to 𝑖𝑖 = 1 

{0,0,0,0} {2,4,4,0} 

Corresponding 
to 𝑖𝑖 = 2 

{1,0,0,0,0} {1,4,2,4,2} 

Corresponding 
to 𝑖𝑖 = 3 

{1,2,0,1,0} {1,7,7,1,0} 

Corresponding 
to 𝑖𝑖 = 4 

{1,0,0} {7,7,3} 

Corresponding 
to 𝑖𝑖 = 5 

{1,0,0,0} {1,0,8,0} 

Now, the measure of roughness yields 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒𝑖𝑖) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒𝑖𝑖) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖)�/ �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒𝑖𝑖)�� .

𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

 

For 𝑖𝑖 = 1: 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒1) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒1) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒1)�/ �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒1)��

𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

= 0.8. 

For 𝑖𝑖 = 2: 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒2) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒2) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒2)�/ �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒2)��

𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

= 0.8. 

For 𝑖𝑖 = 3: 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒3) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒3) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒3)�/ �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒3)��

𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

= 0.5. 

For 𝑖𝑖 = 4: 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒4) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒4) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒4)�/ �𝜗𝜗
𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒4)��

𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

= 0.5. 

For 𝑖𝑖 = 5: 

𝜌𝜌�𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑒𝑒5) = � 𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠(𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼)(𝑒𝑒5) �1 − �𝜗𝜗𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒5)�/�𝑜𝑜𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝛼𝛼(𝑒𝑒5)��
𝛼𝛼∈𝑟𝑟𝑛𝑛𝑔𝑔 (𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠)

= 0.6. 

Hence, corresponding to each parameter of a 𝑆𝑆𝐸𝐸𝐵𝐵 , the roughness measure vector is 
[0.8 0.8 0.5 0.5 0.6]. 
Note: Since the concepts of F-sets and A-sets match in the case of a 𝑆𝑆𝐸𝐸𝐵𝐵, the same process may be 
used for the lower and upper approximations about the F-sets. 
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8. A decision-making scheme 

SS theory and its many extensions have been used to address DM issues since Molodtsov 
introduced it (Maji et al. [5]). Some of its restrictions, including human perception and vision 
systems, are fundamentally humanistic and subjective. As Feng et al. [61] pointed out, there is not a 
single, consistent standard for judging decision alternatives. 

As a result, every method now in use for making decisions based on SSs and the theory that 
extends from them will certainly have some benefits and some drawbacks. Every methodology 
currently in use for DM that is based on SSs and its extensions theory has successfully resolved a 
variety of decision problems. Roy and Maji [62] provided an FSS theory-based DM process. In Feng 
et al. [61], the authors created a new modified decision strategy based on FSS theory after carefully 
examining the shortcomings of the Roy and Maji decision method. Decision-makers still need to 
select the thresholds early even though the Roy and Maji approach's shortcomings have been 
addressed by the Feng et al. [61] technique. The results will then depend on the threshold. 

In this work, we suggest a novel method for formulating decisions using 𝑆𝑆𝐵𝐵𝐵𝐵𝑎𝑎 and fuzzy soft 
rough set theory. This method does not require any further information that could be supplied by 
decision-makers or in any other way; it will only make use of the data information provided by the 
problem of DM. As a result, it can prevent the impact of personal information on the results of 
decisions. Because of the influence of the subjective elements by various experts, the results might 
be more objective and prevent contradictory results for similar decision problems. 

The current methods for managing decision-making issues with FSSs primarily concentrate on 
the object's score 𝑜𝑜𝑖𝑖 as determined by the comparison table and the membership degree's choice 
value 𝑐𝑐𝑖𝑖 (Roy and Maji [53]) regarding the parameter set for the specified item in the universe 𝑈𝑈. 
Selecting the universe 𝑈𝑈 object with the highest choice value 𝑐𝑐𝑖𝑖, or maximum score, would be the 
most appropriate course for proceeding in this case. 

Since the upper and rougher approximations are the two that are closest to the universe's 
approximated set, as a consequence, using the fuzzy soft upper and lower approximations of FS λ, 
we derive the two closest values, 𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖) and 𝜗𝜗

𝜆𝜆
(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖) regarding A-sets to the decision 

alternative 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈 of the universe 𝑈𝑈. Thus, we redefine, regarding A-sets, the choice value 𝛾𝛾𝑖𝑖 for 
the decision alternative 𝑥𝑥𝑖𝑖 on the universe 𝑈𝑈 as follows: 

𝛾𝛾𝑖𝑖 = ∑ 𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + ∑ 𝜗𝜗

𝜆𝜆
(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 , 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈.      (8.1) 

In the end, the item 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈 in the universe 𝑈𝑈 with the largest choice value 𝛾𝛾𝑖𝑖 is considered the 
best choice for the assumed problem of DM, and the object 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈 in the universe 𝑈𝑈 with the least 
choice value 𝛾𝛾𝑖𝑖 is measured as the worst alternative. In general, if more than one item 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈 has 
the identical maximum (minimum) choice value 𝛾𝛾𝑖𝑖, select the random choice as the best (worst) 
alternative for the specified DM problem. In what follows, we propose two decision-making 
algorithms within the recommended framework to identify optimal choices. Algorithm 1 employs an 
A-sets method, while Algorithm 2 utilizes an F-sets approach. 
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Algorithm 1: Decision-making using A-sets. 
Input: Two non-empty universes and a set of attributes 
Output: Optimal choice 

1) Determine the approximate values of the upper FSS 𝝑𝝑
𝝀𝝀
 and lower FSS 𝝑𝝑𝝀𝝀 for a given 

FS λ in relation to the A-sets. 
2) For each 𝒊𝒊 with regard to the A-sets, calculate the sum of the lower approximation 

∑ 𝝑𝝑𝝀𝝀(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)𝒏𝒏
𝒊𝒊=𝟏𝟏  and the upper approximation ∑ 𝝑𝝑

𝝀𝝀
(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)𝒏𝒏

𝒊𝒊=𝟏𝟏 . 

3) Determine the choice value with regard to the A-sets using the following formula: 

𝜸𝜸𝒊𝒊 = �𝝑𝝑𝝀𝝀(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏

+ �𝝑𝝑
𝝀𝝀
(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)

𝒏𝒏

𝒊𝒊=𝟏𝟏

,𝒙𝒙𝒊𝒊 ∈ 𝑼𝑼 

4) 𝒙𝒙𝒌𝒌 ∈ 𝑼𝑼 is the optimal choice if 𝜸𝜸𝒌𝒌 = 𝒎𝒎𝒎𝒎𝒙𝒙𝒊𝒊 𝜸𝜸𝒊𝒊, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … , |𝑼𝑼|. 

5) 𝒙𝒙𝒌𝒌 ∈ 𝑼𝑼 is the worst choice if 𝜸𝜸𝒌𝒌 = 𝒎𝒎𝒊𝒊𝒏𝒏𝒊𝒊 𝜸𝜸𝒊𝒊, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … , |𝑼𝑼|. 

6) Any one of 𝒙𝒙𝒌𝒌 can be selected if 𝒌𝒌 has multiple values. 

Algorithm 2: Decision-making using F-sets. 
Input: Two non-empty universes and a set of attributes 
Output: Optimal choice 

1) Determine the approximate values of the upper FSS 𝝑𝝑 
𝜹𝜹

  and lower FSS 𝝑𝝑 𝜹𝜹   for a given 
FS 𝜹𝜹 in relation to the F-sets. 

2) For each 𝒊𝒊 with regard to the F-sets, calculate the sum of the lower approximation 

∑ 𝝑𝝑 𝜹𝜹 (𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)𝒏𝒏
𝒊𝒊=𝟏𝟏  and the upper approximation ∑ 𝝑𝝑 

𝜹𝜹
(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)𝒏𝒏

𝒊𝒊=𝟏𝟏 . 

3) Determine the choice value regarding the F-sets according to the formula given as:  

𝜸𝜸𝒊𝒊′ = � 𝝑𝝑 𝜹𝜹 (𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏

+ � 𝝑𝝑 
𝜹𝜹

(𝒆𝒆𝒊𝒊)(𝒙𝒙𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏

,𝒙𝒙𝒊𝒊 ∈ 𝑼𝑼 

4)  𝒙𝒙𝒌𝒌 ∈ 𝑼𝑼 is the optimal choice if 𝜸𝜸𝒌𝒌′ = 𝒎𝒎𝒎𝒎𝒙𝒙𝒊𝒊 𝜸𝜸𝒊𝒊′, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … , |𝑼𝑼| 

5)  𝒙𝒙𝒌𝒌 ∈ 𝑼𝑼 is the poorest choice if 𝜸𝜸𝒌𝒌′ = 𝒎𝒎𝒊𝒊𝒏𝒏𝒊𝒊 𝜸𝜸𝒊𝒊′, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐, … , |𝑼𝑼|. 

6) Any one of 𝒙𝒙𝒌𝒌 can be selected if 𝒌𝒌 has multiple values. 

Figure 1 displays a graphic portrayal of Algorithms 1 and 2. 
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Figure 1. Flowchart of the proposed algorithms. 

8.1. A practical illustration 

In this subsection, we use the example of choosing a bike to demonstrate the steps of the DM process. 
Example 5. Reviewing the SBR rovided in Example 1, where someone wishes to choose a bike out 
of six bike models and four bike colors. 

Define 𝜆𝜆:𝑊𝑊 → [0,1],  which is 𝑀𝑀𝑀𝑀.𝑋𝑋′𝑎𝑎  preferred color, such that 𝜆𝜆(𝑐𝑐1) = 0.3, 𝜆𝜆(𝑐𝑐2) =
0.1, 𝜆𝜆(𝑐𝑐3) = 0, 𝜆𝜆(𝑐𝑐4) = 0.5 and define 𝛿𝛿:𝑈𝑈 → [0,1], which indicates the color preference given by 
𝑀𝑀𝑀𝑀.𝑋𝑋 such that 

𝛿𝛿(𝐵𝐵1) = 1, 𝛿𝛿(𝐵𝐵2) = 0.7, 𝛿𝛿(𝐵𝐵3) = 0.5, 

𝛿𝛿(𝐵𝐵4) = 0.1,𝛿𝛿(𝐵𝐵5) = 0, 𝛿𝛿(𝐵𝐵6) = 0.4. 

After using the previously mentioned algorithm, examine the subsequent table. 

Table 12. The decision algorithm's outcomes in relation to the A-sets. 

 𝜗𝜗𝜆𝜆(𝑒𝑒1) 𝜗𝜗𝜆𝜆(𝑒𝑒2) 𝜗𝜗𝜆𝜆(𝑒𝑒3) 𝜗𝜗
𝜆𝜆

(𝑒𝑒1) 𝜗𝜗
𝜆𝜆

(𝑒𝑒2) 𝜗𝜗
𝜆𝜆

(𝑒𝑒3) Choice value 
𝛾𝛾𝑖𝑖 

𝐵𝐵1 0 0 0 0.3 0 0 0.3 
𝐵𝐵2 0.1 0 0.5 0.5 0 0.5 1.6 
𝐵𝐵3 0 0 0 0 0 0.3 0.3 
𝐵𝐵4 0 0.3 0 0.1 0.3 0 0.7 
𝐵𝐵5 0 0.3 0 0.5 0.3 0.5 1.6 
𝐵𝐵6 0.3 0 0 0.3 0.1 0 0.7 
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Table 13. The decision algorithm's outcomes in relation to the F-sets. 

 𝜗𝜗 𝛿𝛿 (𝑒𝑒1) 𝜗𝜗 𝛿𝛿 (𝑒𝑒2) 𝜗𝜗 𝛿𝛿 (𝑒𝑒3) 𝜗𝜗 
𝛿𝛿

(𝑒𝑒1) 𝜗𝜗 
𝛿𝛿

(𝑒𝑒2) 𝜗𝜗 
𝛿𝛿

(𝑒𝑒3) Choice value 𝛾𝛾𝑖𝑖′ 

𝑐𝑐1 0.4 0 0.5 1 0.1 0.5 2.5 
𝑐𝑐2 0.1 0.4 0 1 0.4 0 1.9 
𝑐𝑐3 0 0.7 0 1 1 0.5 3.2 
𝑐𝑐4 0 0 0 0.7 0 0.7 1.4 

Here, the chosen value 𝛾𝛾𝑖𝑖 = ∑ 𝜗𝜗𝜆𝜆(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)3
𝑖𝑖=1 + ∑ 𝜗𝜗

𝜆𝜆
(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)3

𝑖𝑖=1  is calculated regarding A-sets and 

the choice value 𝛾𝛾𝑖𝑖′ = ∑ 𝜗𝜗 𝛿𝛿 (𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)3
𝑖𝑖=1 + ∑ 𝜗𝜗 

𝛿𝛿
(𝑒𝑒𝑖𝑖)(𝑥𝑥𝑖𝑖)3

𝑖𝑖=1  is calculated regarding F-sets. 
Clearly, the maximum chosen value is 𝛾𝛾𝑘𝑘 = 1.6 = 𝛾𝛾2 = 𝛾𝛾5, scored by the models 𝐵𝐵2 and 𝐵𝐵5, 

and the conclusion is in support of selecting the model 𝐵𝐵2 or 𝐵𝐵5. Moreover, the models 𝐵𝐵1 and 𝐵𝐵3 
are disregarded. Hence, 𝑀𝑀𝑀𝑀.𝑋𝑋 will choose the bike of model 𝐵𝐵2 or 𝐵𝐵5 for his personal use, and he 
will not select the bikes of models 𝐵𝐵1 and 𝐵𝐵3 regarding A-sets. Similarly, the highest possible 
decision value is 𝛾𝛾𝑘𝑘′ = 3.2 = 𝛾𝛾3′ , scored by the bike of color 𝑐𝑐3, and the conclusion is in favor of 
selecting the bike of color 𝑐𝑐3. Moreover, the bike of colour 𝑐𝑐4 is completely disregarded. Hence, 
𝑀𝑀𝑀𝑀.𝑋𝑋 will choose the bike of color 𝑐𝑐3 for his personal use, and he will not select the bike of color 
𝑐𝑐4 regarding F-sets. Furthermore, the graphical depiction of the ranking outcomes of the proposed 
approach is exhibited in Figure 2. 
 

 

(a). Ranking w.r.t. A-sets. 

 

 

(b). Ranking w.r.t. F-sets. 

Figure 2. Ranking results. 

9. Comparative analysis and discussion 

The literature presents a diverse range of methodologies for addressing DM situations, each 
with its strengths and restrictions. The efficacy of any given method is largely dependent on the 
specific features of the problem under consideration. In this segment, we conduct an in-depth 
theoretical comparative analysis of the planned method against several widely adopted DM 
techniques within the given context of FSs, RSs, and SSs. Additionally, we discuss the advantages of 
the proposed approach to existing methods. 
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Handling ambiguous information is much improved by utilizing FS in combination with SS and 
RS. Molodtsov [3] introduced SS theory, and Maji et al. [5, 6] used it for decision analysis. Chen et 
al. [7] implemented parameterization reduction of SS and improved the SS-based decision-making 
scheme presented in [6]. The authors of [54] provided a uni-int DM technique by utilizing enhanced 
SS operations. The important thing to note about this approach is its fundamental limitation. For its 
methodology, this technique produces an empty set of optimal alternatives. Furthermore, every prior 
DM system only paid attention to crisp SS. 

Depending on the DM situation, the findings of SSs entail the evaluation of every decision 
attribute. Moreover, there is typically no standard criteria for assessing decision attributes ([61]). 
Consequently, earlier DM techniques had shortcomings. DM was studied by Roy and Maji [62] 
within the context of FSSs. The strategy used by Roy and Maji [62] had certain drawbacks, which 
Feng et al. [61] addressed. 

There are noteworthy differences between our method and previous research. The choice value 
of the membership grade for the attribute set for the provided alternatives in the universe and the 
score of alternatives from the comparison table are the primary foci of the current investigations of 
decision-making under the SS technique introduced by Maji et al. [5,6], Feng et al. [61], Roy and 
Maji [62], and Gogoi et al. [63]. The best option is then determined by selecting the universe's 
alternative with the highest choice value or score. 

The present article introduces DM methods employing SBRs, which are very suitable for 
addressing uncertainty due to their parameterized collection of binary relations. These schemes rely 
on the FRS methodology. Expert feedback is incorporated into the planned investigation, and further 
information is not required. Additionally, we may use different parameters in SBRs according to the 
type of problem we are looking at. For this reason, our suggested method works better for solving 
ambiguous problems. 

9.1. Numerical experimentation 

In this subsection, we compare our proposed approach to existing schemes described in [30, 39, 62] 
within the framework of FSSs. The resultant ranking outcomes of this analysis are presented in 
Tables 14 and 15. Furthermore, as observed in Tables 20 and 21, the optimal alternative derived from 
the final ranking reveals minimal fluctuation concerning A-sets and F-sets. This difference is a 
common phenomenon in decision analysis, attributed to the dynamic nature of the DM setting. 

Table 14. Ranking outcomes using various methods under the A-sets. 

 
Methods 

Choice values Ranking result 

𝛾𝛾1 𝛾𝛾2 𝛾𝛾3 𝛾𝛾4 𝛾𝛾5 𝛾𝛾6 

Mehmood et al. [39] 0.8 1.3 1.3 1.3 0.9 1.3 𝐵𝐵2 ≈ 𝐵𝐵3 ≈ 𝐵𝐵4 ≈ 𝐵𝐵6 ≽ 𝐵𝐵5 ≽ 𝐵𝐵1 

Roy and Maji [62] −11 8 −12 1 13 1 𝐵𝐵5 ≽ 𝐵𝐵2 ≽ 𝐵𝐵4 ≈ 𝐵𝐵6 ≽ 𝐵𝐵1 ≽ 𝐵𝐵3 

Zhan and Zhu [30] 1 4 1 3 4 3 𝐵𝐵5 ≈ 𝐵𝐵2 ≽ 𝐵𝐵4 ≈ 𝐵𝐵6 ≽ 𝐵𝐵1 ≽ 𝐵𝐵3 

Proposed scheme 0.3 1.6 0.3 0.7 1.6 0.7 𝐵𝐵5 ≈ 𝐵𝐵2 ≽ 𝐵𝐵4 ≈ 𝐵𝐵6 ≽ 𝐵𝐵1 ≽ 𝐵𝐵3 
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Table 15. Ranking results using different methods under the F-sets. 

Methods Choice values Ranking order 
𝛾𝛾1′  𝛾𝛾2′  𝛾𝛾3′  𝛾𝛾4′ 

Mehmood et al. [39] 1 1 1.1 0.7 𝑐𝑐3 ≽ 𝑐𝑐1 ≈ 𝑐𝑐2 ≽ 𝑐𝑐4 
Roy and Maji [62] 5 2 1 -8 𝑐𝑐1 ≽ 𝑐𝑐2 ≽ 𝑐𝑐3 ≽ 𝑐𝑐4 
Zhan and Zhu [30] 5 4 4 2 𝑐𝑐1 ≽ 𝑐𝑐2 ≽ 𝑐𝑐3 ≈ 𝑐𝑐4 
Proposed scheme 2.5 1.9 3.2 1.4 𝑐𝑐3 ≽ 𝑐𝑐1 ≽ 𝑐𝑐2 ≽ 𝑐𝑐4 

9.2. Advantages of the proposed work 

In summary, there are several advantages of our suggested method over current methods, which 
may be summed up as follows: 
(1) One of the key advantages of the FRS variant based on SBRs is its capacity to represent 

ambiguity and uncertainty. FSs may handle a wider range of data types and more properly 
represent the uncertainty that commonly arises in real-world applications by merging with RSs 
and SBRs. 

(2) Numerous academics investigated several DM methods under FSs and SSs, such as those introduced by 
Maji et al. [5, 6], Ali et al. [44], Çağman and Enginoğlu [54], Feng et al. [61], Roy and Maji [62], and 
Gogoi et al. [63]. Nevertheless, these systems' roughness was not investigated. 

(3) A few studies on the roughness of FSs and SSs have been conducted by Molodtsov [3], Maji et al. 
[5, 6], Feng et al. [61], and Jiang et al. [64]. However, these methods cannot function effectively 
within the framework of dual universes. 

10. Conclusion and future work 

FS, RS, and SS theories serve as efficient mathematical frameworks for addressing uncertainty. 
By integrating these theories, various hybrid models have been established to manage the intrinsic 
uncertainty and vagueness involved in real-world dilemmas. This study introduces an FRS variant 
using an SBR over two universes. To this end, we described the roughness of an FS through an SBR 
w.r.t. the A-sets and F-sets. In this way, we attained two FSSs w.r.t. the A-sets and F-sets. Several 
substantial features of the devised approach have been systematically scrutinized with several concrete 
illustrations. Also, two types of fuzzy topologies are constructed via SRRs. In addition, numerous 
similarity relations linked with SBRs are also investigated. Based on the idea of FS mass assignment 
via SBRs, a novel accuracy and roughness measure was given in this study. Likewise, we offered two 
DM algorithms regarding the A-sets and F-sets. To illustrate these algorithms, we discussed a DM 
technique within the framework of the designed approach to resolve DM problems by evaluating the 
drawbacks and benefits of previous research. Finally, an applied example was adopted to confirm the 
soundness of the decision processes. 

Admittedly, the proposed approach has certain limitations due to its current modelling 
capabilities, which are insufficient to effectively address the bipolarity inherent in inconsistent data. To 
overcome these limitations, future work will focus on the following domains: 

• Extending the proposed framework to more general mathematical structures, including bipolar 
FSs, picture FSs, spherical FSs, t-spherical FSs, and bipolar SSs. 

• Additionally, the framework will be utilized to explore the multi-granulation roughness of an 
FS based on SBRs across two universes. 
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• Further, the axiomatization of the proposed methodology represents an intriguing area for 
future research. 

• We will also delve deeper into additional facets of the proposed framework under the context of 
a covering-based RS model. 

• Another avenue involves investigating the potential integration of this framework with other 
methodologies to enhance the accuracy of the outcomes. Ultimately, these advanced techniques 
will be applied to real-world problems involving large-scale data sets, showcasing their 
practical applicability and effectiveness. 
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