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Abstract
Software dominates modern enterprises, affecting numerous functions. Software firms constantly experiment with new
methodologies to define and assess software quality to stay competitive and ensure excellence. Software engineering uses
fundamentals and cutting-edge technology to develop great software. In recent decades, Data-mining techniques and machine
learning for classifying problematic software projects have emerged to improve software quality. ML approaches, especially
ensemble learning models, are becoming fundamental to software engineers’ daily jobs. This work created a binary white
shark optimizer (WSO) to optimize standard ensemble learningmodels. The objective is to identify themost suitable ensemble
number for weak learners to maximize accuracy on benchmark datasets. The EM model uses 14 weak learners. Twenty-one
experimental runs are performed on 15 software-defective module datasets. The optimized ensemble model outperforms
the standard Ensemble learning model in AUC-ROC, Accuracy, Precision, Recall, F1-Score, and Specificity. The enhanced
model has an average accuracy of 86%, compared to 76% for the standard ensemble model across all datasets. The optimized
model outperformed the conventional ensemble for the same datasets, with an average AUC of 72% compared to 61% for the
standard ensemble. The optimized model was more stable than the standard model, with an STD of 5.53E−03 vs 7.24E−02
for the ensemble model. The WSO optimization process strengthens and generalizes optimizeels. The study suggests that
evolutionary metaheuristic approaches can enhance EM models’ accuracy, trustworthiness, and adaptability.
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1 Introduction

Software is essential to the success of all today’s organiza-
tions, adding value to all business areas. All of the company’s
business processes rely heavily on software. Software devel-
opment companies always seek newmethods and techniques
to gain an edge. According to expert [1], software is essential
for the operation of nearly all functions of an organization.
Many software systems assist people, businesses, and com-
munities in taking advantage of opportunities or solving
problems. For the UK’s Office of Government Commerce
(OGC), a benefit is a demonstrable improvement from an
outcome perceived by one or more parties that support the
organization’s goals [2]. Software failures can cost a business
a lot of money. An organization must also design customer-
satisfying software. Since humans build software, it can have
errors during the development life cycle. Diverse techniques
and strategies have surfaced to ensure dependable and supe-
rior software development [3].
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Various models and standards exist for defining and
assessing software quality. The latest are ISO/IEC 25010
and ISO 5055 [4]. Although quality is determined by eight
quality criteria in ISO/IEC 25010, for instance, maintain-
ability Quality is defined by ISO/IEC 5055 as “weaknesses”
that imperil software integrity, trustworthiness, effectiveness,
and ability to be maintained [5]. Software quality has inter-
nal and external properties. Software artifacts assess internal
quality criteria like size, coupling, and cohesion. Environ-
mental information is needed to measure external quality
attributes, includingmaintainability, reusability, and reliabil-
ity [6]. Software quality is a priority for the industry. Models
like ISO/IEC 25,010 (ISO, IEC25010:2011 2011) [5] con-
sider software reliability as a quality factor. Per the IEEE
software reliability standard (IEEE Reliability Society 2016)
[7]: (1) The probability of software operatingwithout error in
a specific environment for an agreed-upon period is known as
software reliability. (2)Modeling software reliability outlines
the software failure process based on factors, including defect
introduction, removal, and operating environment [8]. Soft-
ware developers aim to create reliable, low-cost, high-quality
software. Software reliability is the chanceof a software oper-
ation being completedwithout failurewithin a particular time
frame in a given environment. Software development priori-
tizes reliability to ensure that the software works as intended
[9].

Software developers make decisions based on software
reliability. Software reliability research generally assumes
flawless debugging, where defects can be promptly elim-
inated or fixed [10]. A piece of software is considered
“dependable” if it can function continuously for an exact
amount of time [11]. Evaluation of software reliability quan-
titatively is crucial during the SDLC testing phase to reduce
failure risk, optimize resource utilization, manage costs, and
estimate faults, resulting in a highly reliable software system
[12]. Testing environment, strategy, and resource allocation
might affect release time. Software release decisions become
increasingly complicated and vital; when a software creator
makes an intentional decision, the client or end-user faces sig-
nificant financial losses. Software release decisions involve
balancing a premature release, which will benefit from a
faster market launch, with product release postponement to
maintain reliability. Software developers must pay for bug
fixes if a product is published too soon. For optimal software
release timing, reliability and cost must be considered [13].
By recognizing troublesome modules in their early stages,
developers can better deploy Assets for quality assurance
and enhance software quality during development and main-
tenance [14]. To understand software quality thoroughly, we
must analyze it from several viewpoints, such as software
engineering, statistics, and machine learning.

Software quality improvement methods include Capa-
bility Maturity Model Integration (CMMI), Total Quality

Management, Six Sigma, and Lean Production. Software
businesses have started Six Sigma programs to optimize pro-
cedures used in software development throughout life cycle
phases to provide high-quality products. Evaluating software
project development costs and effort is another crucial task in
software project management. Organizations lose contracts
or fail at software project management due to underestimat-
ing and overestimating. Software project managers struggle
with cost/effort estimation,which is crucial to project success
[15]. To boost software quality, software effort estimation
takes into account the number of errors discovered and fixed
during the software development life cycle [16–18]. Soft-
ware defects are typically deviations from specifications or
requirements [19]. Such faults may cause failures or unex-
pected effects. Software quality assurance tasks like defect
prediction, code review, and unit testing reduce failures and
increase software quality. Such efforts often consume 80%of
a project’s budget. Software engineers prioritize inspecting
modules with the most flaws to reduce costs [20].

Cross Project Defect Prediction (CPDP) is a technique
for constructing a defect prediction model based on source
projects and subsequently implementing it in a target project.
Selecting an appropriate training project for developing a pre-
dictor model in CPDP is challenging due to the emergence
of new software projects [21]. SDP studies can be catego-
rized according to their contexts and the diverse alternatives
in the procedural processes. Literature has conventionally
utilized two fundamental situations for Software Defect Pre-
diction (SDP): Defect prediction within and across projects
(WPDP and CPDP). WPDP uses a project’s history data,
specifically various versions, to forecast the problematic
components [22]. WPDP specifically focuses on fault pre-
dictions within the identical software project on which it
is trained [23]. Consequently, both the training and testing
datasets pertain to the same project. Conversely, CPDP uti-
lizes data from source projects to train an SDP model, which
is subsequently employed to predict the problematic aspects
of a target project. This transfer learning-based method is
highly beneficial for projects with constrained labeled data.
This technique’s primary challenge is reducing the dispar-
ity in feature distribution between source and target projects
[22, 24]. This study employs CPDP as the writers trained and
identified necessary metrics across 15 projects.

Predicting defect-prone areas of software before their
identification through substantial effort is challenging. The
primary challenge of Software Defect forecasting is the
identification of defective segments within the source code
while enhancing the accuracy of fault prediction. A multi-
tude of strategies and techniques have been suggested and
documented in the literature to achieve this purpose. Numer-
ous studies employ learning-based techniques to enhance
SDP accuracies; nevertheless, The conceptual description
of source code is the focus of some research. To cre-
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ate efficient SDP models, researchers employ ML and
DL approaches [22]. Software defect prediction consti-
tutes a highly dynamic domain within software engineering.
Recently, several researchers introduced Just-in-TimeDefect
Prediction Technology. The timely defect prediction system
has gained recognition for its accuracy and simplicity. This
method can ascertain the presence of a software defect in
any code update supplied by a developer. Moreover, the pro-
cess is rapid and easy to monitor. The primary challenge
is that the category imbalance within the data set affects
the predictive accuracy of Just-in-Time software. Gener-
ally, 20% of software engineering issues arise in 80% of
modules, with code modifications that do not produce a
substantial portion of faults. Consequently, there exists a
disparity in the data set, especially when there is a large
gap between two or more classes. This affects the model’s
ability to accurately anticipate the classes to use for clas-
sification [25]. A crucial element in the prompt delivery
of superior software products is software defect prediction
(SDP). It anticipates error-prone modules at the first phases
of development, which could result in significant damage
or potential program failure subsequently. Consequently, it
reduces the total software development expenses while facil-
itating the focused testing of these troublesome modules,
ensuring the superior quality of the final product. Support
vector machines (SVMs) are extensively employed in SDP.
The dataset’s imbalanced distribution of defective and non-
defective modules impairs the accuracy of support vector
machines (SVMs). This research introduces an innovative
filtering method (FILTER) for effective SVM-based defect
prediction. Employing the recommended filtering method,
classifiers based on support vector machines (SVM)—linear,
polynomial, and radial basis function—are constructed, and
their performances are evaluated across five datasets. There
is a 16.73% improvement in accuracy, a 16.80% improve-
ment in AUC, and a 7.55% improvement in the F-measure
of the SVM-based SDP model due to the proposed FILTER
[26]. Software defect prediction (SDP) is an innovative tech-
nological approach to forecasting software defects within
the software development life cycle. Many studies on SDP
have been completed previously; however, their results dif-
fer across various datasets, making them unreliable for SDP
in unspecified software projects. In contrast to a singu-
lar classifier, the hybrid methodology that integrates the
selection of features through machine learning for SDP
can yield superior efficacy by utilizing many strategies to
enhance prediction accuracy for a specific dataset. Individual
machine learning-based models for software defect predic-
tion encounter three primary issues: elevated dimensionality
of feature parameters, protracted detection durations, and
vulnerabilities within software projects. This paper proposes
a hybrid model utilizing an Extreme Gradient Boost (XGB)
classifier with enabled feature selection to address these con-

cerns. The proposedmodel was executed utilizing the refined
NASAMDP datasets, and its efficacy was evaluated through
various performance metrics, including F-score, accuracy,
andMCC. The performance of the proposedmodel surpasses
that of state-of-the-art strategies lacking feature selection.
The proposed model outperformed all other predictive meth-
ods, as indicated by the results [27]. In software engineering,
forecasting software defects is essential for enhancing the
quality of software systems, which is a critical and expen-
sive component of the software development lifecycle. Aswe
increasingly employ software systems, their dependencies
and complexities escalate, fostering an environment prone
to breakdowns. Software defects lead to erroneous outcomes
and actions. More crucial than defects is the ability to iden-
tify them before their emergence. Consequently, identifying
(and forecasting) software issues enables software managers
to deploy resources more effectively during the maintenance
and testing phases. The literature presents numerous pro-
posals for forecasting software defects. The authors of this
research performed a comparative examination of machine
learning-based software defect prediction systems utilizing
the public datasets PC1, JM1, KC1, KC2, and CM1 from the
PROMISE repository. The researchers evaluated ten learn-
ing algorithms: Naive Bayes, K-Nearest Neighbor, Decision
Tree, Support Vector Machine, Extra Trees, Random For-
est, Multi-Layer Perceptron, Adaboost, Gradient Boosting,
and Bagging. The experimental results demonstrated that
the proposed models provide adequate accuracy levels for
software defect prediction, hence enhancing product qual-
ity [28]. Artificial intelligence has invaded several sectors.
Many manufacturing robots work instead of humans. These
robots have ML-trained brains. AI and software engineer-
ing (SE) are becoming more integrated, but the gap is still
substantial compared to AI and additional sciences. Machine
learning algorithms have become increasingly important in
the software industry and software professionals’ lives [29].
Machine learning and data mining are concerned with soft-
ware engineering techniques, particularly SDP. SDPhas been
classified using Decision Tree, Support Vector Machine, and
Logistic Regression [30–33]. Many software defect predic-
tion techniques have been presented to boost software quality
in recent decades.Machine learning is becomingmore preva-
lent. Supervised methods require labels for training data,
whether flawed or not, while unsupervised methods do not
[34]. Software defects, such as faults or failures in computer
systems or applications, are prevalent and lead them to act
unexpectedly, which lowers software quality [35].

The classification of software defects helps project man-
agers predict vulnerabilities before product introduction,
improving validation and testing. Finding code errors early
in software development may improve both reliability and
performance. These methods help developers discover the
most likely defects, improving program performance. Defec-
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Fig. 1 Ensemble majority
voting model

tive parts have been classified and predicted using many ML
techniques [36]. Early defect detection improves software
quality at minimal expense. Pemmada et al. [37] endeavor to
create a neural network model based on correlation with the
intent of spotting software defects.

Machine learning has several methods to classify and
predict defect software; one of these methods is ensemble
learning. Ensemble Learning has demonstrated efficacy and
practicality in various problem domains and important Prac-
tical uses [38].

Ensemble learning algorithms have demonstrated com-
pelling performance and have attracted interest in predicting
software errors [39]. Ensemble learning is a method that
entails creating many classifiers or a set of base learners and
combining their outputs to reduce overall variation. Combin-
ing many classifiers or base learners significantly enhances
the accuracy of findings compared to employing just one at a
time. Research has demonstrated that ensemble approaches
can improve the predictive accuracy of machine learning
models across many tasks, such as classification, regression,
and outlier detection [40]. Ensemble learning consists of dif-
ferent methods, e.g., (1) Bagging has the benefit of lowering
variance, eliminating the possibility of overfitting due to the
advantageous solution of the Bagging method used in this
research study. In addition to this, it is effective when applied
to high-dimensional data [41]. Random Forests (RF) algo-
rithm [42] is an excellent example of bagging. (2) Boosting
makes it easier to analyze themodel and contributes to reduc-
ing variance and bias in an ensemble of machine learning
models. (3) Stacking provides amore in-depth understanding
of the data, making it more accurate and efficient [43]. (4) A
voting classifier employs two techniques: hardvoting and soft
voting. Hard voting involves making the final forecast based

on amajority vote, where the class prediction is picked by the
aggregators that the base models most frequently select. At
the same time as it yields satisfactory outcomes, this method
has the benefit of having a computational cost that is almost
negligible [44]. This research adopted this technique. Base
models in soft voting must possess the Predictive probabil-
ity technique. The voting classifier outperforms conventional
basic models by aggregating predictions from several mod-
els [45]. Figure 1 shows the process of majority ensemble
voting.

The criteria for selecting the appropriate ensemble
approach often involve the problem being addressed, the
dataset’s characteristics, and the available computer resources.
Boosting has emerged as the most often-used ensemble
learning technique. It constructs a robust classifier by succes-
sively adapting and integrating several similar weak learners.
Sequential learning enhances the ability to approximate and
generalize, as demonstrated by [46]. Boosting provides supe-
rior accuracy, performance, flexibility, and interpretability
compared to ensemble learning approaches such as bag-
ging and stacking [47]. Software Fault Prediction (SFP)
is a crucial method for early identification of defective
software components, including erroneous classes or mod-
ules, at various points throughout the SDLC. In [48], the
authors suggest a machine learning structure to accommo-
date SFP. Pre-processing and resampling procedures are
first used to get the SFP datasets ready for use with ML
algorithms. The subsequent seven classifiers are evaluated:
Support Vector Machine (SVM), Naive Bayes (NB), Lin-
ear Discriminant Analysis (LDA), Linear Regression (LR),
Decision Tree (DT), K-Nearest Neighbors (KNN), and Ran-
dom Forest (RF). The RF classifier outperforms all other
classifiers in eliminating superfluous or redundant informa-
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tion. The binary whale optimization algorithm increased
RF performance and decreased dimensionality by remov-
ing excessive data. For better BWOA, try using the Grey
Wolf Optimizer (GWO) or the Harris Hawk Optimization
(HHO) exploration processes. A method called SBEWOA
is offered. Software project datasets spanning various sizes
and complexity are available in the PROMISE repository.
The suggested SBEWOA beat nine other feature selection
methods on all datasets tested. Accuracy, feature number,
and fitness function are the metrics used to evaluate the
algorithms. The two-tailed P values of the Wilcoxon signed-
rank statistical test support this. Conclusion: The suggested
method is an efficient alternative machine learning approach
for software fault prediction applicable to similar difficul-
ties in software engineering. Due to their consistent and
robust performance, machine learning (ML) techniques were
employed to tackle the software failure prediction (SFP)
issue. Multilayer perceptron (MLP) neural networks rank
among the most potent machine learning models for pre-
dictive tasks. Regrettably, MLP has persistent deficiencies
attributable to the gradient-descent learning mechanism,
which is prone to become trapped in local minima, lead-
ing to erroneous control parameters. Al-Laham et al. [49]
introduce an enhanced version of the Salp Swarm Opti-
mizer (SSA), a metaheuristic swarm intelligence method, to
improve MLP for solving SFP. The MLP learning method-
ology has been enhanced with SSA to resolve these issues.
The principal benefit of this algorithm is its capacity to cir-
cumvent local minima through its convergence behavior.
Two alterations were implemented in the SSA optimiza-
tion loop to integrate SSA functionalities with MLP. The
initial enhancement is elitism (SSA-elitism), followed by
the second enhancement, MSSA, or search optimization.
The efficacy of the proposed SSA versions is evaluated
against 18 benchmark SFP datasets utilizing ROC, sensitiv-
ity, specificity, and accuracy metrics. Numerous assessments
and verifications were performed by juxtaposing the results
of the generated versions with those of the traditional MLP,
SSA, and ten cutting-edge methodologies. The assessments
and validation results indicate that the suggested models can
effectively tuneMLP parameters, improving predictive qual-
ity. The adaptive variable sparrow search algorithm enhanced
the global optimization of the original sparrow searchmethod
by employing adaptive hyperparameters and variable loga-
rithmic spirals. AVSSA’s assessment of the eight benchmark
functions produced outstanding outcomes. The efficacy of
the typical defect detection technique is contingent upon
asymmetry in data distribution. The study improves ensem-
ble learning as a predictor for Bagging ensemble learning
(AVSEB) by adaptive variable sparrow search. In [50], a
novel method for anticipating software defects via ensem-
ble learning is presented. The model first employed the
unstable cut-points technique to preprocess theBagging sam-

ple set. The adaptive variable sparrow search approach is
then utilized to optimize the ensemble learning. The voting
process is used to obtain predictive outcomes for software
defects. The experimental results indicate that our proposed
algorithm’s evaluation metric surpasses four other sophis-
ticated comparative algorithms across 15 software defect
datasets. The algorithm suggested in this study surpasses
previous advanced prediction algorithms regarding statisti-
cal significance, as evidenced by the results of Friedman’s
ranking and Holm’s post hoc test. Software reliability con-
stitutes a critical dimension of software quality. A testing
phase with discovered and corrected problems is incorpo-
rated into software development to enhance reliability. The
fault detection process (FDP) constitutes a component of
the fault correction process (FCP) utilized to develop the
software reliability growth model. This integration is chal-
lenging due to various factors, including staff shortages
and dependability on faults. It constrains the utility of the
analytical model. The application of data-driven method-
ologies, including Artificial Intelligence (AI) technology,
obviates the necessity for precise FCP and FDP assumptions.
The researchers proposed a hybrid long short-term mem-
ory (LSTM) model utilizing the BrainStorm Optimization
and Late Acceptance Hill Climbing (BSO-LAHC) method
for a stepwise prediction approach in software problem dis-
covery and rectification. The technique for identifying and
rectifying defects significantly influences the assessment of
testing efforts. Compared to current methodologies, the pro-
posed hybrid utilizing the BSO-LAHC algorithm yielded
superior outcomes when implemented with Firefox and the
problem-tracking system Bugzilla. The efficacy of the pro-
posed paradigm is substantiated by empirical study. The
mean square error performance for the Bugzilla and Fire-
fox datasets is 1.92 and 21.44, respectively. Moreover, the
suggested technique is more cost-effective and necessitates
reduced execution time. In Bugzilla 5.0.4, releases 2 and 3
exhibited determination coefficients of 99.2% and 98.9%,
respectively. The FCP is 27% more effective than previ-
ous approaches, whereas the FDP is 32% more effective
[51]. Feature selection is a vital and challenging phase in
classification technology. It is employed to diminish the com-
plexity of a dataset and remove extra elements. The authors
utilized KNN, Naive Bayes, and Decision Tree classifiers.
The authors developed a fitness function and employed a
two-step pheromone update approach to remove redundant
characteristics efficiently. This program emulates real ants,
which seek the most efficient route to a food source by uti-
lizing pheromone concentration. The authors analyzed 12
distinct datasets and juxtaposed them with fitness graphs.
Each graph illustrates the efficacy of ant colony optimization
in conjunction with diverse classifiers. The authors have con-
structed a table illustrating the predictive accuracy of several
classifiers utilizing the method [52]. As a result, we con-
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clude that maintaining software quality can be accomplished
through various techniques, the ensemble method being the
most significant of these alternatives. This research project
aims to demonstrate a sophisticated ensemble-based soft-
ware defect prediction model that intelligently incorporates
many classifiers. Theproposedmethodology consists of three
essential stages that efficiently detect faulty software. During
the initial stage, a comprehensive collection of 14 ML clas-
sifiers is utilized, which includes various techniques, such as
KNeighbors Classifier, Naive Bayes, Decision Tree Classi-
fier, Gradient Boosting Classifier, Random Forest Classifier,
AdaBoost Classifier, ExtraTrees Classifier, Ridge Classifier,
Logistic Regression, MLP Classifier, Quadratic Discrimi-
nant Analysis, Bagging Classifier, HistGradient Boosting
Classifier, Support Vector Machine, and others. The clas-
sifiers, which are weak learners, are subjected to tweaking
through a bagging-ensemble methodology to improve accu-
racy. Following this, the predicted precision of the individual
classifiers is combined using a voting ensemble technique to
obtain the ultimate predictions. During the third step, the
binary-WSO optimizer is used repeatedly to improve the
model’s accuracy and decrease the computational time it
takes towork. This is achieved by establishing themost effec-
tive number of weak learners (classifiers) for each unique
problemstudied. This optimized ensemble technique dramat-
ically enhances the accuracy and dependability of fault fore-
casts. Fifteen historical benchmark defect datasets obtained
from respected archives, such as NASA MDP, Relink, and
Softlab, are employed to validate the proposed defect pre-
diction system. Combined with the binary-WSO optimizer,
the intelligent system exhibits remarkable accuracy and
execution efficiency across all datasets. This surpasses the
performance of basic classifiers when employing ensemble
techniques.

1.1 Research Questions

The purpose of this study is to provide answers to the fol-
lowing questions:

• RQ1:What impact does the binary-WSO optimizer have
on determining the ideal number of weak learners in
ensemble models to improve accuracy and processing
efficiency (Execution time)?

• RQ2: How does the effectiveness of the binary-WSO-
based ensemble learning model compared to the state-
of-the-art techniques currently in use for software fault
prediction?

• RQ3: How far can the results of the binary-WSO-
optimized ensemble learningmodel be applied to software-
defective modules from different repositories?

1.2 Contribution

The following are the research’s principal contributions:

• Tackling the software defect prediction problem by
proposing the ensemble learning model (EM).

• Ensuring high prediction accuracy by utilizingmost clas-
sifiers available in the literature.

• Developing a binary version of the White Shark Opti-
mizer (WSO).

• Employing the binary-WSOas anoptimizer for the devel-
oped EM model to identify the optimal number of weak
learners (classifier).

• Boosting the EM model’s prediction accuracy and com-
putational efficiency using the binary-WSO optimizer.

• Generalizing obtained results over 15 software-defective
module datasets from different repositories.

• Comparing the proposed method with 14 state-of-the-art
algorithms.

In this work, we examine a novel strategy: how to utilize
Binary White Shark Optimizer to enhance the performance
of an ensemble model utilizing 15 different datasets in soft-
ware defect classification. Specifically, we focus on how
to increase the performance of ensemble learning models.
When contrasted with metaheuristic algorithms used in the
past, this work is anticipated to present an exceptional way.
Although the dataset here has imbalance problems, this prob-
lem will be fixed throughout the project’s preparation phase.
As authors, we are excited about doing a novel study that can
be generalized for future investigations, mainly whenBWSO
is utilized.

1.3 Article Organization

The remainder of the article is divided into the following
sections: The research background of Ensemble Methods
and white shark optimizer is detailed in Sect. 2. A litera-
ture review for proposed studies on the investigated problem
is presented in Sect. 3. The methodology and proposed
model are provided in Sect. 4. Modeling and findings of the
experimental results are discussed in Sect. 5. The research
concludes in Sect. 6.

2 Background

Due to the cognitive nature of the method of generating
software and the growing complexity of software products,
software errors are becoming more common, leading to low-
quality software requiring around 2.8 trillion USD to correct.
The discipline of prediction of software defects (SDP) was
created to improve software quality. Its creative endeavor
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to separate problematic software units allows for eliminat-
ing defects and more efficient use of resources for software
development and maintenance tasks [53].

2.1 Software Defected Prediction

Software is essential to creating a global village. Almost
all businesses, international corporations, the e-commerce
sector, social networking, general-purpose, personal use,
software for medical devices, and other organizations rely
on software platforms growing exponentially over time [54].
The software defect process is shown in Fig. 2.

A software defect is an error, fault, or flaw in a pro-
gramwith unfavorable consequences. Errors in programming
are known as software defects, and they might manifest
themselves as a result of deficiencies in the software’s
requirements, design, or source code. The presence of defects
has a detrimental impact on the quality and reliability of soft-
ware. As a result, they lead to a rise in maintenance expenses
and the effort required to resolve problems [36]. By predict-
ing errors that may occur inside a software project, software
defect prediction (SDP) allows software engineers to opti-
mize resource allocation to improve software quality [55].
Nevertheless, managers must develop a prediction model
to help identify defective modules, because it takes time
to anticipate defect density before testing them. This pro-
cedure can lower testing costs and increase the use of testing
resources [56]. To predict which modules are more likely to
have mistakes and defects before the testing phase begins,
the software development process is significantly dependent
on software defect prediction (SDP). Focusing on testing
activities on the modules that are expected to be defective
will lower the cost of constructing software. Nonetheless,
it ensures immediate delivery of a superior finished product
[57].

Over the past twenty years, the problem of software defect
prediction has garnered significant attention from scholars
and grown in significance. Software projects can be classi-
fied as non-defective or defective (binary class classification),
their number of flaws can be predicted, or their severity can
be predicted, using a software defect prediction model [58].
Over the past three decades, software engineering research
has received much attention in determining which software
elements, like files, classes, and processes, are likely to be
defect-prone. It is beneficial to consistently discern between
components prone to defects and those that are clean, as
this allows quality assurance resources to be spent more
efficiently [59]. Software defect prediction is a crucial com-
ponent in raising the caliber of software products. It speeds
up the development process and lowers development costs.
It provides the ability to evaluate a module’s susceptibility to
errors and predict which software component will need addi-
tional testing and quality assurance (QA) resources. It makes

it possible to prevent software failure in the future by imple-
menting proactive measures during the development stage
[57].

According to [50, 57, 60, 61], software defect prediction
(SDP) is one area of software engineering that is now the
subject of a great deal of research. The main application of
the SDP model is to forecast which modules are prone to
defects. The SDP model is usually constructed using classi-
fication algorithms that rely on past data. To control software
fault rates, software defect prediction technology may use
software module measurement data during software devel-
opment to proactively find problematic modules and allocate
test resources efficiently.

Reports on bugs are employed to record issues that are
found during software development and upkeep. A problem
with the potential to cause significant harm is described in a
high-impact bug report (HBR), which appears after delivery.
HBRs must be identified early from the bug pool to ensure
functionality [62].

Advancements in machine learning (ML) facilitate a shift
from the conventional approach to software development,
where algorithms are manually coded by humans, to ML
systems that are developed through data-driven learning.
Consequently, the authors must reevaluate our method-
ologies for software development and address the distinct
requirements of these novel system types [63].

2.2 White Shark Optimizer

Population-based metaheuristic solutions play an essential
role in solving optimization problems. One of these more
contemporary algorithms is considered a promising meta-
heuristic algorithm: theWhite Shark Optimizer (WSO) [64].
The White Shark Optimizer (WSO) is a valuable, intelli-
gent metaheuristic model that can resolve a range of issues
regarding optimization within an ongoing search area. This
2022 technique mimics how white sharks hunt using their
exceptional senses of smell and vision [65]. TheWhite Shark
Optimizer (WSO) is an innovative swarm-based metaheuris-
tic algorithm that emulates the predatory behavior of white
sharks [66]. This exceptional algorithmoffers numerous ben-
efits, such as derivative-free, parameter-less, straightforward,
adaptive, reliable, monotonic, sound, and comprehensive.
WSO has been employed to address multiple optimiza-
tion challenges, including the power flow problem [67],
power scheduling issues in IoT [68], and path planning for
UnmannedAerial Vehicles (UAV) [69].WSO, similar to pre-
vious MH algorithms, exhibits deficiencies, including slow
convergence and imbalanced diversity [68]. Based on the bio-
logical traits of white sharks, the following representation of
the WSO optimization process is conceivable:
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Fig. 2 General software defect
prediction process

Fig. 3 White shark sense

2.2.1 Inspiration

White sharks, sometimes called great white or white point-
ers, are among the most potent and deadly predatory sharks
worldwide. White sharks are magnificent hunters and highly
acclimatized predators. They have strong muscles, vital eye-
sight for sharp contrast, and an acute sense of smell.Up to 300
obscenely blunt blades and severely pointed, triangle-shaped
teeth are placed in multiple rows within their enormous jaws.
Their prey include aquatic lions, walrus species, sea turtles,
porpoises, small whales, crabs, mollusks, seabirds, and occa-
sionally penguins. Usually, a white shark will ambush its
target to take it by surprise beforemaking a sudden, powerful,
and lethal bite. White sharks are streamlined torpedo-shaped
swimmers with powerful tails that can propel them through
thewater. They can even emerge from thewater and burst like
whales, striking prey from below while swimming toward
it with undulating movements. The two most fascinating
aspects of their collective behavior are howgreatwhite sharks
acquire meals by swimming and their unique ability to detect
and hear the scent of prey.

2.2.2 Tracking the Prey

Like any other organism, white sharks search the ocean for
prey, just like any other organism, and adjust their loca-
tion accordingly. They detect, pursue, and track their prey
using nearly all available techniques. As seen in Fig. 3, they
have many integrated and complementary senses. First, great
white sharks survey a vast area in search of prey thanks to
their surprisingly good sense of hearing. Second, they can
detect the scent of prey thanks to their keen sense of smell.
These characteristics enable them to thoroughly investigate
the area and muse every corner of the search arena to locate
prey.

2.2.3 Search for prey (exploration)

Using their unusual sense of hearing, great white sharks
saunter across the search space in pursuit of prey. As seen in
Fig. 4, they are operating two lines on either side of them,
allowing them to hear from the entire length of their bodies.

These two lines can detect variations in water pressure,
which discloses prey movements. White sharks will become
interested in turbulent prey and approach it due to the vari-
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Fig. 4 White shark sense on its torso

ations in water pressure the prey emits. They even possess
organs capable of picking up tiny pulses of electromagnetic
energy created as prey moves. Then, they can pinpoint the
exact location and size of the prey based on the frequency
of waves that drift to them during the motion and turbulence
of the prey. A white shark can detect electromagnetic fields
when it gets this close to its target, moving undulatingly to
find its prey.

A formula used to describe the waveform velocity of great
white sharks operates as highlighted below

v = x f . (1)

The number of turns, or cycles, which the white shark
finishes in a split second, denoted by f, is the motion’s wave
frequency that iswavelike. InHertz (Hz), a cycle per second is
measured.Where x is thewavelength, and v is thewave speed.
This indicates how far a white shark must travel cyclically to
finish a complete turn.

2.2.4 Search for Prey (Exploitation)

With their keen sense of smell, great white sharks use every
available place within the realm of space to locate potential
prey. A white shark’s nostrils are wicked when it gets close
to its meal. Amazingly, great white sharks’ sense of smell
can increase exponentially when they approach their target,
allowing them to locate the likely location of the prey pre-
cisely. As white sharks tackle their prey, their vantage point
can be adjusted using the equation shown below of motion

with a constant rate of acceleration

x = xi + vi�t + 1

2
a(�t)2. (2)

The latest position of the white shark has been marked
by x , its archaic location is shown by xi , its initial veloc-
ity is indicated by vi , the time gap between its initial and
Present positions are embodied by �t , and The determinant
of acceleration, a, is constant. When great white sharks get
too close to the scent of prey, they frequently discover no
prey there, because the prey, like seals, often leaves their
fragrance behind after departing a place. In the present situ-
ation, they are forced to randomly look into distinct regions
in these arch spaces and inspect other locations using their
active sensations of smell, hearing, and sight.

2.2.5 The Mathematical Model of WSO

The projected WSO’s mathematical models, created to rep-
resent white sharks’ behavior as they age, are described in
depth in this section. This involves pursuing and monitoring
prey.

The deep ocean is home to great white sharks, who can
locate prey or food sources. On the other hand, no idea exists
regarding where the food supply is situated in a specific
search space. In this situation,white sharksmust shift through
much of the ocean to find food sources. Three behaviors of
great white sharks are utilized to find prey or the best place
to obtain food: (1) moving in the direction of prey based on
wave hesitation brought on by prey movement. In this case,
the white shark uses its related senses of smell and hearing
to locate prey by swaying; (2) the aimless hunt for food in
the ocean’s depths. For this reason, great white sharks travel
toward their prey’s position and remain near the best prey.
(3) The white shark’s approach to identifying nearby prey.
Here, a great white shark approaches the best white shark
close to the ideal prey using the schooling behavior of fish.
All white shark sites will be updated with the best options if
the prey is not identified suitably based on these behaviors.
These actions are represented mathematically in the follow-
ing manner.

2.2.6 Initialization of WSO

Being a population-based algorithm, WSO generates a pool
of starting solutions at random to begin the optimization pro-
cess intended to resolve an issue related to optimization. In
a 2D matrix, a potential solution to an issue can be shown
as follows: Each white shark’s position indicates a possible
solution given a d-dimensional search spectrum (i.e., prob-
lem dimension) and an estimated number of n white sharks
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(i.e., population size)

W =

⎡
⎢⎢⎢⎢⎢⎣

w1
1 w1

2 · · · w1
d

w2
1 w2

2 · · · w2
d

...
...

. . .
...

wn
1 wn

2 · · · wn
d

⎤
⎥⎥⎥⎥⎥⎦

. (3)

In a given problem, d indicates the number of choice vari-
ables, w indicates the exact spot of each white shark in the
search space, and wi

d demonstrates the vantage point of the
i th white shark in the dth dimension.

The uniform random initialization method outlined below
is used to generate the starting population in the search
domain

wi
j = l j + r × (u j − l j ), (4)

where r is a random number generated in the interval[0,1],
u j and l j represent the boundaries of the search space, both
upper and lower, respectively, and wi

j signifies the i th white
shark’s launching vector in the j th dimension as well.

A fitness function explicitly created for that regard eval-
uates each potential solution’s quality for every new area a
white shark chooses to occupy. The former is renovated if
the new position proves superior to the existing one. If the
white shark’s current position is superior to the new one, it
stays there in the WSO simulation.

2.2.7 Movement Speed Toward Prey

White sharks dedicate excessive time to searching for and
following prey, since they are mammals with an instinct for
survival bias. They repeatedly track prey using all available
techniques, including their keen senses of smell, sight, and
hearing. A white shark swims in an undulating pattern, as
shown by Eq. (5), when it uses the hesitation of the waves it
hears while the prey is moving to establish its position

vik+1 = μ

[
vik + p1(wgbestk − wi

k) × c1

+ p2(w
νik
best − wi

k) × c2

]
. (5)

vik+1 shows the revised vector velocity of the i th white shark,
and i = 1, 2, . . . , n is the white shark population estimate
for an identified size. n. In the (k + 1)th step, vik defines
the i-th white shark’s speed vector as of right now in the k-th
step;wgbestk represents the newly gained global ideal position
vector. thus far by any white shark in the k-th iteration; wi

k is

thewhite shark’s current position vector in the k-th step;w
νik
best

is the swarm’s i-th best-known position vector, and νi is the

i-th index vector of the white sharks’ arrival to the optimal
location, as shown by Eq. (6). In the interval [0, 1], there are
two uniformly generated random numbers, c1 and c2. The
forces of the white sharks, denoted by p1 and p2, govern the
influence of wgbestk and wνibest on wk

i , respectively. These
forces are calculated using the formulas provided in Eqs. (7)
and (8). The constriction factor μ, defined as present in Eq.
(9), is proposed by WSO to study the convergence behavior
of white sharks

ν = �n × rand(1, n)� + 1, (6)

where rand(1,n) symbolizes the vector of arbitrary numbers
distributed regularly in the interval [0,1]

p1 = pmax + (pmax − pmin) × e
−

(
4k
K

)2
(7)

p2 = pmin + (pmax − pmin) × e
−

(
4k
K

)2
. (8)

For white sharks, the initial and secondary velocities req-
uisite for sustaining good motion are depicted by pmin and
pmax , where the momentary and highest possible number of
iterations are denoted by the two numbers k and K, accord-
ingly. Following a thorough investigation, the values of pmin

and pmax were determined to be, respectively, 0.5 and 1.5

μ = 2∣∣∣2 − τ − √
τ 2 − 4τ

∣∣∣
, (9)

where the acceleration coefficient is indicated by τ .

2.2.8 Movement Toward Optimal Prey

Most of a great white shark’s time is spent hunting for possi-
ble prey, where an ideal or suboptimalmealmay be found. As
a result, the white sharks’ positions are constantly shifting.
Usually, they will approach prey when they smell or hear the
waves created by the prey’s movement. Sometimes, the prey
wanders away from its original site in search of food or when
a white shark approaches it. In such a position, the prey fre-
quently leaves its scent behind whenever the white shark still
notices the victim. In this instance, the white shark navigates
randomly to find prey, akin to a group of fish scavenging for
food. In the present scenario, the position updatemethod pro-
vided in Eq. (10) illustrates how white sharks respond when
they get closer to prey

wi
k+1 =

{
wi
k · ¬ ⊕ wo + u · a + l · b if rand < mv

wi
k + vik

f if rand ≥ mv,
(10)

where l andu correspondingly reveal the search space’s upper
and lower bounds,aandb are one-dimensional binary vectors
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Fig. 5 An iteration-based
function that depicts the overall
growth trend in the senses of
hearing and smell used by white
sharks for spotting prey

defined byEqs. (11) and (12), and the i thwhite shark’s newly
acquired position vector in the (k+1)th iteration step will be
indicated bywi

k+1. A logical vector denoted byw0 is defined
as described in Eq. (13), f signifies the frequency of a white
shark’s wavy behavior, and Eq. (15) defines the movement
force that rises as the shark gets closer to its prey. Rand is a
term used to describe a random number produced between 0
and 1

a = sgn(wi
k − u) > 0 (11)

b = sgn(wi
k − l) < 0 (12)

wo = ⊕(a, b). (13)

For which the bit-wise xor operation is ⊕. Equations (11)
and (12) are crucial to help white sharks explore every possi-
ble area of the search space and to support solutions that act
arbitrarily in the search space

f = fmin + fmax − fmin

fmax + fmin
, (14)

where rand is a random number evenly distributed through-
out the scope, and fmin and fmax indicate the minimum
and maximum frequencies of the undulating motion, respec-
tively[0,1]

mv = 1

a0 + e( k2 − k)/a1
. (15)

Twopositive constants, a0 and a1, are employed to oversee
the actions of exploration and exploitation. The power of the
white shark’s senses of smell and hearing was proposed to

be expressed by the parameter mv, which grows with the
number of iterations. This function is drawn over throughout
iterations, as seen in Fig 5.

2.2.9 Movement Toward the Best White Shark

Great white sharks can hold their position about the best
nearby prey. Equation (16) is the formulation of this behavior

ω′i
k+1 = ωgbestk + r1

−→
D ωsgn(r2 − 0.5)r3 < Ss . (16)

The i th white shark’s revised position about the prey’s

position is . sgn(0.5 < t imesr2) returns either 1 or
−1 to reverse the search’s direction. The random numbers
that make up the variables r1, r2, and r3 are in the interval
[0, 1]. −→

D , as stated by Eq. (17), is the space separating the
food supply or victim and the white shark. As demonstrated
through Eq. (18), Ss is a metric developed to characterize the
degree to which white sharks can see and smell whenever
they proceed to other white sharks adjacent to prospective
prey

−→
Dω = |rand × (ωgbestk − wi

k)|. (17)

The white shark’s current position about ωgbestk is repre-
sented by wi

k , and a rand is a random number ranging from
zero to one

ss = |1 − e(−a2×k/K )|. (18)

The positive constant a2 regulates the exploration and
exploitation tendencies.
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2.2.10 The Fish School Mentality

The top two responses were retained, and the positions of
additional white sharks were updated based on these ideal
placements, creating a mathematical simulation of how the
white shark school behaved. It was suggested that the fol-
lowing formula describe how white sharks behave in schools
of fish:

ωi
k+1 = ωi

k + ω′i
k+1

2 × rand
, (19)

where the symbol rand specifies a random number with a
uniform distribution inside the range of [0,1] [65, 67, 70–
74]. The overall representation and discussion of the WSO
algorithm is shown in 1.

2.3 BinaryWhite Shark Optimizer

The White Shark Optimizer (WSO) is a metaheuristic algo-
rithm inspired by white shark hunting behavior, especially
their techniques for identifying, striving for, and attacking
prey [65]. TheWhite Shark Optimizer (BWSO) modifies the
technique for binary optimization problems with binary vari-
ables (0 s and 1s). The fundamental ideas of Binary White
Shark Optimizer are mentioned below:

• Binary Representation: The binary version represents
solutions as binary strings. Each string element can be
0 or 1, signifying various states or options in the problem
space.

• Search Strategies:

– Exploration: During the early stages, BWSO prior-
itizes exploration, encouraging varied solutions by
replicating sharks’ random quest for prey throughout
the vast ocean.

– Exploitation: As the search advances, BWSO even-
tually moves toward exploitation, focusing on fine-
tuning the best solutions discovered, similar to
sharks’ precision in pursuing prey.

• Position Update Mechanism:

– Continuous optimization techniques often use math-
ematical formulas to update positions (solutions).
However, in BWSO, position updates are motivated
by probability-based methods determining whether
each bit in the solution string should be flipped (from
0 to 1 or vice versa).

– This process may employ the sigmoid function or
other transfer functions to convert the continuous
search space into a probability that regulates the
binary update.

• Fitness Evaluation: Each candidate solution’s fitness is
evaluated using the problem-specific objective function,
which guides the BWSO’s search process.

• Dynamic Positioning: The program uses mathematical
rules to alter the positions of candidate solutions, simu-
lating white shark movement and hunting activity. This
technique relies on dynamic interactions throughout the
population rather than a single leader.

• Attack Phase: In the final stage of the algorithm, BWSO
speeds up the search for potential regions by imitating the
shark’s last attack on prey. This phase improves exploita-
tion by refining the finest solutions uncovered throughout
the search process.

Figure 6 shows the binary white shark optimizer process.
The WSO is updated and applied in this work to handle

the software defect classification problem. Furthermore, the
WSO’s optimization techniques are adjusted to account for
the binary nature of this issue. The WSO was chosen for
adaptation because of its superior exploring skills and effi-
cacy. The results of the proposedWSO are compared to those
of the Firefly, Harris Hawks Optimization (HHO), Cuckoo
Search (CS), and Particle Swarm Optimization algorithms
(PSO). The recommended Binary White Shark Optimizer
(BWSO) surpassed the others in terms of accuracy and opti-
mal fitness values.

3 Literature Review

In addition to a section devoted to reviewing studies of the
WSO optimizer and its variants, the authors of this article
will address the most recent research on software defect pre-
diction using various ensemble learning techniques in this
section.

3.1 Predicting Software Defects Using Ensemble
LearningMethods

Software defect prediction (SDP) detects defective software
components to improve project quality and reduce main-
tenance risks. SDP links software metrics and defects via
multiple methods using past defect data. Many method-
ologies and frameworks have been described to discover
software module faults using machine learning (ML) and
deep learning (DL) prediction models. These binary classi-
fication models struggle most with class imbalance. When
there is unequal class distribution, accuracy may be good,
but models cannot discriminate minority class data sam-
ples, resulting in bad classifications. Earlier research on
SDP class inequality has been limited. Data sampling is
employed to solve the class imbalance problem and improve
this study’s SDP ML model performance. A convolutional
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Fig. 6 Binary white shark
optimizer flowchart process

neural network (CNN) and gated recurrent unit (GRU) with
synthetic minority oversampling and the Tomek connection
predict software defects. The models’ efficiency was tested
using PROMISE repository benchmark datasets. Experimen-
tal findings were compared and interpreted using accuracy,
precision, recall, F-measure, Matthew’s correlation coeffi-
cient, area under the curve, precision–recall curve area, and
mean square error. Tests indicate that the proposed models
accurately forecast software faults on balanced datasets, with
a 19% CNN and 24% GRU AUC improvement. The authors
compared the SDP technique using common performance
measures. The proposed strategy outperformed the conven-
tional SDP algorithms on most datasets [75]. As software
technology has advanced, many complex applications have
evolved in various industries. Businesses, in particular, rely

on software-based applications to provide cutting-edge ser-
vices. However, error prediction in software is a significant
barrier that industriesmust address to promote corporate suc-
cess. As a result, new strategies for predicting faults at an
early stage of the software life cycle are required to eliminate
software flaws later on. Diverse automated defect predic-
tion solutions tackle the difficulties associated with manual
forecasting. All possibilities employ pattern recognition
to identify software issues through associated characteris-
tics. Notwithstanding the existence of defect identification
technologies, enhancing performance remains challenging.
The authors present an efficient hybrid machine learning
approach for software failure prediction to address the lim-
itations of current prediction methods. The initial section
enhances dataset features with a genetic algorithm (GA)
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that selects attributes based on an improved fitness function.
Upon identifying the optimal characteristics, the Decision
Tree method categorizes them. The research contrasts the
GA-DT-basedhybridmodelwithRCSOLDA-RIRandWPA-
PSO for the prediction of software failures. The experimental
study demonstrates that the proposed model exhibits greater
accuracy than the existing one [32]. A newly developed
correlation-based modified long short-term memory neural
network (CM-LSTM) is used to predict software errors in
software projects based on modeled data. The intended vari-
ables were changed due to the positive relationship between
features and target factors. The prepared data are sent into
the LSTM model to correct an imbalance in the data for
software defect predictions. A JM1 software defect predic-
tion dataset with various performance criteria is utilized to
evaluate the suggested technique. The improved correlation-
based LSTM approach is good at detecting software flaws.
To discover software faults more effectively than correlation-
based LSTM, KNN, stochastic gradient descent, RF, NB,
LR, DT, LDA, MLP, and others, the suggested method
leverages correlation-based feature selection for long short-
termmemory neural networks [37]. Researchers [76] present
their findings on ensemble techniques for SFP. Rotation
Forest, Dagging, Decorate, Grading, MultiBoostAB, Real-
AdaBoost, and Ensemble Selection are the seven ensemble
strategies that the authors empirically assess. In our opin-
ion, most of these ensemble techniques have never been used
with SFP.Using the benchmark fault datasets, researchers run
multiple investigations deploying three classification meth-
ods as base learners for the ensemble approach: naive Bayes,
logistic regression, and J48 (decision tree). Based on the
experimental analysis, Decorate had the highest AUC value
(0.986) and the maximum precision, recall, and G-mean 1
values (0.995, 0.994, and 0.994, respectively) while rotating
forest with J48 as the base learner. Furthermore, the results
of the statistical tests revealed that the performance of the
ensemble techniques used for SFP was satisfactory. Addi-
tionally, the cost–benefit analysis demonstrated that for 20
of the 28 used fault datasets, SFP models based on employed
ensemble techniques might be beneficial in reducing soft-
ware testing expenses and labor.

Wang et al. [77] propose addressing the issue of low
prediction accuracy in most SDP models. A proposed SDP
model combines the support vector machine technology with
the least absolute value compression and selection approach.
First, the dimension of the original data set is reduced using
the feature selection capability of the minimal absolute value
compression and selection approach, and the SDP-unrelated
data set is removed. The cross-validation algorithm’s param-
eter adjusting ability is then employed to obtain the optimal
SVMvalue. Finally, SVM’s nonlinear computing capabilities
round out the SDP. The results show that the defined defect
prediction model outperforms conventional models regard-

ing prediction speed and accuracy. To tackle the problem of
class disparity, a K-nearest neighbor (KNN) filtering-based
data preprocessing strategy for stacked ensemble classifiers
is proposed. To lower the unbalanced ratio, overlapped data
points are eliminated using closest-neighbor-based filtering.
After processing, the stacked ensemble receives the data
with static code metrics to make predictions. The stacking
uses five base classifiers: Support VectorMachine, K-nearest
neighbor (KNN), Decision Tree, Naive Bayes, and Arti-
ficial Neural Network. Thirty classifiers are compared (5
prediction strategies * 6 data preprocessing procedures). The
research uses five publicly available datasets from the NASA
repository: PC1, KC1, KC2, JM1, and CM1. One hundred
and fifty predictionmodels are proposed, five for preprocess-
ing data, six for classification, and five for datasets. Each
model is evaluated for performance using the accuracy, area
under the curve, and receiver operator curve. Regardless
of the datasets, the statistical analysis reveals that the rec-
ommended stacked ensemble classifier with KNN filtering
works better than any other predictors [78].

The researchers’ two main tasks to enhance performance
are variant-based ensemble classification and feature selec-
tion. In addition to lowering the framework’s performance
due to high processing costs, feature selection removes fea-
tures not involved in the classification process. Before the
variant selection procedure, six base classifiers, SVM, DT,
KNN, NB, RF, and MLP, are optimized to construct the
variations. One version is chosen from each basic classifier
variant (classifier family) based on how well it outperformed
all other variants in the family, including the base classifier.
Three variants, SVM-4, RF-3, and KNN-4, with high perfor-
mance, are chosen for this study. After that, these variations
are combined using an ensemble technique called "voting"
with every potential combination. Outperforming all other
combinations, RF-3 and KNN-4 are chosen for classifica-
tion in the suggested framework. The framework’s output is
contrasted with several popular supervised classifiers from
published papers that performed performance analysis using
the same datasets and performance metrics. The comparative
analysis revealed that the suggested framework eliminated
the class imbalance problem and performed better than any
other classification method from the published research. To
pick additional variants for ensemble learning, it is recom-
mended that future studies optimize more classifiers with a
wide range of parameters [79].

Using the jedit4.0, ant1.7, and camel1.4 datasets, respec-
tively, the authors have examined the factor of classification
accuracy in three scenarios in this study. In the first exam-
ple, the accuracy gained by applying the suggested bagging
method on JEDIT 4.0 was 96.7, while random forest yielded
an accuracy 91.5. These perform far better than alternative
machine learning techniques. Next, the suggested approach
outperformed the other machine learning models with an
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accuracy 96.2 in the ant1.7 dataset. In the final instance, the
proposed strategy surpassed others with an accuracy of 95.9
using camel 1.4. In addition to the accuracymeasure, the sug-
gested method performs noticeably better than all machine
learning methods in terms of TPR, FPR, precision, TNR,
F-measure, and AUC-ROC. The analysis demonstrated that
the bagging classifier performs exceptionally well across all
datasets and performance metrics [80].

In the [81] study, the authors base the analysis on soft-
ware failure prediction using a modified stacking ensemble
of tree-based ensembles. There are two primary contribu-
tions from this study: (1) Hyperparameter optimization was
utilized for a total of seven tree-based ensembles to examine
how it impacts ensemble models; (2) to determine the extent
to which it would enhance the prediction performance over
fine-tuned tree-based ensembles, the authors built a stacking
ensemble of fine-tuned tree-based ensembles. The study’s
findings demonstrate the significant influence that hyperpa-
rameter optimization has on additional trees and random
forest ensembles. Furthermore, compared to all other fine-
tuned tree-based ensemble models, the stacking ensemble of
these ensembles demonstrated excellent prediction perfor-
mance.

Using a combination of Adaboost, Random Forests (RF),
and Naive Bayes, the Voting-Based Ensemble Learning clas-
sifiers are used in this work [82] to construct a prediction
model of software flaws. Twelve NASA datasets are uti-
lized following feature selection on the pre-manipulated data
utilizing a heuristic-based approach and a wrapper-based
approach. Regarding functionality, wrapper-based previ-
ously processed information performs better than heuristic-
based cleaned data. The precision, f-score, AUC, and recall
values are finally determined. Based on the vast majority
of the datasets, it can be concluded that the Voting-Based
Ensemble model exceeds other AI models. One disadvan-
tage is that the minimal testing sets of the KC3 and MC2
datasets may impact their accuracy.

Predicting a module’s propensity for defects is possible,
which can save time, money, and labor when develop-
ing a software project. Although identifying the underlying
causes of software errors can be difficult, many machine
learning models continue to be researched to offer very
successful prediction systems. To help with the prediction
model’s poor classification rates, a hybrid approach known
as the diverse ensemble learning technique (DELT) is sug-
gested as a solution for the within-project defect prediction
(WPDP) dilemma. DELT used two different perspective-
generating methodologies, namely, bootstrap aggregation
and multi-inducer. The proposed DELT uses majority vot-
ing to anticipate the eventual class label for every unlabeled
test module. 43 NASA and PROMISE datasets accessible
to the public are used for various activities. The experimen-
tal results show promise, since they enhance the software

module’s ability to classify defects more accurately through
generalization [83].

In this paper [84], authors provide a sequential-ensemble
model to forecast software errors. The use of ensemble mod-
eling in the prediction of software faults is driven by its
versatility. In addition, the eight datasets from the PROMISE
and ECLIPSE repositories are used to test the suggested
methodology. The average absolute error, average relative
error, and prediction are the three error metrics used to mea-
sure the performance of the proposed model. The positive
outcomes demonstrate the effectiveness of the suggested
model.

This work [85] offers two new methods for learning from
unbalanced data sets that outperform the minority class in
termsof prediction accuracy. These two approaches are effec-
tive at handling various parts of unbalanced classification.
Whereas the other manages data sets that are moderately
imbalanced, the first one deals with very imbalanced sets.
Their differences lie in whether or not they employ expenses
for misclassification and oversampling during the training
phase. The findings from all of the experiments prove that the
two of these techniques have achieved outstanding results in
both G-mean and AUC measures and have precisely iden-
tified the defective modules, thus lowering the cost of the
detection system compared to other state-of-the-art imbal-
ance learning algorithms on imbalanced datasets.

Most recent research concentrates on automating this
process from various angles, like determining the bug’s
importance or severity. They neglected to take into account
the fact that the defect is a multi-class classification chal-
lenge, though. This paper resolves this issue by putting out a
novel prediction model to examine BRs and forecast the type
of bug.Usingmachine learning andnatural languageprocess-
ing (NLP) methods, the suggested model builds an ensemble
machine learning algorithm. A dataset for two online soft-
ware bug repositories that are freely obtainable (Mozilla and
Eclipse) is used to simulate the suggested model. The dataset
comprises six classes: Program Anomaly, GUI, Network or
Security, Configuration, Performance, and Test. According
to the simulation findings, the suggested model can outper-
form the majority of current models in terms of accuracy,
achieving 96.72 with text augmentation and 90.42 without it
[86]. Table 1 gives an overview of the research done on the
Ensemble method between 2021 and 2024.

3.2 Evolutionary Algorithms in Software Defect
Classification

Optimization is an organized approach that aims tomaximize
or minimize a predefined objective function by modifying
specific parameters to find themost effective use of resources
or the best solution to a problem given a set of constraints and
assumptions. It evaluates the objective functions to select the
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best option from various viable alternatives. Most situations,
such as finding the fastest path between two points, increas-
ing equipment output in a plant, or optimizing machine
usage to reduce downtime, can be described as optimiza-
tion problems. The main goal of any optimization software
is to solve an optimization problem with desirable results.
Thus, optimization is desperately needed in many domains,
including engineering problems [95], feature selection [96,
97], COVID-19 prediction [98], chemo-informatics [99], and
image segmentation and threshold [100].

Software testing is crucial to software development and
often determines project success. Although crucial, current
projects’ fast pace and tight deadlines often lead to them
being neglected or not comprehensive enough due to a lack
of time, resulting in the loss of reputation, private users’
data, money, and even life. In such instances, predicting
which modules are error-prone based on software data and
focusing testing on them is crucial, a common classification
challenge. Machine learning models have been success-
ful in many classification tasks, and this paper presents
the eXtreme gradient boosting (XGBoost) model for defect
prediction. The XGBoost hyperparameters can be cali-
brated using a modified reptile search optimization method.
HARSA, the improved technique, performed well on tough
CEC2019 benchmark functions. The suggested algorithm-
based XGBoost model was then tested on two benchmark
software testing datasets and compared to other sophisticated
swarm intelligence metaheuristics in the same experimen-
tal context. Both datasets were classified better using the
proposed method. Finally, the Shapley Additive Explana-
tions investigation examined how software metrics impact
classification results [101]. Software quality is important,
because it is employed in many applications. Software defect
prediction (SDP) fixes bugs and boosts performance. Exist-
ing SDP methods prioritize robustness and dependability.
This research introduces a hybrid optimization-based neural
network (OptimizedNN) for software defect detection. Opti-
mization NN-based SDP focuses on feature selection and
SDP with Optimized NN. The relief algorithm finds faults
and no-defects features in the feature selection module. The
SDP module receives features, and the hybrid optimization
of the social spider algorithm (SSA) and gray wolf optimizer
(GWO) tunes the NN classifier optimally. The suggested pre-
dictionmodel achieved 93.64%accuracy, 95.14% sensitivity,
99% specificity, 93.53% F1-score, and 99% precision for
K-folds [102]. Software fault prediction (SFP) is the early
detection of fault-prone modules in software development
that are prone to failure and entail significant development
costs. It is essential to ensure a high-quality finished prod-
uct. Machine learning-based classifiers are widely employed
for SFP. The Curse of Dimensionality threatens classifier
performance in predicting fault-prone software modules.
This paper examines the metaheuristics for selecting the

best feature subset from a high-dimensional defect dataset.
The article offers a Lion Optimization-based Feature Selec-
tion (LiOpFS) model and statistically compares it to current
metaheuristic models. The NASA dataset was used for the
experimental investigation. The results show that the LiOpFS
algorithm outperforms baseline approaches, with the high-
est AUC (90.1%) and Accuracy (94.2%). The results are
statistically validated using the Friedman Test with a con-
fidence level of 95% [103]. When there are defects in the
software, it takes more time and money to complete the
project and distribute the finished product. Defect monitor-
ing and repair are software procedures that can be expensive
and time-consuming to finish. Since finding and fixing every
flaw in a product is impossible, reducing their detrimental
effects is crucial to producing a higher quality final prod-
uct. Software defect prediction is the process of locating
problematic areas of software code. To enhance software
quality, an optimal machine learning-enabled model for soft-
ware defect prediction is presented in this research. This
model uses the PC1 data set as its input data. The approach
of ant colony optimization (ACO) is utilized to pick sig-
nificant traits. The support vector machine receives input
consisting of specific features. The PC1 data set is used to
train and evaluate SVM. ACO SVM’s performance SVM,
Naive Bayes classifier, andK-Nearest Neighbor classifier are
compared with the Ant Colony Optimization Support Vec-
tor Machine. ACO-based SVM performs better for software
fault prediction and classification [104]. Problems arise due
to software defects, mistakes, and bugs. Software problems
arise from incorrect requirements, flawed architecture, and
faulty source code. Software engineers can speedily find and
fix bugs using a few different ways. A few high-quality fea-
ture subsets can be extracted from any dataset. Choosing
the right attributes can help with classification in a round-
about way. The GJO algorithm, a metaheuristic optimization
method inspired by golden jackal hunting, is utilized in a
novel feature selection (FS) approach. The software failure
prediction dataset features are selected using this method,
which employs K-Nearest Neighbor, Decision Tree, Quadra-
tive Discriminant Analysis, and Naive Bayes. To prove this
strategy, the Authors shall compare the genetic approach,
ant colony optimization, particle swarm optimization, and
derivative evolution. FSGJO was usually successful. Clas-
sification accuracy was improved for numerous outcomes
by the FSGJO. The new approach achieved superior qual-
ity selection, according to Friedman and Holm tests [105].
The optimization approach (search strategy) and assessment
criteria (objective function) compose an optimization issue
solution. An extended binary version of the Harris Hawk
Optimization method (EBHHO) is utilized to find a (almost)
optimal solution to the Feature Selection (FS) problem in this
[106]. As evaluation criteria, K-nearest neighbors (kNN),
Decision Trees (DT), and Linear Discriminant Analysis

123



   14 Page 18 of 51 International Journal of Computational Intelligence Systems            (2025) 18:14 

(LDA) classifiers were used to build the objective function.
Adaptive Synthetic (ADASYN) oversampling was used to
rebalance the dataset and improve the learning process after
FS lowered its dimensionality. The proposed method was
tested using well-known Software Fault Prediction datasets.
A study showed that EBHHO is better than HHO. It was
shown that the EBHHO algorithm outperformed other opti-
mization methods.

This study uses an optimization technique to enhance the
overall results. The optimizer is called White Shark Opti-
mizer (WSO).

3.3 White Shark Optimizer (WSO)

First released in 2022, the White Shark Optimizer is a novel
algorithm that mimics the hunting habits of white sharks
and is inspired by nature. The benefits of the WSO are its
robust durability, high adaptability, and simplicity. However,
it also has several drawbacks, including a tendency to reach
the regional optimum, a small search radius, and a lack of
demographic variety [107].

A novel bio-inspired metaheuristic algorithm is presented
to address a range of global optimization problems. Themain
goal of the WSO algorithm is to simulate the White sharks’
unpredictable behavior, including their foraging and navigat-
ing hearing and smell activities. Three stages of movement,
moving quickly toward prey, moving toward ideal prey, and
moving toward the best white shark, are necessary for the
optimal outcome in the WSO. Fish school behavior is also
taken into consideration [64].

The remarkable senses of smell and hearing possessed by
great white sharks, which are essential to their hunting and
mobility, are the foundation of this algorithm. The authors
numerically model and quantitatively analyze unique char-
acteristics to balance scheme use and research to help search
agents investigate and use all likely zones in the search
region for better optimization. WSO search agents canify
their placements to apprtost answers and effectively accom-
plish the intended results [108].

A White Shark Optimization (ELWSO) Algorithm Based
on Elite Opposition is suggested by [109] to solve the issue
of where to place uncrewed aerial vehicles (UAVs) in smart
cities.Using theElite opposition-based technique, theEWSO
scheme improves the optimization efficiency of the original
WSO. Based on fitness, coverage, and connection criteria,
EWSO was assessed in 23 scenarios with different num-
bers of users and UAVs. The EWSO approach outperformed
the WSO, Genetic method (GA), Bat Algorithm (BA), and
Particle Swarm Optimization (PSO) in the simulated trials
conducted with MATLAB 2021b.

The Balance of Fitness Distance in Roulette, the White
Shark Optimization technique, debuted in [110], is recom-
mended as a solution to the mesh router location with service

priority problem. The efficacy of the proposed method is
verified by optimizing the fitness value to improve coverage
and connection according to the weights and locations of a
particular client group. The outcomes of the generated runs
indicate that the suggested approach far surpasses the orig-
inal versions of White Shark Optimization, Particle Swarm
Optimization, Genetic Algorithm, Sine Cosine Algorithm,
and Harmony Search when it produces competitive results.

In [111], a more sophisticated multi-objective white shark
algorithm (MOWSO) based on Levy flight, Cauchy muta-
tion, and nonlinear weight factor is presented. This upgraded
MOWSO aims to reduce the costs associated with the sys-
tem’s economic operation and environmental remediation.
The improved method’s efficacy is illustrated through the
multi-objective test function, and an example is used to solve
the optimization model. The simulation’s results show that
the model can successfully reduce operating and environ-
mental expenses while maintaining the economic operation
of a microgrid.

Amor et al. [72] examine how a recently created meta-
heuristic algorithm influences the surface roughness and
machinability (cutting force) of glass fiber-reinforced poly-
mer composites with incorporated nano zinc oxide (nZnO-
GFRPC). The grey theory merges the force of cutting and
roughness of the surface output answers into a unary objec-
tive function in a hybrid grey theory-white shark optimizer
(Grey-WSO) algorithm. In contrast, the white shark is uti-
lized to identify the best replies. The presented method is
innovative in combining two distinct responses, namely cut-
ting force and surface roughness, into a single objective
function and integrating two machine learning algorithm
kinds into one. Grey-WSO is used to construct the Taguchi
orthogonal array and optimize several parameters, including
feed rate, fiber volume fraction, and number of nanoparti-
cles. The best results are achieved at 1% ZnO (Weight%),
75mm/min feed rate, and 6.031% fiber volume fraction,
respectively. The results showed that the optimal cutting
force and surface roughness were 1.6765 μ and 197.64 N,
respectively. The output performance increased from 0.9414
to 0.9514, according to the validation of the results, show-
ing that the created Grey-WSO performed with a 1.06%
error. It was compared to existing metaheuristic algorithms
to show the created algorithm’s potential for use in compos-
ite materials’ shaping, cutting, milling, and other machining
properties. The outcomes further demonstrate that the quan-
tity of nanoparticles significantly impacts surface roughness
calculations.

HSlopEn and support vector machines (SVM) are opti-
mized using the white shark optimizer (WSO); WSO-
HSlopEn and WSO-SVM are recommended. Next, a dual-
optimization fault diagnostic method for rolling bearings is
suggested. It is based on WSO-HSlopEn and WSO-SVM.
First, various bearing signal types are input and split intomul-
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tiple nodes using hierarchical decomposition. Then, using the
recognition rate as the fit function, WSO adaptively deter-
mines the HSlopEn and SVM parameters. Subsequently, the
nodes’ WSO-HSlopEn is retrieved, and both single- and
multi-feature extraction are carried out. WSO-SVM finally
outputs the diagnosis results. The results of the experi-
ment showed that the WSO-HSlopEn and WSO-SVM fault
diagnosis method, whether used in single- or multi-feature
settings, has the highest recognition rate in contrast to other
hierarchical entropies; additionally, in multi-feature settings,
all recognition rates exceed 97.5%, and the recognition effect
improves with the number of features selected. When five
nodes are chosen, the highest recognition rate is 100% when
five nodes are chosen [112].

The technique of estimating the likelihood that a busi-
nessmay experience bankruptcy or other financial difficulties
in the future is known as bankruptcy prediction. Creditors,
investors, and financial institutions can evaluate credit risk,
make wise investment decisions, and implement suitable
risk management strategies using an accurate bankruptcy
prediction model. Numerous approaches, including conven-
tional statistical methods and more sophisticated machine
learning (ML) techniques, have been developed to consider
bankruptcy. To estimate the likelihood of bankruptcy, this
method often uses financial ratios, accounting data, mar-
ket performance indicators, and other relevant variables as
input features. Since deep learning (DL) techniques became
popular, there has been an increasing interest in using neu-
ral networks to predict bankruptcy. This article presents the
WSODL-BPFCAapproach, a newwhite shark optimizer that
uses deep learning-based bankruptcy prediction for finan-
cial risk assessment. The proposedWSODL-BPFCAmethod
predicts the presenceof bankruptcyusing aDLmodel that has
been hyperparameter-tuned. The WSODL-BPFCA method
uses min–max normalization to convert the input data into
a uniform format. The WSODL-BPFCA technique presents
an attention-based long short-term memory (ALSTM) strat-
egy for bankruptcy prediction. Finally, the WSO technique
adjusted the ALSTM model’s hyperparameters. Many sim-
ulations were run to demonstrate the improved performance
of the WSODL-BPFCA approach. The thorough compar-
ison analysis showed that the WSODL-BPFCA technique
produced improved outcomes, with a 97.61% improvement
in several criteria [113].

The Internet of Things, or IoT, is a network of intercon-
nected devices that can communicate with each other and
share data because of the Internet. Smooth data output is
critical to a network’s lifetime, and wireless sensor networks
(WSN) are a significant component of the Internet of Things
in this respect. Despite the benefits of the Internet of Things,
security, energy, load balancing, and storage remain signifi-
cant challenges. Two techniques utilized within the structure
of an IoT-assisted WSN to reduce energy usage are multi-

hop routing and clustering [114]. This offers a brand-new,
highly successful hybrid optimization technique for selecting
cluster heads. The proposedmethod uses thewhale optimiza-
tion approach (WOA) to modify the white shark optimizer’s
(WSO) stochastic behavior as it searches for food. Modern
metaheuristic techniques, including the artificial optimizer
(GTO), the coyote optimization algorithm (COA), and the
original WSO, were also tested against the new HWSO.
Finally, the complete simulation features of NS-3.26 are used
to validate the suggested network. The simulation results
may demonstrate improvements in the packet delivery ratio
(PDR), latency, energy usage, the number of deceased nodes,
and network durability.

The growing number of users is the reason for the ris-
ing demand for virtual machine (VM) requests. Therefore,
in cloud data centers (DCs), virtual machines (VMs) are cru-
cial for efficient resource management. The set of virtual
machines (VMs) is generally deployed into the set of physi-
cal machines (PMs) via the VM placement procedure based
on predetermined criteria [73]. Hybrid optimization using
fitness parameters determines the best location for virtual
machines. The migration expense, placement time, power,
and load objectives are combined to compute the fitness func-
tion and several system parameters. When arranging virtual
machines (VMs), factors, such as the processing elements,
memory, bandwidth, CPU, and million instructions per sec-
ond (MIPS), are considered. Further, the hybrid optimization
technique established for executing the VMmigration in this
work is called Adam white shark optimization-based VM
placement (AWSO-VMP), produced by merging the Adam
optimizer with white shark optimization (WSO). Therefore,
load, power consumption, andmigration costs havebeenused
to judge the effectiveness of AWSO-VMP; the relevant met-
rics have been reached at values of 0.133, 0.225W, and 0.116.

In data mining, sentiment analysis is currently the most
popular and active study topic. These days, several social
media platforms have been created, with Twitter being one
of the most important for exchanging and gathering peo-
ple’s thoughts, feelings, ideas, and attitudes toward specific
entities. Because of this, sentiment analysis has become an
exciting procedure within the domain of natural language
processing (NLP). While various methods for sentiment
analysis have been established, there are still perspectives
that need to be improved in terms of accuracy and sys-
tem effectiveness. The suggested architecture develops a
deep learning-based sentiment analysis and an optimization-
based feature selection to meet it. In [115], the authors
analyze the performance of the proposed gated attention
recurrent network (GARN) architecture with sentiment 140
dataset. Initially, the preprocessing is used to clean and fil-
ter the accessible dataset. The sentiment-based attributes
are then decomposed from the pre-processed data using a
term weight-based feature-extraction method called the Log
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Term Frequency-based Modified Inverse Class Frequency
(LTF-MICF) method. In the third phase, a hybrid mutation-
based white shark optimizer (HMWSO) is deployed to select
features. Recurrent neural networks (RNN) and attention
mechanisms are combined in the GARN structure to clas-
sify the chosen features into sentiment classifications, such
as positive, negative, andneutral. Finally, a comparison test of
the suggested and current classifiers’ performances is done.
Accuracy, precision, recall, and f-measure are evaluated per-
formance metrics with 97.86%, 96.65%, and 96.70% gains,
respectively, utilizing the suggested GARN.

The health of people is greatly endangered by hazy
weather, so it is crucial to provide precise and trustworthy air
pollution concentration forecasts for the benefit of science,
locals’ way of life, and the environment. Nevertheless, the
absence of feature mapping, uncertainty forecast, and outlier
detection in current forecastingmodels leads to forecasts that
are not trustworthy. Thus, in [116], It is suggested to use a
novel combined deterministic and probabilistic-forecasting
system that incorporates several data preparations and com-
bined deterministic and probabilistic forecasts. It is based
on a metaheuristic algorithm. Pre-processing and multi-view
analysis are performed on the raw data to remove the unpre-
dictable parts. The three deep learning models are combined
using a multi-objective white shark optimizer to improve
the prediction stability and accuracy. Moreover, a unique
interval pseudocode aims to maximize the prediction inter-
vals through development and enhance the reliability of
probabilistic forecasting. The Pinball loss function produces
prediction intervals at varying confidence levels. According
to the simulations, in contrast to the models that were eval-
uated, the created approach improves forecasting accuracy
by up to 64.9001% and 68.4637% at significance levels of
0.05 and 0.1 in the interval sharpness and by a maximum of
60.6772%, 54.9793%, and 38.6876% in the three steps of
PM2.5 prediction.

An autonomous wireless temporary network known as
a network of mobile ad hoc (MANET) is created using a
collection of transportable nodes, such as laptops, smart-
phones, iPods, etc., that are suitable for the context wherein
the networks’ infrastructures are dynamic. The most fre-
quent issues thatMANETs deal with include limited network
longevity, high energy consumption, high traffic overhead,
and energy efficiency, all of which affect the network’s gen-
eral architectural design. Thus, an energy-efficient CHoption
must be provided to address such concerns. Therefore, this
[117] suggests a unique model that uses a routing method in
an MANET to increase network longevity and energy effi-
ciency. A unique Fuzzy Marine White Shark optimization
(FMWSO) algorithm is proposed to find an optimal CH. This
approach is achieved by integrating fuzzy operation with two
optimization techniques: the White Shark Optimizer and the
Marine Predator algorithm. The suggested method consists

of three phases: data generation, cluster generation, and CH
selection. A unique FMWSO method is proposed to decide
the CH selection in anMANET, which improves the network
lifetime, topology, and energy consumption while decreas-
ing the overhead rate. To ascertain the system’s efficacy,
the performance of the suggested FMWSO methodology is
contrasted with several other current methods. The minimal
energy consumption of the suggested FMWSO strategy is
0.62 MJ, which is less than the previous alternatives.

In recent years, the optimal control problem has been
increasingly important in tackling real-world issues. The
metaheuristic algorithms have demonstrated their efficacy
in solving these problems efficiently and effectively. How-
ever, according to the no-free lunch theory, these algorithms
might not be able to solve every optimization problem. Con-
sequently, there is always room for the creation of new
metaheuristic algorithms [118] suggests the Tyrannosaurus
(T-Rex) optimization algorithm (TROA), a novel hunting-
based optimization technique. The way that T-Rexes hunt
served as inspiration for this algorithm. Twelve benchmark
problems and four real-world optimum control issues were
used to test this technique. Crow Search Algorithm (CSA),
Particle SwarmOptimization (PSO), White Shark Optimizer
(WSO), The Differential Evolution (DE) Algorithm, Grey
Wolf Optimizer (GWO), Jellyfish Search (JS), and Golden
Eagle Optimization (GEO) are the seven well-known opti-
mization techniques with which the performance of the
TROA is compared. Compared to these methods, the sug-
gested method’s results have shown improvement.

Among the most significant fields of study in photovoltaic
(PV) system modeling and design is parameter charac-
terization in PV cell/module models. Diode-based models
are commonly used; the most important models are the
single-diode model (SDM), double-diode model (DDM),
and three-diode model. Therefore, solving the parameter
characterization of such models with an objective function
can minimize the discrepancy between the estimated and
measured current. Recently,metaheuristic optimization tech-
niques have been used to overcome the challenge of rapidly
obtaining highly trustworthy and accurate results. Conse-
quently, the basic SDM and DDM are altered in this study,
and an objective function is examined using the updated
models. Furthermore, an enhanced version of this unique
metaheuristic algorithm is suggested by adjusting the force
control settings of the White Shark Optimizer (WSO) and
adding a chaotic generator to improve WSO’s exploita-
tion capability. The PV parameters are extracted using the
modified algorithm, which goes by the acronym IWSO. Lak-
shmanan et al. [74], which compares the modified PV model
with the conventional model using the new objective func-
tion. The experiment’s results proved that IWSO is superior
to rival algorithms. With an average score of 1.171 on Frei-
dman’s ranking test, the suggested IWSO outperforms all
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the chosen algorithms. Modified SDM and DDM have an
average accuracy that is 12% higher than that of classic PV
models. The results show that IWSO has the best-calculated
parameter values, with the slightest variation between the
estimated and experimental current.

Breast cancer (BC) is considered themost commonmalig-
nancy among women worldwide. The disease’s survival rate
is partly raised by earlier research on BC. Finding malig-
nant areas in the microscopic image of breast tissue is a
laborious step in the complex process of diagnosing breast
cancer on histopathology images (HIS). There are three
ways to find BC on HSI: machine learning (ML), deep
learning (DL) based methods, and traditional image pro-
cessing techniques. The main issues with BC diagnosis on
HSI are the ger picture sizes and the significant degree
of heterogeneity in the appearance of tumorous regions.
With this inspiration, this [119] creates a white shark opti-
mizer with attention-based deep learning for the breast
cancer classification (WSO-ABDLBCC) model to provide
a computer-aided diagnosis. Using DL methods, the pro-
posed WSO-ABDLBCC methodology accurately classifies
breast cancer. To enhance the image quality in the WSO-
ABDLBCC technique, guided filtering (GF)-based noise
removal is used. Next, the feature vector generation uses the
Faster SqueezeNet model with WSO-based hyperparame-
ter optimization. Finally, attention-based bidirectional long
short-term memory is used to classify histopathology pic-
tures (ABiLSTM). The WSO-ABDLBCC is well validated
experimentally using the benchmark Breakhis database. The
accuracy of the suggested model was 95.2%. The testing
results showed that when compared to other models already
in use, the WSO-ABDLBCC approach achieves better per-
formance.

The primary source of customer opinions about services
or products to buy is online reviews. Generally, spam reviews
are made to disparage or promote specific targeted goods or
services to become well known or profitable. Review spam-
ming is the term for this activity. In recent years, several
methods have been suggested to address the issue of spam
reviews. Previous research on spam detection has empha-
sized English reviewsmore than other languages. Despite the
volume of data generated, spam review detection in Arabic
online sources is a novel study area. Thus, this [120] cre-
ates an automated spam review detection system on Arabic
opinion text by utilizing the best Stacked Gated Recurrent
Unit (SRD-OSGRU). The primary goal of the SRD-OSGRU
model that is being given is to divide Arabic reviews into
two categories: spam and genuine. The SRD-OSGRUmodel
that is being described first goes through several stages
of data preprocessing to transform the review data into a
compatible format. The feature extractors for Bigram and
Unigram are then used. This study uses the SGRU model
to detect and categorize Arabic spam reviews. The SGRU

model’s detection efficiency is increased using a white shark
optimizer (WSO), because it is laborious to tune hyperpa-
rameters through trial and error. Two datasets, especially the
DOSC dataset, are used to evaluate the experimental vali-
dation of the SRD-OSGRU model. A thorough comparative
analysis demonstrated the SRD-OSGRU model’s superior
performance compared to other contemporary methods.

In a rapidly developing power network, greater voltage
levels at long transmission lines are recommended for an
efficient power network. The stabilizers that reduce power
oscillations are under higher stress due to these elevated
voltage levels. Using a white shark optimizer (WSO), this
[121] suggests a novel method for the power system stabi-
lizer (PSS) optimal parameter section. On a benchmark test
power system, the evaluated optimizer’s performance is con-
trasted with the recently suggested hybrid algorithm from the
literature. The generated oscillation damping performance
has been examined using the time-domain system parameter
specifications. Promising results were obtained with faster
setting time characteristics from the suggested WSO-based
PSS.

This [122] proposes an enhanced approach-based grid
flexibility interpretation for the combined heat and power
(CHP) systems with variable renewable energy systems. The
White Shark Optimizer (WSO) and the Pelican Optimiza-
tion Algorithm (POA) are executed simultaneously in the
suggested system. The POA strategy improves the updating
behavior of the WSO approach; hence, the term enhanced
WSO technique. The suggested method’s primary goal is to
use CHP systems to give the best possible grid flexibility.
The demand for sources is estimated for 2030 by applying
the suggested technique. The suggested method examines
the flexibility in both upward and downward directions and
views the optimization challenge as a cost reduction. Power
demand from coal, nuclear, wind, hydropower, and solar
sources is examined. The suggested approach examined the
system’s flexibility based on the seasons. Ultimately, the
suggested approach’s performance is replicated using the
MATLAB/Simulink platform, and its results are contrasted
with those of other existing methods.

WSOoffers unique benefits for optimization tasks, includ-
ing adaptability to different issue kinds, resilience, simplicity,
speed, and precision of solution finding [123]. Higher solu-
tion quality and several benefits are associated with the
proposed method [124]; among them, many benefits are a
few control parameters, a decreased amount of time devoted
adjusting control parameter values, less time spent on con-
vergence to optimal solutions, and more trustworthy search
capabilities. The reason behind choosing theWSO technique
was its adaptability to complex high-dimensional problems,
its resilience and ease of use, and its capacity to ensure pre-
cise answers by preventing the trapping of local optima [125].
WSO offers several benefits for solving global optimiza-
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tion problems, including its predicted adaptability to various
optimization problem types. Many problem types require a
higher level of flexibility than WSO can provide, with just
a few parameters that need to be adjusted. According to
the suggested mathematical model, WSO can be used for a
broad spectrum of engineering optimization concerns, espe-
cially those with enormous dimensionality. A third benefit is
expected to be the robustness and simplicity of WSO, which
enables fast and precise global solution finding with high
convergence speed for challenging optimization problems.
Being a strong contender with a broad interest in creating
affordable and practical solutions to complex real-world opti-
mization challenges is WSO’s fourth advantage for global
optimization [65]. White shark optimizer (WSO), a revo-
lutionary bio-inspired metaheuristic algorithm, has drawn
interest for its ability to solve global optimization problems
[126]. White Shark Optimizer (WSO) was utilized in [127]
to optimize the multiple embedding strength (MES) values.
Since WSO provides an ideal solution with high precision,
the authors have chosen to employ it.According to sum [128],
there are several benefits of employing WSO in conjunction
with an ensemble classifier for attack detection, including
Best Model Selection: Using WSO, the most vital individ-
ual classifiers for the ensemble can be chosen depending on
how well they perform on the training set, strengthening the
ensemble as a whole. Fast Convergence: Compared to other
optimization techniques, WSO can help the ensemble clas-
sifier converge more quickly to the ideal solution, reducing
the time needed to process attacks. Increased Robustness:
WSO plus an ensemble classifier helps a model soon con-
verge to the best solution while the ensemble can mitigate
the effects of outliers. This increases the model’s robust-
ness against inconsistent or noisy data. Improved Handling
ofUnbalancedData:WSOcan help choose themost effective
individual classifiers to handle imbalanced data if one class
is underrepresented, improving the ensemble classifier’s per-
formance in attack detection. EnhancedModel Performance:
The model’s overall performance can be improved, leading
to more precise and dependable attack detection, by employ-
ing WSO to optimize the individual classifiers and ensemble
parameters.

The binary character of the feature selection task has been
addressed by improving the WSO algorithm in [107]. Ini-
tially, two transfer functions translate the continuous domain
into binary. To create a high-variability initial population,
the modified K-means approach is recommended. Different
crossover operators are used to improve the binary-WSO’s
evolutionary process. BIWSO1 employs transfer functions,
BIWSO2 utilizes modified k-means, and BIWSO3 incor-
porates crossover operators as sophisticated versions. The
suggested BIWSO iterations are evaluated using 12 publicly
available IDS and IoT datasets.

BIWSO3 is a technology designed to improve Intrusion
Detection Systems (IDSs) by improving attack detection per-
formance. The work entails incorporating feature selection
strategies into ML-based IDS prediction models to improve
them.TheWhiteSharkOptimizer (WSO) algorithm,which is
optimized for binary feature selection in Intrusion Detection
System (IDS) applications, is improved upon in this paper.
There are three iterations of the improved algorithm,BIWSO:
In BIWSO1, transfer functions are integrated to transform
continuous domains into binary spaces; in BIWSO2, a mod-
ified K-means algorithm is introduced to produce a more
diverse initial population; and in BIWSO3, the algorithm
is further refined by adding multiple crossover operators to
accelerate the evolutionary process [129].

The [130] presents CGAN-IWSO-ResNet50, a unique
technique for phishing attack detection. An enhanced edi-
tion of the conditional GAN is employed in the first step
to equalize the URL samples. The second phase involves
employing TF-IDF and hand-crafted techniques to perform
the feature-extraction procedure. To enhance the WSO algo-
rithm’s feature selection performance, the WOA algorithm
is applied during the feature selection stage. The selected
features are applied to the dataset, wherein RGB images rep-
resent instances of phishing and legal cases. In the last step,
RGB images guide the ResNet50 architecture. In the Phish-
Tank dataset, the accuracy, sensitivity, and precision of the
recommended technique are, respectively, 99.65%, 99.12%,
and 99.46%.

4 ProposedModel

The idea behind the proposed technique is to combine an
ensemble learning model (ELM) with a metaheuristic opti-
mizer to effectively determine the optimal number of weak
learners (K-nearest neighbors, Gaussian Naive Bayes, Deci-
sion Tree, Gradient Boosting, Random Forest, Adaboost
classifier, Extra Trees, Ridge Classifier, Logistic Regres-
sion, Multilayer Perceptron (MLP), Quadratic Discriminant
Analysis, Bagging, Hist Gradient Boosting, Support Vector
Classifier (SVC)) with the highest accuracy and the low-
est computational time, ensuring superior performance in
classification tasks. The employed ensemble learning model
comprises several weak learners and uses the challenging
voting technique to calculate the classification accuracy.
AUC-ROC is used as the primary performance measure. The
binary version ofWhite Shark Optimizer (WSO) is also used
to improve the ensemble learning model.

A binary vector is randomly generated, with a length equal
to the number of weak learners employed in the ensem-
ble learning model. The target of this vector is to turn on
or off each weak learner, where a value of 1 activates the
weak learner, and 0 deactivates it. Consequently, a set of
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Algorithm 1: WSO algorithm pseudocode

weak learners is activated during each training iteration. It
contributes to the ensemble learningmodel classification pro-
cess, while the remaining weak learners are deactivated and
excluded from the classification process.

Therefore, this binary vector is injected into the ensemble
learning model; thus, specific weak learners are activated or
deactivated depending on the presence of 1 s or 0 s in the
vector. Subsequently, the ensemble learning model performs
its standard process of bootstrap aggregation classification,
utilizing only the active weak learners and the input training
data. Finally, it calculates the final classification outcome
using the complex voting method shown in Fig. 7.

The final classification performance metric is fed back
to the binary WSO to start its first optimization iteration.
The resulting outcome from the WSO is a new binary
vector, which is once again injected into the ensemble learn-
ing model for the subsequent training phase, following the
methodology outlined in the preceding paragraph, and its
classification performance is assessed anew. This iterative
training process is repeated until a satisfactory level of per-
formance is reached, with the highest classification accuracy
achievable and minimal computational time. It is worth

mentioning that while computational time is a significant
consideration, the authors prioritize the accuracy objective
more than the computational time objective.

The outcome of this hybridization between the ensem-
ble learning model and the metaheuristic optimizer is an
adaptive ensemble learning model comprised of a select few
weak learners yet achieving high classification performance
withminimal processing time.A customized ensemble learn-
ing model will feature its unique weak learners for each
classification issue. The developed hybridization process is
illustrated in Fig. 8.

It is possible to discuss the process of the proposed model
by utilizing the Algorithm 2.

5 Experiment and Results

This section will provide the techniques used to normalize
the datasets as long as the process is used to avoid overfitting.
A description of the datasets used and a presentation of the
results obtained. In addition, there are three subsections for
the weak learners identified for each dataset, the execution
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Fig. 7 Detailed ensemble process
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Algorithm 2: Proposed model pseudocode
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Fig. 8 Proposed technique

time of the experiment on each dataset investigated, and the
statistical analysis of the results obtained, respectively.

5.1 Experimental Setup

The proposed techniques were developed using Python 3.10
in Colab. In addition, a Windows 11 Gen 64-bit installed on
a Workstation with an Intel(R) Core(TM) i5-1135G7 CPU
@ 2.4 GHz processor and 8.0 GB RAM was used.

5.2 Dataset

For experimental analysis, the work uses a large collection
of fifteen benchmark datasets drawn from three well-known
open-source repositories: NASA, SOFTLAB, and ReLink.
NASA Repository: The dataset from this repository con-
tains software metrics at the method level that were taken
from eight different NASA software projects written in Java,
C, and C++. Even if different projects have different sets
of available software metrics, certain projects have differ-
ent metrics. Examples of software measurements include 38
for PC5,36 for PC2, and 37 for five projects (MW1, PC1,
PC3, PC4, and CM1). Furthermore, MC2 contains 39 met-
rics. These datasets come from the MDP and PROMISE

repositories; MDP [131] is where the data for the MDP
dataset is sourced. SOFTLAB repository: five datasets from
this repository are included, such as AR1, AR3, AR4, AR5,
and AR6 [132]. ReLink Repository: two separate projects,
such as Zxing, and Apache, make up the ReLink dataset. A
detailed description of these datasets is provided in Table 2.

5.2.1 Data Pre-processing

The utilized datasets were randomly divided into two seg-
ments: 70% allocated for training and the remaining 30%
designated for testing. Furthermore, to standardize the scale
of all data, all input values are normalized to the range [0,
1]. All tests’ input data were linearly transformed via the
Min–Max normalization approach. As demonstrated in Eq.
20, Min–Max normalization is employed to scale the data

x ′ = x − min(x)

max(x) − min(x)
. (20)

In Eq. 20, x ′ represents the normalized value of x , scaled
between 0 and 1 based on theminimum andmaximumvalues
of the dataset. In addition, the authors adopted an early stop-
ping technique for relatively small-size datasets. Because of
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Table 2 Datasets description

Project group Datasets Refs. Count of instances Defective Not-defective Count of software metrics % defects

NASA CM1 [133–135] 327 42 285 37 12.8

MW1 [131] 253 27 226 8 10.6

MC2 [131, 135] 126 45 81 39 35.7

PC1 [133–135] 706 61 645 37 8.6

PC2 [131, 135] 746 16 729 36 2.1

PC3 [131, 135] 1078 135 943 37 12.5

PC4 [131, 135] 1288 178 1110 37 13.8

PC5 [131, 135] 1712 472 1240 38 27.5

Relink Apache [136] 194 98 96 26 50

Zxing [136] 399 118 281 41 29.5

SOFTLAB ar1 [132, 135] 121 9 112 29 7.4

ar3 [135] 63 8 55 14 12.6

ar4 [135] 107 20 87 23 18.6

ar5 [135] 36 8 28 29 22.2

ar6 [135] 101 15 86 17 14.8

this, overfitting is avoided using this technique by running
the number of experimental iterations to 21.

5.2.2 Dataset Analysis

In this section, an analysis of the data used in this researchwas
done. First, each class’s data distribution was examined for
each class separately to determine whether the distribution
was normal, close, or abnormal (see, Fig. 9). Then, analyses
were done that included the Cohen kappa coefficient and
Matthews correlation coefficients for the data that contained
an abnormal distribution, and to solve this problem, this study
employed SMOTE to augment the instances in the minority
class or to lessen the cases in the majority class in the context
of oversampling or undersampling, respectively [137].

Concerning the Influence of Feature Variance on Classifi-
cationAccuracy,weacknowledge that datasets such asMW1,
which comprise merely eight metrics, in contrast to datasets
like ar3 (14 metrics) and ar6 (17 metrics), may exhibit a dis-
parity in feature representation.A reducednumber of features
may constrain the depth of the input data, thus impairing the
model’s capacity to identify intricate patterns. Conversely,
an increase in features does not necessarily enhance perfor-
mance, as it may contribute noise or extraneous information.

Table 3 compares numerous projects using four essential
metrics: True Negatives (TN), False Positives (FP), False
Negatives (FN), and True Positives (TP), as well as the com-
puted values for Matthews Correlation Coefficient (MCC)
and Cohen’s Kappa. The projects exhibit considerable vari-
ability in performance, with PC4 achieving the greatestMCC
(0.4205) and Cohen’s Kappa (0.3376), signifying a more
favorable equilibrium between positive and negative pre-

dictions relative to other projects. Conversely, projects such
as CM1 exhibit negative values for both criteria, indicating
subpar predictive performance. Furthermore, other projects,
such as Zxing and Ar6, demonstrate poor MCC and Kappa
values, signifying a deficiency in concordance between pre-
dicted and actual classifications. The prevailing tendency
indicates that whereas several programs attain considerable
predictive accuracy, others falter, underscoring the necessity
for additional investigation andmaybe enhanced approaches.
Projects such as PC5 and PC1 demonstrate favorable MCC
values exceeding 0.3, signifying a substantial correlation
between expected and actual results, suggesting that they
could gain from focused improvements to enhance their clas-
sification efficacy.

5.3 Weak learners

This partwill examine the prior applications of the algorithms
utilized in this study, alongwith their significance and advan-
tages, as highlighted by earlier research. Table 4 illustrates
theweak learners utilized in this study as documented in prior
research on software defect classification.

5.4 Results

The experiment comparing the effectiveness of an optimized
ensemble learning model (OM) utilizing the binary White
Shark Optimizer (WSO) metaheuristic algorithm with that
of a standard ensemble learning model (EM) is shown in
Table 5. With 15 distinct benchmark datasets, the experi-
ment seeks to find an optimal number of weak learners to

123



   14 Page 28 of 51 International Journal of Computational Intelligence Systems            (2025) 18:14 

Fig. 9 Data distribution per classes

Table 3 Dataset comparative analysis

Project TN FP FN TP MCC Cohen Kappa

Zxing 71 12 30 7 0.0564 0.0516

PC5 331 36 93 54 0.3201 0.3047

PC4 335 2 38 12 0.4205 0.3376

PC3 274 5 38 7 0.2520 0.1988

PC2 216 0 8 0 0 0

PC1 193 4 11 4 0.3315 0.3141

MW1 62 0 13 1 0.2430 0.1115

MC2 21 9 2 6 0.3753 0.3407

CM1 82 3 14 0 −0.0717 −0.0525

Ar6 24 0 7 0 0 0

Ar5 8 0 2 1 0.5164 0.4211

Ar4 25 1 5 2 0.3516 0.3125

Ar3 17 0 0 2 1 1

Ar1 35 0 2 0 0 0

Apache 24 8 10 17 0.3827 0.3818

attain maximum accuracy as measured by several metrics.
The following discusses these findings:

Regarding AUC-ROC, Accuracy, Precision, Recall, F1-
score, and Specificity performance metrics, the optimized
OM model consistently performs better than the EM model

across all datasets. All classification metrics values for OM
are regularly better than those of EM at the minimum, max-
imum, and average levels, suggesting that the metaheuristic
optimization procedure improves the model’s classification
performance.

Generally speaking, OM’s standard deviation values are
lower (better) than EM’s, indicating that the WSO optimiza-
tion algorithm lessens the variability in model performance
between experiment iterations. This suggests that the opti-
mized OM model produces more consistent and dependable
outcomes, which is advantageous in practical applications
where stable performance is essential.

Depending on the dataset, OM outperforms EM in terms
of performance, with some datasets seeing more consider-
able gains than others. Significant increases in AUC-ROC
accuracy are seen with OM for datasets, such as Ar1, Ar3,
Ar4, Ar5, and PC4, suggesting that the optimization method
works exceptionally well for these issues.

In addition, across various datasets, the OM typically
shows better precision, recall, and F1-score values than the
EM. More recall suggests fewer false negatives; more accu-
racy shows fewer false positives, and a higher F1 score
represents a better trade-off between recall and precision.
These enhancements imply that the OM model can achieve
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Table 5 Results obtained by the basic ensemble learning model and the optimized model

Dataset Model AUC Accuracy Precision Recall F1 score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

Apache EM 0.5695 0.6939 0.6376 3.73E−02 0.6429 0.5902 0.5966 0.5868 0.6786

OM 0.6834 0.8326 0.7651 2.98E−03 0.7714 0.7083 0.7160 0.7041 0.8143

Ar1 EM 0.4783 0.7500 0.5116 6.93E−02 0.9114 0.0714 0.0357 0.0476 0.9876

OM 0.5643 0.8850 0.6037 1.17E-16 0.7881 0.0843 0.0421 0.0562 0.8970

Ar3 EM 0.5000 0.8274 0.7679 1.54E−01 0.9286 0.8571 0.5357 0.6429 0.7864

OM 0.5455 0.9027 0.8377 3.01E−04 0.8975 0.9351 0.5845 0.7014 0.7896

Ar4 EM 0.5000 0.7706 0.6248 8.35E−02 0.8019 0.6155 0.3000 0.3799 0.7983

OM 0.5435 0.8376 0.6791 7.26E−03 0.8717 0.6690 0.3261 0.4130 0.8678

Ar5 EM 0.5000 0.8347 0.6667 1.05E−01 0.7321 0.7143 0.4048 0.4929 0.8286

OM 0.5600 0.9349 0.7467 8.04E−04 0.8200 0.8000 0.4533 0.5520 0.9280

Ar6 EM 0.4667 0.6667 0.6024 8.52E−02 0.7687 0.6190 0.2143 0.3175 0.7705

OM 0.5273 0.7533 0.6807 1.76E−02 0.8686 0.6995 0.2636 0.3905 0.8706

CM1 EM 0.4912 0.6784 0.5495 6.51E−02 0.6255 0.2957 0.1190 0.1532 0.8199

OM 0.6243 0.8621 0.6984 1.02E−03 0.7950 0.3758 0.1513 0.1947 0.8937

MC2 EM 0.4821 0.7312 0.6909 1.08E−01 0.7600 0.3737 0.5893 0.4477 0.7925

OM 0.6297 0.9549 0.9023 9.80E−04 0.9926 0.4880 0.7696 0.5847 0.7973

MW1 EM 0.5000 0.6646 0.5512 4.88E−02 0.8081 0.4464 0.1286 0.1819 0.8739

OM 0.5445 0.7238 0.6003 2.00E−04 0.8800 0.4862 0.1400 0.1981 0.9516

PC1 EM 0.5339 0.8062 0.6654 6.75E−02 0.9063 0.5238 0.3750 0.4007 0.7557

OM 0.5718 0.8634 0.7126 7.00E−05 0.9706 0.5610 0.4016 0.4291 0.8094

PC2 EM 0.4862 0.6250 0.5231 5.01E−02 0.6740 0.6151 0.5357 0.6337 0.7526

OM 0.6330 0.8138 0.6811 1.32E−02 0.8776 0.8008 0.6975 0.8251 0.8294

PC3 EM 0.5000 0.7508 0.5812 6.70E−02 0.8168 0.4717 0.2327 0.2445 0.7553

OM 0.5489 0.8243 0.6380 1.74E−05 0.8967 0.5178 0.2554 0.2684 0.8292

PC4 EM 0.5961 0.7836 0.6658 5.36E−02 0.6766 0.6861 0.3973 0.4474 0.6043

OM 0.7159 0.9411 0.7996 7.45E−05 0.8126 0.8240 0.4772 0.5373 0.7258

PC5 EM 0.5473 0.6739 0.6084 4.68E−02 0.7224 0.5827 0.3143 0.3968 0.9025

OM 0.7728 0.8360 0.8081 2.49E−02 0.8261 0.8406 0.7866 0.8121 0.8406

Zxing EM 0.5027 0.6775 0.5605 4.51E−02 0.6455 0.5229 0.2512 0.3312 0.8697

OM 0.6073 0.8184 0.6771 1.35E−02 0.7798 0.6316 0.3035 0.4000 0.9467

more balanced precision and recall performance and better
discriminate between positive and negative instances.

Furthermore, the OM model’s performance gains varied
among datasets. It shows notable improvements in Accuracy,
Precision, Recall, F1 Score, and Specificity performance
measures for specific datasets (e.g., Ar1, Ar3, and MC2),
suggesting that the optimization method is incredibly suc-
cessful for these datasets. However, the improvements are
negligible for datasets such as Ar6 and PC3, indicating that
the features of these datasets may affect how well the opti-
mization procedure works.

The percentage of actual negative cases the model accu-
rately detected is specificity. TheOMmodel tends to retain or
slightly enhance specificity compared to the EMmodel, sug-
gesting its ability to correctly identify negative cases, even if
specificity values are generally high for both models.

The consistent performance gains observed across several
datasets demonstrate the optimization approach’s scalability
and generalizability. This implies that performance can be
maintained while using the optimized OM model with the
binary-WSO algorithm for various problems.

The experiment concludes by showing how binary WSO
can improve ensemble learning models’ performance across
a range of performance criteria over various classification
issues. The findings demonstrate how optimization strategies
can enhance classification precision and dependability inML
applications.

Figure 10 shows that the OM model demonstrates a dis-
tinct superiority in essential performance metrics, including
accuracy, AUC, and specificity, indicating that it is the more
resilient model overall. Its enhanced specificity suggests
improved capability in identifying negative instances. The
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Fig. 10 Average performance
metrics

EMmodel does not exhibit superior performance in any area
compared to the OM model; nonetheless, the disparities in
recall, precision, and F1 score between the two models are
minimal. Consequently, the EM model may remain suitable
when the equilibrium between precision and recall is priori-
tized over total accuracy or specificity maximized.

Table 6 compares the performance of two models, EM
and OM, on multiple datasets, using AUC-avg for testing
and training. Overall, the OM model outperforms the EM
model in testing and training, with higher AUC-avg scores
across most datasets. For example, OM gets a test AUC of
0.7651,muchhigher thanEM’s0.6376. Similarly, in theMC2
dataset, OM outperforms EM,with a test AUC of 0.9023 ver-
sus 0.6909. This pattern is constant across the vast majority
of datasets. When comparing test and training AUC scores,
both models exhibit greater AUC values during training than
during testing. The difference between test and training AUC
is often less for the OM model, implying higher generaliza-
tion. For example, in the Zxing dataset, OM has a smaller
gap (0.6771 in testing vs. 0.714 in training), whereas EM has
a greater gap (0.5605 in testing vs. 0.6023 in training). Over-
all, OM outperforms the other datasets regarding predictive
performance and robustness.

The results of the comparison between OM and EM
regarding AUC (avg) for training and testing data are visu-
alized in Fig. 11.

5.5 DefinedWeak Learners for Each Dataset

After several experimental runs (21 runs), the results show
that each dataset has a different number and type of weak
learners that are fit. These weak learners are illustrated in
Table 7.

The optimal number of weak learners varies considerably
among the datasets used. The idea is that there is not a “one-
size-fits-all” solution in ensemble learning. The complexity
and properties of the data determine the ideal number. In the
best setups, specific weak learners regularly show up (e.g.,
DecisionTree, RandomForest). This implies that these learn-
ers could be strong performers on various datasets, especially
in classification tasks using the AUC-ROC statistic.

Furthermore, “Ar” datasets benefit from having more
weak learners, maybe because of their intrinsic complexity.
Conversely, “PC” datasets may be less complex or have bet-
ter feature representations, because they produce good results
with fewer weak learners.

The number of weak learners has not increased but has
decreased. Also, the search space has not expanded but has
shrunk. Consequently, the optimization process has become
faster and more efficient.
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Table 6 Average AUC for training and testing data

Dataset Model AUC-avg(test) AUC-avg(training)

Apache EM 0.6376 0.7351

OM 0.7651 0.8357

Ar1 EM 0.5116 0.6541

OM 0.6037 0.7145

Ar3 EM 0.7679 0.8153

OM 0.8377 0.8905

Ar4 EM 0.6248 0.7027

OM 0.6791 0.7434

Ar5 EM 0.6667 0.7367

OM 0.7467 0.8021

Ar6 EM 0.6024 0.6811

OM 0.6807 0.7554

CM1 EM 0.5495 0.6209

OM 0.6984 0.7637

MC2 EM 0.6909 0.7529

OM 0.9023 0.9556

MW1 EM 0.5512 0.6248

OM 0.6003 0.6816

PC1 EM 0.6654 0.7063

OM 0.7126 0.7726

PC2 EM 0.5231 0.6062

OM 0.6811 0.7497

PC3 EM 0.5812 0.6679

OM 0.638 0.7231

PC4 EM 0.6658 0.7449

OM 0.7996 0.8588

PC5 EM 0.6084 0.7045

OM 0.8081 0.8752

Zxing EM 0.5605 0.6023

OM 0.6771 0.714

5.6 Comparison with Other Meta-heuristics
Approaches

In this section, the results of om are compared to other
metaheuristic algorithms, and the following tables show the
results:

Table 8 evaluates the performance of different predic-
tion models on the Apache dataset. OM outperforms Cuckoo
Search, Firefly, Harris Hawks, and Particle Swarm in all cat-
egories. OM had the highest average AUC score of 76.51%
and the lowest variation (2.98e−3), indicating robust and
reliable prediction. OM outperforms all models in accuracy
with an averageAUCof 77.14%. Its high precision (70.83%),
recall (71.60%), and F1-score (70.41%) help balance false
positives and negatives. Cuckoo Search shows competitive
results with an average AUC of 70.80% and decent precision
(71.28%), but it trails OM in precision and recall. Firefly,
Harris Hawks, and Particle Swarm perform well but are less
effective than OM. Firefly’s average AUC of 69.93% and
low precision and recall might be improved. Harris Hawks
has the highest specificity (78.18%) but worse precision and
recall than OM. Particle Swarm equals OM but not better.
OM outperforms AUC, precision, accuracy, and recall on
the Apache dataset, making it the best model. This suggests
that OM may be effective for predicting tasks that require
consistency and strength. The AUC value comparisons are
illustrated in Fig. 12.

Table 9 compares metaheuristic algorithm performance
using the Ar4 dataset. OM outperforms other approaches
with an average AUC of 67.91%. It has good accuracy
(87.17%), precision (66.90%), recall (32.61%), F1 score
(41.30%), and specificity (86.78%). These indicators show
balanced performance, yet the OM model’s precision and
recall trade-off of positive instances and accuracy. Firefly

Fig. 11 Average AUC for training and testing data
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Table 7 Defined weak learners
for each dataset

Dataset Defined weak learners

Apache GaussianNB, Decision-Tree, Gradient-Boosting, Random-Forest

Ar1 Gradient-Boosting, Random-Forest, AdaBoost, SVM

Ar3 Gradient-Boosting, Random-Forest, Logistic-Regression, MLP, SVM

Ar4 Decision-Tree, AdaBoost, Extra-Trees, Logistic-Regression, SVM

Ar5 KNeighbors, GaussianNB, Decision-Tree, HistGradient-Boosting

Ar6 Decision-Tree, Random-Forest, Extra-Trees, Logistic-Regression, SVM

CM1 Decision-Tree, Random-Forest, AdaBoost, Extra-Trees, Logistic-Regression

MC2 Decision-Tree, Random-Forest, SVM

MW1 Decision-Tree, AdaBoost, MLP, Bagging, HistGradient-Boosting

PC1 Random-Forest, Extra-Trees, Logistic-Regression, MLP, HistGradient-Boosting

PC2 Random-Forest, AdaBoost, Logistic-Regression

PC3 Decision-Tree, Gradient-Boosting, Random-Forest, MLP, SVM

PC4 Decision-Tree, AdaBoost, HistGradient-Boosting

PC5 Decision-Tree, Random-Forest, AdaBoost, Bagging

Zxing Random-Forest, Logistic-Regression, Bagging

Table 8 Comparison of WSO with other optimizers on Apache dataset

Dataset Model AUC Accuracy Precision Recall F1 Score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

Apache OM 0.6834 0.8326 0.7651 2.98e−3 0.7714 0.7083 0.7160 0.7041 0.8143

Cuckoo search 0.6939 0.7393 0.7080 1.41e−2 0.7128 0.6738 0.6706 0.6701 0.7455

Firefly 0.6644 0.7166 0.6993 1.65e−2 0.7000 0.6459 0.6941 0.6684 0.7045

Harris Hawks 0.6578 0.7620 0.7115 3.96e−2 0.7205 0.7021 0.6412 0.6671 0.7818

Particle Swarm 0.6872 0.7393 0.7057 1.79e−2 0.7103 0.6669 0.6706 0.6685 0.7409

and Cuckoo Search models have similar AUCs of 70.18%
and 73.29%. Among these models, Firefly has the best aver-
age precision (68%) and recall (56%). Harris Hawks can
classify well with an average AUC of 68.06% and excel-
lent specificity (94.12%). The Particle Swarm model has a
lower average AUC of 68.18% but good precision (63.50%)
and recall (44%). Firefly has an excellent average AUC, high
accuracy, and better precision and recall than OM. AUC
and specificity are notable in the Cuckoo Search and Harris
Hawksmodels. This comparison reveals that theOMmodel is
reliable and competitive across various measures. Figure 13
illustrates the comparison of AUC values.

Refer to Table 10 for metaheuristic algorithms on the
Ar5 dataset. The OM model can be classified because of
its high average AUC of 74.67%. Precision (80%), recall
(45.33%), and accuracy (82%) are similarly remarkable. Its
92.80% specificity shows that it can dependably identify neg-
ative cases, but its recall implies it may struggle to discover
positive ones. In terms of average AUC (79%), precision
(96.67%), and recall (60%), Cuckoo Search is the best strat-
egy for detecting positive cases. It has low false positives
and a good specificity of 98%. A trade-off between preci-
sion and overall area under the curve is suggested by Cuckoo

Search’s lower average AUC than the OM model. Firefly
performs well with an average AUC of 77.67% and accuracy
of 81.25%. Recall of 63.33% and precision of 85% show
its capacity to detect positive cases with a high specificity
of 92%. Harris Hawks performs well with a 68.67% average
AUC and 75% accuracy. Its precision and recall are high, and
its AUC and F1 scores are lower than the best models. Parti-
cle Swarm has the lowest average AUC (63.33%), accuracy
(75%), and recall (36.67%). Its overall performance is less
competitive than the other algorithms despite its high speci-
ficity of 90%. Cuckoo Search has the highest precision and
recall, but the OMmodel has goodAUC and specificity. Fire-
fly’s balanced performance makes it practical. Harris Hawks
and Particle Swarm are competitive but weaker in AUC and
classification than the leading models. We can observe the
AUC values compared in Fig. 14.

Table 11 evaluatesmetaheuristic algorithms’ performance
on the CM1 dataset. The OM model is one of the best algo-
rithms is the OMmodel, with anAUCof 69.84%. This shows
its ability to distinguish good from bad cases. OM’s accuracy
of 79.50% and specificity of 89.37% show that it can effi-
ciently identify negative cases while maintaining balanced
performance. Although Cuckoo Search has a lower average
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Fig. 12 AUC comparison between WSO and other metaheuristics on Apache dataset

Table 9 Comparison of WSO with other optimizers on Ar4 dataset

Dataset Model AUC Accuracy Precision Recall F1 Score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

Ar4 OM 0.5435 0.8376 0.6791 7.3e−3 0.8717 0.6690 0.3261 0.4130 0.8678

Cuckoo search 0.6412 0.7706 0.7018 4.56e−2 0.8227 0.6883 0.4800 0.5498 0.9235

Firefly 0.7000 0.7412 0.7329 1.74e−2 0.8273 0.6800 0.5600 0.5943 0.9059

Harris Hawks 0.5412 0.7706 0.6806 7.63e−2 0.8227 0.6933 0.4200 0.5112 0.9412

Particle Swarm 0.6412 0.7706 0.6818 4.15e−2 0.8136 0.6350 0.4400 0.5156 0.9235

AUC of 58.98%, it has the highest accuracy (47.62%) and
specificity (96.84%). It is modestly successful at discover-
ing positive instances but good at preventing false positives.
However, its recall (21.11%) and F1 Score (27.10%) are
worse than OM, indicating that it misses many good cases.
Like Cuckoo Search, Firefly has a lower average AUC of
55.12% and high specificity (99.12%). Firefly’s low recall
(11.11%) and F1 Score (16%) indicate that it neglects good
examples despite its high precision. Harris Hawks has amod-
est AUC of 60.73% and an acceptable accuracy of 87.12%.
With an F1 Score of 32.18%, it balances precision and recall.
Its 97.02% specificity means it avoids false positives while
retaining quality recall. The models with the lowest aver-
age AUC (52.08%), accuracy (20%), recall (5.56%), and F1
Score (8.64%) were Particle Swarm. Particle Swarm strug-
gles with class difference and positive instance identification
despite its 98.60% specificity. Cuckoo Search and Firefly

have excellent specificity but lower recall and F1 scores than
theOMmodel, which has better AUC, accuracy, and balance.
Particle Swarm is less accurate at recognizing positives and
balancing precision and recall than Harris Hawks. Figure 15
presents a diagram that compares the AUC values.

Cuckoo Search offers the best AUC, accuracy, precision,
and recall, although each method has pros and cons. OM and
Particle Swarm are more accurate but struggle with precision
andmemory, while Firefly andHarris Hawks are inconsistent
and fail to balance detecting performance. The AUC values
will be compared, as shown in Fig. 16.

See Table 12 for metaheuristic algorithm performance
metrics on the MW1 dataset. OM exhibits a high accuracy of
88% and an average AUC of 60.03%. Although accurate, its
precision (48.62%) and recall (14%) are poor, resulting in a
mediocre F1 Score of 19.81%. The OM model is correct but
struggles to balance positive case detection, which hinders its
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Fig. 13 AUC comparison between WSO and other metaheuristics on Ar4 dataset

Table 10 Comparison of WSO with other optimizers on Ar5 dataset

Dataset Model AUC Accuracy Precision Recall F1 Score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

Ar5 OM 0.5600 0.9349 0.7467 8e-4 0.8200 0.8000 0.4533 0.5520 0.9280

Cuckoo search 0.6667 0.8333 0.7900 7.21e−2 0.8375 0.9667 0.6000 0.7267 0.9800

Firefly 0.5667 0.8333 0.7767 8.76e−2 0.8125 0.8500 0.6333 0.7200 0.9200

Harris Hawks 0.5667 0.8333 0.6867 9.19e−2 0.7500 0.8667 0.4333 0.5567 0.9400

Particle Swarm 0.5667 0.8333 0.6333 8.61e−2 0.7000 0.7500 0.3667 0.4800 0.9000

practical uses. Cuckoo Search ranks higher inAUC (74.59%)
and accuracy (90.85%). Its F1 Score of 52.48% is more
significant due to its more robust precision (53.94%) and
recall (55%). Cuckoo Search may better distinguish positive
and negative instances while balancing precision and recall.
Cuckoo Search outperforms Firefly, which averages 56.40%
AUC. Extreme precision (77.50%) and accuracy (81.57%)
are offset by weak recall (15%) and a lower F1 Score of
21.61%. Firefly is accurate but misses many positive cases,
resulting in poor performance. Harris Hawks has a lower
AUC (57.13%) and accuracy (82.75%). It has an F1 Score
of 24.22% due to higher precision (81%) and recall (15%)
than Firefly. It has higher precision and recall than Firefly
but less detection capacity. Particle Swarm had the highest
accuracy at 82.75% with an average AUC of 56.38%. Its F1
Score is 22.47% due to its high precision (96.67%) and low

recall (13%). Although Particle Swarm is exact, it fails to
recognize affirmative cases, decreasing its performance.

WSO enhances classification performance and ensures
model stability and consistency, evidenced by the reduced
standard deviation across datasets. This is crucial, partic-
ularly in practical scenarios that necessitate dependability.
This model exhibits stability due to optimization, in con-
trast to others. Results are derived from 15 benchmark
datasets of varying complexities. The OM model demon-
strated scalability, generalizability, and domain resilience.
This demonstrates the model’s versatility across many data
types, rendering it effective for defect classification. The
number ofweak learners has not increased, but has decreased.
Also, the search space has not expanded, but has shrunk.
Consequently, the optimization process has become faster
and more efficient. In conclusion, the findings and exper-
iments demonstrate significant enhancements in classifica-
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Fig. 14 AUC comparison between WSO and other metaheuristics on Ar5 dataset

Table 11 Comparison of WSO with other optimizers on CM1 dataset

Dataset Model AUC Accuracy Precision Recall F1 Score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

CM1 OM 0.6243 0.8621 0.6984 1.0e−3 0.7950 0.3758 0.1513 0.1947 0.8937

Cuckoo search 0.4912 0.6871 0.5898 7.04e−2 0.8652 0.4762 0.2111 0.2710 0.9684

Firefly 0.5000 0.6579 0.5512 6.20e−2 0.8712 0.4179 0.1111 0.1600 0.9912

Harris Hawks 0.5468 0.6871 0.6073 5.86e−2 0.8712 0.6017 0.2444 0.3218 0.9702

Particle Swarm 0.4912 0.6023 0.5208 3.68e−2 0.8591 0.2000 0.0556 0.0864 0.9860

tion accuracy, scalability, generalization, and computational
efficiency, comprehensively addressing software defect clas-
sification. The methodology and findings are substantial,
refuting the assertion of insignificance. Based on the com-
parisons presented above, it is clear that OM is much more
effective than the other algorithms that were utilized in the
comparison in terms of the area under the curve (AUC). The
fact that this is the case demonstrates that OM can bene-
fit activities that demand excellent predictive performance
and consistency, making it a feasible option for classification
tasks.

For further analysis, Table 13 is conducted,which includes
a comparative P -test between WSO and other metaheuristic
algorithms.

Performance differences between WSO and other algo-
rithms (CS, Firefly, HHO, and PSO) are not statistically
significant, as shown in Table 13. All P values surpass 0.05,

indicating that the methods perform similarly for Apache,
Ar4, CM1, and MW1 in the examined situation. For dataset
Ar5, the performancedifferences betweenWSOand theother
algorithms (CS, Firefly, HHO, and PSO) are not statistically
significant. Although not significant, WSO vs. HHO and
WSO vs. PSO P -values approach the threshold, encourag-
ing further inquiry.

5.7 Execution Time

Figure 17 shows the results of the execution time comparison
between an optimized ensemble learning model (OM) and
a standard ensemble learning model (EM) using the WSO
metaheuristic algorithm. All employed datasets’ execution
times in this study are recorded, and each dataset is assessed
using both EM and OM. The following provides a thorough
analysis and discussion of the execution time obtained.
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Fig. 15 AUC comparison between WSO and other metaheuristics on CM1 dataset

Fig. 16 AUC comparison between WSO and other metaheuristics on MW1 dataset

123



   14 Page 38 of 51 International Journal of Computational Intelligence Systems            (2025) 18:14 

Table 12 Comparison of WSO with other optimizers on MW1 dataset

Dataset Model AUC Accuracy Precision Recall F1 Score Specificity
Worst Best Avg Std Avg Avg Avg Avg Avg

MW1 OM 0.5445 0.7238 0.6003 2e-4 0.8800 0.4862 0.1400 0.1981 0.9516

Cuckoo search 0.6928 0.8062 0.7459 3.50e−2 0.9085 0.5394 0.5500 0.5248 0.9419

Firefly 0.5000 0.6646 0.5640 4.29e−2 0.8157 0.7750 0.1500 0.2161 0.9780

Harris Hawks 0.5000 0.6500 0.5713 4.57e−2 0.8275 0.8100 0.1500 0.2422 0.9927

Particle Swarm 0.5500 0.6000 0.5638 2.24e−2 0.8275 0.9667 0.1300 0.2247 0.9976

Table 13 P -value comparative
test for WSO and other
metaheuristic algorithms

Dataset WSO vs CS WSO vs Firefly WSO vs HHO WSO vs PSO

Apache 6.25E−02 6.25E−02 1.25E−01 6.25E−02

Ar4 6.25E−02 6.25E−02 6.25E−02 6.25E−02

Ar5 4.38E−01 1.25E−01 6.25E−02 6.25E−02

CM1 6.25E−02 6.25E−02 6.25E−02 6.25E−02

MW1 6.25E−02 6.25E−02 6.25E−02 6.25E−02

Figure shows two entries for each dataset: one for EM and
one for OM. The times of execution are expressed in seconds.
Shorter execution durations indicate optimized processing
efficiency. The execution time of OM is consistently faster
than that of EM across all datasets. This suggests that the
optimized OMmodel with theWSOmetaheuristic algorithm
for all investigated datasets delivers speedier execution times
than the regular EM model.

For both models (EM and OM), there is a notable varia-
tion in execution times between datasets. The efficacy of the
optimization algorithm may vary depending on the dataset’s
features, as some datasets exhibit more significant execution
time variations between EM and OM.

The efficiency of the WSO algorithm in optimizing the
ensemble learning model by defining the adequate number
of weak learners is demonstrated by the notable decrease in
execution time for OMwhen compared to EM. Optimization
techniques like WSO facilitate the discovery of more effec-
tive solutions by allowing one to explore the search area and
make more intelligent decisions on the ensemble model’s
structure and weak learner numbers.

Owing to its quicker execution speeds, OM is more suited
for time-sensitive or real-time applications where making
decisions quickly is essential. The optimized OM model
becomes more scalable and cost-effective when execution
durations are reduced, especially in contexts with resource-
constrained environments or large-scale issues.

Finally, the execution time results show how well the
WSO optimizer performs when optimizing ensemble learn-
ing models, resulting in noticeably faster execution times
for various situations. This demonstrates how optimization
strategies can enhance model scalability and computing effi-

ciency. Table 14 compares execution time before and after
optimization.

5.8 BoxPots of EM and OMModels

Following a binary-WSO algorithm’s optimization of the
ensemble learning model, boxplots, a technique for visualiz-
ing the results, are commonly used to present and compare
the performance outcomes. A boxplot, illustrated in Fig. 18,
shows essential statistics like the median, quartiles, and
possible outliers clearly and succinctly, summarizing the dis-
tribution of results from multiple independent experimental
runs.

The boxplot helps show how the optimization process
affects themodel’s performance acrossmanymeasureswhile
optimizing an ensemble learning model. Several conclusions
can be drawn from contrasting the outcomes of the optimized
model with those of the standard model (EM).

First, compared to the EM model, the optimized version
of the MLmodel (OM) frequently shows better performance
characteristics. Metrics like accuracy, precision, recall, F1-
score, and area under the curve (AUC) for classification
tasks can all be used to track this improvement. Second,
when comparing the optimized model to the conventional
model, the distribution of performance measures across sev-
eral runs and datasets could seem more condensed and
uniform. More minor variations in the whiskers’ lengths and
narrower interquartile ranges (IQRs) indicate this in the box-
plots.

Furthermore, the OM can show fewer outliers or extreme
values in the boxplot than theEM.This suggests optimization
has made performance across various scenarios or datasets
more stable and dependable. In addition, the developed OM
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Fig. 17 Execution time of standard ensemble learning and optimized ensemble learning model for different datasets

Table 14 Execution time before and after optimization in term of sec-
onds

Project Before optimization After optimization

Zxing 6.98E+00 5.82E−01

Apache 4.40E+00 2.90E+00

PC1 1.03E+01 2.63E+00

PC2 8.01E+00 1.60E+00

PC3 1.68E+01 1.08E+00

PC4 1.00E+01 8.07E−01

PC5 2.63E+01 8.68E+00

Ar1 2.18E+00 3.59E−01

Ar3 2.15E+00 2.63E−01

Ar4 2.17E+00 6.75E−01

Ar5 2.18E+00 3.53E−01

Ar6 4.46E+00 3.06E−01

CM1 8.22E+00 9.98E−01

MC2 2.63E+00 9.55E−01

MW1 2.26E+00 5.05E−01

typically has more shrinking boxplots, that is, boxplots with
fewer widths than the EM. This shows that the optimiza-
tion process has successfully adjusted the EM model’s weak

learners number to improve overall performance while low-
ering variability across different runs and all used datasets.

As shown in Fig. 18, the boxplot visualizes the OM
model’s performance outcomes and offers insightful infor-
mation about how well the binary-WSO algorithm’s opti-
mization procedure works. It facilitates understanding the
improvements made to the created model’s performance and
how it stacks up against the standard model’s baseline per-
formance.

6 Conclusion and FutureWork

This paper has presented an intelligent, optimized ensemble-
based approach combining a range of classifiers, making
significant advances within the domain of software fault pre-
diction. We aimed to improve the accuracy, dependability,
and effectiveness of defect prediction models by utilizing
ML techniques and theWhite Shark Optimizer (WSO)meta-
heuristic algorithm.

Themethodology developed in this study proposes a novel
strategy that integrates ensemble learning with the WSO
optimizer too to enhance the accuracy of defect prediction
models. Through the optimization of ensemble classifier
numbers, superior prediction performance is attained com-
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Fig. 18 Boxplot comparison of EM and OM models over used dataset
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pared to conventional ensemblemethods. The results indicate
that the optimized ensemble scheme consistently performs
better than the standard ensemble model across various
performancemetrics, includingAUC-ROC,Accuracy, Preci-
sion, Recall, F1-score, and Specificity. The observed increase
in performance serves as evidence for the efficacy of our
proposed methodology in augmenting the dependability and
accuracy of defect prediction models. The consistent perfor-
mance benefits observed across several benchmark datasets
serve as evidence for the scalability and generalizability of
the developed strategy.Theoptimized ensemblemodel devel-
oped, utilizing theWSO algorithm, demonstrates its efficacy
in addressing diverse software defect prediction issues. It
exhibits consistent performance and adaptability across dif-
ferent benchmark datasets.

The results of the investigations demonstrate that adopting
ensemble methods, specifically when optimized by applying
metaheuristic algorithms such asWSO, can yield substantial
enhancements in the predictive capabilities of defect predic-
tionmodels. The developed approach enhances accuracy and
reliability in identifying faulty software modules by integrat-
ing various classifiers. Utilizing the WSO optimizer yields
consistent improvements in performance across multiple
datasets andperformancemeasures.By enhancing the overall
prediction capabilities of the ensemble model, the optimiza-
tion procedure minimizes variability in model performance.

The limitations of this study are summarized as follows:
The suggested approach demonstrates efficacy across all
benchmark datasets; however, the degree of performance
enhancement may vary according to the dataset’s specific
characteristics. Certain datasets may benefit more from
optimization methods than others, indicating a degree of
interdependence among them. Applying WSO in optimiza-
tion requiresmultiple iterations to ascertain the ideal quantity
of weak classifiers, which may increase computational com-
plexity and time requirements. The optimization of computer
resources for predictive performance is a vital consideration
in practical applications. In addition, enhancing the opti-
mal white sharks solely through their mathematical model
is inadequate. Furthermore, the adaptive parameter P1 pro-
gressively diminishes with time, reducing the capacity of the
optimal white shark to direct all white sharks and enhanc-
ing the exploitation potential of WSO during the last phases
of the searching process. They also encounter challenges in
assisting white sharks in evading adjacent optimal. Enhanc-
ing WSO’s exploitation capabilities during the last phases
of the search process is essential. This mitigates suffering
from premature convergence while enhancing the conver-
gence rate of the WSO method.

For future purposes, subsequent investigations may use
the proposed methodology on supplementary datasets, soft-
ware prediction challenges, and broader prediction and
classification engineering issues. Examining the influence

of various ensemble configurations and optimization strate-
gies on predictive performance can yield further knowledge
regarding the efficacy of defect prediction methodologies.
The use of defect prediction models in software develop-
ment processes has the potential to improve proactive defect
management and quality assurance for software projects.
Subsequent research endeavors may prioritize advancing
approaches to achieve smooth integration and continuous
monitoring of defect prediction models inside software
development processes. We could further enhance predic-
tive performance by integrating ensemble learningwith other
optimization approaches or hybridizing other defect predic-
tion methodologies. Hybrid methodologies that capitalize
on the respective advantages of various techniques have the
potential to provide improved levels of accuracy and reliabil-
ity in the prediction of defects. In addition, the demonstrated
efficacy of the proposed binary variants of WSO in software
fault classification allows for their reimplementation inmany
issues characterized by a binary search space. Furthermore,
its performance may be enhanced by employing additional
efficient components from alternative metaheuristic algo-
rithms. Ultimately, additional real-world SDP datasets may
be utilized for forthcoming research endeavors.

Threats to validity
The study’s design and methods may affect internal valid-

ity. The dataset may be inconsistent, or developer experience
or software complexity metrics that affect fault classification
were not recorded.WeusedNASA, softlab, andRelin records
from defect prediction research to adjust for variations. How-
ever, unobserved factors may affect defect classification.
For external validity difficulties, our study’s findings may
not apply to all software systems or sectors, because the
datasets used to train and test the models may not repre-
sent real-world software initiatives. Even though it worked
well in our research, the White Shark Optimizer may not
work well in other scenarios or datasets. The authors used
widely recognized benchmark datasets for fault prediction.
Testing on more diverse and current datasets is needed to
prove themodel’s real-world applicability. Conclusion valid-
ity was assessed by comparing the model to metaheuristic
models and utilizing statistical significance tests on distinct
data subsets. Since WSO optimization speed enhancements
are dataset-specific, resilience requires additional testing.

Appendix A: Nasa, Relink, and Softlab
Datasets

Each group of the datasets used contains a unique collec-
tion of characteristics. Consequently, to address and declare
these properties, Tables 15, 16, and 17 provide a concise
breakdown of the nature of the associated attribute for each
group of the dataset individually.
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Appendix B

See Table 15.

Table 15 Nasa datasets features declaration

Metrics Description

LOCBLANK Number blank lines in the module

BRANCHCOUNT Number branches(e.g., if statements, switch cases) in the module

CALLPAIRS Number call pairs (e.g., function calls) in the module

LOCCODEANDCOMMENT Number lines containing both code and comments in the module

LOCCOMMENTS Number lines containing comments in the module

CONDITIONCOUNT Number conditions (e.g., Boolean expressions) in the module

CYCLOMATICCOMPLEXITY Number linearly independent paths through the code

CYCLOMATICDENSITY The ratio of cyclomatic complexity to lines of code (LOC)

DECISIONCOUNT Number decision points (e.g., if conditions, switch cases) in the module

DESIGNCOMPLEXITY The overall complexity of the module’s design

DESIGNDENSITY The ratio of design complexity to lines of code (LOC)

EDGECOUNT Number of edges in the module’s control flow graph

ESSENTIALCOMPLEXITY Complexity inherent in the problem that must be addressed by the software

ESSENTIALDENSITY Representing the ratio of essential complexity to lines of code (LOC)

LOCEXECUTABLE Number lines containing executable code in the module

PARAMETERCOUNT Number formal parameters (e.g., function arguments) in the module

GLOBALDATACOMPLEXITY Complexity related to global data structures in the module

GLOBALDATADENSITY Density of global data structures in the module

HALSTEADCONTENT Representing the information content of the program

HALSTEADDIFFICULTY Representing the ease of understanding the program

HALSTEADEFFORT Indicating the projected program comprehension and implementation time

HALSTEADERROREST Representing the number of predicted errors in the program

HALSTEADLENGTH Total number of (operators+operands)in the module

HALSTEADLEVEL The level of difficulty in understanding the program

HALSTEADPROGTIME The estimated time to implement the program

HALSTEADVOLUME The program size or the total number of bits required to encode the program

MAINTENANCESEVERITY Severity of maintenance required for the module

MODIFIEDCONDITIONCOUNT Number modified conditions (e.g., ternary operators) in the module

MULTIPLECONDITIONCOUNT Nested Boolean expressions in the module should be numbered

NODECOUNT Number nodes in the module’s control flow graph

NORMALIZEDCC Representing a normalized version of cyclomatic complexity

NUMOPERANDS Number of operands in the module

NUMOPERATORS Total number of operators in the module

NUMUNIQUEOPERANDS Number unique operands (variables, constants, etc.) in the module

NUMUNIQUEOPERATORS Number unique operators (arithmetic, logical, etc.) in the module

NUMBEROFLINES Total number of lines in the module

PERCENTCOMMENTS Percentage of lines containing comments in the module

LOCTOTAL Total lines of code (LOC) in the module

Defective Binary label indicating whether the module contains defects (1) or not (0)
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Appendix C

See Table 16.

Table 16 Relink datasets features declaration

Metrics Description

AvgCyclomatic Average cyclomatic complexity for all nested functions of methods

AvgCyclomaticStrict Logical ANDs and ORs in conditional expressions

AvgEssential The average complexity inherent in a problem that must be addressed

AvgLine Average number of lines for all nested functions or methods

AvgLineBlank Calculates the average number of blank lines within the module

AvgLineCode The average number of lines containing executable code within the module

AvgLineComment Calculates the average number of lines containing comments within the module

CountLine Number of all lines for all nested functions or methods

CountLineBlank Counts the total number of blank lines within the module

CountLineCode Counts the total number of lines containing executable code within the module

CountLineCodeDecl Counts the total number of lines with code declarations within the module

CountLineCodeExe Counts the total number of lines with executable code within the module

CountLineComment Counts the total number of lines with comments within the module

CountSemicolon Counts the total number of semicolons within the module

CountStmt Counts the total number of statements within the module

CountStmtDecl Counts the total number of statements with declarations within the module

CountStmtExe Counts the total number of executable statements within the module

MaxCyclomatic Maximum cyclomatic complexity of all nested functions or methods

MaxCyclomaticModified Represents a modified version of the maximum cyclomatic complexity

MaxCyclomaticStrict The module’s maximum nested function or method cyclomatic complexity

RatioCommentToCode Maximum cyclomatic complexity of all nested functions or methods

SumCyclomatic Sum of cyclomatic complexity of all nested functions or methods

SumCyclomaticModified Represents a modified version of the sum of cyclomatic complexity

SumCyclomaticStrict A module’s restricted sum of nested functions or methods cycle complexity

SumEssential Indicates the module’s essential complexity for all nested functions or methods

Defective Binary label indicating whether the module contains defects (1) or not (0)
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Appendix D

See Table 17.

Table 17 Softlab datasets features declaration

Metrics Description

Totalloc Total lines of code (LOC) in the module

Blankloc Number blank lines in the module

Commentloc Number lines containing comments in the module

Codeandcommentloc Number lines containing both code and comments in the module

Executableloc Number lines containing executable code in the module

Uniqueoperands Number unique operands (variables, constants, etc.) in the module

Uniqueoperators Number unique operators (arithmetic, logical, etc.) in the module

Totaloperands Total number of operands in the module

Totaloperators Total number of operators in the module

Halsteadvocabulary Representing the number of unique operators and operands in the module

Halsteadlength Total operator and operand occurrences in module

Halsteadvolume Reflecting the program size or total bits needed to encode it

Halesteadlevel Indicating the level of difficulty in understanding the program

Halsteaddifficulty Representing the ease of understanding the program

Halsteadeffort Indicating the projected program comprehension and implementation time

Halsteaderror Representing the number of predicted errors in the program

Halsteadtime Representing the estimated time to implement the program

Branchcount Number branches (e.g., if statements, switch cases) in the module

Decisioncount Number decision points (e.g., if conditions, switch cases) in the module

Callpairs Number call pairs (e.g., function calls) in the module

Conditioncount Number conditions (e.g., Boolean expressions) in the module

Multipleconditioncount Nested Boolean expressions in the module should be numbered

Cyclomaticcomplexity Representing the number of linearly independent paths through the code

Cyclomaticdensity Representing the ratio of cyclomatic complexity to LOC

Decisiondensity Representing the ratio of decision points to LOC

Designcomplexity Representing the overall complexity of the module’s design

Designdensity Representing the ratio of design complexity to LOC

Normalizedcyclomaticcomplexity Representing a normalized version of cyclomatic complexity

Formalparameters Number formal parameters (e.g., function arguments) in the module

Defective Binary label indicating whether the module contains defects (1) or not (0)
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