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A B S T R A C T

To meet the growing need for resilient structures in seismic and high-impact zones, accurate prediction of the 
response of reinforced concrete (RC) beams under impact loads is essential. Traditional methods, such as 
experimental testing and high fidelity finite element models, are often time consuming and resource intensive. To 
address these challenges, this study investigates various ensemble and non-ensemble machine learning techni-
ques—including support vector machine, gaussian process regression (GPR), k-nearest neighbor (KNN), gene 
expression programming, random forest, decision tree, boosted tree, adaptive boosting tree, gradient boosting 
algorithm, stochastic gradient descent, and artificial neural network—for predicting the peak response of RC 
beams under impact loads. A set of 145 experimental data points from 12 different sources is used to train and 
evaluate these machine learning models. Key parameters in the data include beam width and depth, span, 
reinforcement ratios, concrete strength, steel yield strength, deflection, and impact characteristics. Except for 
KNN, all models showed satisfactory generalization capabilities with R2 values over 0.8. Statistical errors such as 
RMSE, a-10 index, MAE, and a-20 index are within acceptable limits. The GPR model is the most effective with R2 

value of 0.95. Moreover, Shapely analysis identified beam depth, impact velocity, and beam breadth as critical 
factors. Overall, this study demonstrates the efficacy of machine learning in accurately predicting the behavior of 
RC structures under impact loads, providing valuable tools for civil engineers in design and analysis.

Nomenclature used in the current study

Beams width b (mm) Area of top longitudinal 
steel bars

As’ (mm2)

Beams depth h (mm) Yield strength of steel bars fy’ (Mpa)
Total length L (mm) Yield strength of the 

confinement steel bars
fvy (Mpa)

Net span Ln (mm) Stirrup ratio rhov vs pv 
(%)

Reinforcement ratio rho vs as 
(%)

Impact velocity V (m/s)

Concrete strength fc’ (MPa) Impact mass M (Kg)
Area of bottom 

longitudinal steel bars
As (mm2) Impact force Fp (KN)

Yield strength of the bottom steel bars fy (MPa)

1. Introduction

Throughout their service life, reinforced concrete (RC) structures 
encounter various impact loadings, such as vehicle collisions, rockfalls, 
and blast events. These events differ greatly from static loads due to their 
rapid application of high energy over a short period, requiring a 
specialized approach to understand and mitigate their impact on RC 
structures [1]. In particular, the case of RC simply supported beams 
impacted at the midspan by a rigid body has captivated several re-
searchers due to its practical significance and the complex dynamics 
involved [2]. For such scenarios, investigations have proposed a 
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dual-phase response, consisting of a localized phase and a global phase 
[3]. During the local phase, impact generates high peak force, inducing 
the formation of shear cracks near the impact zone. Experimental evi-
dence from multiple impact tests shows that shear cracks appear at the 
impact zone before any notable bending occurs [4]. This damage 
localized by the impact force, in the local phase, facilitates the formation 
of a plastic hinge at the mid-span during the subsequent global response 
phase.

To prevent shear cracks and plastic hinge formation, it is imperative 
to analyze and predict the peak response of RC beam subjected to impact 
loading. However, the inherent complexity of dynamic behavior re-
quires a multifaceted approach for accurate prediction. These may 
include empirical testing, advanced finite element modeling (FEM), and 
the development of analytical models designed to capture key degrees of 
freedom [5]. Moreover, for accurate prediction, there is a need to 
investigate the effect of geometrical properties, material characteristics, 
input energy levels and reinforcement detailing on the peak response of 
RC beam [6].

In response to these needs, researchers have conducted numerous 
investigations using various experimental setups [7]. For a compre-
hensive review of the different configurations employed in RC beam 
impact testing, refer to Refs. [8–10]. One commonly used method is 
drop-weight impact testing. However, this method has limitations due to 
variations in sample sizes and testing procedures. The addition of 
measuring tools such as load cells and high-speed cameras can also 
complicate the setup. In one study utilizing the drop-weight impact test, 
an equation was proposed to determine the static shear capacity [11]. 
Nevertheless, the equation failed to account for the combined effect of 
the drop weight’s mass and impact speed, both of which, according to 
the impulse-momentum theorem, significantly influence RC beam 
behavior. Additionally, rigid impact testing often results in maximum 
damage concentrated in the impacted area, providing an upper bound 
for the beam’s response [12]. These limitation underscores the need for 
a more comprehensive approach.

Fortunately, the advancement of computational resources has 
enabled the widespread use of FEM for simulating the dynamic response 
of RC beams under impact loads. FEM turns out to be a valuable alter-
native to traditional experimental testing. Ozbolt et al. [13] used FEM 
for demonstrating the impact response of RC beams with shear rein-
forcement, particularly those susceptible to shear failure. Likewise, Zhao 
et al. [14,15] used FEM for drop-weight tests and achieved good 
agreement between numerical results and experimental data. Hwang 
et al. [16] developed FEM validated energy-based empirical formula, 
which demonstrated improved accuracy compared to existing formulas. 
Adhikary et al. [17] conducted a detailed parametric study through 
FEM, demonstrating that the maximum mid-span displacement is highly 
influenced by impact velocity, shear-span to effective depth ratio, and 
the transverse and longitudinal reinforcement ratios. Fan et al. [18] 
developed a macro-element model that incorporated a shear spring to 
capture both normal and punching shear responses, effectively depicting 
the interaction between impacting objects and RC members. Pham and 
Hao [19,20] employed FEM to show a strong correlation between the 
development of plastic hinges and the displacement response of the 
beams. Despite its widespread use, FEM remains computationally 
demanding and relies on assumptions that require experimental 
validation.

To lessen computational burdens, researchers have explored 
simplified semi-empirical models with fewer degrees of freedom. For 
example, Yi et al. [21] proposed a two-mass model to capture both local 
and global responses during impact. Their model demonstrated 
reasonable accuracy in predicting shear failure when compared to ex-
periments and FEM simulations. Zhao et al. [15] proposed a 
three-degree-of-freedom model. They split the maximum displacement 
into shear and flexural components, resulting in estimation errors 
ranging from 2.9 % to 44.4 % when compared to the FEM results. They 
also proposed an empirical equation for maximum displacement using 

kinetic energy and static ultimate bending capacity as inputs. Their 
equation aligned with both experimental and numerical results [22]. 
Similar energy-based empirical formulas were developed by Kishi et al. 
[23] and Zhan et al. [24,25]. Fujikake et al. [26,27] proposed a 
two-degree-of-freedom mass-spring-damper system for the dynamic 
response of beams under various loads. However, for agreement with 
experiments, their model required the assumption of high damping at 
collision points. Recognizing this limitation of lesser-degree-of-freedom 
system, Saatci and Vecchio [28] advocated for more sophisticated 
models.

Recognizing the limitations of simplified analytical models and the 
complexity of FEM, researchers have explored machine learning as a 
promising alternative [21,29–32]. Machine learning provides several 
advantages, such as high accuracy and robustness in complex pre-
dictions, and a lower application barrier due to its diminished require-
ment for in-depth physical understanding [33–36]. While training can 
be computationally intensive, machine learning models excel in pre-
diction efficiency, often providing better estimate than empirical or 
semi-empirical formulas [37–39]. Up till now, machine learning models 
have primarily been utilized to predict the dynamic response of RC 
structural members under blast loading [40–43]. Almustafa and Nehdi 
[42] introduced a hybrid model that integrates gradient-boosted 
regression trees with the Henry gas solubility optimization algorithm 
to predict the maximum displacement of RC beams under blast loading. 
They further applied a random forest classifier to forecast the failure 
mode and crack patterns in these beams. Zhou et al. [44] advanced this 
research by developing a multi-hidden-layer neural network to evaluate 
the damage severity of RC columns subjected to blast loads. In addition, 
they utilized a multi-layer long-short-term memory neural network for 
failure mode prediction. Research on RC slabs has also explored the 
application of machine learning models to forecast their behavior under 
blast conditions [45]. For instance, Y. Shen et al. [46] compiled a dataset 
of 610 experimental points to build a highly accurate failure mode 
prediction model for flat slabs, comparing the performance of eight 
different machine learning models with three empirical models to 
determine the most effective approach [47]. Despite the extensive 
development of machine learning models for blast loading conditions, 
their application to impact scenarios remains relatively unexplored. 
With reference to impact loading, Thai et al. [48] employed a gradient 
boosting algorithm (GBA) for RC slab failure mode classification under 
impact, and Shen et al. [46] optimized an artificial neural network 
(ANN) model for similar purposes. Dadi et al. [49] investigated the 
applicability of seven machine learning techniques for predicting the 
maximum displacements of RC beams subjected to impact loads. Zhang 
et al. [50], also developed machine learning models for similar purpose. 
However, no prior research has developed and compared the perfor-
mance of ensemble and non-ensemble machine learning algorithms for 
the prediction of peak response of RC beams under impact loads.

This study investigates the applicability of machine learning tech-
niques for predicting the peak response of RC beams under impact loads. 
In this pursuit, both individual and ensemble machine learning tech-
niques such as support vector machine (SVM), gaussian process regres-
sion (GPR), k-nearest neigbour (KNN), gene expression programming 
(GEP), random forest (RF), decision tree (DT), ensemble boosted tree 
(EBT), adaptive boosting (AdaBoost) tree, GBA, stochastic gradient 
descent (SGD) and ANN—scaled conjugate gradient algorithms (SCG)— 
are developed. The independent parameters use for model development 
include beam width and depth, total and clear span of the beam, lon-
gitudinal and transverse reinforcement ratios, concrete strength, steel 
yield strength, deflection, and impact velocity, mass and force. To assess 
the effect of these parameters on peak response of the beam, shapely 
additive explanations (SHAP) is used.

2. Simplified collision process and peak force

The collision process, as shown in Fig. 1, is simplified by assuming a 
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specific impact force profile based on previous experimental observa-
tions. This profile, as depicted in Fig. 2, consists of three distinct phases: 
a rapid increase to peak force (OA), a subsequent decrease to nearly zero 
(AB), a sustained global response phase with constant force (CD), and a 
final gradual decline to zero (DE). During the global response phase, the 
RC beam continues to deform elastically and plastically, absorbing most 
of the impact energy and reaching its maximum deflection [51,52].

The impact force between Points O and B in Fig. 2 is approximated as 
a triangular pulse [53]. This approximation assumes that the rise time 
and fall time of the pulse are equal, leading to the following relationship: 

ts = 2tp                                                                                      Eq. 1

where ‘ts’ represents the duration of the initial impact pulse and tp de-
notes the time at the peak impact force. The peak impact force typically 
occurs within the first one or 2 ms of the impact, with most of the beam 
deformations concentrated at the point of impact due to inertial effects 
[53]. The deformations beneath the contact surface are complex and 
may result in minor cracks.

During the impact process, stress waves propagate through the beam, 
with shear waves having the most significant influence on the local 
response. Prior studies have shown that the effective participation mass 
is initially smaller than predicted by Biggs’ method due to the propa-
gation of shear waves. Additionally, as impact velocity increases, the 
time to reach peak impact force decreases, leading to a further reduction 
in effective mass [54].

3. Data acquisition and description

The key parameters affecting the peak response of RC beams under 
impact loading include concrete compressive strength, longitudinal 
tensile reinforcement, yield strength of the longitudinal reinforcement, 
vertical shear reinforcement, impactor mass, drop-weight velocity, and 
beam geometry [55–58] To investigate the influence of these parameters 
on peak response and establish a comprehensive understanding of RC 
beam behavior under impact loading, a comprehensive database of 145 
RC beams subjected to mid-span drop-weight impact was assembled 
from existing literature [59–70]. These simply supported beams with 
rectangular cross-sections were impacted using either spherical or 
flat-nosed impactors at velocities ranging from 1 to 16 m/s, with most 
tests falling within the low-velocity impact region. Impact masses varied 
from 100 to 1800 kg, with most concentrated between 300 and 600 kg. 
The RC beam widths and heights spanned from 100 to 300 mm and 
150–500 mm, respectively, while beam spans ranged between 1000 and 
5000 mm. Longitudinal tensile reinforcement ratios varied from 0.25 % 
to 3.25 %, and shear reinforcement ratios ranged from 0 to 1.4 %.

Table 1 presents a comprehensive overview of the statistical metrics 
applied to the data. It entails a range of descriptive statistics—such as 
range, mean, variance, standard deviation, median, mode, skewness, 
and kurtosis. For instance, Ln shows the greatest range (4000 mm), while 
pv exhibits the smallest range (1.4). Higher values of variance and 
standard deviation for L and Fp suggests greater variability of the two 
parameters. Skewness shows distribution’s asymmetry, with positive 
values indicating a right skew and vice versa. Kurtosis is the "tailedness" 
of the distribution, with values greater than 3 suggesting heavier tails. 
The values for skewness and kurtosis for most parameters are low, 
implying distributions that are nearly normal.

The provided image in Fig. 3 is a heatmap representation of a 
Pearson correlation coefficient matrix, which visually displays the cor-
relation between different pairs of variables used in a study. The vari-
ables are listed along both axes, indicating their relationships. The color 
intensity and hue represent the strength and direction of the correla-
tions, with a scale ranging from − 0.655 to 1, where values near − 1 show 
a strong inverse correlation, values near 1 shows a strong positive cor-
relation, and values near 0 indicate no correlation.

The dendrograms on the top and left axes visualizes the hierarchical 
clustering of variables based on their correlation coefficients. Variables 
with similar correlation patterns are grouped together, facilitating 
identification of potential relationships. The color transitions from blue 
to red, with blue representing strong negative correlations and red 
representing strong positive correlations. Shades of purple indicate poor 
correlations. This heatmap is valuable for deciphering the in-
terrelationships between variables. It simplifies the process of under-
standing the patterns in the data. Fig. 4 display the marginal histograms 
of various input factors, depicting their relation with the beam’s ca-
pacity under impact force.

Fig. 1. Collision during the initial impact at (a) t = 0, (b) t = tp (c) t = ts [52].

Fig. 2. Simplified time history of impact load [52].
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4. Proposed machine learning techniques

4.1. Non-ensemble machine learning techniques

4.1.1. Gene expression programming
GEP is a grey-box model that constructs non-linear expression trees 

(ETs) to model complex phenomena like peak dynamic response values. 
It operates by encoding genotypes and phenotypes separately, 

facilitating the evolution of genetic variations. Each gene in GEP con-
tains variables, arithmetic operations, and constants, with crucial 
empirical information stored in chromosomes. These chromosomes are 
interpreted using Karva language, which simplifies the conversion be-
tween gene sequences and ETs, enabling efficient phenotype inference 
[71–73].

The structure of GEP genes mimics biological open reading frames, 
starting with a codon and possibly containing noncoding regions that 
enhance solution stability and genetic diversity. The output is generated 
through the interaction of sub-ETs, where their arrangement captures 
the non-linear relationships required for accurate predictions [74]. This 
gene-based evolutionary process allows GEP to explore a wide solution 
space, improving the precision and reliability of predictions [75].

Key hyperparameters used in this GEP model include the number of 
chromosomes, head size, and the number of genes. Constants within 
each gene were floating-point values with expression complexity capped 
at 10, and ephemeral random constants were set between − 10 and 10. 
The mutation rate was fixed at 0.0015, and ’addition’ was selected as the 
linking function. Table 2 summarizes the hyperparameters, optimized to 
ensure model accuracy. Figs. 5 and 6 illustrate the GEP model’s flow-
chart and its predictive performance, respectively. The developed 
equation for peak response is given in Eq. (2). The symbols used in GEP 
equation is provided in Table 3. 

Peak response=W + X + Y + Z Eq. 2 

W= E × M +
CG(1 + E)

( − 0.33 − (G + (D − 12.02)(N − I))
Eq. 3 

Table 1 
Statistical analysis of the obtained data.

Parameter Units Range Mean Variance St. Dev. Median Mode Skewness Kurtosis

b mm 200.0 168.7 1060.5 32.6 150.0 150.0 0.6 1.0
h mm 350.0 294.1 7066.2 84.1 250.0 250.0 0.9 0.2
L mm 4600.0 2593.0 636874.2 798.0 2400.0 2400.0 1.8 5.2
Ln mm 4000.0 2128.0 469958.8 685.5 2000.0 2000.0 1.7 4.7
As – 22.0 39.7 36.3 6.0 40.0 40.0 0.0 − 0.2
fc’ MPa 25.7 33.8 59.5 7.7 34.7 40.0 − 0.3 − 1.5
As mm2 1767.0 721.8 253042.4 503.0 603.0 265.0 1.1 0.4
fy MPa 175.0 427.0 4001.1 63.3 404.0 520.0 0.4 − 1.4
As’ mm2 1924.0 564.8 234762.6 484.5 402.0 265.0 1.8 2.6
fy’ MPa 175.0 427.0 4001.1 63.3 404.0 520.0 0.4 − 1.4
fvy MPa 550.0 304.4 7227.6 85.0 295.0 295.0 − 1.4 7.8
pv % 1.4 0.4 0.2 0.4 0.2 0.8 1.5 1.3
V m/s 14.2 5.1 4.0 2.0 5.0 5.0 1.2 4.0
M Kg 1550.0 406.6 65899.2 256.7 300.0 300.0 3.6 13.8
Fp KN 2258.0 817.4 457908.1 676.7 751.0 0.0 0.4 − 1.0

Fig. 3. Heat map showing the correlation between different parameters.

Fig. 4. Marginal histogram showing the distribution of data.
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X=

[

K − J −
E
A
+0.64(1.812L)+

K
F

]

+B + A Eq. 4 

Y =

L +

(

− 1.23 +
46.06− K(C− B+2I+G+)

C

)

C
+H; Z=

(− 2J/9.15 × H)

(G + J − 6.01E + 8.92)
Eq. 5 

4.1.2. K-nearest neighbor
KNN algorithm is a widely used classification method known for its 

simplicity and adaptability. KNN identifies the closest neighbors to the 
data, classifying it as a nonparametric technique. This method does not 
rely on assumptions about data distribution, rather, it categorizes new 

data based on proximity to existing data points, similar to clustering 
techniques. The algorithm classifies new objects based solely on their 
attributes and training samples, without relying on any underlying 
model [76,77].

KNN is considered a lazy learning method because it stores training 
instances and predicts labels for test instances based on majority voting 
among the K nearest neighbors. The selection of K significantly impacts 
prediction quality, with smaller K values leading to higher prediction 
variance [78]. Determining the optimal K value often involves param-
eter optimization techniques such as cross-validation. KNN efficiency 
decreases with large datasets; therefore, various acceleration algo-
rithms, such as template trees, have been proposed to address this 
challenge [79]. These algorithms, using triangle inequality for distance 

Fig. 4. (continued).
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computation, enhance the matching process by identifying samples that 
are closer or distant from each other. The flowchart for the KNN method 
is presented in Fig. 7.

For regression problems, the K nearest neighbors are calculated using 
Eq. (6): 

M=
1
K
∑N

i=1
mi Eq. 6 

In above equation, mi shows the target value for the ith training instance, 
and m is the output value for the new example. Different distance met-
rics (see Eq. (7) to Eq. (10)), like quadratic euclidean, euclidean, man-
hattan, and chebyshev, are used to calculate the distance between 
neighbors. 

D(y, q)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(y − q)2
√

Eq. 7 

D(y, q)= (y − q)2 Eq. 8 

D(y, q)=Abs(y − q) Eq. 9 

D(y, q)=Max(|y − q|) Eq. 10 

In the above equations, D(y, q) is the distance metric, y is the new point 
and q is the training instance. The classification precision depends 
mainly on the metric used to calculate distances [80].

In this study, the distance metrics used to estimate the peak response 
of the RC beam is Euclidean, as given in Eq. (7), with the number of 
neighbors set to 2 (see Table 4). The curve fitting and scatter plot for the 
developed model is shown in Fig. 8.

4.1.3. Decision tree algorithm
DTs are known for their simplicity, interpretability, and effectiveness 

in handling large datasets, making them prominent categorization al-
gorithms. They represent discrete predictive functions as a series of 
decision points leading to terminal nodes labeled with respective classes. 
Each attribute of an observation is presented by a node. The classifica-
tion process involves traversing the tree to reach a leaf node, which 
corresponds to the predicted class [81,82]. The splitting of the decision 
nodes is shown in Fig. 9.

Classification in DTs occurs in two phases: tree building and pruning. 
Tree building is a top-down approach that recursively partitions the tree 
until all data items belong to the same class. Pruning improves predic-
tion accuracy by minimizing overfitting. Various algorithms, such as 
ID3, C4.5, C5.0, and CART, are known for their high speed, learning 
ability, and simplicity. These algorithms leverage the DT’s ability to 
handle mixed-type data and provide decision rules that can be directly 

Fig. 4. (continued).

Table 2 
Parameters employed for GEP model development.

Training and validation 85 % and 15 %

Chromosomes 100
Head size 12
Operators +, –, × , ÷, power
Genes 4
Constant/gene 10
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converted into user-friendly "if-then" statements, enhancing interpret-
ability [82].

Due to the increasing size of datasets, interest in fast DT learning 
algorithms is growing. Developing fast tree-growing algorithms is 
crucial, with a focus on searching restricted model spaces or using 

powerful search heuristics. Most modern algorithms use an impurity- 
based heuristic, such as information gain, to measure the purity of 
resulting subsets after splitting the data. The time complexity of stan-
dard DT learning algorithms is O (m⋅n2). Independent information gain 
(IG) is a key concept in optimizing the DT learning process which aims to 

Fig. 5. Flowchart showing the core processes in GEP.

Fig. 6. GEP model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.
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reduce computational costs. IG quantifies the reduction in entropy in the 
original dataset S. 

IG(S,Y)= Entrophy(S) −
∑

y

⃒
⃒Sy

⃒
⃒

|S|
Entrophy

(
Sy
)

Eq. 11 

In Eq. (11), S is the set of training instances, Y is an attribute and y is a 
value, Sy is a subset of S consisting of the instances with Y = y, and (S) is 
the entropy which is defined as: 

Entrophy(S)= −
∑|C|

i=2
Ps(ci)log Ps(ci) Eq. 12 

In Eq. (12) Ps(ci) is the estimated by the percentage of instance 
belonging to ci in S and |C| is the number of classes.

DTs are valued for their clear structure which makes them easy to 
understand and implement. They are versatile in handling both nu-
merical and categorical data types, and their robustness against outliers 
makes them suitable for a wide range of datasets [82].

However, DTs face challenges when dealing with linear relation-
ships. When input features and outcomes have a linear association, DTs 
use splits to approximate this relationship and produce a step function. 
This lack of smoothness means that even small changes in input features 
can lead to large variations in predicted outcomes, resulting in in-
efficiencies [83]. Parameters such as pruning, splitting, and binary trees 
are crucial in model development and are summarized in Table 5. The 
curve fitting and scatter plot for the developed model are shown in 
Fig. 10.

4.1.4. Stochastic gradient descent algorithm
SGD is frequently utilized to determine the weights and biases in 

neural networks. The objective function in SGD is expressed with v and 
u. The vector of partial derivatives of f with respect to u and v is rep-
resented as ∇Y. The exponential moving averages of the gradient (x1, j, 
y1, j) and the squared gradient (x2, j, y2) are updated using two hyper-
parameters, δ and α. These moving averages approximate the first and 
second moments of the gradients, with the hyperparameters governing 
the rates of exponential decay [84]. The steps involved in the SGD 
method are as follows. 

Step 1. calculate objective function K (uj,Yj) and its gradient.

∇Kj =

[
∅K

(
uj,Yj

)

∅uj
,
∅K

(
uj,Yj

)

∅Yj

]

Eq. 13 

Step 2. Calculate the exponential moving averages of the gradient and 
squared gradient using:

x1,j =∝1x1,j + (1 − ∝1)∇Kj 

x2,j =∝2x2,j− 1 +(1 − ∝2)∇Kj ⊙∇Kj
)

Eq. 14 

Here, ∇Kj ⊙∇Kj indicates the element wise multiplication. 

Step 3. Correct the exponential moving averages:

x̂1,j =
x1,j

[1 − (∝2)
j 

x̂2,j =
x2,j

(1 − (∝2)
j Eq. 15 

In the step 3: the superscript ‘j’ in (∝1)
2 and (∝2)

2 indicates ∝1 and ∝2. 

Step 4. Determine the damage indices and unknown force:

uj

Yj
=

uj− 1

Yj− 1
−

δj • x̂1,j
( ̅̅̅̅̅̅̅

x̂2,j
√

+ γ
)

δj = δ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (∝2)
j

√

(1 − ∝1)
j Eq. 16 

Table 3 
Symbols used in GEP equation.

Symbol Parameter Symbol Parameter

A Width of the beam H Yield strength of steel
B Depth of the beam I Area of top reinforcement
C Total span of beam J Yield strength of stirrup
D Clear span of beam K Area of stirrup
E Steel ratio L Steel reinforcement ratio
F Compressive strength N Velocity of the load
G Area of bottom steel M Mass of the impact body

Fig. 7. Flowchart of KNN.

Table 4 
Parameters involved in KNN model development.

Total neighbors Training and validation Metric Weight

2 80 % and 20 % Euclidean Uniform

A. Husnain et al.                                                                                                                                                                                                                                Results in Engineering 24 (2024) 103135 

8 



Step 5. Repeat Steps 1 to 4 until the convergence criterion ‘Tol’ is met.

⃦
⃦uj − uj− 1

⃦
⃦

⃦
⃦uj− 1

⃦
⃦

+

⃦
⃦Yj − Yj− 1

⃦
⃦

⃦
⃦Yj− 1

⃦
⃦

< Tol Eq. 17 

In this study, we set ∝1 = 0.9, ∝2 = 0.99, δ = 0.001, and γ = 1 • 0− 8.
The rate at which SGD converges depends on its ability to accurately 

estimate the true gradient, a task prone to noise interference. Gradual 
reduction in the learning rate facilitates a slow decrease in error, while 
rapid declines can impede convergence. Achieving an optimal conver-
gence rate, under specific conditions involves a proportional decay of 
the learning rate with the iteration number, t. This ensures a corre-
sponding reduction in residual error, denoted as E[ρ~t− 1] [77,84,85]. In 
this study, the parameters utilized in model development are classifi-
cation loss function (Hinge) and regression loss function (squared loss) 
(see Table 6). The visual depiction of the model’s curve fitting and 
scatter plot are shown in Fig. 11.

4.1.5. Support vector machines
SVMs, initially suggested by Vapnik, have garnered attention in 

contemporary data-driven applications. Originally conceived as linear 
classifiers, SVM have since been extended to non-linear classification 
tasks and regression. SVMs map input features to a higher-dimensional 
feature space. A hyperplane is constructed to maximize the margin be-
tween two parallel hyperplanes, a concept known as the maximum 

margin classifier (see Fig. 12). The primary aim is to minimize empirical 
classification errors while maximizing the geometric margin to enhance 
generalization performance [86,87].

For a training dataset {ym
}N

m = 1 with N samples, the SVM model is 
formulated as: 

f(x)=WTϕ(x) + b Eq. 18 

In Eq. (18), ϕ: x→ϕ(x) ∈ RH signifies a non-linear function. Initially, 
assuming linear separability, ϕ(x) is defined as ϕ(x) = x. The model 
parameters include w, a weight vector normal to the hyperplane, and b, 
the hyperplane bias [88].

The optimization problem, subject to soft-margin constraints, aims to 
define a hyperplane which maximize the margin between training data. 
This optimization is achieved using the Lagrange multipliers method, 
resulting in a cost function. 

M
({

bg, b*
g
}N

g=1

)
=

−
1
2
∑N

j=1

(
bi − b*

i
)(

bi − b*
i
)
K
(

bj − b*
j

)
− ∈

∑N

i=1

(
bi − b*

i
)
+

∑N

i=1

(
bi − b*

i
)
yi

Eq. 19 

In Eq. (19), 
{
bg, b*

g
}N

g=1 and K
(

bj − b*
j

)
denote the Lagrange multipliers 

and Kernel function, respectively. 

K
(
bi, bj

)
= 〈∅

(
bj
)⃒
⃒∅

(
bj
)
〉. Eq. 20 

Fig. 8. KNN model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.
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Simplifying the optimization of this cost function involves intro-
ducing kernel notation. SVMs directly define the kernel as a function of 
the input-feature vector. 

Klinear(y, ý)= y, ý Eq. 21 

Kpolynomial= (γyý + r)ρ Eq. 22 

KRBF(y, ý)= exp
(
− γ‖y − y, ‖

2) Eq. 23 

Ksigmoid(y, ý)= tanh(γyý+ r). Eq. 24 

Once we estimate 
{

b̂g, b̂
*

g
}N

g=1, the margin can be inferred as: 

Ŵ =
∑N

g=1

(
b̂g − b̂

*
g

)
∅
(

yg

)
Eq. 25 

Such as f(x) can be directly estimated as: 

f̂ (x)=
∑N

g=1

(
b̂g − b̂

*
g

)
K(yi, y)+ b̂ Eq. 26 

By maximizing the defined cost function, the computation of ‘b’ can 
be skipped by preprocessing and centralizing the data, thus enforcing 

the bias to be zero [88]. Table 7 summarizes the parameters employed 
for model development. Fig. 13 shows the curve fitting and scatter plot 
generated by the model.

4.1.6. Gaussian process regression algorithm
Recently, GPR, a kernel-based probabilistic model, has gained sig-

nificant popularity in nonlinear system modeling. To elucidate GPR 
further, let’s define the training dataset as {(xi, yi); i = 1, 2, …, T}, where 
xi ∈ ℝd represents the d-dimensional predictors and yi ∈ ℝ denotes the 
target variable. In contrast to a basic linear regression model y = xTβ+ε, 
where ε follows a normal distribution (0, σ2), GPR integrates latent 
variables and explicit basis functions (b) to interpret the target variable. 
These latent variables within the Gaussian process, denoted as (xi), 
collectively follow a joint Gaussian distribution. The covariance struc-
ture of (xi) governs the smoothness of the target, with the basis function 
aiding in projecting predictors onto the feature space [89,90]. The visual 
depiction of GPR process is shown in Fig. 14.

In essence, a Gaussian process is characterized by its covariance and 
mean functions. The covariance, denoted as (x, x′) = Cov [l(x), l(x′)], and 
the mean, denoted as m(x) = E?[l(x)], play pivotal roles. Consequently, 
GPR is formulated as y = (x) Tβ + l(x), where l(x) follows a Gaussian 
process with mean 0 and covariance k(x, x′), and b(x) ∈ Rp. A hyper- 
parameter θ is employed to parameterize the covariance function (x, 

Fig. 9. Division of decision nodes.

Table 5 
Parameters used in DT modeling.

Pruning Min samples split Training and validation Max depth Splitting criteria Binary trees

Post-pruning 2 80 % and 20 % 10 Gini impurity <0.01 Yes
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x′) as k(x, x′|θ). During the training of a GPR model, an algorithm 
typically estimates parameters such as β, σ2, and θ [91,92].

The kernel function in Gaussian regression characterizes the corre-
lation among variables. Different kernel functions can lead to various 
fitting outcomes, with isotropic kernels being favored over nonisotropic 
ones. The Matern 5/2 kernel was chosen which is provided in Eq. (27). 

Isotropic Matern
5
2
: k

(
xi, xj

⃒
⃒θ
)
= σ2

f

(

1+

̅̅̅
5

√
r

σl
+

̅̅̅
5

√
r2

3σl
2

)

e−
̅̅
5

√
r

σl Eq. 27 

For isotropic kernels, σl denotes the length scale, σf shows the signal 

deviation, r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xi − xj

)ʹ ( xi − xj
)√

and α > 0 signifies the scale param-
eter. Ensuring the positivity of σl and σf can be accomplished through θ, 
where θ = (θ1, θ2) = (log σl, logσf). Moreover, among the available basis 
functions—including the empty, constant, linear, and pure quadratic 
basis function—constant basis functions is selected for the current study.

Gaussian regression is known for its strong generalization capabil-
ities; however, it falls short in adaptability when data exhibits sudden 
variations in different areas. This limitation makes a single kernel 
function insufficient for accurate fitting [93,94]. Table 8 summarizes the 
parameters employed in model development. Fig. 15 displays the 
resulting curve fitting and scatter plot for the trained model.

4.1.7. Artificial neural networks
ANNs are essential tools for solving prediction problems by 

mimicking the brain’s learning processes. Designed to reflect the brain’s 
structure, ANNs use interconnected "neurons" to identify complex, non- 
linear patterns, making them effective in a wide range of forecasting 
applications. An ANN generally includes an input layer, hidden layers, 
and an output layer. Neurons in these layers are linked by adjustable 
weights. The network processes inputs by multiplying them with these 
weights, summing them to produce a net output, and then applying an 

Fig. 10. DT model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.

Table 6 
SGD modeling parameters.

Model Type Loss Function Regularization Strength (α) Learning rate Shuffling Starting Value Training and validation

Regression Huber Loss Elastic Net (L1/L2) 1.00E-06 0.01 Yes 0.01 75 % and 25 %
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activation function to generate the final output [95,96]. Back-
propagation neural networks (BPNNs), a common method, iteratively 
adjust weights and biases to reduce the difference between the net-
work’s predictions and the actual outcomes. Eq. (28) and Eq. (29)
delineate the weighted sums of inputs and outputs, respectively. 

[net]j =
∑n

i=1
wijxi + b Eq. 28 

[out]j = f(net)j =
1

1 + e− ∝(net)j
Eq. 29 

Fig. 11. SGD model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.

Fig. 12. Visual depiction of separating plane.
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In the above equations, (net)j stands for the weighted sum. Wij repre-
sents the weight connecting the ith neuron in the previous layer to the jth 
neuron.

In Fig. 16, the neurons in the hidden layers is chosen to optimize the 
match between ANN computations and predicted outputs while mini-
mizing errors, with the input layer neurons corresponding to the study 
parameters. However, increasing the number of neurons or layers can 
lead to overfitting. To combat this, early stopping techniques are used to 
enhance model generalization and reduce overfitting risks. The data is 
split into training, testing, and validation sets to evaluate the model’s 
performance [97,98].

The training process begins with initialization of weights and biases 
which is followed by iterative adjustments based on initial factor mu, 
decrease factor mu-dec, and increase factor mu-inc. Training goes on for 
a specified number of iterations (epochs), with the network’s perfor-
mance assessed using mean squared error (MSE).

4.1.8. Scaled conjugate gradient algorithm
The SCG algorithm is effective technique for training ANNs. Like the 

levenberg marqaurdt (LM) method, SCG uses curvature information 
from the network to improve learning [22]. However, unlike LM, SCG 

Table 7 
Parameters involved in SVM model development.

Estimation rate 20,000 observations/second

Training and validation 60 % and 40 %
Preset Gaussian
Kernel Type Gaussian SVM
Box Constraint, Epsilon Automatic
Data Standardization Enabled
Kernel Scale Automatic

Fig. 13. SVM model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.

Fig. 14. Visual depiction of GPR process.

Table 8 
Parameters involved in SVM model development.

Hyperparameter Typical Values

Kernel Isotropic matern (5/2)
Length scale 1
Number of restarts 5
Max iterations 1000
Warm start TRUE
Training and validation 60 % and 40 %
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Fig. 15. GPR process (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.

Fig. 16. Core process of ANN.
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achieves this by efficiently calculating gradients, leading to lower 
memory requirements. It also improves efficiency by bypassing 
computationally expensive line searches in each iteration. Tools like 
MATLAB provide built-in functions (e.g., ’trainscg’) for implementing 
SCG in ANN training. This method iteratively updates the network’s 
weights and biases. SCG can be easily applied when the network’s 
weights, net inputs, and transfer functions are differentiable. Moreover, 
SCG dynamically calculates its step size based on a quadratic approxi-
mation of the error function, reducing the need for user-defined pa-
rameters [95,99,100].

While BPNN adjusts weights in the direction of steepest descent 
(negative gradient), this method, though effective in minimizing the 
error function, doesn’t guarantee the fastest convergence. In contrast, 
conjugate gradient methods explore directions that often lead to quicker 
convergence compared to steepest descent, while still maintaining the 
error reduction achieved in previous steps [101]. The term "conjugate 
direction" refers to this efficient search path.

An important advantage of line search-based algorithms, including 
conjugate gradient methods, is their ability to independently update 
user-defined parameters at each iteration [100]. This independence is 
crucial for the algorithm’s effectiveness. Most conjugate gradient algo-
rithms refine the step size in each iteration, moving along the conjugate 
direction and calculating the optimal step size to minimize the error 
function along that path. Besides line searches, alternative methods can 
also estimate the step size. Table 9 summarizes the model parameters 
while Fig. 17 displays the resulting curve fitting and scatter plot for the 
trained model.

4.2. Ensemble machine learning techniques

4.2.1. Random forest
A RF classifier consists of an ensemble of tree-structured classifiers. 

Each tree in this ensemble casts a vote to determine the most prevalent 
class for a given input x. This mechanism demonstrates how RF in-
tegrates multiple tree-structured classifiers to make a collective decision 
[102,103].

The development of RF was significantly influenced by prior research 
in geometric feature selection. Notable contributions include Amit and 
Geman’s work in 1997, Ho’s advancements in the random subspace 
method in 1998, and Dietterich’s exploration of random split selection 
in 2000. Breiman’s pioneering work on random forests, combined with 
empirical studies by other researchers, highlighted the effectiveness of 
RF compared to established methods like boosting and support vector 
machines [103,104].

RF utilize bagging (bootstrap aggregating) to diversify the trees by 
generating distinct training data subsets through random resampling. 
This process enhances stability and prediction accuracy while mini-
mizing correlation between trees. Within RF, trees are grown without 
pruning, making them computationally efficient. During tree expansion, 
RF selects the optimal feature/split point from a randomly chosen subset 
of input features, reducing inter-tree correlation and decreasing gener-
alization error [78,105]. Each tree in the RF model is built using a 
training sample set and a unique random variable for the kth tree, 
ensuring independence and identical distribution across all trees. This 

process yields a collection of classifiers {h (x, Θk), k = 1, …, n}, with x 
representing the input vector. Through k iterations, multiple classifica-
tion model systems are generated, and the final prediction is determined 
via a simple majority vote. 

H(x)= arg Maxy

∑k

i=1
I(hi(x)=Y) Eq. 30 

The combination of classification models is represented by H(x), a 
single DT model is indicated by hi, the output variable is denoted by Y, 
and the indicator function is represented by dot. Each tree participates in 
the voting process to get the best categorization outcome for a particular 
input variable [106]. Fig. 18 shows an illustration of this procedure.

Within RF algorithm, the margin function quantify the votes for the 
correct class at a given point (X, Y). Eq. (31) provides the margin 
function formulation as: 

mg(X,Y)= avkI(hk(X) =Y) − maxj∕=YavkI(hk(X)= j) Eq. 31 

A larger margin value indicates higher confidence in the classifica-
tion conclusion and greater accuracy in classification prediction [103]. 
For this study, 10 trees and 5 node splits are chosen (see Table 10). The 
scatter plot and model fitting curve of the developed model is shown in 
Fig. 19.

4.2.2. Boosting family
To improve the effectiveness of machine learning, three main 

ensemble learning methods are used: bagging, boosting, and stacking. 
Boosting, a technique in supervised learning introduced by Freund and 
Schapire, works by creating models sequentially, where each new model 
addresses the errors made by the previous ones. This approach involves 
the iterative addition of weak learners, with a focus on the data points 
that were previously misclassified. Like bagging, boosting can be 
applied to both regression and classification problems [81,107]. Various 
boosting algorithms have been developed, including GBA, AdaBoost, 
and ensemble boosted tree.

4.2.2.1. (a) boosted tree. Boosted trees (BT) utilize the least squares 
boosting ensemble (LSBoost). LSBoost consists of multiple weak learners 
along with a meta-learner that assigns weights to each learner and 
combines their predictions using voting methods to improve accuracy in 
regression tasks. The boosting process involves splitting the data into 
training and validation sets [107,108]. Initially, the algorithm trains 
individual weak learners one by one, usually using DTs, and then fits the 
residual errors to enhance performance. LSBoost uses the least squares 
criterion for assessing loss [81]. Fig. 20 shows the subsets formed as a 
result of dataset splitting.

BT are implemented using the Matlab regression learner tool. This 
tool employs the ′fitrensemble′ function to train ensemble models, 
allowing users to tweak key parameters for model optimization. One 
important parameter is the minimum leaf size, which sets the minimum 
number of training samples required at each leaf node of the regression 
tree. Adjusting this parameter helps balance model complexity and 
predictive accuracy, with smaller leaf sizes often improving training 
accuracy but potentially reducing generalization. Another critical 
parameter for boosted trees is the learning rate, which influences the 
shrinkage rate during ensemble learning. Lower learning rates typically 
necessitate more iterations but can lead to better accuracy. Additionally, 
users can choose the number of predictors to sample during tree con-
struction, providing flexibility in feature selection [81]. These parame-
ters collectively enable users to fine-tune model performance, ensuring 
an optimal trade-off between accuracy and generalization. Table 11
summarizes the parameters employed for model development. Fig. 21
displays the model fitting curve and scatter plot obtained from the 
developed model.

4.2.2.2. (b) adaptive boosting. AdaBoost maintains a probability 

Table 9 
Parameters employed for model development.

Parameter Typical Values

Initial Damping Factor (λ) 1.0
Sigma (σ) 10–6

Tolerance 10–5

Max Iterations 1000
Training and validation 90 % and 10 %
Epsilon (ϵ) 10–10

Gradient Norm 10–5

Learning Rate Typically determined internally
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Fig. 17. SCG algorithm (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the data (d) Scatter plot for the validation data.

Fig. 18. Flowchart of RF
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distribution over the training samples, which it adjusts iteratively. A 
specific learning algorithm generates a member classifier and calculates 
its error rate on the training samples. AdaBoost then uses this error rate 
to update the probability distribution [109]. The flowchart of AdaBoost 
is shown in Fig. 22.

Considering the regression complexity, the training data Θ can be 
shown as: 

Table 10 
Parameters associated with RF.

Developed 
trees

Train and 
validation

Total 
features

Replicability Do not split 
when

10 90 % and 10 % Unlimited No Instances = 5

Fig. 19. RF model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.

Fig. 20. Schematic presentation of data division.

A. Husnain et al.                                                                                                                                                                                                                                Results in Engineering 24 (2024) 103135 

17 



Θ={(X1,Y1), (X2,Y2),…, (Xn,Yn)} Eq. 32 

In Eq. (32), each data point is represented by (Xi, Yi), where i ranges 
from 1 to n, and ’n’ indicates the total number of samples. Here, Yi is the 
output value, and Xi is the input vector. This data is then applied to a 
base or weak learner, represented as G(X), using specific learning 
methods. The relative estimation error (ei) for each sample is then 
calculated as shown in Eq. (33) [86,110]: 

ei = L(Yi,G(Xi)) Eq. 33 

For simplicity, among the linear, square, and exponential loss, linear 
loss function, as given in Eq. (34), is used: 

ei =
Yi − G(Xi)

E
Eq. 34 

Eq. (34) uses E = max|Yi - G(Xi)|, which represents the maximum 
estimation error observed across all data points. Relying solely on the 

performance of an individual learner can result in suboptimal outcomes. 
Therefore, the objective of AdaBoost is to sequentially generate (Gk(X)) 
and combine them to create a strong learner H(X) using a predefined 
aggregation technique. The amalgamated technique involves [111]: 

H(X) = v
∑N

k=1

(

ln
1

∝k

)

g(X) Eq. 35 

In Eq. (35), (X) is the median of αkGk, where αk represents the weight 
assigned to Gk(X). Additionally, v ∈ [0,1] is used to address overfitting 
issues. By employing a re-weighting method, the data representation is 
updated to generate G(X). This method involves adjusting the impor-
tance of each sample based on the errors of the previous learner Gk− 1(X). 
Consequently, samples with higher estimation errors are given greater 
weight, increasing their influence in subsequent training phases. This 
iterative process uses the estimation error eki, as outlined in Eq. (36)
[112]. 

ek =
∑m

i=1
eki Eq. 36 

Poor learner weight is given in Eq. (37). 

∝k =
ek

1 − ek
Eq. 37 

and the weight wk+1,i of individual point for coming phase is tuned as 
given in Eq. (38). 

Table 11 
Parameters employed in model development.

Parameter Default value

Learning Rate (η) 0.1
Training and validation 55 % and 45 %
Number of Estimators 100
Max Depth 3
Min Samples Split 2
Min Samples Leaf 1
Subsample 1.0 (or 100 %)

Fig. 21. Ensemble boosted tree (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.
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wk+1,i =
wk,i∝k

1− eki

∑m
i=1wk,i∝k

1− eki
Eq. 38 

The processed samples are represented by wki, where samples with 
higher prediction errors are given increased importance to improve 
learning in subsequent iterations. Nearly any regression algorithm can 
serve as a weak learner in AdaBoost [110]. In this instance, we choose 
DT due to their proven effectiveness across various fields. Table 12
summarizes the model paramters while Fig. 23 shows the curve fitting 
and scatter plot generated by the model.

4.2.2.3. (c) gradient boosting algorithm. Gradient boosting is a versatile 
learning technique suitable for both regression and classification tasks. 
It creates an ensemble of DTs and uses a stage-wise approach, similar to 
other boosting methods, which allows it to optimize various differen-
tiable loss functions [113,114]. The concept of gradient boosting was 
first identified by Leo Breiman, who viewed it as an optimization algo-
rithm for an appropriate cost function [115]. Further advancements 
were made by others, who contributed to the concept of functional 
gradient boosting. This approach frames boosting algorithms as iterative 
processes of functional gradient descent, optimizing a cost function in 
function space by iteratively choosing functions (weak hypotheses) that 
move in the direction opposite to the gradient. This perspective has 
advanced boosting algorithms across various machine learning and 

statistical domains, extending beyond traditional regression and classi-
fication tasks [116]. The basic process of gradient boosting is shown in 
Fig. 24.

In a dataset for the regularized learning objective DD comprising nn 
examples and mm features, D = {(Bi,Ai)}, (D = n × Rm × R), an additive 
functions is employed to predict the outcome. 

Âi = ∅ (Bi)=
∑a

a=1
fa(Bi), fa ∈ F Eq. 39 

In Eq. (39), F = {f(B) = zp(B)
}

represents the regression trees space. The 
number of leaves in the tree is denoted by the variable K, and the 
structure of each tree that translates an example to the associated leaf 
index is represented by the variable "p". Every fa is associated with a 
separate tree structure (p) and leaf weights (z). Every regression tree, in 
contrast to conventional DTs, has a continuous score on every leaf. The 
score on the ith leaf is represented by zi in this study. The decision rules 
in the study’s trees (provided by p) are categorized into their leaves, and 
the final prediction is calculated by adding together the scores in the 
relevant leaves (supplied by w) [117,118]. In order to discover the 
functions employed in the model, minimize the subsequent regularized 
goal: 

M(∅ )=
∑

i
m(Âi ,Ai)+

∑

i
Ω(fa) Eq. 40 

The difference between the model Ai and the goal Âi is quantified by 
"m," which is a differentiable function of the convex loss in this case. The 
model’s complexity is penalized by the second term. To avoid over-
fitting, the extra regularization term helps to smooth the final learning 
weights. The regularized objective will naturally choose a model that 

Fig. 22. Flowchart of adaptive boosting algorithm.

Table 12 
Parameters involved in the AdaBoost process.

Base 
learner

Total 
predictors

Training and 
validation

Classification 
Algorithm

Regression 
loss

Tree Fifty 80 % and 20 % Samme.r Exponential
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uses straightforward and predictable functions [119].
The ensemble tree model described in Eq. (41) incorporates func-

tions as parameters, making it unsuitable for optimization using con-
vetional methods in Euclidean space. Instead, the model is trained 
additively [114]. Formally, Âi represents the estimation of the ith 
instance at the tth iteration, and ft must be added to lower the following 
objective: 

M(t) =
∑n

i=1
m
(
Ai, Âi

(t− 1)
+ f(t)

)

+ Ω(ft) Eq. 41 

This implies that ft, which significantly enhances the model as per 
Eq. (42), is added in a slow manner. In a broader context, a second-order 
approximation is utilized for efficient optimization [5]. 

M(t) =
∑n

i=1
[m

(
Ai, Âi

(t− 1)
.

)
+ Jtft(Bi)+

1
2
hif2

t (Bi)

]

+ Ω(ft) Eq. 42 

In Eq. (42), Ji = {∂Â(t− 1)} = j, and Hi =
(
∂2

Â(t− 1)

)
represent the first and 

second-order gradient statistics on the loss function, respectively. 
Table 13 summarizes the parameters employed for model development. 
Fig. 25 displays the model fitting curve and scatter plot obtained from 

the developed model.

5. Model performance evaluation

5.1. Predictive performance

Fig. 26 illustrates the predictive performance of various machine 
learning models, including GB, RF, GEP, AdaBoost, DT, and others. The 
y-axis represents the ratio of experimental to model prediction, while 
the x-axis displays the mix constituents. A wider spread along the x-axis 
indicates greater variation in the input parameters.

Overall, all models showed good performance, with majority of 
points lying near the of 1, demonstrating strong agreement between 
estimated and experimental values. Tight clustering around the refer-
ence line indicates good accuracy. However, some outliers exceeding 1.5 
or falling below 0.5, suggest areas for improvement through model ad-
justments. In summary, while machine learning models generally 
demonstrated satisfactory predictive performance, further refinement is 
required to address outlier instances of overestimation and 
underestimation.

Fig. 23. Adaptive boosting algorithm (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.
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5.2. Statistical performance

To evaluate the accuracy of the models, various performance metrics 
were employed. Initially, the correlation coefficient (R) was examined to 
assess how well the predicted values matched the actual values. How-
ever, relying solely on the correlation coefficient is insufficient for 
determining model accuracy. Therefore, mean absolute error (MAE), a- 
10 index, a-20 index and root mean square error (RMSE) were also 
considered as evaluation metrics. These metrics are detailed in Eq. (43)
through Eq. (47). A R value above 0.8 signifies a strong fit between the 
model and actual data. Lower MAE and RMSE values indicate higher 
predictive accuracy. Engineering indices like the a10-index and a20- 
index measure prediction errors within ±10 % and ±20 % ranges, 
respectively. Values of these indices closer to one denote better model 
performance. 

R=

∑n

i=1
(Ti − T̂ i)(Pi − P̂i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ti − T̂ i)

2 ∑n

i=1
(Pi − P̂i)

2

√ Eq. 43 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ti − P̂i)

2
/

n

√
√
√
√ Eq. 44 

MAE=
∑n

i=1
(Ti − P̂i)

2
/

n Eq. 45 

A-10 = P10/n                                                                            Eq. 46

A-20 = P20/n                                                                            Eq. 47

In the above equations, the actual and predicted values are denoted by Ti 
and Pi, respectively. The number of data points is indicated by n. The ‘̂’ 
symbol is used to represent mean value.

As shown in Fig. 27(a) and (b), spider plots were utilized to evaluate 
the performance of various machine learning models based on key 
metrics, including the a-10 index, R2, RMSE, a-20 index, and MAE. With 
the exception of the KNN algorithm, all models exhibited robust 
generalization capabilities, consistently achieving R2 values above 0.8 
and correlation coefficients R exceeding 0.9 across both the training and 
validation dataset. The statistical errors, specifically RMSE (ranging 
from 80 to 250), a-10 (ranging from 30 to 70), MAE (ranging from 60 to 
180), and a-20 (ranging from 20 to 60), remained within acceptable 
thresholds, underscoring the models’ reliable predictive performance. 
GPR emerged as the most effective, exhibiting the highest R2 value of 
0.95 and the lowest RMSE and MAE values (95 and 60, respectively). It 
also recorded the highest a-10 and a-20 values. Conversely, the KNN 
model performed the poorest, with the lowest R2 value of 0.75 and 
relatively high MAE and RMSE values.

In the depicted Taylor diagram (see Fig. 28), various models are 
evaluated for their effectiveness, with each model represented as a point 
on the diagram. The angle from the x-axis signifies the correlation co-
efficient, while the distance from the origin represents the standard 
deviation of the model. Overall, the models showed satisfactory per-
formance across the entire dataset which is indicated by their close 
proximity to the referenced model. Specifically, all models exhibit R 
ranging from 0.85 to 0.95, suggesting strong generalizability.

6. Shapely additive explanation

The increasing complexity of machine learning models, while 
enhancing their predictive accuracy, often reduces their interpretability, 
rendering them "black boxes" with outputs that are difficult to under-

Fig. 24. Gradient boosting basic process.

Table 13 
Modeling parameters involved in gradient boosting.

Developed Trees
Regularization Training and validation Replicable Instances used in training Total instances

100 Lambda: 1 90 % and 10 % Yes 1 2
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stand. Consequently, improving the interpretability and explainability 
of models is essential. One effective approach is the application of 
shapley additive explanations (SHAP), which uses XGboost models to 
make the intricate outputs as discernible pattern. SHAP values quantify 
the contribution of individual features to model predictions, facilitating 
a deeper understanding of significant features and their impact on the 
final prediction. Higher shapley values indicate greater relevance of the 
corresponding feature [120,121]. The influence of ‘j’ on f(xi) for a given 
point is denoted as φj(f), and is calculated using Eq. (48), which sums the 
marginal contributions of each feature across all possible feature 
combinations. 

φj(f)=
∑

S ⊆ [x1,……., xp]

{xj}

[
|S|!(p − |S| − 1)!

p!

]
[
f
(
S ⊔

{
xj}) − f(S)

]

Eq. 48 

Eq. (48) illustrates that S is a subset of the features and p is the total 
number of features in the model. By analyzing how projected errors vary 
with changes in features, SHAP assigns relevance weights to features. 
Additionally, SHAP uses a linear feature attribution technique to clarify 
the performance of trained machine learning models and generate an 
interpretable model based on its findings [77,122]. 

f(x)= h(xs)=∅0 +
∑p

i=1
∅ixs

i Eq. 49 

Eq. (49)—with p denoting the number of input features and ϕ0 rep-
resenting the constant term—maps the input variables x and xs using the 

notation x = m(xs). According to Lundberg and Lee [123], Eq. (49) en-
hances the predicted value h(xs) by including terms ϕ0, ϕ1, and ϕ3, while 
excluding ϕ4 in ℎ(xs) (as illustrated in Fig. 29).

A unified solution for Eq. (49) offers three main benefits: handling 
missing data, ensuring local accuracy, and maintaining reliability. 
Reliability is crucial to prevent attributes from inadvertently shifting to 
another feature. When features are missing, they are deemed insignifi-
cant; hence, xs

i = 0, ϕi = 0 is assigned. The summation of features within 
an output function creates a model that aligns the output f with xs as the 
simplified input, achieving local accuracy [124].

6.1. Shapley plots

Fig. 30 illustrates the significance of the various parameters influ-
encing the response force. The parameters with the most substantial 
contributions are beam depth, impact velocity and beam breadth with 
mean SHAP values of +298.79, +182.94, and +92.02, respectively. 
Additionally, the stirrup ratio and the yield strength of the steel 
demonstrated higher mean SHAP values. All of the remaining parame-
ters were found to have marginal impact on the response force.

The violin SHAP plot in Fig. 31 highlights the significant influence of 
beam depth, impact velocity, and beam breadth on the peak response 
force, corroborating findings from other empirical studies. In particular, 
the broad distribution of SHAP values for beam depth, reaching up to 
+400, suggests a strong positive impact on the response force. This 
result aligns with the conclusions of Zhan et al. [55] and May et al. [56], 
who similarly noted a positive correlation between increased beam 

Fig. 25. Gradient boosting model (a) curve fitting for training data (b) curve fitting for validation data (c) Scatter plot for the whole data.
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depth and peak impact force. These authors attribute the increased force 
to the beam’s enhanced stiffness, as larger depths allow the beam to 
absorb more energy upon impact. The SHAP analysis in the present 
study confirms that beam depth plays a critical role in governing the 
beam’s load-bearing capacity during impact.

Similarly, the substantial SHAP values for impact velocity (clustered 

around +200) emphasize its critical role, consistent with the findings 
from various other studies. For instance, the kinetic energy relationship 
KE = 1

2 mv2 explored in Adhikary et al. [125] and Bhatti et al. [61] in-
dicates that higher impact velocities significantly raise the kinetic en-
ergy imparted to the RC beam, thereby increasing the peak impact force. 
These studies further support the SHAP analysis, which highlights 

Fig. 26. Predictive performance of the developed models.
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impact velocity as one of the dominant parameters influencing response 
force.

Beam breadth also emerges as a key factor in the SHAP analysis, with 
positive contributions clustering around +100. This finding corresponds 
to earlier research by Hughes and Mahmoud [57] and Goldston et al. 
[58], where wider beams were shown to draw higher impact forces due 

to their ability to distribute load over a larger surface area, thus 
increasing the force required for failure. In line with these experimental 
results, the SHAP values in the current study confirm that beam breadth 
significantly affects the peak response force.

In addition to these primary parameters, secondary factors such as 
stirrup ratio, yield strength of steel, and concrete compressive strength 

Fig. 26. (continued).
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Fig. 26. (continued).

Fig. 27. Spider plot for the developed model (a) Training dataset (b) Validation dataset.

Fig. 28. Taylor diagram (a) Training data (b) Validation data.
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also demonstrate noteworthy SHAP values in the present study, though 
their contributions are less pronounced. However, previous studies, 
including those by Zhan et al. [55] and Adhikary et al. [125], found a 
positive correlation between concrete compressive strength and peak 
impact force. They argued that stronger concrete enhances beam stiff-
ness, leading to a higher force absorption capacity during impact—an 

observation that resonates with the moderate SHAP values for 
compressive strength in our model.

Additionally, the stirrup ratio and yield strength of steel, while 
contributing less significantly in this study, have been identified as 
important factors in another research. For instance, Goldston et al. [58] 
and Bhatti et al. [61] emphasized the role of vertical shear reinforcement 
(stirrup ratio) in confining the core concrete and preventing buckling of 
longitudinal reinforcements, which increases the peak impact force. The 
yield strength of steel was similarly found to enhance beam stiffness and 
ultimate load capacity in studies by Adhikary et al. [125] and Fujikake 
et al. [62], further supporting its influence on peak response as observed 
in our SHAP analysis.

In summary, the SHAP analysis in our study corroborates many of the 
findings from previous experimental and numerical studies, reinforcing 
the importance of parameters like beam depth, impact velocity, and 
beam breadth, while also highlighting the secondary yet relevant roles 
of other material and geometric properties. These comparisons empha-
size the robustness of the current model in capturing the key factors 
influencing peak response in RC beams under impact loading, thereby 
reinforcing the scientific value of the research.

Fig. 32 provides a SHAP waterfall plot derived from XGBoost model. 
This plot dissects the prediction, demonstrating how each feature in-
fluences the model’s output, which in this instance is a peak response 
value of 1527.37. The base value, denoted as E[f(x)], is 1019.23, rep-
resenting the average prediction of the model. Each subsequent bar in-
dicates the additive effect of a feature on this base value, cumulatively 
leading to the final prediction. The most significant positive contribu-
tions arise from beam depth and impact velocity. Beam depth (300 mm) 
contributes +233.72 to the peak response, the highest among all fea-
tures. Impact velocity (7 m/s) follows closely, adding +188.45 to the 
prediction. The stirrup ratio, with a value of 0.07 %, also adds a +61.32 
to the response. In contrast, the yield strength of steel (fy), at 379 MPa, 
contributes − 54.71, indicating a negative impact on the response. Beam 
breadth, measuring 200 mm, contributes an additional +53.72, while 
the cross-sectional area of steel and concrete compressive strength 
contribute +15.95 and − 13.33, respectively. The remaining features 
have marginal impact on the overall prediction. It should be kept in 
mind that current values are specific to one set of points in the data and 
the values may change for the other available sets.

7. Conclusion

This study explores the applicability of various machine learning 
techniques for predicting the peak response of reinforced concrete (RC) 
beams under impact loads. The investigation encompasses both indi-
vidual and ensemble methods, including support vector machine, 
Gaussian process regression (GPR), K-nearest neighbor (KNN), gene 
expression programming, random forest, decision tree (DT), ensemble 

Fig. 29. SHAP feature inclusion and exclusion.

Fig. 30. SHAP feature importance plot.

Fig. 31. SHAP violon shaped plot.

Fig. 32. SHAP water fall plot.
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boosted tree, adaptive boosting tree, gradient boosting algorithm, sto-
chastic gradient descent, and scaled conjugate gradient algorithms. Key 
independent parameters for model development included beam width 
and depth, total and clear span, longitudinal and transverse reinforce-
ment ratios, concrete strength, steel yield strength, deflection, and 
impact velocity, mass, and force. 

• All models, except KNN, demonstrated satisfactory generalization 
capabilities, achieving R2 and R values above acceptable thresholds 
(0.8 for R2 and 0.9 for R) across the entire datasets. Statistical errors 
such as RMSE (ranging from 80 to 250), a-10 (ranging from 30 to 70), 
MAE (ranging from 60 to 180), and a-20 (ranging from 20 to 60) 
were within permissible limits. Moreover, the ratio of actual to 
predicted response values averaged close to 1 for all models, though 
occasional deviations—with estimated-to-actual ratios falling below 
0.5 or exceeding 1.5—suggested instances of overfitting and 
underfitting.

• Among the models, GPR emerged as the most effective, exhibiting 
the highest R2 value of 0.95 and the lowest RMSE and MAE values 
(95 and 60, respectively). It also recorded the highest a-10 and a-20 
values. Conversely, the KNN model performed the poorest, with the 
lowest R2 value of 0.75 and relatively high MAE and RMSE values.

• Beam depth, impact velocity, and beam breadth are the dominant 
factors influencing the response force, with mean absolute SHAP 
values of +298.8, +182.94, and +92.02, respectively. These high 
values indicate the substantial impact of these parameters on the 
model’s predictions. While other parameters such as stirrup ratio, 
compressive strength of concrete, and yield strength of steel play 
secondary roles, they still contribute to the response force.

• The SHAP analysis further reveals a direct proportionality of peak 
response with beam depth, width, impact velocity, and yield strength 
of steel. The remaining parameters influence on peak response is less 
clear.

• While the results demonstrate satisfactory performance of machine 
learning models in predicting peak response under impact loading, 
further research could explore integrating hybrid models that 
combine machine learning with physics-based approaches to 
improve interpretability and accuracy. Additionally, extending the 
database to include more diverse case studies involving varying 
material properties and loading conditions would enhance the 
models’ generalization capabilities.

In conclusion, this study provides valuable insights into the appli-
cability of machine learning techniques for predicting the peak response 
of RC beams under impact loads. The findings highlight the effectiveness 
of GPR and underscore the importance of beam depth, impact velocity, 
and beam breadth in determining the response force. These results can 
inform future research and design practices in structural engineering.
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behavior of shear deficient RC beams using nonlinear FEA, Mech. Base. Des. 
Struct. Mach. 52 (2022) 848–866, https://doi.org/10.1080/ 
15397734.2022.2124173.

[6] K.X. Sun Jie, Yongding Tian, Dynamic behavior investigation of reinforced 
concrete bridge under multi-hazard effect of rockfall impact and material 
corrosion, Structures 58 (2023) 105557, https://doi.org/10.1016/j. 
istruc.2023.105557.

[7] X.W. Wang Qinyuan, Wenlong Chen, Experimental study on the impact resistance 
of steel fiber reinforced all-lightweight concrete beams under single and hybrid 
mixing conditions, Buildings 13 (2023) 1251, https://doi.org/10.3390/ 
buildings13051251.

[8] J.L. Sánchez-Haro Ignacio, Capellán, Guillermo, Simplified model to consider 
influence of gravity on impacts on structures: experimental and numerical 
validation, Int. J. Impact Eng. 173 (2023) 104474, https://doi.org/10.1016/j. 
ijimpeng.2022.104474.

[9] H.T. Hao, T. Tung, Huawei Li, Thong M. Pham, Wensu Chen, On the accuracy, 
reliability and controllability of impact tests of RC beams, Int. J. Impact Eng. 157 
(2021) 103979–NA, https://doi.org/10.1016/j.ijimpeng.2021.103979.

[10] P. Foraboschi, Falling mass bearing capacity of reinforced concrete beams, Eng. 
Fail. Anal. 138 (2022) 106396, https://doi.org/10.1016/j. 
engfailanal.2022.106396.

[11] D.Y. Zhao Wei-Jian, Sashi K. Kunnath, Simplified approach for assessing shear 
resistance of reinforced concrete beams under impact loads, ACI Struct. J. 113 
(2016) 747–756, https://doi.org/10.14359/51688617.

[12] S. Abrate, Modeling of impacts on composite structures, Compos. Struct. 51 
(2001) 129–138, https://doi.org/10.1016/s0263-8223(00)00138-0.
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