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Abstract
In practical life, researchers aim to appropriately frame societal problems and challenges to
address and find effective solutions. One efficient method for managing complex real-world
data is rough set theory. Utilizing rough approximation operators, it identifies both confirmed
and possible data obtainable through subsets. Earlier studies have introduced several rough
approximation models inspired by neighborhood systems, which aim to enhance accuracy
and satisfy the axioms of traditional approximation spaces as initially proposed by Pawlak. In
this work, we put forward novel paradigms of rough sets depending on the cardinality rough
neighborhoods and Ideals. These models are a suitable approach to cope with a wide range
of examples including issues related to cardinal numbers, which are frequently encountered
in contexts such as social media engagement, visitor counts at exhibitions, and the evalua-
tion of applicants based on the number of their qualities. We amply investigate the master
features of these paradigms and elucidate the interrelations between them as well as their
connection with previous ones. Then, we tackle these paradigms from a topological view as
an alternative instrument for describing the boundary regions and calculating the accuracy of
data. Moreover, we examine our models’ efficiency in dealing with dengue disease for some
patients and conclude that the proposed rough-set paradigms ameliorate the properties of the
previous approximation spaces. Ultimately, we demonstrate their pros in terms of expanding
the confirmed knowledge obtained from subsets of data and keeping the main characteristics

B Tareq M. Al-shami
tareqalshami83@gmail.com

M. Hosny
Maly@kku.edu.sa

Murad Arar
mradshhada@gmail.com

Rodyna A. Hosny
hrodyna@yahoo.com

1 Department of Mathematics, Sana’a University, Sana’a 1247, Yemen

2 Jadara University Research Center, Jadara University, Irbid, Jordan

3 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi
Arabia

4 Department of Mathematics, College of Sciences and Humanities in Aflaj, Prince Sattam bin
Abdulaziz University, Riyadh, Saudi Arabia

5 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-024-03069-8&domain=pdf
http://orcid.org/0000-0002-8074-1102


  132 Page 2 of 31 T. M. Al-shami et al.

of original paradigms by Pawlak that were violated by forgoing models, as well as list the
deficiencies of the present paradigms.

Keywords Eσ -neighborhood · Rough set · Ideal · Lower and upper approximations ·
Accuracy criteria.

Mathematics Subject Classification Primary 03E72 · 68T30 · 91B06; Secondary 54A05

1 Introduction

1.1 Literature review

Applications of rough sets theory to knowledge discovery involve collecting empirical data
and building classification models from the data; see, Pawlak (2000), Pawlak (1991). In this
theory, each subset is associated with two crisp sets (named lower and upper approximations)
derived from an equivalence relation. To broaden the applications of rough set theory, many
researchers have replaced the equivalence relation with various other types of relations; see,
Abo-Tabl (2011), Dai et al. (2018), Qin et al. (2008), Slowinski and Vanderpooten (2000),
Zhang et al. (2009). This led to replacing equivalence classeswith different forms of neighbor-
hoods, which represent blocks or granular computing to describe information systems. Some
of these neighborhoods are right and left neighborhoods (Yao 1998, 1996), union and inter-
section neighborhoods (Allam et al. 2006, 2005)[17], minimal and maximal neighborhoods
(Al-shami 2023; Dai and Xu 2012), equal neighborhoods (Atef et al. 2020; Mareay 2016),
containment and subset neighborhoods (Al-shami 2021a; Al-shami and Ciucci 2022), car-
dinality neighborhoods (Al-shami et al. 2024a, c), overlapping containment neighborhoods
(Al-shami and Mhemdi 2024), etcetera. Even though some of the new granular computing
inspired by neighborhoods violates some properties of the standard model of Pawlak, the
researchers proved their beneficial to cope with real scenarios in medicine, economics, and
social issues and assist decision-makers in making accurate decisions. That is, they offer an
extended framework free of restrictive conditions concerning the type of binary relations. It is
worth noting that rough sets theory has proven its effectiveness as important tool for describ-
ing information content through a variety of frameworks and applications in multitudinous
domains (see Abdelaziz et al. 2022; Akama et al. 2018; Hosny et al. 2022; Kryszkiewicz
1998; Mareay 2024).

The interconnection of topological and rough set theory was first explored by Wiweger
(1989), who examined the topological aspects of rough sets. This led to a fusion of rough set
and topological theories, becoming a central focus of numerous studies (Abo-Tabl 2013; Al-
shami 2022, 2021b; Lashin et al. 2005; Salama 2010;Wu and Liu 2020)[57]. This interaction
also involved generalizations of topology, such as supra topology (Al-shami and Alsham-
mari 2023), infra topology (Al-shami and Mhemdi 2023), minimal structures (El-Sharkasy
2021)[7], nano-topology (Kaur et al. 2024), and bitopology (Salama 2020). For a comprehen-
sive overview of the contributions investigating the interrelations between rough set theory
and topology, we refer the readers to Singh and Tiwari (2020), Zhang et al. (2016). The
symmetry between interior and closure topological operators with lower and upper approx-
imations, respectively, allows us to use abstract tools to describe knowledge obtained from
information systems and supply us with practical meanings for abstract concepts.

123



Cardinality rough neighborhoods... Page 3 of 31   132 

Ideals in a topological space, defined as a nonempty collection I of subsets of a uni-
verse that is closed under finite union and subsets, were first considered by Kuratowski
(1966). Kandil et al. (2013) applied the concept of ideals with D〈r〉-neighborhoods to gener-
alize Pawlak’s approximations, demonstrating that their results reduce the boundary region
compared to the methods of Allam et al. (2006), and Yao (1998). The significance of this
methodology of studying rough set theory is to enlarge the lower approximations of subsets,
which refer to the confirmed knowledge extracted from the given data. In precise words, it
makes its counterparts of generalized rough set models a special case induced when the ideal
consists of only the empty set. For this reason, some interesting papers studied rough set the-
ory described by ideals, such as (Al-shami et al. 2021; Al-shami and Hosny 2024; Güler et al.
2022; Hosny 2020; Hosny et al. 2022; Mustafa et al. 2023). Generating several generalized
approximation spaces utilizing ideals with some maximal neighborhoods was the purpose of
the articles of Al-shami and Hosny (2022); Hosny and Al-shami (2022)[32]. Al-shami et al.
(2024b) proved the independence of some rough models generated by neighborhoods and
ideals in terms of the size of approximation operators and the value of accuracy measures.
Recently, Al-shami and Hosny have presented a novel technique (Al-shami et al. 2024c),
free from an equivalence relation requirement, for addressing situations that focus on the
cardinality number of Dσ -neighborhoods, such as those encountered in social media or in
categorizing applicants based on the number of their qualities.

1.2 Gap of research

It has been defined several sorts of neighborhood systems with different purposes such as
rescinding the condition of an equivalence relation, increasing the accuracy measures, pre-
serving the properties of Pawlak’s lower and upper approximations, ect. However, these
types of neighborhood systems do not pay attention to the cardinality numbers of neigh-
borhoods, which is an important factors for some practical situations and an alternative
tool to describe the relations between neighborhoods when the other types fail in analysis
data of information systems. Examples include issues related to cardinal numbers, which
are frequently encountered in contexts such as social media engagement, visitor counts
at exhibitions, and the evaluation of applicants based on the number of their qualities.
To illustrate this subject, consider the relation L = {(p1,p1), (p1,p4), (p3,p1),(p3,p5),
(p3,p8), (p4,p1),(p4,p3), (p4,p8), (p5,p5), (p6,p6), (p7,p2), (p7,p6),(p8,p2)} on the
set X = {p j : j∈ {1, 2, 3, 4, 5, 6, 7, 8}}. Since Dr (p) = {e ∈ X : p L e}, it follows
that Dr (p1) = {p1,p4}, Dr (p2) = ∅, Dr (p3) = {p1,p5,p8}, Dr (p4) = {p1,p3,p8},
Dr (p5) = {p5}, Dr (p6) = {p6}, Dr (p7) = {p2,p6}, and Dr (p8) = {p2}. Now, we have the
following remarks which represent drawbacks of the previous systems of neighborhoods:

(i) The rough set models initiated by granules of Dr -neighborhoods (Yao 1996) and ξr -
neighborhoods [17] violate the property states that the lower approximation of a set is
contained in it and a set is contained in its upper approximation. In addition, we should
update the formula of accuracy measures in these models to avoid undefined cases
obtained when the upper approximation is empty, or illogical cases obtained when the
upper approximation of a set is a proper subset of its lower approximation.

(ii) The granules of Cr -neighborhoods (Al-shami 2021a) and Sr -neighborhoods (Al-
shami and Ciucci 2022) produce the trivial case of most elements of X; that is,
Cr (p j ) = {p2,p j } for each j = 1, 4, 5, 6, 8 andSr (p j ) = {p j } for each j = 1, 3, 4, 7,
which decreases our reliability of the made decision depending on these systems of
neighborhoods.
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(iii) The granules of �r -neighborhoods (Atef et al. 2020; Mareay 2016) are a singleton
set for each element; that is, �r (p j ) = {p j } for each j , which impedes extraction
knowledge from the information systems under consideration and return us to the crisp
case.

On the other hand, it can be noted that Er (p1) = Er (p7) = {p1,p7}, Er (p2) = {p2},
Er (p3) = Er (p4) = {p3,p4}, and Er (p5) = Er (p6) = Er (p8) = {p5,p6,p8} provide a
non trivial description allowing us to see the variety among the elements of sample under
studyX. Moreover, suppose the comparison between some objects (i.e., candidates, students,
applicants) is conducted according to the number of skills they have. In that case, the cardi-
nality neighborhoods (Al-shami et al. 2024c) will be the best instrument to exemplify this
situation logically.

1.3 Manuscript’s design

We layout this paper in the following way. In the next section, we invoke the previous kind of
roughneighborhoods and themain concepts related to themaiming to clarifywhyweneed this
study. Then, we divide Sect. 3 into two subsections including two fresh approximation spaces
inspired by cardinality neighborhoods and ideals. In Sect. 3.1, we introduce a novel type of
approximation space and scrutinize its main properties. To avoid failures of the preceding
model regarding illogical characteristics and undefined cases, we update the previous model
and reveal the advantages of the recent one in Sect. 3.2. Investigation of the proposed rough
set models from a topological view and looking at their relationships with previous models
and their counterparts introduced in Al-shami et al. (2024c) is the goal of Sect. 4. In Sect. 5,
we prove the efficiency of the given models in dealing with a medical situation concerning
dengue disease and point out how our technique helps improve decision-making and how
we utilize a topological approach inspired by this technique to identify the most significant
attributes or symptoms for making decisions. In the end, we discuss the advantages and
disadvantages of the present models and epitomize the main contributions of this work with
a plan for future work in Sects. 6 and 7, respectively.

2 Preliminaries

We dedicated this section to recalling the main definitions and results, while also elucidating
the benefits of hybridizing ideals with cardinal rough neighborhoods to maximize accuracy.

2.1 Traditional approximation space

Definition 1 (Pawlak 1991, 1982) Let X be a nonempty finite set, known as a universe. A
subclass L of X × X is called a binary relation L on X. We write aLx to refer to (a, x) is an
element of L. We name a relation L on X an equivalence if it is reflexive (i.e aLa for any
a ∈ X), symmetric (i.e. aLx ⇐⇒ xLa), and transitive (i.e aLywhen aLx and xLy. Moreover,
a relation satisfies aLx or xLa for all a, x ∈ X is named a comparable relation.

Definition 2 (Pawlak 1991, 1982) If L is an equivalence relation on X and X/L denotes the
set of all equivalence classes generated by L. Then, the lower and upper approximations of
W ⊆ X are respectively given by:

L(W ) = ∪{S ∈ X/L | S ⊆ W }.
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L(W ) = ∪{S ∈ X/L | S ∩ W �= ∅},
The term of traditional approximation space is given for the pair (X,L) where L is an

equivalence. The relation between the lower and upper approximations is the criteria for
characterizing a subset as rough or exact. That is, a subset W of (X,L) is named exact (or
definable) providing that the equality between L(W ) and L(W ) exists. Otherwise, a subset
is named rough.

The main characteristics and properties of the traditional approximation space are demon-
strated in the following proposition.

Proposition 1 (Pawlak 1991, 1982) Let (X,L) represent a traditional approximation space
and let S,W ⊆ X. Then, the subsequent results hold true:

(L1) L(S) ⊆ S (U1) S ⊆ L(S)

(L2) L(∅) = ∅ (U2) L(∅) = ∅
(L3) L(X) = X (U3) L(X) = X

(L4) I f S ⊆ W , then L(S) ⊆ L(W ) (U4) I f S ⊆ W , then L(S) ⊆ L(W )

(L5) L(S ∩ W ) = L(S) ∩ L(W ) (U5) L(S ∩ W ) ⊆ L(S) ∩ L(W )

(L6) L(S) ∪ L(W ) ⊆ L(S ∪ W ) (U6) L(S ∪ W ) = L(S) ∪ L(W )

(L7) L(Sc) = (L(S))c (U7) L(Sc) = (L(S))c

(L8) L(L(S)) = L(S) (U8) L(L(S)) = L(S)

(L9) L((L(S))c) = (L(S))c (U9) L((L(S))c) = (L(S))c

(L10) L(W ) = W ,∀W ∈ X/L (U10) L(W ) = W ,∀W ∈ X/L

The traditional approximation space (Pawlak 1991, 1982) has been generalized using
various methodologies, with research focusing on the extent to which the validity of the
properties outlined in the aforementioned proposition is preserved within these methodolo-
gies. Unfortunately, some properties have been found to be completely or partially lost. It is
worth noting that retaining as many of these properties as possible is considered a desirable
attribute for the proposed methodologies.

The next two criteria were introduced to numerically describe a rough set.

Definition 3 (Pawlak 1991, 1982) Let (X,L) represent a traditional approximation space
and letW ⊆ X. The criteria ofA-accuracy andR-roughness ofW are respectively computed
by:

A(W ) = | L(W ) |
| L(W ) | , | L(W ) |�= 0.

R(W ) = 1 − A(W ).

In many positions, the equivalence relations are not attainable. As a result, the traditional
approach has been extended by utilizing relations that are weaker than equivalence relations.

2.2 Kinds of�-neighborhood space

Definition 4 (Abo-Tabl 2011; Allam et al. 2006; Salama and Abd El-Monsef 2011; Yao
1998, 1996) The σ -neighborhoods of v ∈ X, symbolized by Dσ (v), are identified under an
arbitrary relation L on X for each σ ∈ {r , l, 〈r〉, 〈l〉, i, u, 〈i〉, 〈u〉} as following:
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(i) Dr (v) = {e ∈ X : v L e}.
(i i) Dl(v) = {e ∈ X : e L v}.
(i i i)

D〈r〉(v) =
{ ⋂

v∈Dr (e)
Dr (e) : ∃ Dr (e) involving v

∅ : Elsewise

(iv)

D〈l〉(v) =
{ ⋂

v∈Dl (e)
Dl(e) : ∃ Dl(e) involving v

∅ : Elsewise

(v) Di (v) = Dr (v)
⋂Dl(v).

(vi) Du(v) = Dr (v)
⋃Dl(v).

(vi i) D〈i〉(v) = D〈r〉(v)
⋂D〈l〉(v).

(vi i i) D〈u〉(v) = D〈r〉(v)
⋃D〈l〉(v).

From this point onward, unless stated otherwise, σ will be assumed to be an element of
the set {r , l, 〈r〉, 〈l〉, i, u, 〈i〉, 〈u〉}.
Definition 5 (Salama and Abd El-Monsef 2011) Consider ζσ denote a mapping from X to
its power set 2X that associates every element v from X with its σ -neighborhood in 2X.
Consequently, the triple (X,L, ζσ ) is termed a σ -neighborhood space, abbreviated as σ -NS.

The previously mentioned sorts of neighborhoods were employed to develop new cat-
egories of lower and upper approximations, along with their measures of accuracy (or
roughness). To improve the properties of approximations and optimize accuracy measures,
extensive comparisons were made among these sorts of neighborhoods.

Definition 6 (Abo-Tabl 2011;Allam et al. 2006; Salama andAbdEl-Monsef 2011;Yao 1998,
1996) The lower and upper approximations of a subset W in relative to Dσ -neighborhoods
are respectively computed by:

HDσ (W ) = {v ∈ X : Dσ (v) ⊆ W },
HDσ (W ) = {v ∈ X : Dσ (v) ∩ W �= ∅}.

Definition 7 (Abo-Tabl 2011;Allam et al. 2006; Salama andAbdEl-Monsef 2011;Yao 1998,
1996) The ADσ -accuracy and RDσ -roughness measures of a nonempty set W in relative to
Dσ -neighborhoods are respectively computed by

ADσ (W ) = | HDσ (W ) ∩ W |
| HDσ (W ) ∪ W | , and

RDσ (W ) = 1 − ADσ (W ).

Definition 8 (Pawlak 1991, 1982) Consider two relationsL1 andL2 onX such thatL1 ⊆ L2.
We say that the approximation space induced by D-neighborhoods satisfies the property of
monotonicity if ADσ1(W ) ≥ ADσ2(W ).

Definition 9 (Al-shami 2021a) The σ -containment neighborhoods of v ∈ X, symbolized by
Cσ (v), are identified under an arbitrary relation L on X for each σ as following:

(i) Cr (v) = {e ∈ X : Dr (e) ⊆ Dr (v)}.
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(ii) Cl(v) = {e ∈ X : Dl(e) ⊆ Dl(v)}.
(iii) Ci (v) = Cr (v) ∩ Cl(v).
(iv) Cu(v) = Cr (v) ∪ Cl(v).
(v) C〈r〉(v) = {e ∈ X : D〈r〉(e) ⊆ D〈r〉(v)}.
(vi) C〈l〉(v) = {e ∈ X : D〈l〉(e) ⊆ D〈l〉(v)}.
(vii) C〈i〉(v) = C〈r〉(v) ∩ C〈l〉(v).
(viii) C〈u〉(v) = C〈r〉(v) ∪ C〈l〉(v).

Definition 10 (Al-shami andCiucci 2022)Theσ -subset neighborhoodsofv ∈ X, symbolized
by Sσ (v), are identified under an arbitrary relation L on X for each σ as following:

(i) Sr (v) = {e ∈ X : Dr (v) ⊆ Dr (e)}.
(ii) Sl(v) = {e ∈ X : Dl(v) ⊆ Dl(e)}.
(iii) Si (v) = Sr (v) ∩ Sl(v).
(iv) Su(v) = Sr (v) ∪ Sl(v).
(v) S〈r〉(v) = {e ∈ X : D〈r〉(v) ⊆ D〈r〉(e)}.
(vi) S〈l〉(v) = {e ∈ X : D〈l〉(v) ⊆ D〈l〉(e)}.
(vii) S〈i〉(v) = S〈r〉(v) ∩ S〈l〉(v).
(viii) S〈u〉(v) = S〈r〉(v) ∪ S〈l〉(v).

Definition 11 (Atef et al. 2022; Mareay 2016) The σ -equality neighborhoods of v ∈ X,
symbolized by �σ (v), are identified under an arbitrary relationL onX for each σ as following:

(i) �r (v) = {e ∈ X : Dr (v) = Dr (e)}.
(i i) �l(v) = {e ∈ X : Dl(v) = Dl(e)}.
(i i i) �i (v) = �r (v) ∩ �l(v).
(iv) �u(v) = �r (v) ∪ �l(v).
(v) �〈r〉(v) = {e ∈ X : D〈r〉(v) = D〈r〉(e)}.
(vi) �〈l〉(v) = {e ∈ X : D〈l〉(v) = D〈l〉(e)}.
(vi i) �〈i〉(v) = �〈r〉(v) ∩ �〈l〉(v).
(vi i i) �〈u〉(v) = �〈r〉(v) ∪ �〈l〉(v).

2.3 Cardinality�-neighborhood systems

According to any binary relation, this section is consecrated to introduce the notion of car-
dinality neighborhoods. The study of cardinality neighborhoods targets to handle certain
scenarios that are affected by the number of members belonging toDσ -Neighborhoods. Their
main properties will be explored and the conditions under which some of them are identical
will be determined. To support the gained results and relationships, illustrative examples are
included.

For each σ , |Dσ (.)| denotes the cardinality of Dσ (.).

Definition 12 (Al-shami et al. 2024c) Theσ -cardinality neighborhoods of v ∈ X, symbolized
by Eσ (v), are identified under an arbitrary relation L on X for each σ as following:

(i) Er (v) = {e ∈ X : |Dr (v)| = |Dr (e)|}.
(i i) El(v) = {e ∈ X : |Dl(v)| = |Dl(e)|}.
(i i i) Ei (v) = Er (v) ∩ El(v).
(iv) Eu(v) = Er (v) ∪ El(v).
(v) E〈r〉(v) = {e ∈ X : |D〈r〉(v)| = |D〈r〉(e)|}.
(vi) E〈l〉(v) = {e ∈ X : |D〈l〉(v)| = |D〈l〉(e)|}.
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(vi i) E〈i〉(v) = E〈r〉(v) ∩ E〈l〉(v).
(vi i i) E〈u〉(v) = E〈r〉(v) ∪ E〈l〉(v).

Proposition 2 (Al-shami et al. 2024c)

(i) Ei ⊆ Er ∩ El ⊆ Er ∪ El ⊆ Eu, and E〈i〉 ⊆ E〈r〉 ∩ E〈l〉 ⊆ E〈r〉 ∪ E〈l〉 ⊆ E〈u〉.
(iii) If L is a symmetric relation, then all Eσ are equal.

Proposition 3 (Al-shami et al. 2024c)

(i) v ∈ Ei (a) iff |Dr (v)| = |Dr (a)| and |Dl(v)| = |Dl(a)|.
(ii) v ∈ Eu(a) iff |Dr (v)| = |Dr (a)| or |Dl(v)| = |Dl(a)|.
(iii) v ∈ E〈i〉(a) iff |D〈r〉(v)| = |D〈r〉(a)| and |D〈l〉(v)| = |D〈l〉(a)|.
(iv) v ∈ E〈u〉(a) iff |D〈r〉(v)| = |D〈r〉(a)| or |D〈l〉(v)| = |D〈l〉(a)|.
Corollary 1 (Al-shami et al. 2024c) If L is a symmetric relation, then:

(i) Ei (a) = {e ∈ X : |Di (a)| = |Di (e)|}.
(ii) E〈i〉(a) = {e ∈ X : |D〈i〉(a)| = |D〈i〉(e)|}.
(iii) Eu(a) = {e ∈ X : |Du(a)| = |Du(e)|}.
(iv) E〈u〉(a) = {e ∈ X : |D〈u〉(a)| = |D〈u〉(e)|}.
Proposition 4 (Al-shami et al. 2024c)Consider (X,L, ζσ )as aσ -N S. If v ∈ X, thenEσ (v) �=
∅ for each σ .

Proposition 5 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -N S and v ∈ X. Then,
v ∈ Eσ (a) iff a ∈ Eσ (v), for each σ .

Proposition 6 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -N S. If v ∈ Eσ (a), a ∈
Eσ (x), then v ∈ Eσ (x), in the cases of σ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
Corollary 2 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -N S and v ∈ X. Then, v ∈
Eσ (a) iff Eσ (v) = Eσ (a), in the cases of σ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
Corollary 3 (Al-shami et al. 2024c) In the cases of σ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}, the relation L

defined by aLv ⇐⇒ a ∈ Eσ (v) is an equivalence. In other words, the cardinality neighbor-
hoods of these cases form a partition for X.

Corollary 4 (Al-shami et al. 2024c) The cardinality neighborhoods form a partition for X for
every σ under a symmetric relation

Proposition 7 (Al-shami et al. 2024c) Eσ = E〈σ 〉 for σ ∈ {r , l, i, u}, if L is a preorder (i.e.,
reflexive, transitive) relation on X.

Proposition 8 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -N S. If v ∈ X, then �σ (v) ⊆
Eσ (v), for each σ .

Definition 13 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -NS. Based on cardi-
nality neighborhoods, the Eσ -lower approximation HEσ

(W ), and Eσ -upper approximation
HEσ (W ) of a set W , assigned as:

HEσ
(W ) = {a ∈ X : Eσ (a) ⊆ W }, and

HEσ (W ) = {a ∈ X : Eσ (a) ∩ W �= ∅}
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Definition 14 (Al-shami et al. 2024c) The Eσ -boundary, Eσ -positive, and Eσ -negative
regions of a subset W within a σ -NS (X,L, ζσ ) are identified respectively as:

BEσ
(W ) = HEσ (W ) \ HEσ

(W )

PEσ
(W ) = HEσ

(W ),

NEσ
(W ) = X \ HEσ (W )

Definition 15 (Al-shami et al. 2024c) The Eσ -accuracy andEσ -roughness criteria ofW �= ∅
of a σ -NS (X,L, ζσ ) are respectively endowed by:

AEσ
(W ) = | HEσ

(W ) |
| HEσ (W ) | , | H

Eσ (W ) |�= 0.

REσ
(W ) = 1 − AEσ

(W ).

Theorem 1 (Al-shami et al. 2024c) Consider (X,L, ζσ ) as a σ -N S. Based on cardinality
neighborhoods, the family ΩEσ

= {W ⊆ X: ∀ v ∈ W, Eσ (v) ⊆ W } constitutes a topology
on X, for each σ ,

Lemma 1 (Al-shami et al. 2024c) Let (X,L, ζσ ) be a σ -NS and v ∈ X. If σ ∈
{r , 〈r〉, l, 〈l〉, i, 〈i〉}, then Eσ (v) is ΩEσ -open set.

Definition 16 A non-empty class I ⊆ 2X is defined as an ideal on X providing that it is
closed under subset and finite union.

3 Novel rough-set paradigms generated by ideals and cardinality
neighborhoods

This section is devoted to define and study novel rough approximation spaces directly gener-
ated from cardinality neighborhoods and ideals, which are used to specify new regions and
accuracy and roughness criteria of any set.

3.1 First category of rough-set paradigms

This part is allocated to display new paradigms of rough sets induced by the notions of
ideals and cardinality neighborhoods. We show that these paradigms aggrandize the lower
approximation and minify the upper approximation compared with the preceding models of
rough sets. On the other hand, we debate the deficiencies of the current models.

Definition 17 Consider (X,L, ζσ ) as a σ -NS and I is an ideal on X. Regarding to ideals
and cardinality neighborhoods, the duo (IH̃Eσ

(W ), IH̃Eσ (W )) denotes the lower and upper
approximations of a subset W , which are respectively computed by:

IH̃Eσ
(W ) = {a ∈ X : Eσ (a) \ W ∈ I},

IH̃Eσ (W ) = {a ∈ X : Eσ (a) ∩ W /∈ I}
Remark 1 If I = {∅} in Definition 17, the proposed approach identifies with the method
outlined in Definition 4.1 of Al-shami et al. (2024c). Consequently, the current study can be
regarded as a genuine generalization of the work presented in Al-shami et al. (2024c).
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Next, we examine the features of IH̃Eσ
(), IH̃Eσ () for any given set, as detailed in the

subsequent results.

Theorem 2 Let I be an ideal on a σ -N S (X,L, ζσ ). If S,W ⊆ X, then for each σ the next
statements hold true.

(i) IH̃Eσ
(X) = X and IH̃Eσ (∅) = ∅.

(ii) If S ⊆ W, then IH̃Eσ
(S) ⊆ IH̃Eσ

(W ) and IH̃Eσ (S) ⊆ IH̃Eσ (W ).

(iii) IH̃Eσ
(S∩W )= IH̃Eσ

(S) ∩ IH̃Eσ
(W ) and IH̃Eσ (S∪W )= IH̃Eσ (S) ∪ IH̃Eσ (W ).

(iv) IH̃Eσ
(Wc) = (IH̃Eσ (W ))c and IH̃Eσ (Wc) = (IH̃Eσ

(W ))c.

(v) If Wc ∈ I, then IH̃Eσ
(W ) = X and IH̃Eσ (Wc) = ∅.

(vi) IH̃Eσ
(IH̃Eσ

(W )) ⊇ IH̃Eσ
(W ) and IH̃Eσ (IH̃Eσ (W )) ⊆ IH̃Eσ (W ), for every

σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.
(vii) IH̃Eσ

(Eσ (e)) ⊇ Eσ (e), for every σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

Proof (i) IH̃Eσ
(X) = {a ∈ X : Eσ (a)\X = ∅ ∈ I} = X and IH̃Eσ (∅) = {a ∈ X :

Eσ (a) ∩ ∅ ∈ I} = ∅.
(i i) Obvious.

(i i i) It follows from (i i) that IH̃Eσ
(S ∩W ) ⊆ IH̃Eσ

(S)∩ IH̃Eσ
(W ).

Conversely, let a ∈ IH̃Eσ
(S) ∩ IH̃Eσ

(W ). Then a ∈ IH̃Eσ
(S) and a ∈ I H̃Eσ

(W )

whichmeans that IEσ (a)\S ∈ I and I
Eσ (a)\W ∈ I. Therefore, IEσ (a)\(S ∩W ) ∈

I. Thus, a ∈ IH̃Eσ
(S ∩W ). Hence, IH̃Eσ

(S) ∩ IH̃Eσ
(W ) ⊆ IH̃Eσ

(S ∩W ).

In the same way it can be proved, IH̃Eσ (S ∪ W ) = IH̃Eσ (S) ∪ IH̃Eσ (W ).

(iv) a ∈ IH̃Eσ
(Wc) ⇐⇒ Eσ (a)\Wc ∈ I
⇐⇒ Eσ (a) ∩ W ∈ I
⇐⇒ a /∈ IH̃Eσ (W )

⇐⇒ a ∈ ( IH̃Eσ (W ))c.
Similarly, it can be proven IH̃Eσ (Wc) = (IH̃Eσ

(W ))c.

(v) LetWc ∈ I. Then for any a ∈ X,Eσ (a)\W = Eσ (a)∩Wc ∈ I. Hence, IH̃Eσ
(W ) =

X. By using (iv), IH̃Eσ (Wc) = ∅.
(vi) Suppose σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}. We will prove only IH̃Eσ (IH̃Eσ (W )) ⊆

IH̃Eσ (W ). Let a ∈ IH̃Eσ (IH̃Eσ (W )), thenEσ (a)∩ IH̃Eσ (W ) /∈ I. Hence,Eσ (a)∩
IH̃Eσ (W ) �= ∅ i.e there exists y ∈ X s.t. y ∈ Eσ (a), and y ∈ IH̃Eσ (W ). This leads

to that Eσ (y) ∩ W /∈ I. Regarding to Corollary 2, Eσ (y) = Eσ (a). Consequently,

Eσ (a) ∩ W /∈ I and so a ∈ IH̃Eσ (W )

(vi i) Supposeσ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}. Let a ∈ Eσ (e). According toCorollary 2,Eσ (e) =
Eσ (a). Then, Eσ (a) \ Eσ (e) = ∅ ∈ I and so a ∈ IH̃Eσ

(Eσ (e)). Consequently,
Eσ (e) ⊆ IH̃Eσ

(Eσ (e)).
��

In light of points (i i) from Theorem 2, the following corollary is evident.
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Table 1 Eσ -neighborhoods for
members of X

a x y v

Er {a, y} {x} {a, y} {v}
El {a} {x} {y, v} {y, v}
Ei {a} {x} {y} {v}
Eu {a, y} {x} {a, y, v} {y, v}
E〈r〉 {a} {x, v} {y} {x, v}
E〈l〉 {a} {x, y} {x, y} {v}
E〈i〉 {a} {x} {y} {v}
E〈u〉 {a} {x, y, v} {x, y} {x, v}

Corollary 5 Let I be an ideal on a σ -N S (X,L, ζσ ). If S,W ⊆ X, then the following
statements hold for each σ :

(i) IH̃Eσ
(S) ∪ IH̃Eσ

(W ) ⊆ IH̃Eσ
(S ∪ W ).

(ii) IH̃Eσ (S ∩ W ) ⊆ IH̃Eσ (S) ∩ IH̃Eσ (W ).

Proposition 9 Let I be an ideal on a σ -N S (X,L, ζσ ). If W ⊆ X, then

(i) IH̃Eu(W ) ⊆ IH̃Er (W )∩ IH̃El(W ) ⊆ IH̃Er (W )∪ IH̃El(W ) ⊆ IH̃Ei (W ).

(ii) IH̃Ei (W ) ⊆ IH̃Er (W )∩ IH̃El(W ) ⊆ IH̃Er (W )∪ IH̃El(W ) ⊆ IH̃Eu(W ).

(iii) IH̃E〈u〉(W ) ⊆ IH̃E〈r〉(W )∩ IH̃E〈l〉(W ) ⊆ IH̃E〈r〉(W )∪ IH̃E〈l〉(W ) ⊆ IH̃E〈i〉(W ).

(iv) IH̃E〈i〉(W ) ⊆ IH̃E〈r〉(W )∩ IH̃E〈l〉(W ) ⊆ IH̃E〈r〉(W )∪ IH̃E〈l〉(W ) ⊆ IH̃E〈u〉(W ).

Proof Follows from (i) of Proposition 2. ��
Proposition 10 Let I be an ideal on a σ -N S (X,L, ζσ ) s.t. L is a symmetric relation. Then,
for every W ⊆ X, all IH̃Eσ (W ) (IH̃Eσ (W )) are equal.

Proof Follows from (ii) of Proposition 2. ��
We furnish the next example to show that:

1) the converse of items (ii), (vi), and (vii) of Theorem 2 fails in general,

2) the converse of Corollary 5 is not always true,

3) the subsets IH̃Eσ
(Eσ (e)) and Eσ (e) are independent of each other in the cases of σ ∈

{u, 〈u〉},
4) the converse of Proposition 9 need not be true, and

5) some properties of Pawlak’s paradigm are violated in the current models.

Example 1 ConsiderL = {(a, x), (x, x), (x, y), (y, v)} is a binary relation onX = {a, x, y, v}.
Then, in Table 1, we compute the cardinality neighborhoods for all elements of X.

If I = {∅, {y}}, then for each σ , the IH̃Eσ
(W ), IH̃Eσ (W ) are computed in Tables 2 and

3.
Now, it can be seen the following:
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(i) IH̃Eσ
({y}) ⊆ IH̃Eσ

({x}) and IH̃Eσ ({y}) ⊆ IH̃Eσ ({x}) for each σ , whereas {x} and
{y} are independent of each other with respect to inclusion relation.

(ii) IH̃E〈r〉({x} ∪ {v}) = {x, y, v} �
IH̃E〈r〉({x}) ∪ IH̃E〈r〉({v}) = {y}.

(iii) IH̃E〈r〉({x}) ∩ IH̃E〈r〉({v}) = {x, v} �
IH̃E〈r〉({x} ∩ {v}) = ∅.

The main advantages of the current models, compared to the preceding models introduced
in Al-shami et al. (2024c), are to enlarge the lower approximation and downsize the upper
approximation of subsets, which leads to minimize the boundary region. The next result
proves this matter.

Theorem 3 Let I be an ideal on a σ -N S (X,L, ζσ ) and let S ⊆ X. We have the subsequent
relations for each σ .

(i) HEσ
(S) ⊆ IH̃Eσ

(S),

(ii) IH̃Eσ (S) ⊆ HEσ (S).

Proof Let e ∈ HEσ
(S). Then, Eσ (e) ⊆ S. So Eσ (e) \ S = ∅ ∈ I. Now, we have e ∈

IH̃Eσ
(S). Hence, HEσ

(S) ⊆ IH̃Eσ
(S). One can prove the second statement following a

similar argument. ��
To clarify that the converse of the aforementioned theorem fails, we give the next example.

Example 2 In Example 1, take S = {a} and W = {y}. Then, HEr (S) = ∅, whereas
IH̃Er (S) = {a, y}. Also, IH̃Er (W ) = ∅, whereas HEσ (W ) = {a, y}.

In what follows, we demonstrate some failures of the models given herein.

Remark 2 Let I be an ideal on a σ -NS (X,L, ζσ ) and S,W ⊆ X. The next statements
demonstrate some drawbacks of the current rough set models.

(i) IH̃Eσ
(W ) � W �

IH̃Eσ (W ).

(i i) IH̃Eσ
(∅) �= ∅.

(i i i) IH̃Eσ (X) �= X.

(iv) IH̃Eσ
( IH̃Eσ

(W )) �= IH̃Eσ
(W ) in the cases of σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(v) IH̃Eσ
( IH̃Eσ

(W )) �
IH̃Eσ

(W ) in the cases of σ ∈ {u, 〈u〉}.
(vi) Let e ∈ X. Then IH̃Eσ

(Eσ (e)) � Eσ (e) in the cases of σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.
(vi i) Let e ∈ X. Then IH̃Eσ

(Eσ (e)) � Eσ (e) in the cases of σ ∈ {u, 〈u〉}.
Example 3 illustrates property (i) of Remark 2.

Example 3 Continued in Example 1. Let I = {∅, {y}}, and σ = r .

(i) If W = {a, x, v}, then IH̃Er (W ) = X � W ,

(i i) If W = {x, y}, then W � {x} = IH̃Er (W ).

Example 4 illustrates properties (i i), (i i i), (vi) of Remark 2.

Example 4 Continued in Example 1. Let I = {∅, {y}}, and σ = i .
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(i) IH̃Ei (∅) = {y} �= ∅.
(i i) IH̃Ei (X) = {a, x, v} �= X.

(i i i) IH̃Ei ({a}) = {a, y} � {a}, IH̃Ei ({x}) = {x, y} � {x}, IH̃Ei ({v}) = {y, v} � {v}.
Hence, for each e ∈ X, IH̃Ei (Ei (e)) � Ei (e).

Example 5 illustrates properties (v) of Remark 2.

Example 5 Continued in Example 1. Let I = {∅, {a}}, and σ = u. If W = {x, y}, then
IH̃Eu (W ) = {a, x} � {x} = IH̃Eu (

IH̃Eu (W )).

Example 6 illustrates properties (vi i) of Remark 2.

Example 6 Continued in Example 1. Let I = {∅, {y}}, and σ = u. Manifestly
IH̃Eu (Eu(a)) = {a} � {a, y} = Eu(a), and IH̃Eu (Eu(v)) = {v} � {y, v} = Eu(v) Hence,
for each e ∈ X, IH̃Eu (Eu(e)) � Eu(e).

One can give the proof of the next result easily, so we omit the proof.

Proposition 11 Let I,J be ideals on a σ -N S (X,L, ζσ ), and W ⊆ X. If I ⊆ J , then the
following statements hold for each σ :

(i) IH̃Eσ
(W ) ⊆ J H̃Eσ

(W ),

(ii) J H̃Eσ (W ) ⊆ IH̃Eσ (W ),

Remark 3 Continued in Example 1. Let I = {∅, {y}},J = {∅, {x}, {y}, {x, y}}.
(i) If W = {a, v}, then J H̃Er (W ) = X � {a, y, v} = IH̃Er (W ),

(i i) If W = {x, y}, then IH̃Er (W ) = {x} � ∅ = J H̃Er (W ),

3.2 Second category of rough-set paradigms

In the first category of rough-set paradigms, we face some shortcomings and undesirable
properties such as

– The property says that IH̃Eσ
(W ) ⊆ W ⊆ IH̃Eσ (W ) does not hold for some subsets,

which leads to illogical characterizations of those rough set models or suspicion of the
knowledge extracted from them; especially, when IH̃Eσ

(∅) �= ∅ and IH̃Eσ (X) �= X.

– We cannot use the original formula of accuracy measure since it produces values greater

than one or undefined case for some subsets, i.e. in example 1 we have
|IH̃Ei ({a,x,y})|
|IH̃Ei ({a,x,y})| =

3
2 > 1, and

|IH̃Ei (∅)|
|IH̃Ei (∅)| = 1

0 . Such cases are meaningless and useless for practical issues.

To fix these failures and keep the advantages of the first rough-set paradigm in connec-
tion with increasing lower approximation and maximizing upper approximation, we do this
subsection of manuscript. Let us begin with the following definition.

Definition 18 Let I be an ideal on a σ -NS (X,L, ζσ ). Based on ideals and cardinality neigh-
borhoods, the I

Eσ -lower approximation IHEσ
(), and I

Eσ -upper approximation IHEσ () of
W ⊆ X are respectively computed by:

IHEσ
(W ) =I H̃Eσ

(W ) ∩ W ,

IHEσ (W ) =I H̃Eσ (W ) ∪ W
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Definition 19 The I
Eσ -boundary, I

Eσ -positive, and I
Eσ -negative regions of a subset W

within a σ -NS (X,L, ζσ ) with ideal I on X are respectively given by

I
BEσ

(W ) =I HEσ (W ) \I HEσ
(W )

I
PEσ

(W ) =I HEσ
(W ),

I
NEσ

(W ) = X \I HEσ (W ).

Numerically, rough sets can be described with respect to Eσ -neighborhoods and ideals by
next measures.

Definition 20 The I
Eσ -accuracy and I

Eσ -roughness criteria ofW �= ∅ of a σ -NS (X,L, ζσ )

with ideal I on X are respectively given by

IAEσ
(W ) = |I HEσ

(W ) |
|I HEσ (W ) | , |

I HEσ (W ) |�= 0.

IREσ
(W ) = 1 −I AEσ

(W ).

In the following theorem, description of Pawlak’s properties according to the I
Eσ -lower

and I
E

σ -upper approximations will be examined.

Theorem 4 Let I be an ideal on a σ -N S (X,L, ζσ ) and let S,W ⊆ X. Then, we have the
subsequent properties.

(i) IHEσ
(W ) ⊆ W ⊆ IHEσ (W ).

(ii) IHEσ
(∅) = ∅, and IHEσ (∅) = ∅.

(iii) IHEσ
(X) = X, and IHEσ (X) = X.

(iv) If S ⊆ W, then IH̃Eσ
(S) ⊆ IH̃Eσ

(W ) and IH̃Eσ (S) ⊆ IH̃Eσ (W ).

(v) IHEσ
( IHEσ

(W )) = IHEσ
(W ) in the cases of σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(vi) IHEσ
( IHEσ

(W )) ⊆ IHEσ
(W ) in the cases of σ ∈ {u, 〈u〉}.

(vii) Let e ∈ X. Then IHEσ
(Eσ (e)) = Eσ (e) in the cases of σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}.

(viii) Let e ∈ X. Then IHEσ
(Eσ (e)) ⊆ Eσ (e) in the cases of σ ∈ {u, 〈u〉}.

(ix) HEσ (HEσ (W )) = HEσ (W ) in the cases of σ ∈ {r , 〈r〉, l, 〈l〉, i, 〈i〉}.
(x) HEσ (HEσ (W )) ⊇ HEσ (W ) in the cases of σ ∈ {u, 〈u〉}.
(xi) IHEσ (S)∩ IHEσ (W ) = IHEσ (S ∩ W ) in the cases of σ .

(xii) IHEσ (S)∪ IHEσ (W ) = IHEσ (S ∪ W ) in the cases of σ .

Proof According to Definition 18, the validation of (i), (i i), (i i i), (iv), (xi), (xii) is facile.

(v) Suppose that σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}. Using properties (i) and (iv) of the current
theorem,

IHEσ
( IHEσ

(W )) ⊆ IHEσ
(W ). The other direction is proved using (vi) of Theorem

2. Hence, IHEσ
( IHEσ

(W )) = IHEσ
(W ).

(vi) Suppose that σ ∈ {u, 〈u〉}. Using properties (i) and (iv) of the current theorem, IHEσ
(

IHEσ
(W )) ⊆ IHEσ

(W ).
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(vi i) Suppose that σ ∈ {r , l, i, 〈r〉, 〈l〉, 〈i〉}. Using property (i) of the current theorem, then
IHEσ

(Eσ (e)) ⊆ Eσ (e) for each e ∈ X. The other direction is proved using (vi i) of
Theorem 2. Hence, IHEσ

(Eσ (e)) = Eσ (e)

(vi i i) Suppose that σ ∈ {u, 〈u〉}. Using property (i) of the current theorem, then
IHEσ

(Eσ (e)) ⊆ Eσ (e) for each e ∈ X.

(i x) Similar to the proof of property (v).

(x) Similar to the proof of property (vi).

��
Proposition 12 Let I be an ideal on a σ -N S (X,L, ζσ ). If W ⊆ X, then

(i) IHEu(W ) ⊆ IHEr (W )∩ IHEl(W ) ⊆ IHEr (W )∪ IHEl(W ) ⊆ IHEi (W ).

(ii) IHEi (W ) ⊆ IHEr (W )∩ IHEl(W ) ⊆ IHEr (W )∪ IHEl(W ) ⊆ IHEu(W ).

(iii) IHE〈u〉(W ) ⊆ IHE〈r〉(W )∩ IHE〈l〉(W ) ⊆ IHE〈r〉(W )∪ IHE〈l〉(W ) ⊆ IHE〈i〉(W ).

(iv) IHE〈i〉(W ) ⊆ IHE〈r〉(W )∩ IHE〈l〉(W ) ⊆ IHE〈r〉(W )∪ IHE〈l〉(W ) ⊆ IHE〈u〉(W ).

Proof Follows from Proposition 9 and Definition 18. ��
Corollary 6 Let I be an ideal on a σ -N S (X,L, ζσ ). If W ⊆ X, then

(i) IAEu(W ) ≤ IAEr (W ) ≤ IAEi (W ).

(ii) IAEu(W ) ≤ IAEl(W ) ≤ IAEi (W ).

(iii) IAE〈u〉(W ) ≤ IAE〈r〉(W ) ≤ IAE〈i〉(W ).

(iv) IAE〈u〉(W ) ≤ IAE〈l〉(W ) ≤ IAE〈i〉(W ).

Proposition 13 If W is a nonempty subset of X, 0 ≤ IAEσ
(W ) ≤ 1 for any σ .

Proof Follows by the fact that IHEσ
(W ) ⊆ W ⊆ IHEσ (W ). ��

Definition 21 We call a subset W I
Eσ -exact if IAEσ

(W ) = 1. Otherwise, W is called
I
Eσ -rough.

The next example demonstrates that the converse of Corollary 6 fails in general.

Example 7 Continued in Example 1. If I = {∅, {y}}, then for each σ , the accuracy criteria
IAEσ

(W ) are computed in the Tables 4 and 5.

The next theorem elucidates how the present models get better the operators of approx-
imation compared with the models furnished in Al-shami et al. (2024c). They make a real
shrink (or removal) for the boundary regions and an obvious increase in accuracy measures
of subsets.

Theorem 5 Let I be an ideal on a σ -N S (X,L, ζσ ). If S ⊆ X, then for each σ the next
statements hold true.

(i) HEσ
(S) ⊆ IHEσ

(S),

(ii) IHEσ (S) ⊆ HEσ (S).
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Table 4 The Accuracy criteria
for {r , l, i, u} W IAEr (W ) IAEl (W ) IAEi (W ) IAEu (W )

{a} 1
2 1 1 1

2
{x} 1 1 1 1

{y} 0 0 1 0

{v} 1 1
2 1 1

2

{a, x} 2
3 1 1 2

3

{a, y} 1 1
2 1 1

2

{a, v} 2
3

2
3 1 2

3

{x, y} 1
2

1
2 1 1

2

{x, v} 1 2
3 1 2

3

{y, v} 1
2 1 1 1

2

{a, x, y} 1 2
3 1 2

3

{a, x, v} 3
4

3
4 1 3

4
{a, y, v} 1 1 1 1

{x, y, v} 2
3 1 1 2

3
X 1 1 1 1

Table 5 The Accuracy criteria
for {〈r〉, 〈l〉, 〈i〉, 〈u〉} W IAE〈r〉 (W ) IAE〈l〉 (W ) IAE〈i〉 (W ) IAE〈u〉 (W )

{a} 1 1 1 1

{x} 0 1
2 1 0

{y} 1 0 1 0

{v} 0 1 1 0

{a, x} 1
3

2
3 1 1

4

{a, y} 1 1
2 1 1

2

{a, v} 1
3 1 1 1

3

{x, y} 1
3 1 1 1

3

{x, v} 1 2
3 1 2

3

{y, v} 1
3

1
2 1 0

{a, x, y} 1
2 1 1 1

2

{a, x, v} 1 3
4 1 3

4

{a, y, v} 1
2

2
3 1 1

4
{x, y, v} 1 1 1 1

X 1 1 1 1

Proof By using Theorem 3, thenHEσ
(S) ⊆ IH̃Eσ

(S). SinceHEσ
(S) ⊆ W , thenHEσ

(S) ⊆
IHEσ

(S). By following a similar argument, the second statement can be proven. ��
Corollary 7 Let I be an ideal on a σ -N S (X,L, ζσ ). If S ⊆ X, then

AEσ
(S) ≤I AEσ

(S), f oreachσ.
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To clarify that the converse of the aforementioned theorem and corollary fails, we give
the next example.

Example 8 Continued from Example 1. If I = {∅, {x}}, then IHEσ
, IHEσ , and IAEσ

of
W = {a, y} are computed for σ ∈ {l, u} as follows:
(i)HEσ

(W ) = {a}, HEσ (W ) = {a, y, v}, and AEσ
(W ) = 1

3 .
(ĩ i)IHEσ

(W ) = {a, y}, IHEσ (W ) = {a, x, y}, and IAEσ
(W ) = 2

3 ,

Proposition 14 For each σ , suppose that I is an ideal on a σ -N S (X,L, ζσ ). If W ⊆ X, then

(i) IHEσ
(W ) ⊆ IH�σ (W ).

(ii) IH�σ (W )⊆ IHEσ (W )

(iii) IAEσ
(W ) ≤ IA�σ (W ).

Remark 4 Let I,J be ideals on a σ -NS (X,L, ζσ ), andW ⊆ X. If I ⊆ J , then IAEσ
(W ) ≤

JAEσ
(W ), for each σ .

Finally, we present Algorithm 1, which determines whether a set is I
Eσ -rough or I

Eσ -
exact and calculates its measure of accuracy.

Input : The sample under study representing by X as the universe.
Output: Identify whether sets under considaration are I

Eσ -rough or IEσ -exact and compute their
accuracy.

1 Provide an ideal I and a binary relation L over X as given by the expert;
2 Select a type of σ ;
3 for all α ∈ X do
4 Compute Dσ (α)

5 end
6 for all α ∈ X do
7 Compute Eσ(α)

8 end
9 for each subset S �= ∅ of X do

10 Compute IH̃Eσ (S) (by the formula of Definition 17);

11 Compute IHEσ (S) = IH̃Eσ (S) ∩ S;

12 Compute IH̃Eσ (S) (by the formula of Definition 17);

13 Compute IHEσ (S) = IH̃Eσ (S) ∪ S;

14 if IHEσ (S) = IHEσ (S) then
15 a subset S is IEσ -exact;

16 Print IAEσ
(W ) = 1

17 else
18 a subset S is IEσ -rough;

19 Compute IAEσ
(W ) =

|IHEσ (W )|
|IHEσ (W )|

20 end
21 end

Algorithm 1: Determination of whether a subset is I
Eσ -rough or I

Eσ -exact, along
with the computation of its accuracy measure.
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4 Assorted topologies generated by ideals and cardinality
neighborhoods

In this part, we utilize ideals and cardinal neighborhoods to originate various topologies that
are finer than those previously generated by cardinal neighborhoods as described in Al-shami
et al. (2024c), for any given relation.

Theorem 6 Let I be an ideal on a σ -N S (X,L, ζσ ). For each σ , the family IΩEσ
= {W ⊆ X:

∀ v ∈ W , Eσ (v)\W ∈ I} constitutes a topology on X.

Proof Firstly, suppose Wι∈IΩEσ
, for each ι∈Δ. Let v∈ ∪ι∈ΔWι, then there is ι0∈Δ s.t.

v∈Wι0 and Eσ (v)\Wι0 ∈ I. Since Wι0 ⊆ ∪ι∈ΔWι. Therefore, Eσ (v) \ (∪ι∈ΔWι) ∈ I, this
means that ∪ι∈ΔWι∈IΩEσ

.
Secondly, let W1,W2 be elements of IΩEσ

and v belongs to the intersection of W1 and
W2. Then Eσ (v)\W1 ∈ I and Eσ (v)\W2 ∈ I. Hence, Eσ (v) \ [W1 ∩ W2] ∈ I. This means
that W1∩ W2∈IΩEσ

.
Finally, it is evident that ∅, X∈IΩEσ

, for each σ . Consequently, IΩEσ
is a topology on

X. ��
If W∈IΩEσ , then W is said to be IΩEσ

-open set while the complement of W is called a
I⊥Eσ -closed set, where I⊥Eσ = {F : Fc ∈ IΩEσ }.
Proposition 15 Let I be an ideal on a σ -N S (X,L, ζσ ). Then

(i) For each σ , ΩEσ
⊆ IΩEσ

(ii) For each σ , IΩEσ
⊆ IΩ�σ .

(iii) If L is preorder relation, then IΩE〈σ 〉 = IΩEσ
, for σ ∈ {r , l, i, u}.

Proof (i): Directly from the fact that Eσ (v) ⊆ S for each e ∈ S implies that Eσ (v)\S ∈ I
for each e ∈ S.
(ii): By Proposition 8, we have �σ (v) ⊆ Eσ (v) for each σ ; therefore, we find by the property
of ideal that Eσ (v) \ S ∈ I implies that �σ (v) \ S ∈ I.
(iii): By Proposition 7. ��
Example 9 Continuing from Example 1.

ΩEr = {∅, X, {x}, {v}, {x, v}, {a, y}, {a, x, y}, {a, y, v}}.
ΩEl = {∅, X, {x}, {a}, {y, v}, {a, x}, {x, y, v}, {a, y, v}}.
ΩEi = 2X = ⊥Ei .
ΩEu = {∅, X, {x}, {a, y, v}}.
ΩE〈r〉 = {∅, X, {a}, {y}, {x, v}, {a, y}, {a, x, v}, {x, y, v}}.
ΩE〈l〉 = {∅, X, {a}, {v}, {a, v}, {x, y}, {a, x, y}, {x, y, v}}.
ΩE〈i〉 = 2X.
ΩE〈u〉 = {∅, X, {a}, {x, y, v}}.
If I = ∅, {y}, then
IΩEr = {∅, X, {a}, {x}, {v}, {a, x}, {a, y}, {a, v}, {x, v}, {a, x, y}, {a, x, v}, {a, y, v}}.
IΩEl = {∅, X, {a}, {x}, {v}, {a, x}, {y, v}, {a, v}, {x, v}, {x, y, v}, {a, x, v}, {a, y, v}}.
IΩEi = 2X.
IΩEu = {∅, X, {a}, {x}, {v}, {a, x}, {a, v}, {x, v}, {a, x, v}, {a, y, v}}.
IΩE〈r〉 = {∅, X, {a}, {y}, {a, y}, {x, v}, {a, x, v}, {x, y, v}}.
IΩE〈l〉 = {∅, X, {a}, {x}, {v}, {a, x}, {a, v}, {x, y}, {x, v}, {a, x, y}, {a, x, v}, {x, y, v}}.
IΩE〈i〉 = 2X.
IΩE〈u〉 = {∅, X, {a}, {x, v}, {a, x, v}, {x, y, v}}.
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Lemma 2 Let I,J be ideals on a σ -N S (X,L, ζσ ) such that I ⊆ J . Then, for all σ , we
have IΩEσ

⊆ J ΩEσ
.

Proof Direct to prove.

The reverse implication of Lemma 2 does not necessarily hold, as demonstrated in the
next example.

Example 10 Continuing fromExample 1. LetI = {∅, {y}},J = {∅, {a}, {y}, {a, y}}, andσ =
r . Then, J ΩEr = 2X � {∅, X, {a}, {x}, {v}, {a, x}, {a, y}, {a, v}, {x, v}, {a, x, y}, {a, x, v},
{a, y, v}} = IΩEr .

Theorem 7 The subsequent relations between topologies are satisfied:

(i) IΩEu ⊆ IΩEr ∩ IΩEl ⊆ IΩEr ∪ IΩEl ⊆ IΩEi .

(ii) IΩE〈u〉 ⊆ IΩE〈r〉∩ IΩE〈l〉 ⊆ IΩE〈r〉∪ IΩE〈l〉 ⊆ IΩE〈i〉 .

Proof These relations are warranted by the first item of Proposition 2. ��
Example 9 displays that IΩEi �= IΩEr ,

IΩEi �= IΩEl ,
IΩEi �= IΩEu

IΩEu �= IΩEr , andIΩEu �= IΩEl .
IΩE〈i〉 �= IΩE〈r〉, IΩE〈i〉 �= IΩE〈l〉, IΩE〈i〉 �= IΩE〈u〉, IΩE〈u〉 �= IΩE〈r〉,

and IΩE〈u〉 �= IΩE〈l〉.
In the next, various types of rough approximations will be constructed by utilizing their

counterparts via topologies initiated by ideals and cardinal neighborhoods. Also, some of
properties of these rough approximations will be discussed.

Definition 22 Let IΩEσ represent a topology induced by ideals and cardinality neighbor-
hoods. Then, for each σ , the lower and upper approximations of a setW ⊆ X are respectively
given by:

Iδσ (W ) = I intEσ
(W ), Iδσ (W ) = IclEσ

(W ), where I intEσ
(W ), IclEσ

(W ) respectively
represent the interior and closure of a set W with respect the topology IΩEσ . Additionally,

the accuracy criteria of W is assigned as: Iλδσ (W ) = |Iδσ (W )|
|Iδσ (W )| , |

Iδσ (W ) |�= 0.

It is evident that 0 ≤I λδσ ≤ 1. If Iλδσ (W ) = 1, then W is referred to as an I
Eσ -exact

set. Elsewise, W is termed an I
Eσ -rough set.

Concerning to Definition 22, the following results can be proven using the topological
characteristics of interior and closure operators. It is noteworthy that certain properties absent
in the IH̃Eσ

-, IH̃Eσ -approximations are still valid for the Iδσ -, Iδσ -approximations such as
item (i) of Theorem 2.

Theorem 8 For each σ , suppose that IΩEσ is a topology generated by ideals and cardinality
neighborhoods and let S,W ⊆ X. Then, we have the next properties:

(i) Iδσ (W ) ⊆ W.

(ii) Iδσ (∅) = ∅.
(iii) Iδσ (X) = X.

(iv) If S ⊆ W, then Iδσ (S) ⊆ Iδσ (W ).

(v) Iδσ (S ∩ W ) = Iδσ (S) ∩ Iδσ (W ).
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(vi) Iδσ (Wc) = (Iδσ (W ))c.

(vii) Iδσ (Iδσ (W )) = Iδσ (W ) for each σ .

Proof These relations are valid due to the correspondence between interior topological and
lower approximation operators. ��
Corollary 8 For each σ , suppose that IΩEσ is a topology induced by ideals and cardinality
neighborhoods. Then Iδσ (S) ∪ Iδσ (W ) ⊆ Iδσ (S ∪ W ) for any S,W ⊆ X.

Theorem 9 For each σ , suppose that IΩEσ is a topology generated by ideals and cardinality
neighborhoods and let S,W ⊆ X. Then, we have the next properties:

(i) W ⊆ Iδσ (W ).

(ii) Iδσ (∅) = ∅.
(iii) Iδσ (X) = X.

(iv) If S ⊆ W, then Iδσ (S) ⊆I δσ (W ).

(v) Iδσ (S ∪ W ) = Iδσ (S) ∪ Iδσ (W ).

(vi) Iδσ (Wc) = (Iδσ (W ))c.

(vii) Iδσ (Iδσ (W )) = Iδσ (W ) for each σ .

Proof These relations are valid due to the correspondence between closure topological and
upper approximation operators. ��
Corollary 9 Let IΩEσ be a topology induced by ideals and cardinality neighborhoods. Then
Iδσ (S ∩ W ) ⊆ Iδσ (S) ∩ Iδσ (W ) for any S,W ⊆ X.

Proposition 16 If ∅ �= W ⊆ X, then 0 ≤ Iλδσ (W ) ≤ 1 and Iλδσ (X) = 1 for any σ .

Proposition 17 The subsequent inclusion relations are valid for every subset S of a topolog-
ical space (X,I ΩEσ ):

(i) Iδu(S) ⊆ Iδr (S) ∩ Iδl(S) ⊆ Iδr (S) ∪ Iδl(S) ⊆ Iδi (S).

(ii) Iδi (S) ⊆ Iδr (S) ∩ Iδl(S) ⊆ Iδr (S) ∪ Iδl(S) ⊆ Iδu(S).

(iii) Iδ〈u〉(S) ⊆ Iδ〈r〉(S) ∩ Iδ〈l〉 ⊆ Iδ〈r〉(S) ∪ Iδ〈l〉(S) ⊆ Iδ〈i〉(S).

(iv) Iδ〈i〉(S) ⊆ Iδ〈r〉(S) ∩ Iδ〈l〉(S) ⊆ Iδ〈r〉(S) ∪ Iδ〈l〉(S) ⊆ Iδ〈u〉(S).

Corollary 10 The subsequent inequalities are valid for every nonempty subset S of a topo-
logical space (X,I ΩEσ ):

(i) Iλδu (S) ≤I λδr (S) ≤I λδi (S).

(ii) Iλδu (S) ≤I λδl (S) ≤I λδi (S).

(iii) Iλδ〈u〉(S) ≤I λδ〈r〉(S) ≤I λδ〈i〉(S).
(iv) Iλδ〈u〉(S) ≤I λδ〈l〉(S) ≤I λδ〈i〉(S).

The approximations and accuracy criteria presented in this section, founded on topological
spaces, will now be compared with the methods discussed in the previous section.
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Table 6 Information system of sample of patients

Patients Rashes Fever Headache Vomiting Fatigue Decision

p1 + + − − + �
p2 − + + + + �
p3 + + − + − �
p4 − − + + − ✗

p5 + + − − + ✗

p6 + + − + + ✗

p7 + + − + − �
p8 + − − − − ✗

Proposition 18 For each σ and S ⊆ X, we have the following relations:

(i) Iδσ (S) ⊆ IHEσ
(S), and

(ii) Iδσ (S) ⊇ IHEσ (S)

Proof To prove (i). Let a ∈ Iδσ (S). Then we find a subset V ∈ IΩσ with a ∈ V ⊆ S.
It follows from the way of structuring topology, we obtain Eσ (a) \ V ∈ I. Now, we get
Eσ (a) \ S ∈ I since V ⊆ S. Hence, a ∈ IH̃Eσ

(S). Since a ∈ S, then a ∈IHEσ
(S) and so

Iδσ (S) ⊆ IHEσ
(S). By the same manner, one can prove (i i). ��

The converse of proposition 18 need not to be true, refer to Table 2 and Example 9.
Suppose that σ = r and W = {a, x}. Then IHEσ

(S) = {a, x, y}, Iδσ (S) = {a, x}. Hence,
IHEσ

(S) �
Iδσ (S).

Corollary 11 For each σ , consider I is an ideal on a σ -N S (X,L, ζσ ). If S ⊆ X, then Iλδσ (S)

≤ IAEσ
(S).

5 An examination of the current rough-set paradigms for analyzing the
diagnosis of dengue

In this practical section, we evaluate the effectiveness of the suggested models in han-
dling dengue information systems for certain patients. We illustrate how the present method
enhances decision-making and how we leverage a topological technique to identify the most
critical symptoms for determining infection of dengue. Based on the following analysis, we
conclude that the proposed rough-set paradigms outperform their counterparts of rough-set
paradigms based on cardinality neighborhoods without the use of ideals. Additionally, we
refer to the limitations associated with the method outlined in Sect. 3.1.

Table 6 presents data for a group of eight patients, denoted asX = {p1,p2,p3,p4,p5,p6,
p7,p8}, along with their corresponding symptoms, which are represented as conditional
attributes: rashes, fever, headache, vomiting, and fatigue. The dengue diagnosis is considered
the decision attribute. For each conditional attribute (symptom), we assign a value of "+" or
"-" to indicate whether the symptom is present or absent in the patient. Similarly, the decision
attribute is marked with either "�" or "✗" to denote a positive or negative dengue report,
respectively.
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Presume that the system’s expert suggested the next relation L on the set of patients X, to
describe the connections between patients according to their symptoms:

piLp j ⇐⇒ the common positive symptoms between pi and p j are more than two

Then L = {(p1,p1}), (p2,p2}), (p3,p3}), (p5,p5}), (p6,p6}), (p7,p7}), (p1,p5}),
(p5,p1}), (p1,p6}), (p6,p1}), (p2,p6}), (p6,p2}), (p3,p6}), (p6,p3}), (p3,p7}), (p7,p3}),

(p5,p6}), (p6,p5}), (p6,p7}), (p7,p6})}.
Remark that L is a symmetric relation. In contrast, we have (p4,p4}) /∈ L so L is not

a reflexive relation; also, we have (p2,p6}), (p6,p5}) ∈ L but (p2,p5}) /∈ L so L is not a
transitive relation. We begin processing the data, described by the given relation, by con-
structing the Eσ -neighborhood systems. Due to the symmetry of the proposed relation, we
infer that allEσ -neighborhoods are identical as established in Proposition 2. Table 7 presents
the Eσ -neighborhood for each patient.

Also, let I = {∅, {p2}, {p5}, {p2,p5}} refer to the ideal given by the expert. In the
frameworks of the present rough-set models and those given in Al-shami et al. (2024c),
we calculate, in the following items, the approximations (lower and upper) and accuracy for
S = {p1,p2,p3,p7}, which represents a set of patients with a positive report of dengue:

– Rough-set model presented in Al-shami et al. (2024c).

(i) HEσ
(S) = {p2},

(ii) HEσ (S) = {p1,p2,p3,p5,p7},
(iii) BEσ

(S) = HEσ (S)\HEσ
(S) = {p1,p3,p5,p7}, and

(iv) AEσ
(S) = |HEσ (S)|

|HEσ (S)| = 1
5 .

– Our rough-set model presented in Sect. 3.1.

(i) IH̃Eσ
(S) = {p1,p2,p3,p5,p7} and

(ii) IH̃Eσ (S) = {p1,p3,p5,p7}.
– Our rough-set model presented in Sect. 3.2.

(i) IHEσ
(S) = S,

(ii) IHEσ (S) = {p1,p2,p3,p5,p7},
(iii) I

BEσ
(S) =I HEσ (S) \I HEσ

(S) = {p5}, and
(iv) IAEσ

(S) = |IHEσ (S)|
|IHEσ (S)| = 4

5 .

– Topological models established in Sect. 4. To apply these models, we first initiate a
topology according to Table 7 as follows: IΩEσ = {∅, X, {p2}, {p6}, {p2,p6}, {p4,p8},
{p2,p4,p8}, {p4,p6,p8}, {p2,p4,p6,p8}, {p1,p3,p7}, {p1,p2,p3,p7}, {p1,p3,
p5,p7}, {p1,p2,p3,p5,p7}, {p1,p3,p5,p6,p7}, {p1,p2,p3,p5,p6,p7}{p1,p3,p6,
p7}, {p1, p2,p3,p6,p7}, {p1,p3,p4,p7,p8}, {p1,p2,p3,p4,p7,p8}, {p1,p3,p4,p6,
p7,p8}, {p1,p3,p4,p5,p6,p7,p8}, {p1,p2,p3,p4,p5,p7,p8}, {p1,p3,p4,p5,p7,
p8}}. Then, we calculate, in the following items, the approximations (lower and upper)
and accuracy for S:

(i) Iδσ (S) = I intEσ
(S) = S,
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(ii) Iδσ (S) = IclEσ
(S) = {p1,p2,p3,p5,p7},

(iii) I
BEσ

(S) =I clEσ
(S) \I intEσ

(S) = {p5}, and

(iv) Iλδσ (S) = |Iδσ (S)|
|Iδσ (S)| = 4

5 .

Based on the above outcomes, it is evident that these computations align with the findings
presented in Theorem 5 and Corollary 7. In summary, one can note that the rough-set models
proposed in Sect. 3.2 enhance the lower and upper approximations, thereby improving the
accuracy measures of subsets compared to rough-set models described in Al-shami et al.
(2024c). Moreover, the paradigms of rough sets Sect. 3.2 generate the same approximation
spaces induced by topological approach displayed in Sect. 4. Let’s compare the computations
given by the above four rough set models.We remark that the best approximations (lower and
upper) are obtained by the model introduced in Sect. 3.1. However, this model suffers some
failures such as preserving the main characteristics of approximation operators and illogical
measures of accuracy.

In the remainder of this section, we utilize the topological spaces, generated earlier
using ideals and cardinality neighborhoods, to identify the key symptoms for deter-
mining whether a patient is infected with dengue disease. The original topology is:
IΩEσ = {∅, X, {p2}, {p6}, {p2,p6}, {p4,p8}, {p2,p4,p8}, {p4,p6,p8}, {p2,p4,p6,p8},
{p1,p3,p7}, {p1,p2,p3,p7}, {p1,p3,p5,p7}, {p1,p2,p3,p5,p7}, {p1,p3,p5,p6,p7},
{p1,p2,p3,p5,p6,p7}{p1,p3,p6,p7}, {p1,p2,p3,p6,p7}, {p1,p3,p4,p7,p8}, {p1,p2,
p3,p4,p7,p8}, {p1,p3,p4,p6,p7,p8}, {p1,p3,p4,p5,p6,p7,p8}, {p1, p2,p3,p4,p5,p7,
p8}, {p1,p3,p4,p5,p7,p8}}. We will now compare the original topology generated from
the patient information system presented in Table 6, with the topologies generated from the
same table after removing one symptom at a time. This process will be repeated for each
symptom individually.

(i) If the symptom “rashes" is excluded from the input attributes, then Lrashes =
{(p2,p2), (p6,p6), (p2,p6), (p6,p2)}. It is clear that IΩEσ − rashes �= IΩEσ .

(ii) If symptom “fever" is removed from the input attributes, then we obtain IΩEσ −
f ever �= IΩEσ .

(iii) If the symptom “headache" is neglected from the input attributes, then a relation L is
generated. Therefore, IΩEσ − headache = IΩEσ .

(iv) If the symptom “vomiting" is omitted from the input attributes, then IΩEσ −
vomiting �= IΩEσ .

(v) If the symptom “fatigue" is canceled from the input attributes, then we also obtain
IΩEσ − f atigue �= IΩEσ .

Based on the above computations, it can be concluded that rashes, fever, vomiting, and
fatigue are the core attributes. In other words, these symptoms are identified as the key
indicators for determining whether a patient is infected with dengue disease. In contrast,
removing the symptom of headache does not alter the structure of the topology formed;
therefore, this symptom can be omitted during examinations.

In Algorithm 2 below, we articulate how the core set of symptoms is calculated depending
on the topology inspired by Eσ -neighborhoods and ideal structure.
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Input : A set of patients X, symptoms of dengue disease (attributes set) S, and report
of each patient describes his/her case for each symptom.

Output: Specify the key symptoms to judge that the patient has dengue.

1 Build information systems describing symptoms of each patient as offered by his/her
report;

2 Determine the relation L to classify the patients (this is the task of experts);
3 Extract the elements of relation L using the data displayed in the information system;
4 for each patient p do
5 Compute Dσ (p)

6 end
7 for each patient p do
8 Compute Eσ(p)

9 end
10 Give the ideal structure as constructed by experts;
11 Structure the topology IΩEσ using method provided by Theorem 6;
12 for each attribute s of S do
13 Remove the attribute s from the information system;
14 Extract the elements of relation L − s using the data displayed in the information

system;
15 for each patient do
16 Compute Dσ (p) with respect to L − s
17 end
18 for each patient p do
19 Compute Eσ(p) with respect to L − s
20 end
21 Structure the topology IΩs

Eσ
using method provided by Theorem 6;

22 if IΩs
Eσ

= IΩEσ then
23 an attribute s is one of the core symptoms;
24 Put s ∈ A
25 else
26 an attribute s is not important symptom
27 end
28 end
29 Print the core set of symptoms A.

Algorithm 2: Determine the core attributes to judge whether the patient has dengue
disease or not

6 Discussions: strengths and limitations

Herein, we tackle the advantages and disadvantages of the proposed rough-set paradigms as
follows.

– Advantages

(i) The binary relation applied to define the types of approximation operators introduced
herein is free from the restrict condition of an equivalence relation imposed in Pawlak
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model. Also, the current models does not stipulate any type of relation such as those
models introduced in Abo-Tabl (2013, 2011); Dai et al. (2018); Salama et al. (2022).

(i i) Two kinds of rough sets models presented in this work preserve most properties
of Pawlak model (mentioned in Proposition 1) as clarified in Sects. 3.2 and 4; this
matter is illustrated in Theorem 4, Theorem 8 and Theorem 9. Also, these twomodels
overcome shortcomings of the previousmodels that appear in the formula of accuracy
criteria or the illogical characteristics of lower and upper approximations; see, El-
Bably et al. (2021). We draw the reader’s attention to the fact that the property of
the distribution of intersections between the lower approximations of subsets, and
likewise, the property of the distribution of unions between the upper approximations
of subsets, aremissing inmost previousmodels.Whereas, in the currentmodels, these
properties are preserved.

(i i i) The rough setmodels suggested in thiswork provide an efficient instrument to address
some real situations they focus on the cardinality number ofDσ -neighborhoods such
as those are applied in the social media or used to category the applicants according
to the number of their qualities.

(iv) Thisworkprovides an alternative instrument inspired by topological structures,which
helps awide range of users to choose the suitablemethodswith their expertise. That is,
users with abstract backgrounds prefer to deal with the topological approach because
of the ease of computing the approximation operators from their corresponding inte-
rior and closure topological operators.

– Limitations

(i) The efficiency of the present rough set models is less than the rough-set paradigms
produced by �-neighborhoods (Atef et al. 2020; Mareay 2016) in terms of enlarging
the upper approximation and shrinking the lower approximation.

(i i) Our model displayed in Sect. 3.1 loses the main characteristic of rough set models
that reports that a set S ⊆ X is a superset of its lower approximation and a subset of
its upper approximation; that is, IH̃Eσ

(S) ⊆ S ⊆ IH̃Eσ (S).
(i i i) Maximization or minimization of the given relation will certainly lead to a change in

the number of elements in some neighborhoods, and thus the cardinal rough neighbor-
hoods of these elements will change in a way that cannot be determined. Therefore,
the existing models fail to satisfy the monotonicity property.

7 Conclusion and future work

Rough set theory, proposed by Polish mathematician Pawlak in 1982, is a powerful math-
ematical tool for effectively transacting with imprecise and uncertain information. A key
advantage of rough set theory is its ability to represent data using the granular structure with-
out requiring any a priori information beyond the dataset itself. As we know, the granular
structure represented by equivalence classes has been updated using neighborhood systems
inspired by arbitrary relations, which assists in canceling a strict condition of an equivalence
relation. However, the insufficiency of recent models has appeared in relation to keeping
the main features of the original paradigm and the invalidity of some formulas applied to
measure confirmed and possible knowledge.

Stimulated by the notions of cardinality neighborhoods and ideals, we have introduced
novel types of generalized approximation spaces in this manuscript. The first type has proved
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its efficiency in extracting as much knowledge as possible from subsets of data. However, it
suffers from weakness concerning the violation of some properties of the original model. To
overcome this obstacle, we have presented the second type of approximation space which
enlarges the obtained knowledge to an acceptable extent and preserves the characteristics of
the originalmodel.We have derived the related useful properties of thesemodels and illustrate
their validity to improve the approximation operators. After that, we have built a topological
frame to represent the proposed rough set model. We have exhibited the characterizations
of the rough topological model and elucidated its relationships with its counterpart defined
without ideal structure. According to the analysis displayed in themedical example of dengue
disease, we can say that the rough set models adopted herein outperform the existing models.

Our future plan is as follows:

– expand the current paradigms using a finite set of arbitrary relations and ideals aiming
to minimize the upper approximation and maximize the lower approximation.

– explore novel rough set models generated by Eσ -neighborhoods and an ideal structure I
generated by two ideals I1, I2 as follows I = {W ∪ S : W ∈ I1, S ∈ I2}.

– discuss the notions presented herein in the frames of fuzzy and soft settings.
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